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Abstract. Model Completeness is a classical topic in model-theoretic
algebra, and its inspiration sources are areas like algebraic geometry and
field theory. Yet, recently, there have been remarkable applications in
computer science: these applications range from combined decision pro-
cedures for satisfiability and interpolation, to connections between tem-
poral logic and monadic second order logic and to model-checking. In this
paper we mostly concentrate on the last one: we study verification over
a general model of so-called artifact-centric systems, which are used to
capture business processes by giving equal important to the control-flow
and data-related aspects. In particular, we are interested in assessing
(parameterized) safety properties irrespectively of the initial database
instance. We view such artifact systems as array-based systems, estab-
lishing a correspondence with model checking based on Satisfiability-
Modulo-Theories (SMT). Model completeness comes into the picture in
this framework by supplying quantifier elimination algorithms for suit-
able existentially closed structures. Such algorithms, whose complexity
is unexpectedly low in some cases of our interest, are exploited during
search and to represent the sets of reachable states. Our first implemen-
tation, built up on top of the mcmt model-checker, makes all our foun-
dational results fully operational and quite effective, as demonstrated by
our first experiments.

1 Introduction

In this introduction, we briefly review some results coming from joint work of
Franz Baader with the second author during the years 2004–2012: the novel
contributions of the present paper can in fact be considered as a natural con-
tinuation of such previous cooperation. In both cases, the common background
is the attempt of reinterpreting a classical model-theoretic tool (namely model-
completeness) inside the realm of computational logic and of automated reason-
ing. In former joint work the focus was related to the combination of decision
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procedures in first order theories, in the present paper the focus is tailored to
the use of decision procedures in declarative model-checking (in particular, in
model-checking oriented to the emerging area of verification of data aware pro-
cesses).

Finding solutions to equations is a challenge at the heart of both mathematics
and computer science. Model-theoretic algebra, originating with the ground-
breaking work of Robinson [55,56], cast the problem of solving equations in a
logical form, and used this setting to solve algebraic problems via model theory.
The central notion is that of an existentially closed model, which we explain now.
Call a quantifier-free formula with parameters in a model M solvable if there is
an extension M′ of M where the formula is satisfied. A model M is existentially
closed if any solvable quantifier-free formula already has a solution in M itself.
For example, the field of real numbers is not existentially closed, but the field of
complex numbers is.

Although this definition is formally clear, it has a main drawback: it is not
first-order definable in general. However, in fortunate and important cases, the
class of existentially closed models of a first-order theory T are exactly the models
of another first-order theory T ∗. In this case, the theory T ∗ can be character-
ized abstractly as the model companion of T . Model companions become model
completions (cf. Definition 2.1) in the case of universal theories with the amalga-
mation property; in such model completions, quantifier elimination holds, unlike
in the original theory T . The model companion/model completion of a theory
identifies the class of those models where all satisfiable existential statements can
be satisfied. For example, the theory of algebraically closed fields is the model
companion of the theory of fields, and dense linear orders without endpoints give
the model companion of linear orders.

1.1 Model Completeness in Combined Decision Problems

A first application of model completeness in computer science, more specifically
in automated reasoning, was related to the area of Satisfiability Modulo Theories
(SMT). The SMT-LIB project1 (started in 2003) aims at bringing together peo-
ple interested in developing powerful tools combining sophisticated techniques in
SAT-solving with dedicated decision procedures involving specific theories used
in applications (especially in software verification).

One of the main problems in the SMT area is to design algorithms for con-
straint satifiability problems modulo a given theory T : in such problems, one is
given a finite set of literals and is asked to determine whether this set is satisfiable
in a model of T . Theories of interests include linear (real and integer) arithmetics
and its fragments, as well as theories axiomatizing datatypes like lists, arrays,
etc. Very often such theories come out as combination of one or more component
theories (arrays of integers, reals, booleans are typical examples) and one would
like to obtain constraint satisfiability algorithms for combined theories in a mod-
ular way. The simplest way to implement this is to have a specific module for

1 http://smtlib.cs.uiowa.edu/.

http://smtlib.cs.uiowa.edu/
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each component theory and to leave such modules to exchange information con-
cerning the clauses expressible in the shared signature. This simple methodology
is quite attractive, but unfortunately not complete in general. A sufficient condi-
tion for completeness was identified in [37]: the exchange procedure is complete
in case the theory axiomatizing the shared signature reduct T0 has a model com-
pletion T ∗

0 and each of the component theories Ti is T0-compatible, i.e., every
model of Ti embeds into a model of T ∗

0 ∪ Ti. Intuitively, the reason why this
condition is sufficient is the fact that one can check satisfiability of constraints
in the combined signature by restricting to models whose reduct to the shared
signature is a model of T ∗

0 , so that quantifier elimination in T ∗
0 guarantees that

exchanging information over the quantifier-free fragment is sufficient. This result
from [37] generalizes to the non-disjoint signatures case the well-known Nelson-
Oppen method [51,61], because to be stably infinite in the sense of [51] means
precisely to be compatible with the pure equality theory. For the above outlined
exchange procedure to yield decidability of the combined constraint satisfiability
problem, we need (for termination) a further hypothesis, namely that the shared
theory T0 is locally finite (which means that the total amount of information that
needs to be exchanged is finite up to T0-equivalence). All the above hypotheses
apply for instance to the case of modal algebras with operators, yieldying as a
by-product the well-known fusion transfer result for decidability of the global
consequence relation in modal logic [63].

The results from [37] however do not supply a sufficient condition for decid-
ability of combined word problems. The case of combined word problems is in
a sense more challenging: we assume that the component algorithms are only
able to test (un)satifiability of a single disequation and we want to conclude
that the same property can be transferred to the combined theory via suitable
information exchange. In the disjoint signature case, combined word problems
are always decidable in case the component equational theories have a decidable
word problem [52]; however, for non-disjoint signatures, combined algorithms
were known only in case the component theories satisfy a kind of term fac-
torization property [14,36]. In [12], it was proved that T0-compatibility, joined
with a special Gaussian property, yields also here a combined decidability result;
the result has again a remarkable consequence in modal logic, as it implies the
fusion transfer result for decidability of the local consequence relation (this solves
a long-standing open question and, up to now and as far as we know, the proof
supplied in [12] via general combination methods is the only available proof of
this result).

The above methodology was further extended to cover different combination
schemata for first order theories [9–11] (again having as special case a combina-
tion schema, namely E-connections [49], introduced in the framework of modal
and description logics).

Model completeness has further application in automated reasoning: it has
been applied to design complete algorithms for constraint satisfiability in theory
extensions [59,60] and for combination transfer for quantifier-free interpolation
(both for modal logics and for software verification theories) [38,39]. Another
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different research line used model completeness in order to discover interesting
connections between monadic second order logic and its temporal logic frag-
ments [43,44].

1.2 Towards Model Completeness in Verification

In order to see the connection between model completeness and verification, the
following simple but nevertheless important observation is crucial. In declarative
approaches to model-checking, the runs of a system are identified with certain
definable paths in the models of a theory T : in case transition systems are
represented via quantifier-free formulae and system variables are modeled as first
order variables, it is easy to see that, without loss of generality and as far as safety
problems are concerned, one may restrict to paths within existentially closed
models, thus taking profit from the properties enjoyed by the model completion
T ∗ of T whenever it exists. In particular, during forward or backward search, one
can exploit quantifier elimination in order to represent sets of reachable states
via quantifier-free formulae.2

Our intended applications are however more complex, because we need to
handle transition systems whose variables are not just individual first order vari-
ables. The systems we have in mind are generically called array-based systems,
where the term “array-based systems” is an umbrella term generically refer-
ring to infinite-state transition systems implicitly specified using a declarative,
logic-based formalism comprising second order function variables. The formal-
ism captures transitions manipulating arrays via logical formulae, and its precise
definition depends on the specific application of interest. The first declarative
formalism for array-based systems was introduced in [40,41] to handle the ver-
ification of distributed systems, and afterwards was successfully employed also
to verify a wide range of infinite-state systems [4,8]. Distributed systems are
parameterized in their essence: the number N of interacting processes within a
distributed system is unbounded, and the challenge is that of supplying certi-
fications that are valid for all possible values of the parameter N . The overall
state of the system is typically described by means of arrays indexed by pro-
cess identifiers, and used to store the content of process variables like locations
and clocks. These arrays are genuine second order function variables: they map
indexes to data, in a way that changes as the system evolves.

Quantifiers are then used to represent sets of system states, however the
kind of formulae that are needed for this purpose obey specific syntactic restric-
tions. Due to these restrictions, the proof obligations generated during model
checking search (usually backward search is implemented in these systems) can

2 It is quite curious to notice that this observation (in its essence) was already present
in the paper [45], where however model completeness was not mentioned at all!
Instead of quantifier elimination in the model completion T ∗, the authors of [45]
relied on the computation of the so called ‘cover’ of an existential formula (such
cover turns out to be equivalent to the quantifier free equivalent formula modulo
T ∗).
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be discharged by techniques combining instantiation algorithms with quantifier
elimination algorithms. Typically, quantifiers ranging over indexes are handled
by instantiation and quantifiers over data are handled via quantifier elimina-
tion (whenever quantifier elimination is considered too expensive or whenever
there is the need to speed up termination, other techniques like interpolation or
abstraction may be preferred to quantifier elimination).

The above discussion makes the step we are planning to make in the follow-
ing evident: whenever quantifier elimination for data is not available, one may
resort to model completions to handle data quantifiers arising during search in
array-bases systems. This is not an abstract plan in fact, because there is an
emerging area in verification that leads precisely to this, namely the area of ver-
ification of data aware processes (see below). We just mention another crucial
fact from the implementation point of view: the cost of quantifier elimination in
the model completions relevant for the application area of data aware processes is
surprisingly low. In fact, eliminating a tuple of quantified variables from a prim-
itive formula requires only polynomial time and can be achieved for instance via
ground Knuth-Bendix completion, see [23] for more details.3

1.3 Data Aware Processes: Our Contribution

During the last two decades, a huge body of research has been dedicated to
the challenging problem of reconciling data and process management within
contemporary organizations [33,53,54]. This requires to move from a purely
control-flow understanding of business processes to a more holistic approach that
also considers how data are manipulated and evolved by the process. Striving for
this integration, new models were devised, with two prominent representatives:
object-centric processes [48], and business artifacts [29,46].

In parallel, a flourishing series of results has been dedicated to the formal-
ization of such integrated models, and to the boundaries of decidability and
complexity for their static analysis and verification [20]. Such results are quite
fragmented, since they consider a variety of different assumptions on the model
and on the static analysis tasks [20,62]. Two main trends can be identified within
this line. A recent series of results focuses on very general data-aware processes
that evolve a full-fledged, relational database (DB) with arbitrary first-order
constraints [1,15,16,21]. Actions amount to full bulk updates that may simul-
taneously operate on multiple tuples, possibly injecting fresh values taken from
an infinite data domain. Verification is studied by fixing the initial instance of
the DB, and by considering all possible evolutions induced by the process over
the initial data.

A second trend of research is instead focused on the formalization and veri-
fication of artifact-centric processes. These systems are traditionally formalized
using three components [28,31]: (i) a read-only DB that stores fixed, background

3 Again, without mentioning any specific application, this was already observed in [45],
as the specialization of the cover algorithm to signatures with unary free function
symbols.
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information, (ii) a working memory that stores the evolving state of artifacts, and
(iii) actions that update the working memory.Different variants of this model,
obtained via a careful tuning of the relative expressive power of its three com-
ponents, have been studied towards decidability of verification problems param-
eterized over the read-only DB (see, e.g., [17,28,31,32]). These are verification
problems where a property is checked for every possible configuration of the
read-only DB. For instance, for the working memory, radically different models
are obtained depending on whether only a single artifact instance is evolved, or
whether instead the co-evolution of multiple instances of possibly different arti-
facts is supported. In particular, early formal models for artifact systems merely
considered a fixed set of so-called artifact variables, altogether instantiated into
a single tuple of data. This, in turn, allows one to capture the evolution of a
single artifact instance [31]. We call an artifact system of this form Simple Arti-
fact System (SAS). Instead, more sophisticated types of artifact systems have
been studied recently in [32,50]. Here, the working memory is not only equipped
with artifact variables as in SAS, but also with so-called artifact relations, which
supports storing arbitrarily many tuples, each accounting for a different artifact
instance that can be evolved on its own. We call an artifact system of this form
Relational Artifact System (RAS).

The overarching goal of this work is to connect, for the first time, such for-
mal models and their corresponding verification problems, with the models and
techniques of model checking via array-based systems described above. This is
concretized through four technical contributions.

Our first contribution is the definition of a general framework of so-called
RASs, in which artifacts are formalized in the spirit of array-based systems. In
this setting, SASs are a particular class of RASs, where only artifact variables
are allowed. RASs employ arrays to capture a very rich working memory that
simultaneously accounts for artifact variables storing single data elements, and
for full-fledged artifact relations storing unboundedly many tuples. Each artifact
relation is captured using a collection of arrays, so that a tuple in the relation
can be retrieved by inspecting the content of the arrays with a given index.
The elements stored therein may be fresh values injected into the RAS, or data
elements extracted from the read-only DB, whose relations are subject to key and
foreign key constraints. This constitutes a big leap from the usual applications of
array-based systems, because the nature of such constraints is quite different and
requires completely new techniques for handling them (for instance, for quantifier
elimination, as mentioned above). To attack this complexity, by relying on array-
based systems, RASs encode the read-only DB using a functional, algebraic view,
where relations and constraints are captured using multiple sorts and unary
functions. The resulting model captures the essential aspects of the model in [50],
which in turn is tightly related (though incomparable) to the sophisticated formal
model for artifact-centric systems of [32].

Our second contribution is the development of algorithmic techniques for the
verification of (parameterized) safety properties over RASs. This amounts to
determining whether there exists an instance of the read-only DB that allows
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the RAS to evolve from its initial configuration to an undesired one that falsifies
a given state property. To attack this problem, we build on backward reacha-
bility search [40,41]. This is a correct, possibly non-terminating technique that
regresses the system from the undesired configuration to those configurations
that reach the undesired one. This is done by iteratively computing symbolic
pre-images, until they either intersect the initial configuration of the system
(witnessing unsafety), or they form a fixpoint that does not contain the initial
state (witnessing safety).

Adapting backward reachability to the case of RASs, by retaining sound-
ness and completeness, requires genuinely novel research so as to eliminate new
(existentially quantified) “data” variables introduced during regression. Tradi-
tionally, this is done by quantifier instantiation or elimination. However, while
quantifier instantiation can be transposed to RASs, quantifier elimination can-
not, since the data elements contained in the arrays point to the content of a
full-fledged DB with constraints. To reconstruct quantifier elimination in this
setting, which is the main technical contribution of this work, we employ the
classic model-theoretic machinery of model completions: via model completions,
we prove that the runs of a RAS can be faithfully lifted to richer contexts where
quantifier elimination is indeed available, despite the fact that it was not avail-
able in the original structures. This allows us to recast safety problems over
RASs into equivalent safety problems in this richer setting.

Our third contribution is the identification of three notable classes of RASs
for which backward reachability terminates, in turn witnessing decidability of
safety. The first class restricts the working memory to variables only, i.e., focuses
on SASs. The second class focuses on RASs operating under the restrictions
imposed in [50]: it requires acyclicity of foreign keys and ensures a sort of local-
ity principle where different artifact tuples are not compared. Consequently, it
reconstructs the decidability result exploited in [50] if one restricts the verifi-
cation logic used there to safety properties only. In addition, our second class
supports full-fledged bulk updates, which greatly increase the expressive power
of dynamic systems [57] and, in our setting, witness the incomparability of our
results and those in [50]. The third class is genuinely novel, and while it further
restricts foreign keys to form a tree-shaped structure, it does not impose any
restriction on the shape of updates, and consequently supports not only bulk
updates, but also comparisons between artifact tuples.

Our fourth contribution concerns the implementation of backward reachability
techniques for RASs. Specifically, we have extended the well-known mcmt model
checker for array-based systems [42], obtaining a fully operational counterpart to
all the foundational results presented in the paper. Even though implementation
and experimental evaluation are not central in this paper, we note that our
model checker correctly handles the examples produced to test verifas [50],
as well as additional examples that go beyond the verification capabilities of
verifas, and report some interesting cases here. The performance of mcmt to
conduct verification of these examples is very encouraging, and indeed provides
the first stepping stone towards effective, SMT-based verification techniques for
artifact-centric systems.
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This paper is essentially a survey and is meant to summarize ongoing work
(cf. [22]); results are stated without proofs or with just proof sketches (proofs
are all available in the extended version [24]). The rest of the paper is structured
as follows. We give necessary preliminaries in Sect. 2. We present our functional
view of (read-only) DBs with constraints in Sect. 3, and we introduce the RAS
formal model in Sect. 4. We study safety via backward reachability in Sect. 5, and
termination of backward reachability in Sect. 6. We report on our implementation
effort and related experiments in Sect. 7, and conclude the paper in Sect. 8.

2 Preliminaries

We adopt the usual first-order syntactic notions of signature, term, atom,
(ground) formula, and so on. We use u to represent a tuple 〈u1, . . . , un〉. Our
signatures Σ are multi-sorted and include equality for every sort, which implies
that variables are sorted as well. Depending on the context, we keep the sort of
a variable implicit, or we indicate explicitly in a formula that variable x has sort
S by employing notation x : S. The notation t(x), φ(x) means that the term
t, the formula φ has free variables included in the tuple x. We are concerned
with constants and function symbols f , each of which has sources S and a target
S′, denoted as f : S −→ S′; similarly relation simbols R have sources, written
as R : S. We assume that terms and formulae are well-typed, in the sense that
the sorts of variables, constants, and function sources/targets match. A formula
is said to be universal (resp., existential) if it has the form ∀x (φ(x)) (resp.,
∃x (φ(x))), where φ is a quantifier-free formula. Formulae with no free variables
are called sentences.

From the semantic side, we use the standard notions of a Σ-structure M and
of truth of a formula in a Σ-structure under an assignment to the free variables.
A Σ-theory T is a set of Σ-sentences; a model of T is a Σ-structure M where
all sentences in T are true. We use the standard notation T |= φ to say that φ
is true in all models of T for every assignment to the free variables of φ. We say
that φ is T -satisfiable if there is a model M of T and an assignment to the free
variables of φ that make φ true in M.

A Σ-formula φ is a Σ-constraint (or just a constraint) iff it is a conjunction
of literals. The constraint satisfiability problem for T asks: given an existential
formula ∃y φ(x, y) (with φ a constraint4), are there a model M of T and an
assignment α to the free variables x such that M, α |= ∃y φ(x, y)?

A theory T has quantifier elimination iff for every formula φ(x) in the sig-
nature of T there is a quantifier-free formula φ′(x) such that T |= φ(x) ↔ φ′(x).
It is well-known (and easily seen) that quantifier elimination holds in case we
can eliminate quantifiers from primitive formulae, i.e., from formulae of the kind
∃y φ(x, y), where φ is a constraint. Since we are interested in effective com-
putability, we assume that whenever we talk about quantifier elimination, an
effective procedure for eliminating quantifiers is given.
4 For the purposes of this definition, we may equivalently take the formula to be

quantifier-free.
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Let Σ be a first-order signature. The signature obtained from Σ by adding
to it a set a of new constants (i.e., 0-ary function symbols) is denoted by Σa.
Analogously, given a Σ-structure A, the signature Σ can be expanded to a new
signature Σ|A| := Σ ∪ {ā | a ∈ |A|} by adding a set of new constants ā (the
name for a), one for each element a in A, with the convention that two distinct
elements are denoted by different “name” constants. A can be expanded to a
Σ|A|-structure A′ := (A, a)a∈|A| by just interpreting the additional constants
over the corresponding elements. From now on, when the meaning is clear from
the context, we will freely use the notation A and A′ interchangeably: in partic-
ular, given a Σ-structure A and a Σ-formula φ(x) with free variables that are
all in x, we will write, by abuse of notation, A |= φ(a) instead of A′ |= φ(ā).

A Σ-homomorphism (or, simply, a homomorphism) between two Σ-structu-
res M and N is any mapping μ : |M| −→ |N | among the support sets |M| of M
and |N | of N satisfying the condition (M |= ϕ ⇒ N |= ϕ) for all Σ|M|-atoms
ϕ (here M is regarded as a Σ|M|-structure, by interpreting each additional con-
stant a ∈ |M| into itself, and N is regarded as a Σ|M|-structure by interpreting
each additional constant a ∈ |M| into μ(a)). In case the last condition holds
for all Σ|M|-literals, the homomorphism μ is said to be an embedding, and if it
holds for all first order formulae, the embedding μ is said to be elementary.

In the following (cf. Sect. 4), we specify transitions of an artifact-centric sys-
tem using first-order formulae. To obtain a more compact representation, we
make use there of definable extensions as a means for introducing so-called case-
defined functions. We fix a signature Σ and a Σ-theory T ; a T -partition is a finite
set κ1(x), . . . , κn(x) of quantifier-free formulae such that T |= ∀x

∨n
i=1 κi(x)

and T |= ∧
i�=j ∀x¬(κi(x) ∧ κj(x)). Given such a T -partition κ1(x), . . . , κn(x)

together with Σ-terms t1(x), . . . , tn(x) (all of the same target sort), a case-
definable extension is the Σ′-theory T ′, where Σ′ = Σ ∪ {F}, with F a “fresh”
function symbol (i.e., F �∈ Σ)5, and T ′ = T ∪⋃n

i=1{∀x (κi(x) → F (x) = ti(x))}.
Intuitively, F represents a case-defined function, which can be reformulated using
nested if-then-else expressions and can be written as F (x) := case of {κ1(x) :
t1; · · · ;κn(x) : tn}. By abuse of notation, we identify T with any of its case-
definable extensions T ′. In fact, it is easy to produce from a Σ′-formula φ′ a
Σ-formula φ equivalent to φ′ in all models of T ′: just remove (in the appropriate
order) every occurrence F (v) of the new symbol F in an atomic formula A, by
replacing A with

∨n
i=1(κi(v) ∧ A(ti(v))). We also exploit λ-abstractions (see,

e.g., formula (3) below) for a more compact (still first-order) representation of
some complex expressions, and always use them in atoms like b = λy.F (y, z) as
abbreviations of ∀y. b(y) = F (y, z) (where, typically, F is a symbol introduced
in a case-defined extension as above).

We recall a standard notion in Model Theory, namely the notion of a model
completion of a first order theory [26] (we limit the definition to universal theo-
ries, because we shall use only this case):

5 Arity and source/target sorts for F can be deduced from the context (considering
that everything is well-typed).
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Definition 2.1. Let T be a universal Σ-theory and let T � ⊇ T be a further
Σ-theory; we say that T � is a model completion of T iff: (i) every model of T
can be embedded into a model of T �; (ii) for every model M of T , we have that
T � ∪ ΔΣ(M) is a complete theory in the signature Σ|M|.

Since T is universal, condition (ii) is equivalent to the fact that T � has quan-
tifier elimination; on the other hand, a standard argument (based on diagrams
and compactness) shows that condition (i) is the same as asking that T and T �

have the same universal consequences. Thus we have an equivalent definition (to
be used in the following):

Proposition 2.2. Let T be a universal Σ-theory and let T � ⊇ T be a further Σ-
theory; T � is a model completion of T iff: (i) every Σ-constraint satisfiable in a
model of T is also satisfiable in a model of T ∗; (ii) T ∗ has quantifier elimination.

We recall also that the model completion T � of a theory T is unique, if it
exists (see [26] for these results and for examples).

3 Read-Only Database Schemas

We now provide a formal definition of (read-only) DB-schemas by relying on
an algebraic, functional characterization, and derive some key model-theoretic
properties.

Definition 3.1. A DB schema is a pair 〈Σ,T 〉, where: (i) Σ is a DB signature,
that is, a finite multi-sorted signature whose only symbols are relation symbols
(of any arity), equality, unary function symbols, and constants; (ii) T is a DB
theory, that is, a set of universal Σ-sentences.

Relation symbols are used to represent plain relations, whereas unary function
symbols are used to represent relations endowed with primary and foreign key
constraints (as will be explained in Sect. 3.1 below). We refer to a DB schema
simply through its (DB) signature Σ and (DB) theory T , and denote by Σsrt

the set of sorts, by Σrel the set of relations, and by Σfun the set of functions in
Σ. Since Σ contains only unary function symbols and equality, each atomic Σ-
formula is of the form t1(v1) = t2(v2) or R(t1(v1), . . . , tn(vn)), where t1, t2, . . . , tn
are possibly complex terms, and v1, v2, . . . , vn are variables or constants.

We associate to a DB signature Σ a characteristic graph G(Σ) capturing
the dependencies induced by functions over sorts. Specifically, G(Σ) is an edge-

labeled graph whose set of nodes is Σsrt , and with a labeled edge S
f−→ S′ for

each f : S −→ S′ in Σfun . We say that Σ is acyclic if G(Σ) is so. The leaves of Σ
are the nodes of G(Σ) without outgoing edges. These terminal sorts are divided
into two subsets, respectively representing unary relations and value sorts. Non-
value sorts (i.e., unary relations and non-leaf sorts) are called id sorts, and are
conceptually used to represent (identifiers of) different kinds of objects. Value
sorts, instead, represent datatypes such as strings, numbers, clock values, etc.
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We denote the set of id sorts in Σ by Σids , and that of value sorts by Σval , hence
Σsrt = Σids � Σval .

We now consider extensional data.

Definition 3.2. A DB instance of DB schema 〈Σ,T 〉 is a Σ-structure M that
is a model of T and such that every id sort of Σ is interpreted in M on a finite
set.

Contrast this to arbitrary models of T , where no finiteness assumption is made.
What may appear as not customary in Definition 3.2 is the fact that value sorts
can be interpreted on infinite sets. This allows us, at once, to reconstruct the
classical notion of DB instance as a finite model (since only finitely many val-
ues can be pointed from id sorts using functions), at the same time supplying a
potentially infinite set of fresh values to be dynamically introduced in the work-
ing memory during the evolution of the artifact system. More details on this will
be given in Sect. 3.1.

We respectively denote by SM, RM, fM, and cM the interpretation in M
of the sort S (this is a set), of the relation symbol R (this is a set of tuples),
of the function symbol f (this is a set-theoretic function), and of the constant c
(this is an element of the interpretation of the corresponding sort). Obviously,
fM, RM, and cM must match the sorts in Σ. E.g., if f has source S and target
U , then fM has domain SM and range UM.

Example 3.3. The human resource (HR) branch of a company stores the follow-
ing information inside a relational database: (i) users registered to the company
website, who are potential job applicants; (ii) the different, available job cate-
gories; (iii) employees belonging to HR, together with the job categories they are
competent in. To formalize these different aspects, we make use of a DB signature
Σhr consisting of:(i) four id sorts UserId, EmpId, CompInId, and JobCatId, used to
respectively identify users, employees, job categories, and the competence rela-
tionship connecting employees to job categories; (ii) one value sort String, con-
taining strings used to name users and employees, and to describe job categories;
and (iii) five function symbols, namely: userName and empName, respectively

Fig. 1. On the left: characteristic graph of the human resources DB signature from
Example 3.3. On the right: relational view of the DB signature; each cell denotes an
attribute with its type, underlined attributes denote primary keys, and directed edges
capture foreign keys.
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mapping user identifiers and employee identifiers to their corresponding names;
jobCatDescr , mapping job category identifiers to their corresponding descrip-
tions; and who and what , mapping competence identifiers to their corresponding
employees and job categories, respectively. The characteristic graph of Σhr is
shown in the left part of Fig. 1. �

We close the formalization of DB schemas by discussing DB theories, whose
role is to encode background axioms. We illustrate a typical background axiom,
required to handle the possible presence of undefined identifiers/values in the
different sorts. This axiom is essential to capture artifact systems whose working
memory is initially undefined, in the style of [32,50]. To specify an undefined
value we add to every sort S of Σ a constant undefS (written from now on, by
abuse of notation, just as undef, used also to indicate a tuple). Then, for each
function symbol f of Σ, we add the following axiom to the DB theory:

∀x (x = undef ↔ f(x) = undef) (1)

This axiom states that the application of f to the undefined value produces an
undefined value, and it is the only situation for which f is undefined.

Remark 3.4. In the artifact-centric model in the style of [32,50] that we intend
to capture, the DB theory consists of Axioms (1) only. However, our technical
results do not require this specific choice, and more general sufficient conditions
will be discussed later. These conditions apply to natural variants of Axiom (1)
(such variants might be used to model situations where we would like to have,
for instance, many undefined values, see [24]).

3.1 Relational View of DB Schemas

We now clarify how the algebraic, functional characterization of DB schemas and
instances can be actually reinterpreted in the classical, relational model. Defi-
nition 3.1 naturally corresponds to the definition of relational database schema
equipped with single-attribute primary keys and foreign keys (plus a reformu-
lation of constraint (1)). To technically explain the correspondence, we adopt
the named perspective, where each relation schema is defined by a signature
containing a relation name and a set of typed attribute names.

Let 〈Σ,T 〉 be a DB schema (only for this subsection, we assume that Σrel

is empty, for simplicity, because we want to concentrate on the most sophisti-
cated part of our formal model, the part aiming at formalizing key dependen-
cies). Each id sort S ∈ Σids corresponds to a dedicated relation RS with the
following attributes: (i) one identifier attribute idS with type S; (ii) one dedi-
cated attribute af with type S′ for every function symbol f ∈ Σfun of the form
f : S −→ S′.

The fact that RS is built starting from functions in Σ naturally induces dif-
ferent database dependencies in RS . In particular, for each non-id attribute af

of RS , we get a functional dependency from idS to af ; altogether, such depen-
dencies in turn witness that idS is the (primary) key of RS . In addition, for each
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non-id attribute af of RS whose corresponding function symbol f has id sort
S′ as image, we get an inclusion dependency from af to the id attribute idS′ of
RS′ ; this captures that af is a foreign key referencing RS′ .

Example 3.5. The diagram on the right in Fig. 1 graphically depicts the rela-
tional view corresponding to the DB signature of Example 3.3. �

Given a DB instance M of 〈Σ,T 〉, its corresponding relational instance
I is the minimal set satisfying the following property: for every id sort
S ∈ Σids , let f1, . . . , fn be all functions in Σ with domain S; then,
for every identifier o ∈ SM, I contains a labeled fact of the form
RS(idS : oM, af1 : fM

1 (oM), . . . , afn
: fM

n (oM)). With this interpretation, the
active domain of I is the set

⋃

S∈Σids

(SM \ {undefM}) ∪
⎧
⎨

⎩v ∈
⋃

V ∈Σval

V M
∣∣∣∣
v �= undefM and there exist f ∈ Σfun

and o ∈ dom(fM) s.t. fM(o) = v

⎫
⎬

⎭

consisting of all (proper) identifiers assigned by M to id sorts, as well as all
values obtained in M via the application of some function. Since such values
are necessarily finitely many, one may wonder why in Definition 3.2 we allow for
interpreting value sorts over infinite sets. The reason is that, in our framework, an
evolving artifact system may use such infinite provision to inject and manipulate
new values into the working memory. From the definition of active domain above,
exploiting Axioms (1) we get that the membership of a tuple (x0, . . . , xn) to a
generic n+1-ary relation RS with key dependencies (corresponding to an id sort
S) can be expressed in our setting by using just n unary function symbols and
equality:

RS(x0, . . . , xn) iff x0 �= undef ∧ x1 = f1(x0) ∧ · · · ∧ xn = fn(x0) (2)

Hence, the representation of negated atoms is the one that directly follows from
negating the formula in (2):

¬RS(x0, . . . , xn) iff x0 = undef ∨ x1 �= f1(x0) ∨ · · · ∨ xn �= fn(x0)

This relational interpretation of DB schemas exactly reconstructs the require-
ments posed by [32,50] on the schema of the read-only database: (i) each rela-
tion schema has a single-attribute primary key; (ii) attributes are typed; (iii)
attributes may be foreign keys referencing other relation schemas; (iv) the pri-
mary keys of different relation schemas are pairwise disjoint.

We stress that all such requirements are natively captured in our functional
definition of a DB signature, and do not need to be formulated as axioms in
the DB theory. The DB theory is used to express additional constraints, like
the one in Axiom (1). In the following subsection, we thoroughly discuss which
properties must be respected by signatures and theories to guarantee that our
verification machinery is well-behaved.
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One may wonder why we have not directly adopted a relational view for DB
schemas. This will become clear during the technical development. We anticipate
the main, intuitive reasons. First, our functional view allows us to reconstruct
in a single, homogeneous framework some important results on verification of
artifact systems, achieved on different models that have been unrelated so far [17,
32]. Second, our functional view makes the dependencies among different types
explicit. In fact, our notion of characteristic graph, which is readily computed
from a DB signature, exactly reconstructs the central notion of foreign key graph
used in [32] towards the main decidability results.

3.2 Formal Properties of DB Schemas

The theory T from Definition 3.1 must satisfy a few crucial requirements for our
approach to work. In this section, we define such requirements and show that
they are matched in the cases we are interested in. The following proposition is
motivated by the fact that in most cases the kind of axioms that we need for
our DB theories T are just one-variable universal axioms (like Axioms (1)).

We say that T has the finite model property (for constraint satisfiability)
iff every constraint φ that is satisfiable in a model of T is satisfiable in a DB
instance of T .6 The finite model property implies decidability of the constraint
satisfiability problem for T if T is recursively axiomatized.

Proposition 3.6. T has the finite model property and has a model completion
in case it is axiomatized by universal one-variable formulae and Σ is acyclic.

The proof of the above result in [24] supplies an algorithm for quantifier
elimination in the model completion which is far from optimal in concrete cases.
Moreover, acyclicity is not needed in general for Proposition 3.6 to hold: for
instance, when T := ∅ or when T contains only Axioms (1), the proposition holds
without acyclicity hypothesis. Such improvements are explained in [23], where
a better quantifier elimination algorithm, based on Knuth-Bendix completion is
supplied. Proposition 3.6 nevertheless motivates the following assumption:

Assumption 1. The DB theories we consider have a decidable constraint satis-
fiability problem, have the finite model property, and admit a model completion.

This assumption is matched, for instance, in the following three cases: (i) when
T is empty; (ii) when T is axiomatized by Axioms (1); (iii) when Σ is acyclic
and T is axiomatized by finitely many universal one-variable formulae (such as
Axioms (1)).

Hence, the artifact-centric model in the style of [32,50] that we intend to
capture matches Assumption 1.

6 This directly implies that φ is satisfiable also in a DB instance that interprets value
sorts into finite sets.
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4 Relational Artifact Systems

We are now in the position to define our formal model of Relational Artifact
Systems (RASs), and to study parameterized safety problems over RASs. Since
RASs are array-based systems, we start by recalling the intuition behind them.

In general terms, an array-based system is described using a multi-sorted
theory that contains two types of sorts, one accounting for the indexes of arrays,
and the other for the elements stored therein. Since the content of an array
changes over time, it is referred to by a second-order function variable, whose
interpretation in a state is that of a total function mapping indexes to elements
(so that applying the function to an index denotes the classical read operation
for arrays). The definition of an array-based system with array state variable a
always requires a formula I(a) describing the initial configuration of the array
a, and a formula τ(a, a′) describing a transition that transforms the content of
the array from a to a′. In such a setting, verifying whether the system can reach
unsafe configurations described by a formula K(a) amounts to checking whether
the formula I(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧ K(an) is satisfiable for some
n. Next, we make these ideas formally precise by grounding array-based systems
in the artifact-centric setting.

Following the tradition of artifact-centric systems [17,28,31,32], a RAS con-
sists of a read-only DB, a read-write working memory for artifacts, and a finite
set of actions (also called services) that inspect the relational database and the
working memory, and determine the new configuration of the working memory.
In a RAS, the working memory consists of individual and higher order variables.
These variables (usually called arrays) are supposed to model evolving relations,
so-called artifact relations in [32,50]. The idea is to treat artifact relations in a
uniform way as we did for the read-only DB: we need extra sort symbols (recall
that each sort symbol corresponds to a database relation symbol) and extra
unary function symbols, the latter being treated as second-order variables.

Given a DB schema Σ, an artifact extension of Σ is a signature Σext obtained
from Σ by adding to it some extra sort symbols7. These new sorts (usually
indicated with letters E,F, . . . ) are called artifact sorts (or artifact relations by
some abuse of terminology), while the old sorts from Σ are called basic sorts. In
a RAS, artifacts and basic sorts correspond, respectively, to the index and the
elements sorts mentioned in the literature on array-based systems. Below, given
〈Σ,T 〉 and an artifact extension Σext of Σ, when we speak of a Σext -model of
T , a DB instance of 〈Σext , T 〉, or a Σext -model of T ∗, we mean a Σext -structure
M whose reduct to Σ respectively is a model of T , a DB instance of 〈Σ,T 〉, or
a model of T ∗.

An artifact setting over Σext is a pair (x, a) given by a finite set x of individual
variables and a finite set a of unary function variables: the latter must have an
artifact sort as source sort and a basic sort as target sort. Variables in x are
called artifact variables, and variables in a artifact components. Given a DB

7 By ‘signature’ we always mean ‘signature with equality’, so as soon as new sorts are
added, the corresponding equality predicates are added too.
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instance M of Σext , an assignment to an artifact setting (x, a) over Σext is a
map α assigning to every artifact variable xi ∈ x of sort Si an element xα

i ∈ SM
i

and to every artifact component aj : Ej −→ Uj (with aj ∈ a) a set-theoretic
function aα

j : EM
j −→ UM

j . In a RAS, artifact components and artifact variables
correspond, respectively, to arrays and constant arrays (i.e., arrays with all equal
elements) mentioned in the literature on array-based systems.

We can view an assignment to an artifact setting (x, a) as a DB instance
extending the DB instance M as follows. Let all the artifact components in (x, a)
having source E be ai1 : E −→ S1, · · · , ain : E −→ Sn. Viewed as a relation in
the artifact assignment (M, α), the artifact relation E “consists” of the set of
tuples {〈e, aα

i1
(e), . . . , aα

in
(e)〉 | e ∈ EM}. Thus each element of E is formed by

an “entry” e ∈ EM (uniquely identifying the tuple) and by “data” aα
i (e) taken

from the read-only database M. When the system evolves, the set EM of entries
remains fixed, whereas the components aα

i (e) may change: typically, we initially
have aα

i (e) = undef, but these values are changed when some defined values are
inserted into the relation modeled by E; the values are then repeatedly modified
(and possibly also reset to undef, if the tuple is removed and e is re-set to point
to undefined values)8.

In order to introduce verification problems in the symbolic setting of array-
based systems, one first has to specify which formulae are used to represent
sets of states, the system initializations, and system evolution. In such formulae,
we use notations like φ(z, a) to mean that φ is a formula whose free individual
variables are among the z and whose free unary function variables are among
the a. Let (x, a) be an artifact setting over Σext , where x = x1, . . . , xn are the
artifact variables and a = a1, . . . , am are the artifact components (their source
and target sorts are left implicit).

– An initial formula is a formula ι(x) of the form9

(
∧n

i=1 xi = ci) ∧ (
∧m

j=1 aj = λy.dj),

where ci, dj are constants from Σ (typically, ci and dj are undef).
– A state formula has the form

∃e φ(e, x, a),

where φ is quantifier-free and the e are individual variables of artifact sorts.
– A transition formula τ̂ has the form

∃e (γ(e, x, a) ∧ ∧
i x′

i = Fi(e, x, a) ∧ ∧
j a′

j = λy.Gj(y, e, x, a)) (3)

8 In accordance with mcmt conventions, we denote the application of an artifact com-
ponent a to a term (i.e., constant or variable) v also as a[v] (standard notation for
arrays), instead of a(v).

9 Recall that aj = λy.dj abbreviates ∀y aj(y) = dj .
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where the e are individual variables (of both basic and artifact sorts), γ (the
‘guard’) is quantifier-free, x′, a′ are renamed copies of x, a, and the Fi, Gj

(the ‘updates’) are case-defined functions.

Transition formulae as above can express, e.g., (i) insertion (with/without dupli-
cates) of a tuple in an artifact relation, (ii) removal of a tuple from an artifact
relation, (iii) transfer of a tuple from an artifact relation to artifact variables
(and vice-versa), and (iv) bulk removal/update of all the tuples satisfying a cer-
tain condition from an artifact relation. All the above operations can also be
constrained. Our framework is more expressive than, e.g., the one in [50], as
shown in [24].

Definition 4.1. A Relational Artifact System (RAS) is

S = 〈Σ,T,Σext , x, a, ι(x, a), τ(x, a, x′, a′)〉

where: (i) 〈Σ,T 〉 is a (read-only) DB schema, (ii) Σext is an artifact extension
of Σ, (iii) (x, a) is an artifact setting over Σext , (iv) ι is an intitial formula,
and (v) τ is a disjunction of transition formulae.

Example 4.2. We present here a RAS Shr containing a multi-instance artifact
accounting for the evolution of job applications. Each job category may receive
multiple applications from registered users. Such applications are then evaluated,
finally deciding which to accept or reject. The example is inspired by the job
hiring process presented in [58] to show the intrinsic difficulties of capturing real-
life processes with many-to-many interacting business entities using conventional
process modeling notations (e.g., BPMN). An extended version of this example
is presented in [24].

As for the read-only DB, Shr works over the DB schema of Example 3.3,
extended with a further value sort Score used to score job applications. Score
contains 102 values in the range [-1, 100], where -1 denotes the non-eligibility
of the application, and a score from 0 to 100 indicates the actual one assigned
after evaluating the application. For readability, we use as syntactic sugar the
usual predicates <, >, and = to compare variables of type Score.

As for the working memory, Shr consists of two artifacts. The first single-
instance job hiring artifact employs a dedicated pState variable to capture
main phases that the running process goes through: initially, hiring is disabled
(pState = undef), and, if there is at least one registered user in the HR DB,
pState becomes enabled. The second multi-instance artifact accounts for the evo-
lution of user applications. To model applications, we take the DB signature Σhr

of the read-only HR DB, and enrich it with an artifact extension containing an
artifact sort appIndex used to index (i.e., “internally” identify) job applications.
The management of job applications is then modeled by an artifact setting with:
(i) artifact components with domain appIndex capturing the artifact relation
storing different job applications; (ii) additional individual variables as tempo-
rary memory to manipulate the artifact relation. Specifically, each application
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consists of a job category, the identifier of the applicant user and that of an
HR employee responsible for the application, the application score, and the final
result (indicating whether the application is accepted or not). These information
slots are encapsulated into dedicated artifact components, i.e., function variables
with domain appIndex that collectively realize the application artifact relation:

appJobCat : appIndex −→ JobCatId
applicant : appIndex −→ UserId
appResult : appIndex −→ String

appScore: appIndex −→ Score
appResp : appIndex −→ EmpId

We now discuss the relevant transitions for inserting and evaluating job appli-
cations. When writing transition formulae, we make the following assumption:
if an artifact variable/component is not mentioned at all, it means that it is
updated identically; otherwise, the relevant update function will specify how it
is updated.10 The insertion of an application into the system can be executed
when the hiring process is enabled, and consists of two consecutive steps. To
indicate when a step can be applied, also ensuring that the insertion of an appli-
cation is not interrupted by the insertion of another one, we manipulate a string
artifact variable aState. The first step is executable when aState is undef, and
aims at loading the application data (user ID, job category ID, and employee ID)
into dedicated artifact variables (uId , jId , eId , respectively) and evolves aState
into state received.

The second step transfers the application data into the application artifact
relation (using its corresponding function variables), and resets all application-
related artifact variables to undef (including aState, so that new applications
can be inserted). For the insertion, a “free” index (i.e., an index pointing to
an undefined applicant) is picked. The newly inserted application gets a default
score of -1 (“not eligible”), and an undef final result:

∃i:appIndex
(
pState = enabled ∧ aState = received ∧ applicant [i] = undef ∧
pState ′ = enabled ∧ aState ′ = undef ∧ cId ′ = undef ∧
appJobCat ′ = λj. (if j = i then jId else appJobCat [j]) ∧
applicant ′ = λj. (if j = i then uId else applicant [j]) ∧
appResp′ = λj. (if j = i then eId else appResp[j]) ∧
appScore ′ = λj. (if j = i then -1 else appScore[j]) ∧
appResult ′ = λj. (if j = i then undef else appResult [j]) ∧
jId ′ = undef ∧ uId ′ = undef ∧ eId ′ = undef

)

Notice that such a transition does not prevent the possibility of inserting exactly
the same application twice, at different indexes. If this is not wanted, the transi-
tion can be suitably changed so as to guarantee that no two identical applications
can coexist in the same artifact relation (see [24] for an example).

10 Non-deterministic updates can be formalized using existentially quantified variables
in the transition.
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Each application currently considered as not eligible can be made eligible by
assigning a proper score to it:

∃i:appIndex, s:Score
(
pState = enabled ∧ appScore[i] = -1 ∧ s ≥ 0 ∧
pState ′ = enabled ∧ appScore ′[i] = s

)

Finally, application results are computed when the process moves to state
notified. This is handled by the bulk transition:

pState = enabled ∧ pState ′ = notified ∧
appResult ′ = λj. (if appScore[j] > 80 then winner else loser)

which declares applications with a score above 80 as winning, and the others as
losing. �

5 Parameterized Safety via Backward Reachability

A safety formula for S is a state formula υ(x) describing undesired states of S. As
usual in array-based systems, we say that S is safe with respect to υ if intuitively
the system has no finite run leading from ι to υ. Formally, there is no DB-
instance M of 〈Σext , T 〉, no k ≥ 0, and no assignment in M to the variables
x0, a0, . . . , xk, ak such that the formula

ι(x0, a0) ∧ τ(x0, a0, x1, a1) ∧ · · · ∧ τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)

is true in M (here xi, ai are renamed copies of x, a). The safety problem for S
is the following: given a safety formula υ decide whether S is safe with respect
to υ.

Example 5.1. The following property expresses the undesired situation that, in
the RAS from Example 4.2, once the evaluation is notified there is an applicant
with unknown result:

∃i:appIndex
(
pState = notified ∧ applicant [i] �= undef ∧
appResult [i] �= winner ∧ appResult [i] �= loser

)

The job hiring RAS Shr turns out to be safe with respect to this property
(cf. Sect. 7). �

We shall introduce an algorithm that semi-decides safety problems for S, and
in the next section we shall examine some interesting cases where the algorithm
terminates and gives a decision procedure. Before introducing the algorithm, we
need some technical results specifying how far we can extend the T ∗-quantifier
elimination procedure and the T -satisfiability procedure for Σ-constraints to
a larger class of quantified formulae in the enriched signature of our artifact
settings.
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Algorithm 1. Schema of
the backward reachability
algorithm
Function BReach(υ)

1 φ ←− υ; B ←− ⊥;
2 while φ ∧ ¬B is

T -satisfiable do
3 if ι ∧ φ is

T -satisfiable then
return unsafe

4 B ←− φ ∨ B;
5 φ ←− Pre(τ, φ);
6 φ ←− QE(T ∗, φ);

return (safe, B);

An integral part of the algorithm is
to compute symbolic preimages. For that
purpose, we define for any φ1(z, a, z′, a′)
and φ2(z, a), Pre(φ1, φ2) as the formula
∃z′∃a′(φ1(z, a, z′, a′)∧φ2(z′, a′)). The preim-
age of the set of states described by a state
formula φ(x, a) is the set of states described
by Pre(τ, φ) (notice that, when τ =

∨
τ̂ , we

have Pre(τ, φ) =
∨

Pre(τ̂ , φ)).
Let us call extended state formulae the

formulae of the kind ∃e φ(e, x, a), where φ is
quantifier-free and the e are individual vari-
ables of both artifact and basic sorts. The
next two lemmas are proved via syntactic
manipulations:

Lemma 5.2. The preimage of a state formula is logically equivalent to an
extended state formula.

Lemma 5.3. For every extended state formula φ there is a state formula
QE(T ∗, φ) equivalent to φ in all Σext -models of T ∗.

We underline that Lemmas 5.2 and 5.3 both give an explicit effective proce-
dure for computing equivalent (extended) state formulae: such effective proce-
dures will be an essential part of our backward reachability algorithm. Notice
that Lemma 5.3 relies on quantifier elimination in T ∗, in fact it is meant to
eliminate existentially quantified variables ranging over basic sorts. Existentially
quantified variables over artifact sorts, on the contrary, cannot be eliminated as
they occur as arguments of artifact components.

Let us call ∃∀-formulae the formulae of the kind

∃e ∀i φ(e, i, x, a)

where the variables e, i are variables whose sort is an artifact sort and φ is
quantifier-free. The crucial point for the following lemma to hold is that the
quantified variables in ∃∀-formulae are all of artifact sorts (the lemma is proved
by syntactic manipulations followed by suitable instantiations):

Lemma 5.4. The satisfiability of an ∃∀-formula in a Σext -model of T is decid-
able. Moreover, an ∃∀-formula is satisfiable in a Σext -model of T iff it is satis-
fiable in a DB-instance of 〈Σext , T 〉 iff it is satisfiable in a Σext -model of T ∗.

Algorithm 1 describes the backward reachability algorithm (or, backward
search) for handling the safety problem for S. It computes iterated preimages
of υ and applies to them the procedures from Lemmas 5.2 and 5.3, until a fix-
point is reached or until a set intersecting the initial states (i.e., satisfying ι) is
found. The satisfiability tests from Lines 2 and 3 can be effectively discharged by
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Lemma 5.4 (in fact, the procedure of Lemma 5.4 reduces them to T -constraint
satisfiability problems).

To sum up, we obtain the following theorem (to understand the statement of
the theorem, notice that by partial correctness we mean that, when the algorithm
terminates, it gives a correct answer, and by effectiveness we mean that all
subprocedures in the algorithm can be effectively executed):

Theorem 5.5. Backward search (cf. Algorithm1) is effective and partially cor-
rect for solving safety problems for RASs.

Theorem 5.5 shows that backward search is a semi-decision procedure: if the
system is unsafe, backward search always terminates and discovers it; if the
system is safe, the procedure can diverge (but it is still correct). Notice that the
role of quantifier elimination (Line 6 of Algorithm1) is twofold: (i) It allows to
discharge the fixpoint test of Line 2 (see Lemma 5.4); (ii) it ensures termination
in significant cases, namely those where (strongly) local formulae, introduced in
the next section, are involved.

6 Termination Results for RASs

We now present three termination results, two relating RASs to previous funda-
mental results, and one genuinely novel.

Termination for “Simple” Artifact Systems. An interesting class of RASs
is the one where the working memory consists only of artifact variables (without
artifact relations). We call systems of this type SASs (Simple Artifact Systems).
For SASs, the following termination result holds.

Theorem 6.1. Let 〈Σ,T 〉 be a DB schema with Σ acyclic. Then, for every SAS
S = 〈Σ,T, x, ι, τ〉, backward search terminates and decides safety problems for
S in Pspace in the combined size of x, ι, and τ .

It is worth noticing that the decidability part of Theorem6.1 can be easily
extended to locally finite theories T (thus, in particular to arbitrary relational
signatures) whenever T has the amalgamation property and is closed under
substructures. Thanks to these observations, Theorem 6.1 is reminiscent of an
analogous result in [17], i.e., Theorem 5, the crucial hypotheses of which are
exactly amalgamability and closure under substructures, although the setting in
that paper is different (there, key dependencies are not discussed, but there is
no limitation to elementarily definable classes of structures). Notice also that a
distinctive feature of our framework is that it remains well-behaved even in the
presence of key dependencies (a naive representation of primary key dependencies
with partially functional relations would cause amalgamability to fail). Another
important point is that we perform verification in a purely symbolic way, using
decision procedures provided by SMT-solvers.

Termination with Local Updates. Consider an acyclic signature Σ not con-
taining relation symbols, a DB theory T (satisfying our Assumption 1), and an
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artifact setting (x, a) over an artifact extension Σext of Σ. We call a state formula
local if it is a disjunction of the formulae

∃e1 · · · ∃ek (δ(e1, . . . , ek) ∧ ∧k
i=1 φi(ei, x, a)), (4)

and strongly local if it is a disjunction of the formulae

∃e1 · · · ∃ek (δ(e1, . . . , ek) ∧ ψ(x) ∧ ∧k
i=1 φi(ei, a)). (5)

In (4) and (5), δ is a conjunction of variable equalities and inequalities, φi, ψ are
quantifier-free, and e1, . . . , ek are individual variables ranging over artifact sorts.
The key limitation of local state formulae is that they cannot compare entries
from different tuples of artifact relations: each φi in (4) and (5) can contain only
the existentially quantified variable ei.

A transition formula τ̂ is local (resp., strongly local) if whenever a formula φ is
local (resp., strongly local), so is Pre(τ̂ , φ) (modulo the axioms of T ∗). Examples
of (strongly) local τ̂ are discussed in [24].

Theorem 6.2. If Σ is acyclic and does not contain relation symbols, backward
search (cf. Algorithm1) terminates when applied to a local safety formula in a
RAS whose τ is a disjunction of local transition formulae.

Proof (sketch). Let Σ̃ be Σext ∪{a, x}, i.e., Σext expanded with function symbols
a and constants x (a and x are treated as symbols of Σ̃, but not as variables any-
more). We call a Σ̃-structure cyclic11 if it is generated by one element belonging
to the interpretation of an artifact sort. Since Σ is acyclic, so is Σ̃, and then
one can show that there are only finitely many cyclic Σ̃-structures C1, . . . , CN

up to isomorphism. With a Σ̃-structure M we associate the tuple of numbers
k1(M), . . . , kN (M) ∈ N∪{∞} counting the numbers of elements generating (as
singletons) the cyclic substructures isomorphic to C1, . . . , CN , respectively. Then
we show that, if the tuple associated with M is componentwise bigger than the
one associated with N , then M satisfies all the local formulae satisfied by N .
Finally we apply Dikson Lemma [13]. �

Note that Theorem 6.2 can be used to reconstruct the decidability results
of [50] concerning safety problems. Specifically, one needs to show that transitions
in [50] are strongly local which, in turn, can be shown using quantifier elimination
(see [24] for more details). Interestingly, Theorem6.2 can be applied to more cases
not covered in [50]. For example, one can provide transitions enforcing updates
over unboundedly many tuples (bulk updates) that are strongly local. One can
also see that the safety problem for our running example is decidable since all
its transitions are strongly local. Another case considers coverability problems
for broadcast protocols [30,35], which can be encoded using local formulae over
the trivial one-sorted signature containing just one basic sort, finitely many
constants, and one artifact sort with one artifact component. These problems can
11 This is unrelated to cyclicity of Σ defined in Sect. 3, and comes from universal algebra

terminology.
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be decided with a non-primitive recursive lower bound [57] (whereas the problems
in [50] have an ExpSpace upper bound). Recalling that [50] handles verification
of LTL-FO, thus going beyond safety problems, this shows that the two settings
are incomparable. Notice that Theorem 6.2 implies also the decidability of the
safety problem for SASs, in case of acyclic Σ.

Termination for Tree-like Signatures. Σ is tree-like if it is acyclic, does not
contain relation symbols, and all non-leaf nodes have outdegree 1. An artifact
setting over Σ is tree-like if Σ̃ := Σext ∪ {a, x} is tree-like. In tree-like artifact
settings, artifact relations have a single “data” component, and basic relations
are unary or binary.

Theorem 6.3 Backward search (cf. Algorithm1) terminates when applied to a
safety problem in a RAS with a tree-like artifact setting.

Proof (sketch). The crux is to show, using Kruskal’s Tree Theorem [47], that the
finitely generated Σ̃-structures are a well-quasi-order w.r.t. the embeddability
partial order. �

While tree-like RAS restrict artifact relations to be unary, their transitions
are not subject to any locality restriction. This allows for expressing rich forms
of updates, including general bulk updates (which allow us to capture non-
primitive recursive verification problems) and transitions comparing at once dif-
ferent tuples in artifact relations. Notice that tree-like RASs are incomparable
with the “tree” classes of [17], since the former use artifact relations, whereas
the latter only individual variables. In [24] we show the power of such advanced
features in a flight management process example.

7 First Experiments

We implemented a prototype of the backward reachability algorithm for RASs
on top of the mcmt model checker for array-based systems. Starting from its
first version [42], mcmt was successfully applied to a variety of settings: cache
coherence and mutual exclusions protocols [41], timed [25] and fault-tolerant [5,6]
distributed systems, and imperative programs [7,8]. Interesting case studies con-
cerned waiting time bounds synthesis in parameterized timed networks [19] and
internet protocols [18]. Further related tools include safari [3], asasp [2], and
Cubicle [27]. The latter relies on a parallel architecture with further powerful
extensions. The work principle of mcmt is rather simple: the tool generates the
proof obligations arising from the safety and fixpoint tests in backward search
(Lines 2–3 of Algorithm 1) and passes them to the background SMT-solver (cur-
rently it is Yices [34]). In practice, the situation is more complicated because
SMT-solvers are quite efficient in handling satisfiability problems in combined
theories at quantifier-free level, but may encounter difficulties with quantifiers.
For this reason, mcmt implements modules for quantifier elimination and quan-
tifier instantiation. A specific module for the quantifier elimination problems
mentioned in Line 6 of Algorithm1 has been added to Version 2.8 of mcmt.
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Table 1. Experimental results. The input system size is reflected by columns #AC,
#AV, #T, indicating, resp., the number of artifact components, artifact variables,
and transitions.

We produced a benchmark consisting of eight realistic business process exam-
ples and ran it in mcmt (detailed explanations and results are given in [24]).
The examples are partially made by hand and partially obtained from those
supplied in [50]. A thorough comparison with Verifas [50] is matter of future
work, and is non-trivial for a variety of reasons. In particular, as already men-
tioned in Sect. 6, the two systems tackle incomparable verification problems: on
the one hand, we deal with safety problems, whereas Verifas handles more
general LTL-FO properties; on the other hand, we tackle features not available
in Verifas, like bulk updates and comparisons between artifact tuples. More-
over, the two verifiers implement completely different state space construction
strategies: mcmt is based on backward reachability and makes use of declara-
tive techniques that rely on decision procedures, while Verifas employs forward
search via VASS encoding.

The benchmark set is available as part of the last distribution 2.8 of mcmt.12

Table 1 shows the very encouraging results (the first row tackles Example 5.1).
While a systematic evaluation is out of scope of this paper, mcmt effectively
solves the benchmarks with a comparable performance shown in other well-
studied areas, with verification times below 1s in most cases.

8 Conclusions

We have laid the foundations of SMT-based verification for artifact systems,
focusing on safety problems and relying on array-based systems as underlying
formal model. We have exploited the model-theoretic machinery of model com-
pletion to overcome the main technical difficulty arising from this approach, i.e.,
showing how to reconstruct quantifier elimination in the rich setting of artifact
systems. On top of this framework, we have identified three classes of systems
12 http://users.mat.unimi.it/users/ghilardi/mcmt/, subdirectory /examples/dbdriven

of the distribution. The user manual contains a new section (pages 36–39) on how
to encode RASs in MCMT specifications.

http://users.mat.unimi.it/users/ghilardi/mcmt/
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for which safety is decidable, which impose different combinations of restric-
tions on the form of actions and the shape of DB constraints. The presented
techniques have been implemented on top of the well-established mcmt model
checker, making our approach fully operational.

We consider the present work as the starting point for a full line of research
dedicated to SMT-based techniques for the effective verification of data-aware
processes, addressing richer forms of verification beyond safety (such as liveness,
fairness, or full LTL-FO) and richer classes of artifact systems, (e.g., with con-
crete data types and arithmetics), while identifying novel decidable classes (e.g.,
by restricting the structure of the DB and of transition and state formulae).
Concerning implementation, we plan to further develop our tool to incorporate
in it the plethora of optimizations and sophisticated search strategies available
in infinite-state SMT-based model checking. Finally, we plan to tackle more
conventional process modeling notations, concerning in particular data-aware
extensions of the de-facto standard BPMN13.
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Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1 3

43. Ghilardi, S., van Gool, S.J.: Monadic second order logic as the model companion
of temporal logic. In: Proceedings of the LICS, pp. 417–426. ACM (2016)

44. Ghilardi, S., van Gool, S.J.: A model-theoretic characterization of monadic second
order logic on infinite words. J. Symbolic Logic 82(1), 62–76 (2017)

45. Gulwani, S., Musuvathi, M.: Cover algorithms and their combination. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 193–207. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78739-6 16

https://doi.org/10.1007/978-3-642-31424-7_55
https://doi.org/10.1007/3-540-48168-0_5
https://doi.org/10.1007/978-3-642-23737-9_2
https://doi.org/10.1007/978-3-319-66167-4_18
https://doi.org/10.1007/978-3-319-66167-4_18
https://doi.org/10.1007/978-3-540-71070-7_6
https://doi.org/10.1007/978-3-540-71070-7_6
https://doi.org/10.1007/978-3-642-14203-1_3
https://doi.org/10.1007/978-3-540-78739-6_16


From Model Completeness to Verification of Data Aware Processes 239

46. Hull, R.: Artifact-centric business process models: brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332,
pp. 1152–1163. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
88873-4 17

47. Kruskal, J.B.: Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture.
Trans. Amer. Math. Soc. 95, 210–225 (1960)

48. Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: fundamental
requirements and their support in existing approaches. Int. J. Inf. Syst. Model. Des.
2(2), 19–46 (2011)

49. Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: E-connections of abstract
description systems. AIJ 156(1), 1–73 (2004)

50. Li, Y., Deutsch, A., Vianu, V.: VERIFAS: a practical verifier for artifact systems.
PVLDB 11(3), 283–296 (2017)

51. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
TOPLAS 1(2), 245–257 (1979)

52. Pigozzi, D.: The join of equational theories. Colloq. Math. 30, 15–25 (1974)
53. Reichert, M.: Process and data: two sides of the same coin? In: Meersman, R.,

et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 2–19. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33606-5 2

54. Richardson, C.: Warning: don’t assume your business processes use master data.
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 11–12.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2 3

55. Robinson, A.: On the Metamathematics of Algebra. North-Holland (1951)
56. Robinson, A.: Introduction to model theory and to the metamathematics of alge-

bra. In: Studies in Logic and the Foundations of Mathematics. North-Holland
(1963)

57. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: D’Argenio,
P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 5–24. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8 2

58. Silver, B.: BPMN Method and Style. 2nd edn. Cody-Cassidy (2011)
59. Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory

extensions. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol.
9706, pp. 273–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40229-1 19

60. Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory
extensions. Log. Methods Comput. Sci. 14(3) (2018)

61. Tinelli, C., Harandi, M.: A new correctness proof of the nelson-oppen combination
procedure. In: Baader, F., Schulz, K.U. (eds.) Frontiers of Combining Systems.
ALS, vol. 3, pp. 103–119. Springer, Dordrecht (1996). https://doi.org/10.1007/
978-94-009-0349-4 5

62. Vianu, V.: Automatic verification of database-driven systems: a new frontier. In:
Proceedings of the ICDT, pp. 1–13. ACM (2009)

63. Wolter, f.: Fusions of modal logics revisited. In: Advances in Modal Logic. CSLI
Lecture Notes, vol. 1, pp. 361–379 (1996)

https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-642-33606-5_2
https://doi.org/10.1007/978-3-642-15618-2_3
https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1007/978-3-319-40229-1_19
https://doi.org/10.1007/978-3-319-40229-1_19
https://doi.org/10.1007/978-94-009-0349-4_5
https://doi.org/10.1007/978-94-009-0349-4_5

	From Model Completeness to Verification of Data Aware Processes
	1 Introduction
	1.1 Model Completeness in Combined Decision Problems
	1.2 Towards Model Completeness in Verification
	1.3 Data Aware Processes: Our Contribution

	2 Preliminaries
	3 Read-Only Database Schemas
	3.1 Relational View of DB Schemas
	3.2 Formal Properties of DB Schemas

	4 Relational Artifact Systems
	5 Parameterized Safety via Backward Reachability
	6 Termination Results for RASs
	7 First Experiments
	8 Conclusions
	References




