
The What-To-Ask Problem
for Ontology-Based Peers

Diego Calvanese1(B) , Giuseppe De Giacomo2 , Domenico Lembo2 ,
Maurizio Lenzerini2 , and Riccardo Rosati2

1 Free University of Bozen-Bolzano, Bolzano, Italy
calvanese@inf.unibz.it

2 Sapienza Università di Roma, Rome, Italy
{degiacomo,lembo,lenzerini,rosati}@diag.uniroma1.it

Abstract. The issue of cooperation, integration, and coordination
between information peers has been addressed over the years both in
the context of the Semantic Web and in several other networked envi-
ronments, including data integration, Peer-to-Peer and Grid computing,
service-oriented computing, distributed agent systems, and collaborative
data sharing. One of the main problems arising in such contexts is how
to exploit the mappings between peers in order to answer queries posed
to one peer. We address this issue for peers managing data through
ontologies and in particular focus on ontologies specified in logics of the
DL-Lite family. Our goal is to present some basic, fundamental results
on this problem. In particular, we focus on a simplified setting based
on just two interoperating peers, and we investigate how to solve the
so-called “What-To-Ask” problem: find a way to answer queries posed
to a peer by relying only on the query answering service available at
the queried peer and at the other peer. We show both a positive and a
negative result. Namely, we first prove that a solution to this problem
always exists when the ontology is specified in DL-LiteR, and we provide
an algorithm to compute it. Then, we show that for the case of DL-LiteF
the problem may have no solution. We finally illustrate that a solution to
our problem can still be found even for more general networks of peers,
and for any language of the DL-Lite family, provided that we interpret
mappings according to an epistemic semantics, rather than the usual
first-order semantics.

1 Introduction

In the era towards a data-driven society, the issue of cooperation, integration, and
coordination between data stored in different nodes of a network is of paramount
importance. Indeed, recent years have shown the need to deal with networked
data in large-scale, distributed settings, and it is not surprising that the abstrac-
tion of networked data systems appears in many disciplines, including Web Sci-
ence and Peer-to-Peer computing [3,8,26], Semantic Web [1,42], Data Manage-
ment [12,27,31,37,44], and Knowledge Representation [25,30,42,46].
c© Springer Nature Switzerland AG 2019
C. Lutz et al. (Eds.): Baader Festschrift, LNCS 11560, pp. 187–211, 2019.
https://doi.org/10.1007/978-3-030-22102-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22102-7_9&domain=pdf
http://orcid.org/0000-0001-5174-9693
http://orcid.org/0000-0001-9680-7658
http://orcid.org/0000-0002-0628-242X
http://orcid.org/0000-0003-2875-6187
http://orcid.org/0000-0002-7697-4958
https://doi.org/10.1007/978-3-030-22102-7_9

188 D. Calvanese et al.

Put in an abstract way, all these systems are characterized by an architecture
constituted by various autonomous nodes (called sites, sources, agents, or, as we
call them here, peers) which hold information, and which are linked to other
nodes by means of mappings. A mapping is a statement specifying that some
relationship exists between pieces of information held by one peer and pieces of
information held by another peer. The whole knowledge of the system is fully
distributed, without any central entity holding a global view of information, or
controlling the overall operation of the system.

The basic problems arising in this architecture include the following:

– how to discover, express, and compose the mappings between peers (see, for
instance, [8,23,26,33,39]),

– how to exchange data between peers based on the specified mappings (see,
for instance, [24,31,32]),

– how to exploit the mappings in order to answer queries posed to one peer [28,
37,40].

The latter is the problem studied in this paper. Although several interesting
results have been reported in each of the above mentioned contexts, we argue
that a deep understanding of the problem of answering queries in a networked
environment is still lacking, in particular when the information in each peer is
modelled in terms of an ontology.

Our goal is to present some basic, fundamental results on this problem. Given
the fundamental nature of our investigation, we consider a simplified setting
where the whole system is constituted by only two peers, called local and remote,
respectively. Information in the remote peer is related to the information in the
local peer by means of suitable mappings (cf. Fig. 1). Interestingly, despite the
fact that this setting might look elementary, it will nevertheless allow us to
uncover various subtleties of an interoperating ontology-based peer system.

Fig. 1. Ontology-to-ontology: a simple form of interoperation among peer ontologies

The What-To-Ask Problem for Ontology-Based Peers 189

In our study, we make several assumptions, that are made explicit here:

– In contrast with most of the papers in peer-to-peer data management, we
assume that each peer does not simply store data, but holds a knowledge base.
In particular, we explore the context where each peer models its knowledge
base by means of an ontology.

– The ontology at each peer specifies both intensional knowledge (general rules)
and extensional one (individual facts). Actually, the latter may be managed
through a relational DBMS, and therefore represented by a database con-
nected to the ontology via local mappings, as shown in Fig. 1. So, if we have
data sources linked to our ontology through mappings, they are seen as inter-
nal components within a peer. In other words, each peer can be seen as an
Ontology-based data access (OBDA) system [13], and the novelty with respect
to the usual notion of OBDA is represented by the fact that mappings connect
peers, and not simply data sources to ontologies.

– We concentrate our attention to the issue of answering queries posed to the
local peer.

– We assume that each of the two peers provides the service of answering queries
expressed over its underlying ontology. Note that answering a query for a
peer requires reasoning over the ontology by means of deduction, rather than
simply evaluating the query expression over a database.

– We assume that query answering is the only basic service provided by each
peer. In other words, while processing a query posed to the local peer, the
query answering services provided by each of the two peers are the only basic
services that can be relied upon.

– In order to address the problem in the most general way, we assume that
the local peer can only collect the answers received by the remote peers, and
add them to the answers obtained by accessing its own data. In other words,
no computational power is available at the local peer to process the tuples
returned by the remote peer, except for just adding them to the result of the
whole query.

We believe that the above assumptions faithfully capture the modular struc-
ture of a peer-to-peer system, and generalize the existing investigation of peer-
to-peer architectures to the case where each peer is seen as an agent holding
complex knowledge, instead of simply data.

In this context, the basic problem we address is the following: given a query
posed to the local peer, find a way to answer the query by relying only on the
two query answering services available at the two peers. Thus, when answering
the query posed to the local peer, we have to figure out which queries to send to
the remote peer in order for the local peer to be able to return the correct and
complete set of answers to the original query. This is why we call this problem
the “What-To-Ask” problem (cf. [14]).

Example 1. Consider a music sharing system, and assume that the peer
SongUniverse stores its own information about songs, and has a mapping spec-
ifying that other songs, in particular live rock songs, can be retrieved from the
remote peer RockPlanet. Now, suppose that Carol interacts with the SongUniverse

190 D. Calvanese et al.

peer, and asks for all live songs of U.K. artists. What this peer can do in order
to answer Carol’s query at best is to: (i) directly provide her with the live songs
of U.K. artists that it stores locally, (ii) use its general knowledge about music
to deduce that also live rock songs suit Carol’s needs, (iii) use the mapping
to reformulate Carol’s request in terms of RockPlanet knowledge, in particular
asking to the remote peer the right query to retrieve all live rock songs of U.K.
artists. �

In this paper, we study the What-To-Ask problem in a setting where the
two peers hold an ontology expressed in a Description Logic of the DL-Lite
family [16]. Specifically, we present the following contributions.

1. We formalize the above mentioned two-peer architecture, we define its seman-
tics, and we give a precise characterization of the semantics of query answering
(Sect. 3).

2. We provide both the intuition and the formal definition of the “What-To-Ask”
problem, taking into account both the semantics of query answering and the
fact that, when answering a query posed to the local peer, only the query
answering services available at the two peers can be relied upon (Sect. 3).

3. We show that in the case of ontologies specified in DL-LiteR there is an
algorithm that allows us to solve any instance of “What-To-Ask”, i.e., that
allows us to compute what we should ask to the remote peer in order to
answer a query posed to the local peer. One of the basic ingredients of the
algorithm is the ability of reformulating the query on the basis of the local
peer ontology and the mappings, so as to deduce the correct queries to send
to the remote peer (Sect. 4).

4. We show that in the case of DL-LiteF , the “What-To-Ask” problem may not
admit any solution. This shows that particular attention should be devoted
to the trade-off between the expressive power of the ontology language and
the complexity/feasibility of reasoning (Sect. 5).

5. We finally discuss how to overcome the limitation above by making use of
mappings that explicitly take into account that ontologies are autonomous
agents that provide as query answering service the (independent) genera-
tion of certain answers. This calls for the usage of (auto-)epistemic operators
(Sect. 6).

To complete the description of the organization of the paper, Sect. 2 illus-
trates some preliminary notions that will be used in the technical development,
and Sect. 7 presents some concluding remarks. Finally, we note that this paper
is a revised and extended version of [14].

2 Preliminaries

We introduce now the ontology languages on which we base the technical devel-
opment in the next sections. Specifically, we rely on Description Logics (DLs) [6],
which are logic’s that represent the domain of interest in terms of concepts,
denoting sets of objects, and roles, denoting binary relations between objects.
Complex concept and role expressions are constructed by applying suitable con-
structs, starting from a set of atomic concepts and roles.

The What-To-Ask Problem for Ontology-Based Peers 191

2.1 The DL-Lite Family

We focus here on a family of lightweight DLs, called the DL-Lite family [16], and
introduce three prominent logics of this family, namely DL-Lite, DL-LiteR and
DL-LiteF . In the core language of the family, called DL-Lite, (basic) concepts C
and roles R are formed according to the following syntax:

C −→ A | ∃R R −→ P | P−

where A denotes an atomic concept, P an atomic role, P− the inverse of P , and
∃R an unqualified existential quantification. Intuitively, P− denotes the inverse
of the binary relation denoted by P , while ∃R denotes the domain of (the binary
relation denoted by) R, i.e., the projection of R on its first component.

A DL ontology O = 〈T ,A〉 encodes the knowledge about the domain of
interest in two distinct components: the TBox (for terminological box) T spec-
ifies general knowledge about the conceptual elements of the domain, while the
ABox (for assertional box) A, specifies extensional knowledge about individual
elements of the domain.

In DL-Lite, a TBox is formed by a finite set of inclusion and disjointness
assertions between concepts, respectively of the form

B1 � B2 B1 � ¬B2

where B1 and B2 are basic concepts. The first assertion expresses that every
instance of concept B1 is also an instance of concept B2, while the second asser-
tion expresses that the two sets of instances are disjoint. An ABox consists of
concept and role membership assertions, respectively of the form

A(c) P (c, c′)

where A is an atomic concept, P an atomic role, and c, c′ two constants. The first
assertion expresses that the individual denoted by c is an instance of concept A,
while the second assertion expresses that the two individuals denoted by c and
c′ are in relation P .

In DL-LiteR, a TBox may additionally contain role inclusion and disjointness
assertions, respectively of the form

R1 � R2 R1 � ¬R2

where R1 and R2 are arbitrary roles. The meaning of such assertions is analogous
to the one for concepts.

Instead, in DL-LiteF , a TBox may contain also functionality assertions of
the form

(funct R)

asserting that R is a functional role. Such a role R can relate each object to at
most one other object.

The semantics of a DL is given in terms of first-order logic interpretations,
where an interpretation I = (ΔI , ·I) consists of a non-empty interpretation

192 D. Calvanese et al.

domain ΔI and an interpretation function ·I that assigns to each concept C a
subset CI of ΔI , and to each role R a binary relation RI over ΔI , in such a way
that the following conditions hold. In particular, for the constructs of DL-Lite
we have:

AI ⊆ ΔI

(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(¬C)I = ΔI \ CI

P I ⊆ ΔI × ΔI

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}
(¬R)I = ΔI × ΔI \ RI

To specify the semantics of membership assertions, we extend interpretations
to constants, by assigning to each constant c a distinct object cI ∈ ΔI . Note
that this implies that we enforce the unique name assumption on constants [6].
Then, to assign semantics to an ontology, we first define when an interpretation
I satisfies an assertion α, denoted I |= α, as follows:

– I |= E1 � E2, if EI
1 ⊆ EI

2 ;
– I |= E1 � ¬E2, if EI

1 ∩ EI
2 = ∅;

– I |= (funct R), if whenever {(o, o1), (o, o2) ⊆ RI , then o1 = o2;
– I |= A(c), if cI ∈ AI ;
– I |= P (c, c′), if (cI , c′I) ∈ P I .

An interpretation I that satisfies all assertions of an ontology O is called a model
of O, and is denoted as I |= O. An ontology that admits a model is called
satisfiable. Finally, we say that an ontology O logically implies an assertion α,
denoted O |= α, if every model of O satisfies α. Analogous definitions hold when
we replace the ontology O with a TBox T or an ABox A.

We observe that, despite the simplicity of the language, the logics of the
DL-Lite family are able to capture the main elements of conceptual modeling
formalisms used in databases and software engineering (e.g., Entity-Relationship
and UML class diagrams), cf. [13]. Furthermore, DL-Lite is one of the classes
of DLs for which conjunctive query answering is tractable in data complexity.
Other DLs showing this property are EL [4,5], and all Horn DLs [41]. Moreover,
query answering remains tractable in the DL FL0 for instance queries (whereas
answering conjunctive queries in this logic is coNP-complete), as shown in [7].

2.2 Queries over a DL Ontology

We start with a general notion of queries in first-order logic, and then we move
to the definition of queries over a DL ontology.

In general, a query is an open formula of first-order logic with equalities (FOL
in the following). We denote a (FOL) query q as follows

{x1, . . . , xn | φ(x1, . . . , xn) }

where φ(x1, . . . , xn) is a FOL formula with free variables x1, . . . , xn. We call n
the arity of the query q. Given an interpretation I, qI is the set of tuples of
domain elements that, when assigned to the free variables, make the formula φ
true in I [2].

The What-To-Ask Problem for Ontology-Based Peers 193

A query over an ontology is a FOL query as above, in which the predicates
in φ are concepts and roles of the ontology. Among the various queries, we are
interested in conjunctive queries, which provide a reasonable trade-off between
expressive power and complexity of query processing.

A conjunctive query (CQ) q of arity n over an ontology O is a FOL query of
the form

{x1, . . . , xn | ∃y1, . . . , ym.φ(x1, . . . , xn, y1, . . . , ym)},

where x1, . . . , xn are pairwise distinct variables1, and φ(x1, . . . , xn, y1, . . . , ym)
is a conjunction of atoms whose predicates are concept and roles of O,
and whose free variables are the variables in x1, . . . , xn, y1, . . . , ym. We call
∃y1, . . . , ym.φ(x1, . . . , xn, y1, . . . , ym) the body of q, x1, . . . , xn the distinguished
variables of q, and y1, . . . , ym the non-distinguished variables of q.

In the following we will not indicate existential variables in queries
when not explicitly needed, i.e., we will use φ(x1, . . . , xn) to indicate
∃y1, . . . , ym.φ(x1, . . . , xn, y1, . . . , ym).

When a query is posed to an ontology, the ontology should answer the query
by returning all tuples of constants from the alphabet Γ that satisfy the query
in every interpretation that is a model of the ontology. This is formalized by the
following notion of certain answers,

Given a CQ q of arity n over an ontology O, the certain answers cert(q,O)
to q over O is the set of tuples of constants:

cert(q,O) = {〈c1, . . . , cn〉 | 〈cI
1 , . . . , cI

n〉 ∈ qI for all I such that I |= O}.

3 What-To-Ask

In this section we set up a formal framework for interoperation between ontology-
based peers, and we formally define the What-To-Ask problem.

3.1 Ontology-Based Peer Framework

As already said, the extensional level of the ontology can be virtually generated
by means of local mappings connecting the intensional level of the ontology to
a database. In this case, a peer is actually an autonomous ontology-based data
access system, or an ontology-based data integration system in the case where
the underlying database is federated [43]. For the sake of simplicity, in this paper
we consider a peer ontology of a more plain form, in which both the intensional
and the extensional knowledge are represented in a first-order logic theory, and
more precisely as a DL ontology. All the results we present in fact apply almost
straightforwardly to peers that are ontology-based data integration systems.

1 For simplicity of presentation, we have assumed here that conjunctive queries contain
neither constants nor repeated variables among x1, . . . , xn, but all our results extend
to the case where this restrictions do not apply.

194 D. Calvanese et al.

Each peer contains an ontology O = 〈T ,A〉 that it can use to make logical
inferences. Agents willing to use the peer, here called clients, can ask the peer
queries specified over the peer ontology (i.e., over its TBox).

Besides using its ontology O for answering queries, each peer can be con-
nected with other peers by means of mappings. Mappings establish the relation-
ship between the concepts represented in the peers. When answering a query,
each peer can also ask queries to the other peers based on such mappings.

In this paper we focus on a system made up by two interoperating peers.
One of them, called local peer, is the one the client interacts with by asking
queries. The other peer will be referred to as the remote peer, and the knowledge
contained in it can be exploited by the local peer through the mappings, so as
to enhance the capability of the local peer to provide answers to queries posed
by the client. We further assume that, while the local peer exploits the remote
peer through the mappings, the remote peer has no information about the local
peer, and thus it cannot use in any way the knowledge of the local peer.

Next, we move to the formalization of the framework. We assume that all
peers share the same set of constants, denoted by Γ , and we assume that Γ is
part of the alphabet of the ontology in each peer. We also assume that in every
interpretation different constants are interpreted with different domain elements,
i.e., we adopt the unique name assumption. With this assumption in place, we
turn our attention to the definition of ontology-based peers.

Definition 1. An ontology-based peer (or simply peer) is a pair P = 〈O,M〉
where:

– O = 〈T ,A〉 is the peer ontology, where T is a TBox and A an ABox;
– M is a set of mapping assertions, whose form will be illustrated below.

We also call the pair 〈T ,M〉 the specification of P , denoted by PS , and call the
ABox A the instance of P . �

Queries posed to a peer are specified over its TBox T . The queries that
we consider are conjunctive queries (cf. Sect. 2). We concentrate on systems
consisting of two peers, namely P� = 〈O�,M�〉, called local peer, which is the
peer to which the client may connect, and Pr = 〈Or, ∅〉, called remote peer. The
alphabets of O� and Or share the set of constants Γ , but contain disjoint sets
of relation names. Observe that the remote peer does not contain any mapping
assertion. We also assume that both peers may process conjunctive queries posed
over them, i.e., they are able to compute certain answers to CQs specified over
O� and Or, respectively. We say that the class of CQs is accepted by P� and Pr,
and we call the pair 〈P�, Pr〉 an ontology-to-ontology system.

The mapping M� in the local peer is constituted by a finite set of assertions
of the form

qr � {x | C(x)} or

q′
r � {x1, x2 | R(x1, x2)},

where qr is a CQ of arity 1 and q′
r a CQ of arity 2 over the remote peer, C is a

concept and R a role of the local peer, x is a variable, and x1 and x2 are distinct
variables.

The What-To-Ask Problem for Ontology-Based Peers 195

A mapping assertion qr � {x | C(x)} has an immediate interpretation as
an implication in FOL: it states that

∀x.φr(x) → C(x),

where φr is the open formula constituting the query qr. Analogously, the mapping
assertion q′

r � {x1, x2 | R(x1, x2)} is interpreted as

∀x1, x2.φr(x1, x2) → R(x1, x2).

We note that, in data integration terminology, the mappings we have consid-
ered here would correspond to a form of mappings called global-as-view (GAV),
where the local ontology corresponds to a global schema of a data integration
system, the remote ontology corresponds to a set of data sources, and each con-
cept of the global schema is defined by means of a CQ over the data sources.

3.2 The What-To-Ask Problem

A natural task to consider, given a client’s query q specified over the local peer
P�, is to return the answers that can be inferred from all the knowledge in the
system, that is, return the certain answers cert(q,O� ∪ M� ∪ Or)2. Clearly, such
a task is meaningful in the case where the axioms in O�, M�, and Or are known
and usable by the query answering algorithm.

Here, however, we consider a different setting, in which we assume that the
remote peer can only be used by invoking its query answering service, and the
local peer has minimal computational capabilities to perform post-processing of
the answers provided by the remote peer. More precisely, we assume that:

– each peer P = 〈O,M〉 is able to provide the certain answers cert(q,O) to
queries q specified over P itself, and

– each peer does not have additional computation capabilities, and is only able
to redirect its own answers and those produced by the other peer to the
output3.

Under these assumptions, computing the certain answers to a query posed to
the local peer requires to determine the set of queries to send to the remote peer
in such a way that the union of such answers with the certain answers computed
locally provides the certain answers to the query. This challenge is formalized in
what we call the What-To-Ask problem.

Definition 2. Consider a local peer P� = 〈O�,M�〉, a remote peer specifica-
tion PS

r = 〈Tr, ∅〉, and a query q specified over P�. The What-To-Ask problem,
WTA(q, P�, P

S
r), is defined as follows: Given as input q, P� and PS

r , find a finite
set {q1r , . . . , qn

r } of queries, each specified over the remote peer Pr, such that for
every instance of the remote peer Ar:

cert(q,O� ∪ M� ∪ Or) = cert(q,O�) ∪ cert(q1r ,Or) ∪ · · · ∪ cert(qn
r ,Or).

where Or = 〈Tr,Ar〉. �

2 Whenever we refer to M� as part of an ontology, we consider its FOL formulation.
3 This formally corresponds to computing the union of the two sets of answers.

196 D. Calvanese et al.

The above definition clearly points out the specific nature of the What-To-
Ask problem, where the answers coming from the remote peer are combined
using union only. In particular, it clarifies the difference with other data inter-
operability architectures, such as data federation. Indeed, in data federation, the
mediator has to decide how to send the query to the various federated databases,
and then in principle it can use the whole power of SQL (or relational algebra)
to combine the answers returned by the data sources.

Notice that, in general, several solutions to the What-To-Ask problem may
exist. However, it is easy to see that all solutions are equivalent from a semantic
point of view, i.e., each of them allows us to obtain all certain answers that can be
inferred from the knowledge managed by the peer system. Syntactic differences
might exist between different solutions that could lead one to prefer one solution
to another, e.g., if the set of queries in the former one is contained in the set
of queries in the latter one. However, we focus here on solving the What-To-
Ask problem, i.e., finding any solution that satisfies Definition 2, in the specific
setting described in the next section, whereas the problem of characterizing when
a solution is “better” than another, or finding the “best” solutions with respect
to some criteria, is outside the scope of this paper.

In the following, for simplicity, we consider only systems of peers that are
consistent, i.e., such that their FOL formalization admits at least one model. We
will then briefly come back to the issue of (in)consistency in the conclusions.

4 What-To-Ask Problem: Positive Results

We now consider a particular instantiation of the formal framework described
in Sect. 3, i.e., we consider specific choices for both the language in which a
peer ontology is expressed, and the queries appearing in the mapping asser-
tions. We then study the What-To-Ask problem in the specialized framework.
We first present an algorithm, called computeWTA, for the What-To-Ask prob-
lem, and then we both prove its termination and correctness, and establish its
computational complexity. We also comment on the relationship between the
What-To-Ask problem and the task of computing the answers to queries posed
to the local peer.

4.1 DL-LiteR Peer Ontologies

We concentrate first on the ontology language in which to express the peer
ontology. The language we use for this purpose is DL-LiteR.

Example 2. Consider a local peer specification P� = 〈T�,M�〉 such that T� is
the following DL-LiteR TBox:

∃member � Employee
∃member− � Dept
Employee � ∃member
Manager � Employee

∃director � Manager
∃director− � Dept

Dept � ∃director−
director � member

The What-To-Ask Problem for Ontology-Based Peers 197

Manager

Employee Dept
member

(1,0)

(1,0)
director

(subset)

ManagerR

EmployeeR DeptR
memberR

bossR

(a) (b)

Fig. 2. Intensional component of the local and remote ontologies for Example 2

In this case, such TBox can be directly represented by means of a UML class
diagram [45]. Indeed, concepts and roles correspond to UML classes and binary
associations, respectively, and role typing assertions are represented in UML by
the participation of classes to associations. ISA assertions between concepts cor-
respond to sub-classing, while mandatory participation to roles can be specified
in UML by means of multiplicity constraints. Also, ISA assertions between roles
can be specified by means of association subsetting. The UML representation of
T� is shown in Fig. 2(a).

Similarly, the following set of DL-LiteR assertions, providing the representa-
tion of the TBox Tr of a remote peer Pr, corresponds to the UML class diagram
shown in Fig. 2(b)4:

∃memberR � EmployeeR
∃memberR− � DeptR

∃bossR � EmployeeR
∃bossR− � ManagerR

Possible ABoxes A� and Ar for the TBoxes given above are represented by
the DL-LiteR assertions below:

Manager(Mary)
Dept(D1)

memberR(Mary, D2)
DeptR(D3)

Finally, a possible set of assertions for the mapping M� of the local peer P�

is the following:

{x | DeptR(x)} � {x | Dept(x)}
{x | EmployeeR(x)} � {x | Employee(x)}
{x | ManagerR(x)} � {x | Manager(x)}

{x, y | ∃z.bossR(x, z) ∧ memberR(z, y)} � {x, y | director(x, y)}
{x, y | memberR(x, y)} � {x, y | member(x, y)} �

4.2 The Algorithm ComputeWTA

Consider a local peer P� = 〈O�,M�〉 and a remote peer specification Pr = 〈Tr, ∅〉,
and a client’s conjunctive query q that is specified over P�. In a nutshell, our

4 Note that, differently from classical UML semantics, we do not consider as disjoint
those classes that in the class diagram do not have a common ancestor.

198 D. Calvanese et al.

algorithm first reformulates the client’s query q into a set Q of conjunctive queries
expressed over T�, in which it compiles the knowledge of the local peer that is
relevant for answering q; then the algorithm reformulates the queries of Q into
a new set of queries specified over the remote peer Pr.

In the following, given a remote instance Ar, we assume that the theory
O� ∪ M� ∪ Or, where Or = 〈Tr,Ar〉, is consistent, i.e., there exists at least one
first-order interpretation I such that I |= O� ∪ M� ∪ Or. Notice that when the
theory is inconsistent, the certain answers to a query q of arity n over O�∪M�∪Or

are all the n-tuples constructible from constants of Γ . Therefore, computing the
certain answers to q in this situation does not lead to a meaningful result5.

Algorithm computeWTA(q, P�)
Input: CQ q, local peer P� = 〈O�,M�〉, where O� = 〈T�,A�〉 is a DL-LiteR ontology
Output: set of conjunctive queries
begin

QPref PerfectRef(q, T�);
Q Mref(QPref ,M�,O�);
return Q

end

Fig. 3. Algorithm computeWTA

In Fig. 3, we define the algorithm computeWTA. The algorithm makes use of
two main procedures: the first one, called PerfectRef, reformulates the query in
accordance with the local TBox T�, whereas the second procedure, called Mref,
is concerned with the reformulation based on the mapping.

The algorithm PerfectRef is the query rewriting algorithm for DL-LiteR
defined in [16,18,43]. Intuitively, it compiles the knowledge of the local TBox T�

needed to answer the input query q into a set of conjunctive queries over T�.

Example 3. Continuing Example 2, consider the query

q0 = {y | ∃x.Manager(x) ∧ member(x, y)}

that is specified over the local peer P�, and execute computeWTA(q0, P�). Since
the first component of the role director is typed by the concept Manager (assertion
∃director � Manager in T�), the algorithm rewrites the first atom of q0 and
produces the query q1 = {y | ∃x.director(x,−) ∧ member(x, y)}6. Since the role
director is subsumed by the role member (assertion director � member in T�),
the algorithm rewrites the second atom of q1 and produces the query q2 = {y |
∃x.director(x,−) ∧ director(x, y)}. It is not possible to directly rewrite the query

5 For an analysis on the inconsistency problem in the context of database and ontology
integration see, for example, [9,11,36,47].

6 We use the symbol ‘−’ to denote non-shared variables that are existentially
quantified.

The What-To-Ask Problem for Ontology-Based Peers 199

q2 by exploiting the TBox assertions. However, the two atoms in q2 unify, and
hence PerfectRef “reduces” q2, thus producing the query q3 = {y | director(−, y)}.
Actually, the reduction transforms the bound variable x of q2 in an unbound
variable in q3. Therefore, the algorithm can now rewrite q3 by means of the
assertion Dept � ∃director−, and produces the query q4 = {y | Dept(y)}. Then,
by the TBox assertion ∃member− � Dept, the algorithm produces q5 = {y |
member(−, y)}. Notice also that due to the role subsumption assertion in T�, from
the query q0, the algorithm produces also the query q6 = {y | ∃x.Manager(x) ∧
director(x, y)}. The algorithm does not generate other reformulations. �

Algorithm Mref(Q,M�,O�)
Input: set of CQs Q, mapping M�, local ontology O�

Output: set of CQs Q over Pr

begin
Qaux ; Qris∅ ∅;
for each q ∈ Q do

Qaux = Qaux ∪ unfold(q,M�)
for each q ∈ Qaux do

if q is a mixed query
then Qris Qris ∪ Rref (q,O�)
else Qris Qris ∪ q

return Qris

end

Fig. 4. Algorithm Mref

We now turn our attention to the algorithm Mref, shown in Fig. 4, which
reformulates the queries over the local TBox T� returned by PerfectRef into a
new set of queries specified over the remote peer Pr. To this aim, Mref makes use
of two operators, unfold and Rref . Informally, the former reformulates a query q
that is specified over the local TBox T� by replacing atoms of q with the queries
over the remote peer Pr associated to such atoms by the mapping M�. The latter
operator computes a set of queries specified over the remote peer for each query
that is specified over both the local and the remote TBox. Notice that queries
of this form cannot be directly evaluated in our framework. In the following, we
formally describe the two operators.

Definition 3. Let P = 〈T ,M〉 be a peer, let R(z1, z2) be an atom, and let m
be a mapping assertion qr � q� in M such that

q� = {x1, x2 | R(x1, x2)}, and
qr = {x′

1, x
′
2 | ∃y1, . . . , ym.φ(x′

1, x
′
2, y1, . . . , ym)}.

Then unfold(R(z1, z2),m) = φ(z1, z2, y1, . . . , ym). Similarly, let C(z) be an atom,
and let m be a mapping assertion qr � q� in M such that

q� = {x | C(x)}, and
qr = {x′ | ∃y1, . . . , ym.φ(x′, y1, . . . , ym)}.

200 D. Calvanese et al.

Then unfold(C(z),m) = φ(z, y1, . . . , ym).
If there is no mapping assertion qr � q� in M such that q� = {x1, x2 |

R(x1, x2)} (resp., q� = {x | C(x)}), then R(z1, z2) (resp., C(z)) is said to be non
unfoldable in M , otherwise it is said to be unfoldable in M . �

The above notion is extended below to unfolding of conjunctive queries. The
following definition generalizes the well-known concept of query unfolding [48].

Definition 4. Let P = 〈T ,M〉 be a peer, and let q = {z1, . . . , zn | φ(z1, . . . , zn)}
be a conjunctive query specified over P . The unfolding of q w.r.t. M is the set
of conjunctive queries unfold(q,M) defined as follows:

unfold(q,M) =
{

{z1, . . . , zn | unfold(g1,m1) ∧ · · · ∧ unfold(gh,mh) ∧ gh+1 ∧ · · · ∧ gk} |
m1, . . . ,mh ∈ M, {g1, . . . , gh} is a non-empty subset of the unfoldable
atoms of q, and gh+1, . . . , gk are the remaining atoms of q}. �

Note that, if no atom in a query q is unfoldable in the mapping M , then
unfold(q,M) = ∅. Therefore, the unfolding operator produces either CQs com-
pletely specified over the alphabet of Tr, and hence specified over Pr, or CQs
specified over both the alphabets of T� and Tr. Such queries are called mixed
queries (we recall that queries specified over P� are called local queries, whereas
queries specified over Pr are called remote queries). It is easy to see that mixed
queries are not queries specified over either the local or remote peer, and there-
fore there is no means in our framework for directly evaluating them. To solve
this problem, the algorithm Mref reformulates each mixed query in a set of
remote queries, in such a way that the set of answers to the reformulated queries
with respect to an instance for the remote peer Ar, computed by the remote
peer, coincides with the set of answers that we would have obtained by directly
evaluating mixed queries over O� ∪ Or, where Or = 〈Tr,Ar〉. Since each tuple
in the answer to a mixed query is partially supported by extensional assertions
provided by the local ontology, the idea at the basis of such a reformulation is
to cast into the new remote queries those constants occurring in O� that sup-
port the answers to the mixed query. Such a mechanism is realized trough the
operator Rref , formally described below.

Definition 5. Let P� = 〈O�,M�〉 be a local peer, PS
r = 〈Tr, ∅〉 a remote peer

specification, and let

q = {x1, . . . , xn, y1, . . . , ym | ∃z1, . . . , zi, w1, . . . , wj.g1� ∧ · · · ∧ gh
� ∧ g1r ∧ · · · ∧ gk

r }

be a mixed conjunctive query (i.e., it is such that h �= 0 and k �= 0), where
g1� , . . . , gh

� are local atoms, g1r , . . . , gk
r are remote atoms, x1, . . . , xn are the dis-

tinguished variables that occur in g1� , . . . , gh
� (and possibly also in g1r , . . . , gk

r),
y1, . . . , ym are the distinguished variables that occur only in g1r , . . . , gk

r , z1, . . . , zi

are the non-distinguished variables that occur both in g1� , . . . , gh
� and in

g1r , . . . , gk
r , and w1, . . . , wj are the remaining non-distinguished variables of q.

The What-To-Ask Problem for Ontology-Based Peers 201

Then, the remote reformulation of q w.r.t. O� is the set Rref (q,O�) of conjunc-
tive queries specified over Pr defined as follows:

Rref (q,O�) = { {d1, . . . , dn, y1, . . . , ym | ∃w1, . . . , wj.σ(g1r) ∧ · · · ∧ σ(gk
r)} |

〈d1, . . . , dn, c1, . . . , ci〉 ∈
cert({x1, . . . , xn, z1, . . . , zi | ∃w1, . . . , wj.g1� ∧ · · · ∧ gh

� },O�),
and σ = {x1 → d1, . . . , xn → dn, z1 → c1, . . . , zi → ci}}.

�

Roughly speaking, Rref first computes “local answers” to the mixed query q “pro-
jected” on its local component, selecting as distinguished variables z1, . . . , zi, i.e.,
the variables that are non-distinguished in q and that also occur in the remote
component of the query. Then, for each computed tuple t, Rref constructs a new
remote query by projecting the body of q on its remote component, and sub-
stituting z1, . . . , zi and x1, . . . , xn with the corresponding constants in t (notice
that in such a way the remote peer receives through the reformulated query
those extensional information of the local ontology which is needed to answer
the mixed query). Obviously, if no local answers to the mixed query exists, the
remote reformulation of q is empty.

Example 4. We continue Example 2. The procedure Mref is executed with the
set Q = {q0, q1, q2, q3, q4, q5, q6} as input. Let’s focus on the query q0. It is
unfolded in the remote query {y | ∃x.ManagerR(x) ∧ memberR(x, y)}, and in
two mixed queries. Since there are no facts in the local peer for the predi-
cate member, the mixed mentioning this predicate can be ignored. We thus
consider the mixed query qm = {y | ∃x.Manager(x) ∧ memberR(x, y)}. Since
cert({x | Manager(x)},O�) = {Mary}, the remote reformulation of qm produced
by Rref is {y | memberR(Mary, y)}. We proceed analogously for the other queries
in Q7. The result returned by computeWTA is the following set of queries:

{y | ∃x.ManagerR(x) ∧ memberR(x, y)},
{y | memberR(Mary, y)},
{y | ∃x, z, w.bossR(x, z) ∧ memberR(z, w) ∧ memberR(x, y)},
{y | ∃x, z.bossR(x, z) ∧ memberR(z, y)},
{y | DeptR(y)},
{y | ∃x, z.ManagerR(x) ∧ bossR(x, z) ∧ memberR(z, y)},
{y | ∃z.bossR(Mary, z) ∧ memberR(z, y)},
{y | ∃x.memberR(x, y)}.

The set of certain answers returned by the remote peer is then {D3, D2}. Further-
more, the set of certain answers to q0 computed by the local peer is {D1}. It is
easy to see that the union of the above sets is exactly the set that we would have
obtained by computing cert(q0,O� ∪ M� ∪ Or), i.e., the algorithm computeWTA
returned a solution to the What-To-Ask problem for our ongoing example. �

7 We do not reformulate q2 since it is contained in q3.

202 D. Calvanese et al.

As for the correctness of our technique, it is possible to show that the algo-
rithm computeWTA provides a solution to the What-To-Ask problem in our
specialized setting, based on the following properties:

(i) From a client’s query q over the local ontology O�, the algorithm PerfectRef
is able to compute a set of CQs over O� that can be evaluated in order to
provide the certain answers to q, without taking into account the TBox of
O�.

(ii) The unfolding operator used in the algorithm Mref allows us to obtain,
from a query q specified over the local peer P�, a set of CQs over O� and
Or, which can be evaluated in order to compute the certain answers to q,
without taking into account the mapping M�.

(iii) In order to compute the certain answers to a mixed CQ q, i.e., referring
to at least one predicate of O� and one predicate of Or, we can resort to
the remote reformulation of q which produces only queries over the remote
ontology Or.

Theorem 1. Let P� = 〈O�,M�〉 be a local peer such that O� is a DL-LiteR ontol-
ogy, let PS

r = 〈Tr, ∅〉 be a remote peer specification such that Tr is a DL-LiteR
TBox, and let q be a CQ over P�. Then, computeWTA(q, P�) returns a solution
for WTA(q, P�, P

S
r). �

Next, we turn to computational complexity of the algorithm and provide the
following result, which follows from the fact that the algorithm PerfectRef runs
in polynomial time with respect to the size of the input TBox T� [16], and from
the fact that Mref runs in polynomial time with respect to the size of O�.

Theorem 2. Let P� = 〈O�,M�〉 be a local peer such that O� is a DL-LiteR
ontology, let PS

r = 〈Tr, ∅〉 be a remote peer specification such that Tr is a
DL-LiteR TBox, and let q be a CQ over P�. Then, the computational complexity
of computeWTA(q, P�) is polynomial in the size of O� and M�. �

We point out that, in general, the size of the set of queries generated by
computeWTA may be exponential in the size of the initial query, which obviously
implies that the algorithm runs in exponential time in the query size. However,
since typically the input query size can be assumed to be small, this exponential
blow-up is not likely to be a problem in practice.

5 What-To-Ask Problem: Negative Result

In this section we consider peers equipped with ontologies specified in DL-LiteF ,
the other basic language of the DL-Lite family, which does not admit role inclu-
sions, as in DL-LiteR, but allows for functionalities on roles, without any restric-
tion (cf. Sect. 2). Interestingly, despite the fact that, as in DL-LiteR, conjunctive
query answering in DL-LiteF can be solved through query rewriting into a set
of conjunctive queries (cf. [16]), the What-To-Ask problem in this case may not
admit a solution.

The What-To-Ask Problem for Ontology-Based Peers 203

To prove this result, we first provide a complexity lower bound for the prob-
lem of instance checking in our framework when both the remote and local peer
hosts ontologies specified in DL-LiteF .

Theorem 3. The instance checking (and thus query answering) problem in an
ontology-to-ontology system 〈P�, Pr〉 where the ontologies of both P� and Pr are
expressed in DL-LiteF is NLogSpace-hard in data complexity. �

Proof. We prove this result by a reduction from reachability in directed graphs.
Let G = (N,E) be a directed graph, where N is the set of its nodes and

E is the set of its edges, i.e., pairs (ni, nj) such that ni and nj belongs to N .
We consider the problem of verifying whether a node d ∈ N is reachable from a
node s ∈ N . We define the remote peer Pr = 〈Or, ∅〉, where Or = 〈Tr,Ar〉, as
follows:

– the alphabet of the predicates of Pr contains the atomic concept A, the atomic
role P , and the atomic role P̂ , and Tr consists of the inclusion assertions

A � ∃P ∃P− � A

– the ABox Ar is the set of facts

{A(s)} ∪ {P̂ (ni, nj) | (ni, nj) ∈ E is an edge of G}

We then construct the local peer P� = 〈O�,M�〉, with O� = 〈T�,A�〉, as
follows:

– the alphabet of the predicates of P� consists of the atomic concept C and the
atomic role Q, and the TBox T� contains the assertion

(funct Q)

– the ABox A� is empty;
– the mapping M� contains the following assertions

{x, y | P (x, y)} � {x, y | Q(x, y)}
{x, y | P̂ (x, y)} � {x, y | Q(x, y)}

{x | A(x)} � {x | C(x)}

It is then easy to see that there is a path in G from s to d if and only if
d ∈ cert(q,O� ∪ M� ∪ Or), where q = {x | C(x)}. ��

From the complexity characterization given above, it follows that peer query
answering in the setting considered requires at least the power of linear recur-
sive Datalog (NLogSpace). The following result is therefore a straightforward
consequence of Theorem 3.

Theorem 4. There exists a local peer P� = 〈O�,M�〉, where O� is a DL-LiteF
ontology, a remote peer specification PS

r = 〈Tr, ∅〉, where Tr is a DL-LiteF
TBox, and a CQ q (in fact an instance query) specified over P� such that
WTA(q, P�, P

S
r) has no solution. �

204 D. Calvanese et al.

We finally remark that for DL-LiteF peers we miss the property that a solu-
tion to the What-To-Ask problem exists even if we empower the local peer with
the ability of combining the certain answers from the remote peer through FOL
rather than simply union, since query answering in this setting requires to go
beyond a FOL processing of the data.

6 Towards a Different Semantic Interpretation of Peer
Mappings

We have seen above that the What-To-Ask problem admits solutions for two
DL-LiteR ontology-based peers where the local ontology contains mappings
towards the remote ontology, but not vice-versa. In fact, it is immediate to
extend this result to any number of remote ontologies as long as this hierarchi-
cal topology on the mapping is maintained, i.e., the remote ontologies contain
no mappings between them nor towards the local ontology. Instead, if we allow
for a network of peers with arbitrary topology of the mappings, even for ontolo-
gies with no TBox, peer query answering becomes undecidable [19,26]. On the
other hand, we have just shown above that even if we maintain a hierarchical
structure of the mapping, but include functionalities, in fact replacing DL-LiteR
with DL-LiteF , the What-To-Ask problem becomes unsolvable even if we allow
for arbitrary FOL combinations of the certain answers returned by the remote
peer.

These results together question the use of first-order mappings, i.e., mappings
whose interpretation is an implication between FOL formulas, typically adopted
in data peer frameworks [8,19,26].

A radical solution to this is adopting an (auto) epistemic view of the map-
pings, as suggested in [19]. According to this view each peer is seen as an
autonomous agent that interacts with other autonomous agents through peer
mappings, and the entire network of peers is not interpreted as a single first-
order logic theory, obtained as the disjoint union of the various peer theories, but
it is rather considered as a set of different modules, each with its own knowledge
about the world and about the other peers in the network. We formalize these
ideas below.

6.1 The Logic K

We present a logical formalization of a peer-to-peer network of peer-ontologies
based on the use of epistemic logic [10,20,22,29]. In particular, we adopt a multi-
modal epistemic logic, based on the premise that each peer in the system can be
seen as a rational agent. More precisely, the formalization we provide is based on
K, the multi-modal version of the well-known modal logic of knowledge/belief
K45 [20] (a.k.a. weak-S5 [29], see also [38]).

The language L(K) of K is obtained from first-order logic by adding a set
K1, . . . ,Kn of modal operators, for the forming rule: if φ is a (possibly open)
formula, then also Kiφ is so, for 1 ≤ i ≤ n for a fixed n. In K, each modal

The What-To-Ask Problem for Ontology-Based Peers 205

operator is used to formalize the epistemic state of a different agent. Informally,
the formula Kiφ should be read as “φ is known to hold by the agent i”. The
semantics of K is such that what is known by an agent must hold in the real
world: in other words, the agent cannot have inaccurate knowledge of what is
true, i.e., believe something to be true although in reality it is false. Moreover,
K states that the agent has complete information on what it knows, i.e., if agent
i knows φ then it knows of knowing φ, and if agent i does not know φ, then it
knows that it does not know φ. In other words, the following assertions hold for
every K formula φ:

Kiφ → φ, known as the axiom schema T
Kiφ → Ki(Kiφ), known as the axiom schema 4
¬Kiφ → Ki(¬Kiφ), known as the axiom schema 5

To define the semantics of K, we start from first-order interpretations. We
restrict our attention to first-order interpretations that share a fixed infinite
domain Δ and assume that constants of the set Γ act as standard names for Δ.

Formulas of K are interpreted over K-structures. A K-structure is a Kripke
structure E of the form (W, {R1, . . . Rn}, V), where: W is a set whose elements
are called possible worlds; V is a function assigning to each w ∈ W a first-
order interpretation V (w); and each Ri, called the accessibility relation for the
modality Ki, is a binary relation over W , with the following constraints:

if w ∈ W then (w,w) ∈ Ri, i.e., Ri is reflexive
if (w1, w2) ∈ Ri and (w2, w3) ∈ Ri then (w1, w3) ∈ Ri, i.e., Ri is transitive
if (w1, w2) ∈ Ri and (w1, w3) ∈ Ri then (w2, w3) ∈ Ri, i.e., Ri is euclidean.

An K-interpretation is a pair E,w, where E = (W, {R1, . . . Rn}, V) is an
K-structure, and w is a world in W . We inductively define when a sentence (i.e.,
a closed formula) φ is true in an interpretation E,w (or, is true on world w ∈ W
in E), written E,w |= φ, as follows:8

E,w |= P (c1, . . . , cn) iff V (w) |= P (c1, . . . , cn)
E,w |= φ1 ∧ φ2 iff E,w |= φ1 and E,w |= φ2

E,w |= ¬φ iff E,w �|= φ
E,w |= ∃x.ψ iff E,w |= ψx

c for some constant c
E,w |= Kiφ iff E,w′ |= φ for every w′ such that (w,w′) ∈ Ri

We say that a sentence φ is satisfiable if there exists an K-model for φ, i.e.,
an K-interpretation E,w such that E,w |= φ, unsatisfiable otherwise. A model
for a set Σ of sentences is a model for every sentence in Σ. A sentence φ is
logically implied by a set Σ of sentences, written Σ |=K φ, if and only if in
every K-model E,w of Σ, we have that E,w |= φ.

Notice that, since each accessibility relation of a K-structure is reflexive,
transitive and Euclidean, all instances of axiom schemas T, 4 and 5 are satisfied
in every K-interpretation.
8 We use ψx

c to denote the formula obtained from ψ by substituting each free occur-
rence of the variable x with the constant c.

206 D. Calvanese et al.

6.2 The What-To-Ask Problem Under the Epistemic Semantics

Due to the characteristics mentioned above, see also [15], K is well-suited to for-
malize mappings between peers. We recall that an ontology-based peer ontology
Pi has the form Pi = 〈Oi,Mi〉, where Oi is an ontology, and Mi is a set of peer
mapping assertions of the form (cf. Sect. 3.1)

{x | ∃y.conj(x,y)} � {x | C(x)} or

{x1, x2 | ∃y.conj(x1, x2,y)} � {x1, x2 | R(x1, x2)},

where conj(x,y) and conj(x1, x2,y) are specified over another peer Pj .
For a peer Pi, we define the theory TK(Pi) in K as the union of the following

sentences:

– Ontology Oi of Pi: for each sentence φ in Oi, we have

Kiφ

Observe that φ is a first-order sentence expressed in the alphabet of Pi, which
is disjoint from the alphabet of all the other peers.

– peer mapping assertions Mi: for each peer mapping assertion from peer Pj to
peer Pi in M , we have

∀x.Kj(∃y.conj(x,y)) → Ki(C(x))
∀x1, x2.Kj(∃y.conj(x1, x2,y)) → Ki(R(x1, x2)).

In words, the first sentence specifies the following rule: for each object a, if
peer Pj knows the sentence ∃y.conj(a,y), then peer Pi knows the assertion
C(a). Similarly, the second sentence specifies that for each pair of objects
a, b, if peer Pj knows the sentence ∃y.conj(a, b,y), then peer Pi knows the
assertion R(a, b).

Given a network of peer-ontologies P = {P1, . . . , Pn}, we denote by TK(P)
the theory corresponding to the network of peer-ontologies P, i.e., TK(P) =⋃

i=1,...,n TK(Pi).
The semantics of a (conjunctive) query q posed to a peer Pi = 〈Oi,Mi〉 of P

is defined as the set of tuples

certK(q, Pi,P) = {t | TK(P) |=K Kiq(t)}

where q(t) denotes the sentence obtained from the open formula q(x) by replac-
ing all occurrences of the free variables in x with the corresponding constants
in t.

Let us now turn our attention to ontology-to-ontology systems of the form
defined in Sect. 3.1. It is immediate to apply the epistemic-based interpretation
given above to systems of this kind, which contain only a remote peer and a
local peer. Then, we can rephrase the What-To-ask problem under the epistemic
semantics as follows.

The What-To-Ask Problem for Ontology-Based Peers 207

Definition 6. Let P� = 〈O�,M�〉 be a local peer, PS
r = 〈Tr, ∅〉 a remote peer

specification, and q a client’s query specified over P�. The What-To-Ask problem
under the epistemic interpretation of peer mappings, WTAe(q, P�, P

S
r), is defined

as follows: Given as input q, P�, and PS
r , find a finite set {q1r , . . . , qn

r } of queries,
each specified over the remote peer Pr, such that for every instance Ar of the
remote peer:

certK(q, P�,P) = cert(q,O�) ∪ cert(q1r ,Or) ∪ . . . ∪ cert(qn
r ,Or)

where Or = 〈Tr,Ar〉 and P = {P�, Pr}, with Pr = 〈Or, ∅〉. �

Notably, it is possible to show that under this interpretation of the sys-
tem, the What-To-Ask problem admits solutions when ontologies are specified
in DL-LiteA [43], which is the logic combining the features of both DL-LiteR,
and DL-LiteF , but where the functionality axiom can be asserted only on roles
that have no specializations.

Theorem 5. Let P� = 〈O�,M�〉 be a local peer, such that O� is a DL-LiteA
ontology, let PS

r = 〈Tr, ∅〉 be a remote peer specification, such that Tr is a
DL-LiteA TBox, and let q be a CQ specified over P�. Then, computeWTA(q, P�)
returns a solution for WTAe(q, P�, Pr). �

Finally, we point out that when the ability of the local peer of combining
certain answers returned by the remote peer goes beyond the simple union,
peer query answering can be solved also through mechanisms that are different
from the algorithm computeWTA. For example, when the local peer is able to
combine tuples coming from the remote peer with local tuples for computing
joins in mixed queries, the procedure Mref in the algorithm computeWTA might
be substituted with a more efficient procedure, based for example on the (partial)
local materialization of remote data accessible through mapping assertions [34,
35]. Some smart strategies can be adopted in this case to limit materialization
only to data relevant for answering the query at hand.

6.3 Epistemic Semantics for Networks of Peer-Ontologies

Interestingly, by virtue of the epistemic interpretation of the peer mappings,
techniques for query answering as the one discussed above can be generalized
to peer-ontologies networks of arbitrary topology, provided that each peer has
the ability of reformulating queries posed over the local ontology in queries to
be posed to the other peers in the network (e.g., via the algorithm given in [19]
where the external database system can be seen as an autonomous peer in the
network). These techniques have been studied in the relational setting in [21].

7 Conclusions

The peer-to-peer paradigm represents an abstraction that captures several types
of system studied in different disciplines, such as Multi-agent systems, Semantic

208 D. Calvanese et al.

Web, Data Management, Knowledge Representations, and others. In this paper,
we have carried out a fundamental study on data-intensive peer-to-peer sys-
tems in the case where the whole system is constituted by two peers connected
by mappings, and each peer is structured as a knowledge base expressed in a
Description Logic of the DL-Lite family. In particular, we have addressed the
so-called “What-To-Ask” problem, which, given a query q on a local peer P�,
requires to figure out which queries to send to the remote peer in order for P�

to be able to return the correct and complete set of answers to q.
The investigation discussed in this paper can be continued along several

interesting directions. In particular, it would be interesting to explore methods
for dealing with inconsistencies between peers, a problem that has been ignored
by the present paper (see, for instance, [17]). Finally, another relevant problem
is to design methods for update propagation between peers, so that all relevant
data from the remote peers can be stored in the local peer, thus avoiding asking
queries at run time.

References

1. Aberer, K.: Peer-to-Peer Data Management. Synthesis Lectures on Data Manage-
ment. Morgan & Claypool Publishers, San Rafael (2011). https://doi.org/10.2200/
S00338ED1V01Y201104DTM015

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
Publishing Co., Boston (1995)

3. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Distributed
reasoning in a peer-to-peer setting: application to the Semantic Web. J. Artif.
Intell. Res. 25, 269–314 (2006)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 364–369
(2005)

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Clark, K.,
Patel-Schneider, P.F. (eds.) Proceedings of the 4th International Workshop on
OWL: Experiences and Directions (OWLED DC) (2008)

6. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

7. Baader, F., Marantidis, P., Pensel, M.: The data complexity of answering instance
queries in FL0. In: Proceedings of the 27th International World Wide Web Con-
ferences (WWW), pp. 1603–1607 (2018)

8. Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L.,
Zaihrayeu, I.: Data management for peer-to-peer computing: a vision. In: Pro-
ceedings of the 5th International Workshop on the Web and Databases (WebDB)
(2002)

9. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Computing and explaining query
answers over inconsistent DL-Lite knowledge bases. J. Artif. Intell. Res. 64, 563–
644 (2019). https://doi.org/10.1613/jair.1.11395

10. Blackburn, P., van Benthem, J.F.A.K., Wolter, F.: Handbook of Modal Logic.
Elsevier, New York (2006)

https://doi.org/10.2200/S00338ED1V01Y201104DTM015
https://doi.org/10.2200/S00338ED1V01Y201104DTM015
https://doi.org/10.1613/jair.1.11395

The What-To-Ask Problem for Ontology-Based Peers 209

11. Bravo, L., Bertossi, L.: Disjunctive deductive databases for computing certain and
consistent answers to queries from mediated data integration systems. J. Appl.
Logic 3(2), 329–367 (2005). Special Issue on Logic-based Methods for Information
Integration

12. Calvanese, D., Damaggio, E., De Giacomo, G., Lenzerini, M., Rosati, R.: Semantic
data integration in P2P systems. In: Aberer, K., Koubarakis, M., Kalogeraki, V.
(eds.) DBISP2P 2003. LNCS, vol. 2944, pp. 77–90. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24629-9 7

13. Calvanese, D., et al.: Ontologies and databases: the DL-Lite approach. In: Tessaris,
S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2 7

14. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: What to ask
to a peer: ontology-based query reformulation. In: Proceedings of the 9th Interna-
tional Conference on the Principles of Knowledge Representation and Reasoning
(KR), pp. 469–478 (2004)

15. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite:
effective first-order query processing in description logics. In: Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI), pp. 274–279
(2007)

16. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

17. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Inconsistency
tolerance in P2P data integration: an epistemic logic approach. Inf. Syst. 33(4–5),
360–384 (2008)

18. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013).
https://doi.org/10.1016/j.artint.2012.10.003

19. Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Logical foundations of
peer-to-peer data integration. In: Proceedings of the 23rd ACM Symposium on
Principles of Database Systems (PODS), pp. 241–251 (2004)

20. Chellas, B.F.: Modal Logic: An introduction. Cambridge University Press, Cam-
bridge (1980)

21. De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: On reconciling data
exchange, data integration, and peer data management. In: Proceedings of the
26th ACM Symposium on Principles of Database Systems (PODS), pp. 133–142
(2007)

22. van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.): Handbook
of Epistemic Logic. College Publications, Kolkata (2015)

23. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings:
second-order dependencies to the rescue. In: Proceedings of the 23rd ACM Sym-
posium on Principles of Database Systems (PODS) (2004)

24. Fuxman, A., Kolaitis, P.G., Miller, R., Tan, W.C.: Peer data exchange. In: Pro-
ceedings of the 24th ACM Symposium on Principles of Database Systems (PODS),
pp. 160–171 (2005)

25. Ghidini, C., Serafini, L.: Distributed first order logic. Artif. Intell. 253, 1–39 (2017).
https://doi.org/10.1016/j.artint.2017.08.008

26. Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data man-
agement systems. In: Proceedings of the 19th IEEE International Conference on
Data Engineering (ICDE), pp. 505–516 (2003)

https://doi.org/10.1007/978-3-540-24629-9_7
https://doi.org/10.1007/978-3-642-03754-2_7
https://doi.org/10.1016/j.artint.2012.10.003
https://doi.org/10.1016/j.artint.2017.08.008

210 D. Calvanese et al.

27. Halevy, A.Y.: Theory of answering queries using views. SIGMOD Rec. 29(4), 40–47
(2000)

28. Halevy, A.Y.: Answering queries using views: a survey. Very Large Database J.
10(4), 270–294 (2001)

29. Hughes, G.E., Cresswell, M.J.: A Companion to Modal Logic. Methuen, London
(1984)

30. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the
curtain. In: Proceedings of the 22nd ACM Symposium on Principles of Database
Systems (PODS), pp. 1–14. ACM Press and Addison Wesley (2003). https://doi.
org/10.1145/773153.773154

31. Ives, Z.G.: Updates and transactions in peer-to-peer systems. In: Liu, L., Özsu,
M.T. (eds.) Encyclopedia of Database Systems, 2nd edn. Springer, New York
(2018). https://doi.org/10.1007/978-1-4614-8265-9 1222

32. Karvounarakis, G., Green, T.J., Ives, Z.G., Tannen, V.: Collaborative data sharing
via update exchange and provenance. ACM Trans. Database Syst. 38(3), 19:1–
19:42 (2013). https://doi.org/10.1145/2500127

33. Kolaitis, P.G., Pichler, R., Sallinger, E., Savenkov, V.: Limits of schema mappings.
Theory Comput. Syst. 62(4), 899–940 (2018). https://doi.org/10.1007/s00224-017-
9812-7

34. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in DL-Lite. In: Proceedings of the 12th Inter-
national Conference on the Principles of Knowledge Representation and Reasoning
(KR), pp. 247–257 (2010)

35. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to ontology-based data access. In: Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pp. 2656–2661 (2011)

36. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
query answering in ontology-based data access. J. Web Semant. 33, 3–29 (2015).
https://doi.org/10.1016/j.websem.2015.04.002

37. Lenzerini, M.: Data integration: A theoretical perspective. In: Proceedings of the
21st ACM Symposium on Principles of Database Systems (PODS), pp. 233–246
(2002). https://doi.org/10.1145/543613.543644

38. Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. The MIT Press,
Cambridge (2001)

39. Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. In: Pro-
ceedings of the 29th International Conference on Very Large Data Bases (VLDB),
pp. 572–583 (2003)

40. Mattos, N.M.: Integrating information for on demand computing. In: Proceedings
of the 29th International Conference on Very Large Data Bases (VLDB), pp. 8–14
(2003)

41. Ortiz, M., Rudolph, S., Simkus, M.: Query answering in the Horn fragments of the
description logics SHOIQ and SROIQ. In: Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI), pp. 1039–1044. IJCAI/AAAI
(2011)

42. Papazoglou, M.P., Krämer, B.J., Yang, J.: Leveraging web-services and peer-to-
peer networks. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp.
485–501. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45017-3 33

43. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Semant. 10, 133–173 (2008). https://doi.org/
10.1007/978-3-540-77688-8 5

https://doi.org/10.1145/773153.773154
https://doi.org/10.1145/773153.773154
https://doi.org/10.1007/978-1-4614-8265-9_1222
https://doi.org/10.1145/2500127
https://doi.org/10.1007/s00224-017-9812-7
https://doi.org/10.1007/s00224-017-9812-7
https://doi.org/10.1016/j.websem.2015.04.002
https://doi.org/10.1145/543613.543644
https://doi.org/10.1007/3-540-45017-3_33
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-540-77688-8_5

The What-To-Ask Problem for Ontology-Based Peers 211

44. Roth, A., Skritek, S.: Peer data management. In: Data Exchange, Integration,
and Streams, Dagstuhl Follow-Ups, vol. 5, pp. 185–215. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2013). https://doi.org/10.4230/DFU.Vol5.10452.185

45. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison Wesley Publishing Co., Boston (1998)

46. Serafini, L., Ghidini, C.: Using wrapper agents to answer queries in distributed
information systems. In: Yakhno, T. (ed.) ADVIS 2000. LNCS, vol. 1909, pp. 331–
340. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40888-6 32

47. Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent
query answering in relational databases. Ann. Math. Artif. Intell. 64(2–3), 209–246
(2012). https://doi.org/10.1007/s10472-012-9288-8

48. Ullman, J.D.: Information integration using logical views. In: Afrati, F., Kolaitis,
P. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 19–40. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-62222-5 34

https://doi.org/10.4230/DFU.Vol5.10452.185
https://doi.org/10.1007/3-540-40888-6_32
https://doi.org/10.1007/s10472-012-9288-8
https://doi.org/10.1007/3-540-62222-5_34

	The What-To-Ask Problem for Ontology-Based Peers
	1 Introduction
	2 Preliminaries
	2.1 The DL-Lite Family
	2.2 Queries over a DL Ontology

	3 What-To-Ask
	3.1 Ontology-Based Peer Framework
	3.2 The What-To-Ask Problem

	4 What-To-Ask Problem: Positive Results
	4.1 DL-LiteR Peer Ontologies
	4.2 The Algorithm ComputeWTA

	5 What-To-Ask Problem: Negative Result
	6 Towards a Different Semantic Interpretation of Peer Mappings
	6.1 The Logic K
	6.2 The What-To-Ask Problem Under the Epistemic Semantics
	6.3 Epistemic Semantics for Networks of Peer-Ontologies

	7 Conclusions
	References

