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Abstract One of the outcomes of the research work carried out on data integra-
tion in the last years is a clear architecture, comprising a global schema, the source
schema, and the mapping between the source and the global schema. In this chapter,
we study data integration under this framework when the global schema is specified
in OWL, the standard language for the Semantic Web, and discuss the impact of this
choice on computational complexity of query answering under different instantia-
tions of the framework in terms of query language and form and interpretation of the
mapping. We show that query answering in the resulting setting is computationally
too complex, and discuss in detail the various sources of complexity. Then, we show
how to limit the expressive power of the various components of the framework in
order to have efficient query answering, in principle as efficient as query processing
in relational DBMSs. In particular, we adopt OWL 2 QL as the ontology language
used to express the global schema. OWL 2 QL is one of the tractable profiles of
OWL 2, and essentially corresponds to a member of the DL-Lite family, a family of
Description Logics designed to have a good trade-off between expressive power of
the language and computational complexity of reasoning.

14.1 Introduction

Data integration is the problem of combining data from different sources, and to
provide a single interface for the consumers of information. The main purpose of
such an interface is to free the client from the knowledge about where the source
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data are, and how they can be accessed. Data Integration is considered one of the
main challenges that Information Technology (IT) currently faces [10]. It is highly
relevant in classical IT applications, such as enterprise information management and
data warehousing, as well as in scenarios like scientific computing, e-government,
and web data management.

The need of integrating data arises not only within a single organization, but
also when different organizations interoperate (inter-organization integration), like
in supply-chain scenarios, or in industrial districts. One of the reasons for such a
need is that, on the one hand, large amounts of heterogeneous data, often collected
and stored by different applications and systems, are nowadays available, and on
the other hand, the need of accessing such data by means of unified mechanisms is
becoming more and more crucial, both within and outside the organization bound-
aries.

In the last two decades, the research on data integration has produced many sig-
nificant results. One important outcome of this research work is a clear architecture
for data integration [70, 63]. According to this architecture, the main components of
a data integration system are the global schema, the sources, and the mapping be-
tween the two. The sources represent the repositories where the data are, the global
schema, also called mediated schema, represents the unified structure presented to
the client, and the mapping relates the source data with the global schema. A typical
service provided by the system is query answering, i.e., computing the answer to a
query posed to the global schema by accessing the sources, collecting the relevant
data, and packaging such data in the final answer. Much of the work carried out by
the scientific community has concentrated on this task. Many surveys indicate that
the market for information integration software is expected to grow considerably
in the next years, and to reach about 4 billion USA dollars in 2012. Despite the
above-mentioned research work, and despite the urgent need for effective solutions,
information integration is still largely unresolved. Each commercial data integra-
tion tool covers only one of the aspects of the problem, e.g., extraction and loading
of data, wrapping data sources, or answering federated queries. The result is that a
comprehensive solution to the problem is very difficult to achieve with the current
technology. There are several reasons why the current methods and techniques for
information integration are still far from providing such a solution. We argue that
one of the most important reasons is that current tools express the global schema
in terms of a so-called logical database model, typically the relational data model.
The term logical model refers to the data models of current Data Base Management
Systems (DBMSs), and it is well-known that the abstractions and the constructs
provided by these models are influenced by implementation issues. It follows that
the global schema represents a sort of unified data structure accommodating the
various data at the sources, and the client, although freed from physical aspects of
the source data (where they are, and how they can be accessed), is still exposed to
logical aspects of such data, i.e., how they are packed into specific data structures.

In this chapter we discuss a different approach, which is based on the idea of
posing the semantics of the application domain at the center of the scene. According
to this approach, the usual global schema of traditional data integration systems is
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replaced by the conceptual model of the application domain, and such a conceptual
schema is expressed through OWL, the logic-based ontology language used in the
Semantic Web. With this approach, the integrated view that the system provides to
information consumers is not merely a data structure accommodating the various
data at the sources, but a semantically rich description of the relevant concepts in
the domain of interest. The distinction between the conceptual model and the data
sources reflects the separation between the conceptual level, the one presented to the
client, and the logical/physical level of the information system, the one stored in the
sources, with the mapping acting as the reconciling structure between the two levels.
By using OWL, the global schema of the integration system becomes a declarative,
formal specification of the domain of interest, i.e., a logic-based conceptualization
of the relevant concepts in the domain, and the relevant relationships among these
concepts.

There are several crucial advantages in the semantic approach we pursue in our
proposal. First, the conceptual layer in the architecture is the obvious mean for pur-
suing a declarative approach to information integration. By making the representa-
tion of the domain explicit, we gain re-usability of the acquired knowledge, which is
not achieved when the global schema is simply a unified description of the underly-
ing data sources. This may also have consequences on the design of user interfaces,
since conceptual models are close to the user perception of the domain. Second, the
mapping layer explicitly specifies the relationships between the domain concepts
on the one hand and the data sources on the other hand. Such a mapping is not
only used for the operation of the information system, but also for documentation
purposes. The importance of this aspect clearly emerges when looking at large or-
ganizations where the information about data is widespread into separate pieces of
documentation that are often difficult to access and non-necessarily conforming to
common standards. The conceptual model built for data integration can thus provide
a common ground for the documentation of the organization data, with obvious ad-
vantages in the maintenance phase of the system. A third advantage has to do with
the extensibility of the system. One criticism that is often raised to data integration is
that it requires merging and integrating the source data in advance, and this merging
process can be very costly. However, the conceptual approach we advocate does not
impose to fully integrate the data sources at once. Rather, after building even a rough
skeleton of the domain model, one can incrementally add new data sources or new
elements therein, when they become available, or when needed, thus amortizing the
cost of integration. Therefore, the overall design can be regarded as the incremental
process of understanding and representing the domain, the available data sources,
and the relationships between them.

The adoption of an expressive ontology language for specifying the global
schema comes, however, at a price. Indeed, it not hard to see that query answer-
ing in the resulting framework for data integration is computationally too complex.
Starting from this observation, the goals of this chapter are as follows:

• We provide the formal definition (syntax and semantics) of a data integration
framework where the global schema is an ontology expressed in OWL (Sec-
tion 14.2).
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• We discuss in detail the various sources of complexity in such a data integration
framework (Section 14.3).

• We show how to limit the expressive power of the various components of the
framework in such a way that query answering becomes tractable (Section 14.4).
In particular, in order to achieve efficient query answering, in principle as ef-
ficient as query processing in relational DBMSs, we adopt a language of the
DL-Lite family [19] as the ontology language used to express the global schema.
More precisely, we consider OWL 2 QL, one of the tractable profiles of OWL 2.

We end the chapter by discussing related in Section 14.5, and by presenting some
final observations in Section 14.6.

14.2 The data integration framework

As pointed out in the introduction, one of the major outcomes of the research in
information integration [85, 70] is a conceptual architecture for a data integration
system formed by a global schema, which provides a representation of the domain
of interest, a source schema, which describes the set of sources involved in the inte-
gration process, and a mapping, which establishes the semantic relationship between
the global and the source schema. In such a scenario, the user accesses the global
schema asking her queries, which will be automatically processed taking into ac-
count the knowledge specified by the global schema, the mapping, and the data at
the sources, which are suitably accessed to retrieve the data that form the answer for
the user’s query.

Following the idea that the domain of interest should be represented through a
conceptual model, we find it natural to specify the global schema as an ontology.
The ontology language we consider is OWL, the Web Ontology Language, in its
forthcoming version, called OWL 21, which is currently being standardized by the
World Wide Web Consortium (W3C)2. More precisely we adopt OWL 2 DL, the
fragment of OWL 2, that is based on Description Logics (DLs) [8]. DLs are logics
specifically designed to represent structured knowledge and to reason upon it, and
as such are perfectly suited as languages for representing ontologies. DLs are based
on the idea that the knowledge in the domain to represent should be structured by
grouping into classes objects of interest that have properties in common, and explic-
itly representing those properties through the relevant relationships holding among
such classes. It follows that the global schema is given in terms of classes, each rep-
resenting a set of objects, object properties, i.e., binary relations between classes,
and data properties, i.e., binary relations between classes and data-types.

From atomic classes and properties, it is possible to construct complex classes
and properties. Then, the domain is modeled through assertions involving atomic
and complex classes and properties (such as ISA relations, cardinality restrictions,

1 http://www.w3.org/TR/owl2-overview/
2 http://www.w3c.org/
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specifications of domain and range of properties, etc.). We do not provide here the
detailed syntax and semantics of OWL 2 DL, and refer the reader to the W3C tech-
nical report on on the subject3. It is however worth noticing that OWL 2 DL is
essentially a variant of SROIQ(D), a DL that extends the basic DL ALC with transi-
tive roles, regular hierarchies, inverse rules, functionalities of roles, data types, and
qualified number restrictions [65]. Therefore OWL 2 DL has a rigorous logical un-
derpinning and a formal semantics, which essentially corresponds to the semantics
of SROIQ(D).

It is important to point out that the global schema only represents intensional
knowledge and therefore for its specification we only allow for the use of OWL
intensional constructs. In other words, the only instances available for the global
schema are the instances retrieved from the sources through the mappings and no
additional extensional knowledge is specified for it. Using the DL terminology, we
say that the global schema is a TBox, and that no ABox, is explicitly specified.

As for the source schema, we assume it is specified as a relational schema. In-
deed, very many data sources are available that store data using relational DBMSs.
Furthermore, several software companies provide a variety of wrapper based tools
enabling a database-like access to non-relational data sources. Therefore, we will
describe the sources as a set of relational tables managed by the same relational
DBMS and refer to them as if they were stored locally rather than distributed. This
is indeed a situation that is always possible to achieve, by making use of capa-
bilities provided by commercial relational data federation tools, which wrap het-
erogeneous and distributed data sources and present them as if they were a single
relational database. We also assume that no integrity constraints are imposed over
data sources, that is, each data source is responsible for maintaining its data correct
with respect to its own constraints.

The mapping establishes the relationship between the source schema and the
global schema, thus specifies how data stored at the sources are linked to the in-
stances of the classes and the properties in the global schema.

Two basic approaches for specifying the mapping have been proposed in the lit-
erature. In the first approach, called global-as-view (GAV), a query over the source
schema is associated with an element of the global schema, so that its meaning is
specified in terms of the data residing at the sources. Conversely, the second ap-
proach, called local-as-view (LAV), requires every relation of the source schema
to be defined as a query over the global schema. More recently, a further approach
has been considered, which allows for specifying mapping assertions in which a
query over the global schema is put in correspondence with a query over the source
schema [70]. Such an approach, called (generalized) global-local-as-view (GLAV),
since it generalizes both the LAV and the GAV approaches [70], is the one we adopt
in this paper.

In the data integration settings described above, the mapping specification has to
take into account the impedance mismatch problem, i.e., the mismatch between the
way in which data is (and can be) represented in a data source, and the way in which

3 www.w3.org/TR/owl2-syntax/



6 D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi

the corresponding information is rendered through the global schema. Specifically,
the impedance mismatch problem arises from the fact that instances of the source
relations are tuples of values, whereas instances of the classes and properties in the
global schema are objects, each one denoted by an ad hoc identifier (e.g., a constant
in logic), not to be confused with any value item.

More in detail, mapping assertions keep data values separate from object identi-
fiers, and construct identifiers as (logic) terms over values. Each such object iden-
tifier has the form f (d1, . . . ,dn), where f is a function symbol of arity n > 0, and
d1, . . . ,dn are values retrieved from the sources.

We now present in detail how mapping assertions are specified. Given a source
schema S and a global schema G , a mapping assertion from S to G is an expres-
sion of the form

Φ(v) ;t Ψ(w),

where

• Φ(v), called the body of the mapping, is a first-order logic (FOL) query of arity
n > 0, with distinguished variables (i.e., free variables) v, over the source schema
S ;

• Ψ(w), called the head, is a first-order query over the global schema G , whose
distinguished variables w appear in the body, i.e., are variables in v. The atoms
in Ψ(w) are built over the variables w and over terms, each one of the form
f (w1, . . . ,wn) where f is a function symbol of arity n > 0 and w1, . . . ,wn are
variables in w;

• the subscript t stands for the type of the mapping assertion, which specifies the
underlying semantic assumption. We distinguish the following types of mapping
assertions:

– ;s, denoting a sound mapping assertion, with the intended meaning that the
data in the answer to the query over the sources, modulo the construction of
object identifiers by means of function symbols, are a subset of the data in the
answer to the query over the global schema;

– ;c, denoting a complete mapping assertion, whose intended meaning is the
converse of that of a sound assertion;

– ;e, denoting an exact mapping assertion, whose intended meaning is that of
an assertion that is both sound and complete.

For specifying the two queries in a mapping assertion, we use the languages that
are commonly used for querying respectively relational databases and OWL on-
tologies, and that capture the expressive power of FOL queries. More precisely, we
specify the body of the mapping in SQL, whereas for the head we use the SPARQL
syntax 4.

In the following, we will denote a data integration system I as a tuple 〈G ,S ,M 〉,
where G denotes the global schema, S denotes the source schema, and M denotes
the mapping, which is a set of mapping assertions between S and G .

4 http://www.w3.org/TR/rdf-sparql-query/
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SubClassOf(Dean Professor) DisjointClasses(Student Professor)
SubClassOf(University Organization) SubClassOf(College Organization)
ObjectPropertyDomain(advisor Student) ObjectPropertyRange(advisor Professor)
ObjectPropertyDomain(headOf Dean) ObjectPropertyRange(headOf College)
ObjectPropertyDomain(takesCourse Student) ObjectPropertyRange(takesCourse Course)
FunctionalObjectProperty(headOf )
EquivalentClasses(Person ObjectUnionOf(Student Professor))
SubClassOf(Student ObjectSomeValuesFrom(takesCourse Course))
SubClassOf(Professor ObjectSomeValuesFrom(worksFor University))
SubClassOf(Professor ObjectSomeValuesFrom(teacherOf Course))
SubClassOf(Dean ObjectSomeValuesFrom(headOf College))
DisjointClasses(Dean ObjectSomeValuesFrom(teacherOf Course))

Fig. 14.1 Global schema of Example 14.1.

Example 14.1. We now present an example of data integration system extracted
from a real integration experiment involving data from different sources in use at
SAPIENZA University of Rome. The global schema that we adopt is defined by
means of the OWL 2 assertions shown in Figure 14.1. It is in fact a portion of the
Lehigh University Benchmark (LUBM) ontology5, an ontology that is commonly
used for testing ontology-based applications in the Semantic Web. In particular, the
global schema contains the classes Person, Student, Professor, Organization, Col-
lege, Dean, and Course, and the object properties headOf, worksFor, takesCourse,
and advisor. For the sake of simplicity, we do not report in this example assertions
involving data properties, but they are obviously allowed in our framework.

The source schema is a set of relational tables resulting from the federation of
several data sources of the School of Engineering of the SAPIENZA University of
Rome, and the portion that we consider in this example is constituted by the rela-
tional tables shown in Figure 14.2.

As for the mapping, referring to the global and source schemas presented above,
we provide in Figure 14.3 some sample mapping assertions6.

faculty(UNIVERSITY CODE, CODE, DESCRIPTION)
students(ID, FNAME, SNAME, DOB, ADDRESS)
course(FACULTY CODE, CODE, DESCRIPTION)
assignment(COURSE CODE, PROFESSOR, YEAR)
professor(CODE, FNAME, SNAME, ADDRESS, PHONE)
exam(STUD ID, COURSE CODE, DATE, RATING)
career(STUD ID, ACADEMIC YEAR, FACULTY CODE)
degree(STUD ID, YEAR, PROF ID, TITLE)

Fig. 14.2 Relational tables of the source schema of Example 14.1.

5 http://swat.cse.lehigh.edu/projects/lubm/
6 With some abuse of notation we make use, in the SPARQL query in the head of the mapping
assertions, of the logical terms that construct object identifiers, that is, st(ID), pr(PROF ID) and
st(STUD ID) which have to be considered as simple SPARQL variables.
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M1: SELECT ID
FROM STUDENTS
WHERE DOB <= ’1990/01/01’

;s SELECT ?st(ID) {
?st(ID) rdf:type Student

}

M2: SELECT STUD ID,PROF ID
FROM DEGREE
WHERE YEAR > 2000

;e SELECT ?st(STUD ID) ?pr(PROF ID){
?st(STUD ID) advisor ?pr(PROF ID)

}

M3: SELECT STUD ID
FROM EXAM
WHERE COURSE CODE NOT IN
(SELECT COURSE CODE
FROM ASSIGNMENT
WHERE YEAR < 1990)

;s SELECT ?st(STUD ID) {
?st(STUD ID) advisor ?X

}

Fig. 14.3 Mapping assertions of Example 14.1.

The mapping assertion M1 specifies that the tuples from the source table students
provide the information needed to build the instances of the class Student. In par-
ticular, the query in the body of M1 retrieves the code for the students whose date
of birth is before 1990; each such code is then used to build the object identifier for
the student by means of the unary function symbol st. Similarly, the mapping M2
extracts data from the table degree, containing information on the student’s master
degree, such as the year of the degree, the title of the thesis, and the code of the
advisor. The tuples retrieved by the query in the body of M2, involving only degree
titles earned after 2000, are used to build instances for the object property advisor:
the instances are constructed by means of the function symbols pr and st. Finally,
the mapping assertion M3 contributes to the construction of the domain of advisor,
taking from the source table exam only codes of students that have passed the exam
of courses that have never been assigned to some professor before 1990. Notice that
M1 and M3 are sound mapping assertions, whereas M2 is an exact mapping assertion.
ut

The semantics of a data integration system I = 〈G ,S ,M 〉 is defined with re-
spect to a database instance D for the source schema S , and is given in terms of
first-order interpretations of the global schema G : an interpretation I = (∆ I , ·I) is a
model for the data integration system I , if it satisfies all the assertions in G , i.e., it is
a model of G , and it satisfies the mapping assertions in M with respect to D. As for
the notion of satisfying global assertions, we adopt the standard OWL semantics7,
whereas to give the precise definition of mapping satisfaction, we need to introduce
some preliminary notions.

Let γ be a FOL formula with free variables x = (x1, . . . ,xn), and let s = (s1, . . . ,sn)
be a tuple of values. A ground instance γ[x/s] of γ is obtained from γ by substituting
every occurrence of xi with si, for i ∈ {1, . . . ,n}.

Now we are ready to formally define the semantic interpretation of mapping
assertions, which reflects the different semantic assumptions that one wants to adopt

7 http://www.w3.org/TR/owl2-semantics/
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DEGREE
STUD ID YEAR PROF ID TITLE
1001 2003 P12 Handling Incomplete Information in Data Integration

EXAM
STUD ID COURSE CODE DATE RATING
1002 B15 1999-10-10 27

Fig. 14.4 Source database of Example 14.2.

and that influence the meaning of mapping satisfaction. Specifically: (i) a sound
mapping assertion corresponds to a first-order logic implication from the sources to
the global schema (intuitively, the body of the assertion logically implies its head);
(ii) a complete mapping assertion corresponds to a first-order logic implication from
the global schema to the sources (intuitively, the head of the assertion logically
implies its body); finally (iii) an exact mapping assertion is one that is both sound
and complete, i.e., logical implication is in both directions.

Formally, we say that an interpretation I = (∆ I , ·I) satisfies the mapping assertion

Φ(v) ;t Ψ(w)

with respect to D, if for every ground instance Φ [v/s] ;t Ψ [v/s] of the mapping we
have that

• Φ [v/s]D = true implies Ψ [v/s]I = true, if the mapping is sound, i.e., t = s,
• Ψ [v/s]I = true implies Φ [v/s]D = true, if the mapping is complete, i.e., t = c,
• Φ [v/s]D = true if and only if Ψ [v/s]I = true, if the mapping is exact, i.e., t = e,

where Ψ [v/s]I (resp., Φ [v/s]D), denotes the evaluation of a (ground) FOL formula
over the interpretation I (resp., database D) [2].

In our framework, we allow mapping assertions to be either sound or exact, which
are the two semantic assumptions most commonly adopted and more thoroughly
studied in data integration.

Finally, queries posed by users over the global schema are FOL queries (specified
in the SPARQL syntax). Given a FOL query q, with free variables x, expressed over
a data integration system J , the set of certain answers to q over I with respect to
a source database D is the set of tuples c of constants from D such that q[x/c]I = true
for every model I of I , i.e., c is in the answer to q in every model I of I .

Example 14.2. To see the different semantic behavior of sound and exact mappings,
we refer again to the data integration system presented in Example 14.1, and con-
sider the sample source database D given in Figure 14.4 (notice that we are assuming
that all non-mentioned source tables are empty).

It is easy to see that no interpretation of the global schema satisfies the mapping.
Intuitively, this is caused by the fact that mapping assertion M3 forces st(1002) to
be someone for which an advisor exists, but this contradicts the exact assumption on
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the mapping assertion M2, which then implies that 1002 must be a STUD ID of any
tuple in the extension of the relational table degree, but this tuple does not exist in the
source database D. Since there is no interpretation satisfying the mapping, there is
no model for the data integration system, thus the system is considered inconsistent.
Conversely, if we assume that M2 is a sound mapping, we have that the system is no
longer inconsistent, since M2 is no longer contradicted by the fact that st(1002) has
an advisor.

Let us now consider the following query over the system (in which M2 is assumed
to be sound).

SELECT ?S {
?S rdf:type Student

}
Intuitively, the query is asking for all the students. Now, since everyone that has an
advisor is a student (according to the assertion ObjectPropertyDomain(advisor Stu-
dent)), we can easily conclude (according to the mapping) that the set of certain
answers to the query with respect to the source database D is {st(1001),st(1002)}.
ut

14.3 Computational characterization of query answering

The framework we have presented in the above section explains how semantic web
languages like OWL or SPARQL can be used for data integration. The resulting set-
ting turns out to be really expressive, since it allows for very expressive mappings
(GLAV) that can be interpreted under different semantic assumptions (sound and
exact), an expressive global schema (OWL), and expressive query languages, both
over the global schema and over the sources. This expressiveness is useful for mod-
elling purposes: however, it makes reasoning in such a framework problematic from
a computational point of view.

In this section, we study computational issues connected to query answering,
with the aim of showing which are the sources of complexity in the given frame-
work that make this task difficult to deal with (or even impossible, with a sound and
complete procedure). What we want to highlight here is that the use in ontology-
based data integration systems of standard or common languages and assumptions
adopted in Semantic Web, Knowledge Representation, and Database applications,
requires careful attention. Indeed, reasoning over ontologies and data integration
systems means reasoning over incomplete information, which is in general a hard
task. As we will see in the following, in order to keep the complexity of query
answering low, several limitations need to be imposed over the framework given
in Section 14.2. Ideally, the complexity we aim at is the one required for evalua-
tion of SQL queries over relational databases. This complexity, indeed, would allow
us to rely over relational database technology that is nowadays the only available
technology for dealing with the large amounts of data (e.g., of the order of mil-
lions of instances) typical of data integration applications. In other words, we aim at
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rightsizing the framework in such a way that query answering is reducible to plain
evaluation of an SQL query posed over a relational DBMS or data federation tool
which is in charge of managing the data sources. Formally, such a property is called
FOL-reducibility of query answering (since FOL queries can be straightforwardly
expressed in SQL) [19]. In terms of computational complexity, this means that the
whole query answering process is in AC0 in data complexity, i.e., the complexity
measured only in the size of the data [2]8.

We proceed as follows:

1. We first show that query answering in the general framework is undecidable,
and that the cause of undecidability resides in the use of FOL as user query
language and mapping language. We then renounce to having FOL queries over
the global schema, both as users’ queries and as mapping queries, and adopt
Union of Conjunctive Queries (UCQs), i.e., FOL queries expressible as a union
of select-project-join SQL queries;

2. We then show that, even if the global schema is a flat schema (i.e., a set of predi-
cates, without any terminological axiom over them), query answering of UCQs is
intractable. There are two independent sources of complexity for this intractabil-
ity: the presence of exact mappings, and the use of UCQs over the global schema
in the head of GLAV mappings;

3. We finally show that, even if we do not allow for exact mappings and UCQs in the
head of mapping assertions, when the global schema is specified in OWL, query
answering is intractable as well. Therefore, OWL as global schema language
turns out to be a third source of complexity for intractability.

Undecidability of query answering mentioned at the first point is a straightfor-
ward consequence of the undecidability of the validity problem in FOL, i.e., check-
ing wether a FOL sentence evaluates to true in every interpretation. Indeed, a reduc-
tion can be constructed from such a problem to a query answering problem in data
integration, exploiting the fact that the user query language is FOL. Furthermore,
even if the user may only ask atomic queries (i.e., we disallow FOL as user query
language), it is still possible to reduce FOL validity to query answering in data in-
tegration by exploiting the fact that the query in the head of mapping assertions is a
FOL query. Notice that this holds even if the global schema is simply a set of con-
cept and property predicates, and mappings are sound LAV mappings. Therefore, to
have decidable query answering, queries over the global schema (both user queries
and head mapping queries) cannot be expressed in FOL.

We therefore decide to limit the expressive power of the query language in order
to have decidable query answering. At the same time, however, we need flexible
mechanisms for extracting data from an integration system, such as those ensured
by database query languages. Traditional DL inference tasks, like instance checking
and instance retrieval [42, 81], are indeed not suited for this purpose, since they can-
not refer to the same object via multiple navigation paths in the ontology, i.e., they

8 The complexity class AC0 is essentially the one that corresponds to the data complexity of eval-
uating a first-order (i.e., an SQL) query over a relational database.
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allow only for a limited form of join, namely chaining. UCQs provide a good trade-
off between expressive power and nice computational properties. They are also the
most expressive fragment of FOL for which query answering over expressive DLs
has been shown to be decidable [8, 23].

Even though it is open whether answering UCQs over ontologies specified in
OWL 2 DL (or in its DL counterpart SROIQ(D)) is decidable, we will see in the
following that such a choice causes intractability of query answering already for
ontologies expressed in fragments of OWL 2 DL, and therefore some further right-
sizing of the framework is needed to achieve our ultimate goal of having query
answering in AC0.

Before delving into this aspect, however, we first notice that having UCQs as
the language for expressing the query in the head of mapping assertions has a bad
computational impact, even when the global schema is a plain theory, i.e., without
axioms. Indeed, as shown in [1], answering UCQs is coNP-hard in data complexity
in the presence of (either exact or sound) LAV mappings under a global schema
that is a flat relational schema. For the case of sound mappings only, the intractabil-
ity holds if queries over the global schema in the mapping assertions are UCQs,
while for the case of exact mappings, the intractability holds even if such queries are
CQs, i.e., disjunction is not allowed. This obviously implies that query answering in
our framework, independently from the language adopted for the global schema, is
coNP-hard in the size of the data. As further shown in [1], the combination of sound
mappings and mapping queries over the global schema that are Conjunctive Queries
(CQs) leads to membership of query answering in PTIME. For modeling reasons,
we do not want to renounce to the expressive power of CQs over the global schema
in mapping assertions, thus the above results force us to discard exact mappings and
to rely on sound mappings only.

Finally, we turn back to UCQs as user query language over the OWL 2 DL global
schema. Recent studies on DLs have in fact shown that query answering of UCQs is
coNP-complete in data complexity for fragments of OWL 2 DL that correspond to
expressive DLs of the SH family, which constitutes the logical underpinning of the
OWL languages [78, 52]. In fact, in [18] it was already shown that query answer-
ing of CQs is coNP-hard already for very simple ontology languages (fragments of
OWL 2 DL) allowing for some basic ontology constructs, such as covering (which
allows to say, for instance, that the set of persons is the union of men and women).
Therefore, there is no hope to have tractable query answering in a framework in
which the global schema is specified in OWL 2 DL. To overcome this problem,
in the next section we present a suitable fragment of OWL 2 DL characterized by
a good trade-off between expressive power and complexity of reasoning, and for
which query answering turns out to be tractable (in fact in AC0) in data complexity.
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14.4 Data integration using OWL 2 QL

In this section, we analyze data integration under global schemas expressed in
OWL 2 QL, a tractable profile9 of OWL 2, which is essentially based on the de-
scription logic DL-LiteR [19]. We will show that expressing the global schema in
OWL 2 QL allows for efficient query answering. More precisely query answering is
first-order rewritable, i.e., it can be reduced to evaluation of a first-order query (di-
rectly expressible in SQL) over a database instance, provided that the user’s query
is a UCQs, each mapping assertion is sound, and has a FOL query over the source
schema in its head and a CQ over the global schema in its body (cf. Section 14.2
and Section 14.3).

To ease exposition, we will focus here on DL-LiteR, the DL on which OWL 2 QL
is essentially based, but we remark that all the results and the techniques for DL-
LiteR presented here also hold when the global schema is expressed instead in
OWL 2 QL. For a more detailed description of OWL 2 QL, we refer the reader
to the W3C technical report on the OWL 2 profiles.

To introduce DL-LiteR, we use the following notation:

• A denotes an atomic concept, B a basic concept, and C a general concept;
• P denotes an atomic role, Q a basic role, and R a general role.

Then, DL-LiteR expressions are defined as follows10.

• Basic and general concept expressions:

B ::= A | ∃Q C ::= > | B | ¬B | ∃Q.C

where the concept > is the universal concept, and corresponds to the OWL class
owl:Thing, which denotes the set of all individuals; ¬B denotes the negation
of a basic concept B; the concept ∃Q is the unqualified existential restriction,
which denotes the domain of a role Q, i.e., the set of objects that Q relates to some
object, and corresponds to the OWL expression ObjectSomeValuesFrom(Q,
owl:Thing); the concept ∃Q.C, also called qualified existential restriction, de-
notes the qualified domain of Q w.r.t. C, i.e., the set of objects that Q relates to
some instance of C, and corresponds to the OWL expression ObjectSomeVal-
uesFrom(Q, C).

• Basic and general role expressions:

Q ::= P | P− R ::= Q | ¬Q

where P− denotes the inverse of an atomic role, and ¬Q denotes the negation of
a basic role.

9 http://www.w3.org/TR/owl2-profiles/
10 DL-LiteR can be easily extended with attribute expressions, i.e., assertions involving data prop-
erties (cf. [79]). For the sake of simplicity we do not introduce such expressions here (they are
however available in OWL 2 QL).
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A DL-LiteR TBox allows one to represent intensional knowledge by means of
inclusion assertions, i.e., expressions of the following forms:

B v C concept inclusion assertion
Q v R role inclusion assertion

A concept inclusion assertion expresses that a (basic) concept B is subsumed by a
(general) concept C. Analogously for role inclusion assertions.

For the semantics of DL-LiteR knowledge bases (constituted by a TBox and an
ABox, which specifies the instances of concept and roles) we refer the reader to [19].
As shown in [19], reasoning over a DL-LiteR knowledge base is tractable. More
precisely, TBox reasoning is in NLOGSPACE and answering unions of conjunctive
queries is FOL-reducible, and hence in AC0 w.r.t. data complexity. Thus, DL-LiteR
appears particularly suited for integration of large amounts of data.

We now analyze data integration systems of the form I = 〈G ,S ,M 〉 in which
G is a DL-LiteR TBox, S is a relational schema, and M is a set of sund GLAV
mappings from S to G , of the form described above. More precisely, given such a
system I , a database instance D for the source schema S , and a UCQ q over G ,
we want to compute the certain answers to q over I w.r.t. D. We assume that I is
satisfiable with respect to D, i.e., there exists a model for I and D.

The query answering algorithm is constituted by the following four steps, which
we describe in the following:

1. Schema-Rewriting
2. LAV-Rewriting
3. GAV-Rewriting
4. Source-Evaluation

Schema-Rewriting

Given a UCQ Q over a data integration system I = 〈G ,S ,M 〉, and a source
database D for I , the Schema-Rewriting step computes a new UCQ Q′ over I ,
where the assertions of G are compiled in. In computing the rewriting, only inclu-
sion assertions of the form B1 v B2, and Q1 v Q2 are taken into account, where B1
and B2 are basic concepts, and Q1 and Q2 are basic roles. Intuitively, the query Q is
rewritten according to the knowledge specified in G that is relevant for answering
Q, in such a way that the rewritten query Q′ is such that the certain answers to Q
over I and D are equal to the certain answers to Q′ over I ′ = 〈 /0,S ,M 〉 and D,
i.e., the Schema-Rewriting step allows to get rid of G .

We refer the reader to [19] for a formal description of the Schema-Rewriting
algorithm and for a proof of its soundness and completeness. We only notice here
that the Schema-Rewriting step does not depend on the source database D, runs
in polynomial time in the size of G , and returns a query Q′ whose size is at most
exponential in the size of Q.
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LAV-Rewriting

Given the UCQ Q′ over I computed by the Schema-Rewriting step, the LAV-
Rewriting step considers the “LAV-part” of the mapping M , denoted by LAV(M )
in the following.

First, we define the “LAV part” and the “GAV part” of a GLAV mapping M as
follows. Let M = {M1, . . . ,Mk} be a set of k mapping assertions11. Suppose the
GLAV mapping assertion Mi is of the form

SQLs(x1, . . . ,xn) ;s CQg(x1, . . . ,xn)

where SQLs(x1, . . . ,xn) is an SQL query over S and CQg(x1, . . . ,xn) is a conjunc-
tive query over G , both with distinguished variables x1, . . . ,xn. Then, we define M′i
as the LAV mapping assertion

auxi(x1, . . . ,xn) ;s CQg(x1, . . . ,xn)

where auxi is a new auxiliary relation symbol of arity n, and define M′′i as the GAV
mapping assertion

SQLs(x1, . . . ,xn) ;s auxi(x1, . . . ,xn)

Then, we denote by LAV(M ) the set of LAV mappings {M′1, . . . ,M′k}, and we denote
by GAV(M ) the set of GAV mappings {M′′1 , . . . ,M′′k }. Notice that each M ′ is a set
of LAV mappings from the set of relations aux1, . . . ,auxk to G . In other words, such
auxiliary relations play the role of source predicates in M ′, whereas they have to be
considered global predicates in M′′i .

Now, the LAV-Rewriting step reformulates the UCQ Q′ to a UCQ Q′′ over the
set AUX = {aux1, . . . ,auxk} of auxiliary relations in such a way that, for every
database instance Daux for the schema AUX, the set of certain answers to Q′ over
〈 /0,AUX,LAV(M )〉 w.r.t. Daux is equal to the evaluation of the query Q′′ over Daux.
This is realized by applying any of the well-known methods that are able to rewrite a
union of conjunctive queries with respect to a set of LAV mappings (e.g., the inverse
rules algorithm [1] or the Minicon algorithm [80]). Moreover, the LAV-Rewriting
procedure does not depend on D and runs in polynomial time in the size of LAV(M )
(i.e., in the size of M ).

GAV-Rewriting

Given the UCQ Q′′ over the auxiliary schema AUX computed by the previous step,
and the set of GAV mappings GAV(M ), the GAV-Rewriting step computes, by us-
ing logic programming technology, an SQL query Q′′′ over the source schema S . It
can be shown (see [79], where this step is called the unfolding step) that Q′′′ is such

11 To ease the exposition we do not consider in the following the presence in the mapping of logical
terms that construct object identifiers. The treatment can be easily generalized to this case.
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that, for every database instance D for the schema S , the set of certain answers to
Q′′ over 〈 /0,S ,GAV(M )〉w.r.t. D is equal to the evaluation of the query Q′′′ over D.
Moreover, the GAV-Rewriting step does not depend on D, runs in polynomial time
in the size of GAV(M ) (i.e., in the size of M ), and returns a query whose size is
polynomial in the size of Q′′.

Source-Evaluation

The final step consists in simply evaluating the SQL query Q′′′, produced by the
GAV-Rewriting step, over D. Notice that, to actually perform such an evalutation, a
data federation tool managing the data sources is needed, because the query Q′′′ is
distributed over several autonomous data sources.

It can be shown that the query answering procedure described above correctly
computes the certain answers to UCQs, i.e., for every database instance D for the
schema S , the set of certain answers to Q over 〈G ,S ,M 〉 w.r.t. D is equal to
the evaluation of the query Q′′′ over D. Based on the computational properties of
such an algorithm, we can then characterize the complexity of our query answering
method.

Theorem 14.1. Let I = 〈G ,S ,M 〉 be a data integration system where G is a
DL-LiteR TBox and M is a set of GLAV mappings, and let D be a source database
for I . Answering a UCQ over I with respect to D can be reduced to the evaluation
of an SQL query over D, i.e., it is FOL-reducible, and it is in AC0 in the size of D.

Finally, we remark that, as we said at the beginning of this section, we have as-
sumed that the data integration system I is satisfiable with respect to the database
D. Notably, it can be shown that all the machinery we have devised for query answer-
ing can also be used for checking satisfiability of I with respect to D. Therefore,
checking satisfiability can also be reduced to sending appropriate SQL queries to
the source database [79].

Example 14.3. Consider again Example 14.1. According to what has been said in
Section 14.3 and in this section, we have to renounce to some of the modeling
choices initially adopted. To this aim, we substitute M2 with the mapping assertion

M′2: SELECT STUD ID,PROF ID
FROM DEGREE
WHERE YEAR > 2000

;s SELECT ?st(STUD ID) ?pr(PROF ID){
?st(STUD ID) advisor ?pr(PROF ID)

}

which is analogous to M2 but is sound rather than exact. Furthermore, we adapt the
global schema described in 14.1 in such a way to obtain its OWL 2 QL approxi-
mation. In particular, we eliminate the assertion FunctionalObjectProperty(headOf ),
since functionality is not allowed in OWL 2 QL, and approximate Equivalent-
Classes(Person ObjectUnionOf(Student Professor)) with the two assertions SubClas-
sOf(Student Person) and SubClassOf(Professor Person), since the use of the union
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Dean v Professor Student v ¬Professor
University v Organization College v Organization
∃advisor v Student ∃advisor− v Professor
∃headOf v Dean ∃headOf− v College
∃takesCourse v Student ∃takesCourse− v Course
Student v Person Professor v Person
Student v ∃takesCourse.Course
Professor v ∃worksFor.University
Professor v ∃teacherOf.Course
Dean v ∃headOf.College
Dean v ¬∃teacherOf.Course

Fig. 14.5 Global schema of Example 14.3 in the DL-LiteR syntax.

in the right-hand side of inclusion assertions is not allowed in OWL 2 QL. In Fig-
ure 14.5 we give the refined global schema expressed in the DL-LiteR syntax.

Then, consider again the query asking for all students

SELECT ?S {
?S rdf:type Student

}

and process it according to the query answering algorithm described above. After
the schema-rewriting step we obtain the following query

SELECT ?S {
?S rdf:type Student

}
UNION

SELECT ?S {
?S advisor ?X

}
UNION

SELECT ?S {
?S takesCourse ?X

}

To get the intuition behind the schema-rewriting step, consider that, in this ex-
ample, the global schema specifies that everyone that has an advisor is a stu-
dent (∃advisor v Student), and that everyone that takes a course is a student
(∃takesCoursev Student). After the schema rewriting step, this knowledge is com-
piled in the query, which now, besides asking for (explicit) students, asks also for
those that have an advisor and those that take a course. This rewritten query can be
now evaluated over the system in which the global schema is considered empty.

Let us now consider the mapping. We notice that in this example the “GAV part”
of the mapping is constituted by the two GAV assertions M1 and M2 and the “LAV
part” is constituted by the LAV assertion M3

12. Therefore, there is no need to in-
troduce auxiliary predicates. Then, in the LAV-rewriting step we rewrite the query

12 M3 is a LAV assertion since not all the variables occurring in the head are mapped to distin-
guished variables in the body, i.e., M3 has existentially quantified variables in the head.
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according to M3, whereas in the GAV-rewriting step we rewrite it on the basis of M1
and M2. We thus obtain the following query, which we express in SQL13.

SELECT st(ID) FROM STUDENTS
WHERE DOB <= ’1990/01/01’
UNION

SELECT st(STUD ID) FROM DEGREE
WHERE YEAR > 2000
UNION

SELECT st(STUD ID) FROM EXAM
WHERE COURSE CODE NOT IN
(SELECT COURSE CODE FROM ASSIGNMENT
WHERE YEAR < 1990)

It is easy to see that the evaluation of such a query over the source database D
given in Figure 14.4 returns the set of certain answers {st(1001),st(1002)}. ut

14.5 Related Work

Research in information integration has been very active in the last fifteen years,
and has produced a number of results and technical contributions, from both the
theoretical and practical points of view [85, 62, 70, 68].

The setting that has been more deeply investigated is the traditional centralized
(as known as mediator-based) data integration setting, where the integration is per-
formed through a centralized global schema connected to sources via semantic map-
pings. As already said, this is also the setting considered in the present chapter.

Among the various problems related to data integration, the problem of answer-
ing queries posed over the global schema is the one that has been addressed most
intensively. The first proposals, developed in the middle 90s, faced such a problem
in a procedural way, thus not providing the users with a real declarative support to
data integration. Systems like TSIMMIS (The Stanford-IBM Manager of Multiple
Information Sources) [33], or Garlic [31] are essentially hierarchies of wrappers (cf.
Section 14.2) and mediators, which are in charge of triggering the right wrappers
and putting together the data that they return into the final answers to users’ queries
(or feeding in turn other mediators). Both TSIMMIS and Garlic can be considered
primitive forms of systems adopting GAV mapping, but, since each mediator works
in an independent manner, it turns out that no real integration is ever achieved.

A different (declarative) approach to the problem of query answering in data in-
tegration has been instead followed in the setting in which LAV mapping is consid-
ered. In such setting, query answering calls for facing the issue of query processing
using views [85, 73, 70, 27], i.e., the issue of how to use the information about
the global schema, the mappings, and the data stored at the sources, to answer the

13 In the SELECT clause, with some abuse of notation, we make use of the logical terms that
construct object identifiers. These logical terms can be easily obtained resorting to SQL functions
for string manipulation, as suggested in [79].
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users’ queries posed over the global schema. Two notable examples of systems fol-
lowing such approach in a relational context are Information Manifold (IM) [74, 75],
and INFOMASTER [51, 1, 43]. For query answering, both systems propose query
rewriting procedures, called the bucket algorithm and the inverse rules algorithm,
respectively. Such algorithms have been originally designed for the case in which
both the users’ and the mapping queries are CQs, but some extensions have been
proposed that consider also more expressive settings (see, e.g., [43] and [59]). An
interesting optimization for the bucket algorithm, called the Minicon algorithm, can
be found in [80], where it is shown that Minicon significantly speeds up query pro-
cessing with respect to previously proposed procedures. It is worth noticing that all
the above mentioned algorithms in principle can be used in the LAV-Rewriting step
of the query answering procedure presented in Section 14.4.

Many other studies have considered the query answering problem in data integra-
tion systems in various settings. For example, the relational setting (under various
assumptions on the languages used for the mapping and the queries) has been an-
alyzed in [55, 72], whereas the impact on query answering of specifying different
forms of integrity constraints on a relational global schema has been considered
in [43, 59] for LAV mappings, and in [15, 16] for GAV mappings. Also, query an-
swering in the presence of semistructured data sources and global schemas has been
considered in [28, 30, 29], and is still the subject of intensive investigations.

Despite the intensive research of the last years described so far, only few efforts
have been dedicated to the study of data integration through conceptual models,
and in particular through ontologies. This problem has been considered for exam-
ple in [22], where the authors propose a formal framework for Ontology Integration
Systems (OISs). Their view of a formal framework deals with a situation where
there are various local ontologies, developed independently from each other, as-
sisting the task to build an integrated, global ontology as a means for extracting
information from the local ones. Ontologies in their framework are expressed as
DL knowledge bases, and mappings between ontologies are expressed through suit-
able mechanisms based on queries, which actually correspond to the GAV and LAV
approaches adopted in data integration.

We point out that most of the work carried out so far on ontology-based infor-
mation integration is on which language or which method to use to build a global
ontology on the basis of the local ones [13, 40], whereas the problem of querying an
integrated ontology, i.e., a global schema of a mediator-based data integration sys-
tem expressed in terms of an ontology, still needs further investigation. Among the
first studies on this problem, we mention [14, 24, 25]. In particular, in [14], global
schemas specified as UML class diagrams, translated into simple DL theories, are
considered, and reasoning (i.e., query processing) over them is studied (in fact, the
mediator-based integration framework is only envisaged in the paper, but the pro-
posed techniques are easily extendible to GAV data integration systems). In [24],
the use in data integration systems of logic theories expressed in DLR, an expres-
sive DL allowing for the use of n-ary relationships, is investigated, but no complete
query answering processing algorithms are provided. In [25], the above theoretical
studies are applied to a data warehouse context.
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When the global schema of a data integration system is specified in terms of a
DL ontology, it is natural to look at the research carried out in the DL field and
at the tools developed for specifying and reasoning over DL knowledge bases, and
investigate if and how they can be applied in a data integration setting.

In this respect, it is worth noticing that current reasoners for expressive DLs per-
form indeed well in practice, and show that even procedures that are exponential
in the size of the knowledge base might be acceptable under suitable conditions.
This has been achieved during the years, thanks to the intensive research aimed at
understanding the frontier between tractability (i.e., solvable by a polynomial time
algorithm) and intractability of reasoning over concept expressions. The maximal
combinations of constructs (among those most commonly used) that still guaran-
tee polynomial time inference procedures were identified, which allowed to exactly
characterize the tractability frontier [8, 41]. It should be noted that the techniques
and technical tools that were used to prove such results, namely tableaux-based al-
gorithms, are at the basis of the modern state of the art DL reasoning systems [77],
such as Fact [64], Racer [60], and Pellet [84, 83]. However, such reasoners have not
specifically been tailored to deal with large amounts of data, which is a critical issue
in all those settings in which ontologies are used as a high-level, conceptual view
over data repositories, as in data integration.

In data integration, data are typically very large and dominate the intensional
level of the ontologies. Hence, while one could still accept reasoning that is ex-
ponential on the intensional part, it is mandatory that reasoning is polynomial in
the data (i.e., in data complexity). Traditionally, research carried out in DLs has
not paid much attention to the data complexity of reasoning, and only recently ef-
ficient management of large amounts of data [66, 34] has become a primary con-
cern in ontology reasoning systems, and data complexity has been studied explic-
itly [67, 18, 78, 69, 6, 7]. Unfortunately, research on the trade-off between expres-
sive power and computational complexity of reasoning has shown that many DLs
with efficient reasoning algorithms lack the modeling power required for capturing
conceptual models and basic ontology languages. An interesting line of research,
followed, e.g., in [19, 79, 18], is therefore the one that is aimed at defining ontology
languages which allow for both efficient reasoning, and in particular answering of
complex queries as CQs, and good modeling power, that means enabling the specifi-
cation of basic ontology constructs. The OWL2 QL profile described in Section 14.4
is indeed one of such languages.

It is worth noticing that all the above mentioned approaches to data integration
do not consider the problem of data that may result inconsistent with respect to
integrity constraints specified over the global schema. This is in fact a quite com-
mon situation, since data stored at autonomous sources in general are not required
to be compliant with global integrity constraints. This problem is even more evi-
dent when the global schema is given in terms of an ontology, which provides the
conceptualization of the domain of interest, constructed separately, and in principle
independently, from the sources to be integrated.

In the cases in which data may contradict global integrity constraints, the main
problem that arises is how to obtain significant answers from inconsistent systems.
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Traditionally, the approach adopted to remedy this problem has been through data
cleaning [11]. This approach is procedural in nature, and is based on domain-specific
transformation mechanisms applied to the data retrieved from the sources. Only
very recently, the first academic prototype implementations have appeared, which
provide declarative approaches to the treatment of inconsistency of data, in the line
of the studies on consistent query answering [4]. In such approaches, the common
basic idea is that inconsistency might be eliminated by modifying the database rep-
resenting the extension of the system (e.g., the models of the data integration sys-
tem), and reasoning on the “repaired” database. Since several repairs are possible,
the “consistent answers” are the answer to users’ query returned by the evaluation
of the query in every repair. In many papers, it has been proposed to formalize repair
semantics by using logic programs [56, 16, 12]. The common idea is to encode the
constraints of the global schema into a logic program, using unstratified negation
or disjunction, such that the stable models of this program [50] yield the repairs of
the global database, and the user query can be compiled in this program in such a
way that its evaluation returns the consistent answers. This is for example the ap-
proach followed by the INFOMIX system [71]. INFOMIX processes users’ queries
(expressed in Datalog) posed over a relational global schema with key, inclusion,
and exclusion dependencies, in a GAV setting, by means of a query rewriting tech-
nique that produces a Datalog program enriched with negation, under stable model
semantics [16, 58].

Other interesting proposals on inconsistency management are the Hippo sys-
tem [36, 35], and the ConQuer system [47, 49], which are focused on identifying
cases in which computing consistent answers is tractable. However, such propos-
als have been essentially developed in the context of a single database system, and
therefore do not deal with all aspects of a complex data integration environment.

A different approach in mediator-based information integration looks at data
management under the perspective of exchanging data between the sources and
the global schema, called the target schema in data exchange terminology. Data
exchange has similar logical foundations to those of virtual mediator-based data in-
tegration discussed in the present paper. The basic notions of data exchange and its
first formalization were given in [44]. In particular, a solution to the data exchange
problem for a given source instance is a finite target instance that, together with the
source instance, satisfies both target dependencies, i.e., constraints specified over
the target schema, and source-to-target dependencies, i.e., mappings between the
source and the target schema. A universal solution is a special solution that is homo-
morphic to every possible solution. Universal solutions are particularly important in
data exchange, since, as shown in [44], the certain answers to a union of conjunctive
queries q can be obtained by evaluating q over any universal solution.

Among all universal solutions, the core assumes a crucial importance, for be-
ing it the “smallest” one, and therefore in principle the best universal solution to
compute [45]. The problem of computing the core is studied in [45, 53, 54], under
different forms of target dependencies. In particular, in [54] a polynomial-time pro-
cedure for computing the core under classical data exchange constraints is provided.
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Other works on data exchange studied, respectively, query answering (by first-
order rewriting) for first-order logic (FOL) queries [3], schema mapping compo-
sitions [46], exchange of XML documents when both the source and the target
schemas are XML DTDs [5], and relationship between data exchange and incom-
plete information [76].

Even if all the above studies are of great interest for ontology-based data inte-
gration, the role of ontologies in data exchange has not been investigated so far.
Therefore, materialized data integration in the Semantic Web is a subject that still
needs to be taken into account.

More recently, the issue of data integration has been considered in the more dy-
namic context of Peer-to-Peer (P2P) data management [61]. In a nutshell, a P2P
system is characterized by an architecture constituted by various autonomous nodes
that hold data and that are linked to other nodes by means of mappings.

Opposed to the first, “semantic-less” approaches, focused essentially on file shar-
ing, data-oriented approaches to P2P have been proposed recently [61, 9, 57]. Dif-
ferently from the traditional mediator-based setting, integration in data-oriented
P2P systems is not based on a global schema. Instead, each peer represents an au-
tonomous information system, and information integration is achieved by establish-
ing P2P mappings, i.e., mappings among the various peers. Queries are posed to one
peer, and the role of query processing is to exploit both the data that are internal to
the peer, and the mappings between the peer and the other peers in the system.

While techniques for query answering and data exchange have been studied and
developed extensively in the mediator-based setting, there is still a fundamental
lack of understanding behind the basic issues of data integration in P2P systems.
In particular, it needs to be investigated whether the usual approach of resorting to
a first-order logic interpretation of P2P mappings (followed, e.g., by [32, 61, 9]),
is still appropriate in the presence of possibly cyclic mappings, or whether alterna-
tive semantic characterizations should be adopted [26, 20]. Also, data exchange in
a P2P setting still remains largely unexplored. Two exceptions are [48], where the
problem is studied in a setting in which only two peers interact with different roles
and capabilities, and [37], where a preliminary investigation of data exchange in a
full-fledged P2P setting is proposed.

The case in which peers export an ontology (rather than a simple relational
schema), has been studied in [82, 17]. In these papers it is shown that query an-
swering in this setting is a very complex task, and to have tractable cases, very
severe limitations have to be imposed on the expressivity of the ontology language
and the form of P2P mappings, even in very simple settings, e.g., when the whole
system is constituted by two peers, as in [17].

14.6 Conclusions

In this paper we have shown the impact on the computational complexity of query
answering of adopting the OWL language (more precisely OWL 2 DL) for speci-
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fying the global schema of a data integration system. To precisely characterize this
impact, we have chosen very expressive formalisms for instantiating the various
components of a data integration system (GLAV sound and exact mappings, FOL
queries over the global schema, both for the users’ queries and head queries in map-
ping assertions). Even though interesting from a modeling point of view, we have
shown that such choices soon lead to undecidability of query answering or, under
some limitations, to intractability of query answering. We have identified the various
sources of complexity, and have eliminated them by rightsizing the overall frame-
work, in such a way that query answering turns out to be in principle as efficient as
standard query processing in relational DBMSs. At the core of the new framework
we have OWL 2 QL, a tractable fragment of OWL 2, which we use for specifying
the global schema of data integration systems. OWL 2 QL is essentially a variant of
DL-LiteR and presents the same nice computational behavior typical of all DLs of
the DL-Lite family.

The approach illustrated in this paper is under development in a prototype sys-
tem called MASTRO-I, a tool for ontology-based data integration supporting global
schemas specified in the DL-Lite family (and therefore in OWL 2 QL), which makes
use of the QUONTO14 reasoner for DL-Lite. Such a tool is in fact able to deal with
ontologies even more expressive than OWL 2 QL, allowing for the specification,
in a controlled way, of functionality assertions and complex forms of identification
constraints (see [21]), and is also able to answer full SQL queries, under a suitable
semantic approximation.

Other aspects, which are important for the problem of semantic data integration,
have not been addressed yet in the development of the system, but are under in-
vestigation. Among them we mention the problem of handling inconsistencies in
the data, possibly using a declarative, rather than an ad-hoc procedural approach,
in the line of the work on consistent query answering (cf. Section 14.5). A second
interesting problem for further work is looking at “write-also” data integration, i.e.,
allowing support also for updates expressed on the global schema (e.g., in the line
of the work described in [38, 39]). How to express an update formulated over the
global ontology in terms of series of insert and delete operations executed over the
underlying data sources is a challenging issue in this context.
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