arXiv:1312.6624v3 [cs.PL] 9 Jul 2014

Shape and Content *

Incorporating Domain Knowledge into Shape Analysis

D. Calvanese!, T. Kotek?, M. Simkus?, H. Veith?, and F. Zuleger?

! Free University of Bozen-Bolzano
2 Vienna University of Technology

Abstract. The verification community has studied dynamic data struc-
tures primarily in a bottom-up way by analyzing pointers and the shapes
induced by them. Recent work in fields such as separation logic has made
significant progress in extracting shapes from program source code. Many
real world programs however manipulate complex data whose structure
and content is most naturally described by formalisms from object ori-
ented programming and databases. In this paper, we look at the verifi-
cation of programs with dynamic data structures from the perspective
of content representation. Our approach is based on description logic,
a widely used knowledge representation paradigm which gives a logical
underpinning for diverse modeling frameworks such as UML and ER.
Technically, we assume that we have separation logic shape invariants
obtained from a shape analysis tool, and requirements on the program
data in terms of description logic. We show that the two-variable frag-
ment of first order logic with counting and trees can be used as a joint
framework to embed suitable fragments of description logic and separa-
tion logic.

1 Introduction

The manipulation and storage of complex information in imperative program-
ming languages is often achieved by dynamic data structures. The verification
of programs with dynamic data structures, however, is notoriously difficult, and
is a highly active area of current research. While much progress has been made
recently in analyzing and verifying the shape of dynamic data structures, most
notably by separation logic (SL) [23,17], the content of dynamic data structures
has not received the same attention.

In contrast, disciplines as databases, modeling and knowledge representation
have developed highly-successful theories for content representation and verifi-
cation. These research communities typically model reality by classes and binary
relationships between these classes. For example, the database community uses

* Kotek, Veith and Zuleger were supported by the Austrian National Research Network

S11403-N23 (RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science
and Technology Fund (WWTF) through grants PROSEED and ICT12-059. Simkus
was supported by the FWF grant P25518 and the WWTF grant ICT12-15

http://arxiv.org/abs/1312.6624v3

entity-relationship (ER) diagrams, and UML diagrams have been studied in re-
quirements engineering. Content representation in the form of UML and ER has
become a central pillar of industrial software engineering. In complex software
projects, the source code is usually accompanied by design documents which
provide extensive documentation and models of data structure content. This
documentation is both an opportunity and a challenge for program verification.
Recent hardware verification papers have demonstrated how design diagrams
can be integrated into an industrial verification workflow [18].

In this paper, we propose the use of Description Logics (DLs) for the formu-
lation of content specifications. DLs are a well established and highly popular
family of logics for representing knowledge in artificial intelligence [3]. In particu-
lar, DLs allow to precisely model and reason about UML and ER diagrams [6,2].
DLs are mature and well understood, they have good algorithmic properties and
have efficient reasoners. DLs are very readable and form a natural base for de-
veloping specification languages. For example, they are the logical backbone of
the Web Ontology Language (OWL) for the Semantic Web [21]. DLs vary in ex-
pressivity and complexity, and are usually selected according to the expressivity
needed to formalize the given target domain.

Unfortunately, the existing content representation technology cannot be ap-
plied directly for the verification of content specifications of pointer-manipulating
programs. This is to due the strict separation between high-level content descrip-
tions such as UML/ER and the way data is actually stored. For example, query
languages such as SQL and Datalog provide a convenient abstraction layer for
formulating data queries while ignoring how the database is stored on the disk.
In contrast, programs with dynamic data structures manipulate their data struc-
tures directly. Moreover, database schemes are usually static while a program
may change the content of its data structures over time.

The main goal of this paper is to develop a verification methodology that
allows to employ DLs for formulating and verifying content specifications of
pointer-manipulating programs. We propose a two-step Hoare-style verification
methodology: First, existing shape-analysis techniques are used to derive shape
invariants. Second, the user strengthens the derived shape invariants with con-
tent annotations; the resulting verification conditions are then checked automat-
ically. Technically, we employ a very expressive DL (henceforth called £), based
on the so called ALCHOZLF, which we specifically tailor to better support rea-
soning about complex pointer structures. For shape analysis we rely on the SL
fragment from [7]. In order to reason automatically about the verification con-
ditions involving DL as well as SL formulae, we identify a powerful decidable
logic C'T? which incorporates both logics [10]. We believe that our main con-
tribution is conceptual, integrating these different formalisms for the first time.
While the current approach is semi-manual, our long term goal is to increase the
automatization of the method.

Overview and Contributions:

In Section 2, we introduce our formalism. In particular, we formally define
memory structures for representing the heap and we study the DL £ as a
formalism for expressing content properties of memory structures.

In Section 2, we further present the building blocks for our verification
methodology: We give an embedding of £ and an embedding of a fragment of
the SL from [7] into CT? (Lemmata 2 and 3). Moreover, we give a complexity-
preserving reduction of satisfiability of CT? over memory structures to finite
satisfiability of CT? (Lemma 1).

In Section 3, we describe a program model for sequential imperative heap-
manipulating programs without procedures. Our main contribution is a Hoare-
style proof system for verifying content properties on top of (already verified)
shape properties stated in SL.

Our main technical result is a precise backward-translation of content prop-
erties along loop-less code (Lemma 5). This backward-translation allows us
to reduce the inductiveness of the Hoare-annotations to satisfiability in CT2.
Theorem 1 states the soundness and completeness of this reduction.

1.1 Running Example: Information System of a Company

Our running example will
be a simple information

l LargeProject '—M Project

*

managedBy
0..1 0..1

Manager
1

0..1]0..1

system for a company orderedBy works- | | contact- headedBy
with the following UML 1 «| 0.1 0.1

diagram:. The UML gives
the relationships between
entities in the informa-

' Client '

[Employee] [Department]
* 1
belongsTo

tion system, but says nothing regarding the implementations of the data struc-
tures that hold the data. We focus mostly on projects, and on the employees
and managers which work on them. Here is an informal description of the pro-
grammers’ intention. The employees and projects are stored in two lists, both
using the next pointer. The heads of the two lists are pHd and eHd respectively.
Here are some properties of our information system. (i)-(iii) extends the UML
somewhat. (iv)-(vi) do not appear in the UML, but can be expressed in DL:

(i) Each employee in the list of employees has a pointer wrkFor to a project
on the list of projects, indicating the project that the employee is working
on (or to null, in case no project is assigned to that employee).

(ii) Each project in the list has a pointer mngBy to the employee list, indicating
the manager of the project (or to null, if the project doesn’t have one).

(iii) Employees have a Boolean field isMngr marking them as managers, and
only they can manage projects.
(iv) The manager of a project works for the project.

(v) At least 10 employees work on each large project.

(vi) The contact person for a large-scale project is a manager.

We will refer to these properties as the system invariants.

The programmer has written a program S (stated below) for verification.
The programmer has the following intuition about her program: The code S
adds a new project proj to the project list, and assigns to it all employees in the
employee list which are not assigned to any project.

The programmer wants to verify that the ¢, : proj:=new;

system invariants are true after the execution proj .next :=pHd;
of S, if they were true in the beginning (1). pHd:=proj;
Note that during the execution of the code, e:=eHd;

¢ : while ~(e= null) do
if (e.wrkFor= null)
then e.wrkFor:= proj;
e:=e.next;
od

they might not be true! Additionally the pro-
grammer wants to verify that after executing
S, the project list has been extended by proj,
the employee list still contains the same em-
ployees and indeed all employees who did not ‘. nd;
work for a project before now work for project proy (2). We will formally prove
the correctness of S following our verification methodology discussed in the in-
troduction. In Section 2.3 we describe how our DL can be used for specifying
the verification goals (1) and (2). In Section 3.4 we state verification conditions
that allow to conclude the correctness of (1) and (2) for S.

2 Logics for Invariant Specification

2.1 Memory Structures

We use ordinary first order structures to represent memory in a precise way.
A structure (or, interpretation) is a tuple M = (M, 7,-), where (i) M is an
infinite set (the universe), (ii) 7 is a set of constants and relation symbols with
an associated non-negative arity, and (iii) - is an interpretation function, which
assigns to each constant ¢ € 7 an element ¢c™ € M, and to each n-ary relation
symbol R € 7 an n-ary relation R over M. Each relation is either unary or
binary (i.e. n € {1,2}). Given A C M, a binary R™, RM and e € AM, we may
use the notation RM(e) if R™ is known to be a function over A™M.

A Memory structure describes a snapshot of the heap and the local variables.
We assume sets Tyay C 7 of constants 7ge1gs € 7 of binary relation symbols. We
will later employ these symbols for variables and fields in programs. A memory
structure is a structure M = (M, 7,-) that satisfies the following conditions:

(1) 7 includes the constants onun, oT, OF.

(2) 7 has the unary relations Addresses, Alloc, PossibleTargets, MemPool,
and Auzx.

(3) Auz™M = {onu“,oT ;o) and |AuzM| = 3.

(4) Addresses™ N AuxM =) and Addresses™ U Auz™ = M.

(5) Alloc™, PossibleTargets™ and MemPool™ form a partition of Addresses™.
(6) M € M\MemPool™ for every constant c of 7.

(7) For all f € Thewas, f™ is a function from Addresses™ to M\ MemPool™.
(8) If e € MemPoolM, then fM(e) € {0, ox'}.

(9) RM C (M\MemPool™)" for every® n-ary R € 7\ ({MemPool} U Tgelgs)-
(10) Alloc™ and PossibleTargets™ are finite. MemPool™ is infinite.

We explain the intuition behind memory structures. Variables in programs
will either have a Boolean value or be pointers. Thus, to represent null and the
Boolean values T and F, we employ the auxiliary relation Auz™ storing 3 ele-
ments corresponding to the 3 values. Addresses™ represents the memory cells.
The relation Alloc™ is the set of allocated cells, PossibleT argets™ contains all
cells which are not allocated, but are pointed to by allocated cells (for technical
reasons it possibly contains some other unallocated cells). MemPool™ contains
the cells which are not allocated, do not have any field values other than null and
F, are not pointed to by any field, do not participate in any other relation and
do not interpret any constant (see (6-9)). The memory cells in MemPool are
the candidates for allocation during the run of a program. Since the allocated
memory should by finite at any point of the execution of a program, we require
that Alloc™ and PossibleTargets™ are finite (see (10)), while the available
memory Addresses™ and the memory pool MemPool™ are infinite. Finally,
each cell is seen as a record with the fields of Tgelgs-

2.2 The Description Logic £
L is defined w.r.t. a vocabulary 7 consisting of relation and constant symbols. *

Definition 1 (Syntax of L). The sets of roles and concepts of L is defined
inductively: (1) every unary relation symbol is a concept (atomic concept); (2)
every constant symbol is a concept; (3) every binary relation symbol is a role
(atomic role); (4) if r,s are roles, then rUs, rNs, r\s and r— are roles; (5) if
C, D are concepts, then so are CM D, CU D, and =C; (6) if r is a role and C
is a concept, then Ir.C is also a concept; (7) if C,D are concepts, then C x D
is a role (product role).

The set of formulae of L is the closure under A\,V,—~,— of the atomic formu-
lae: C C D (concept inclusion), where C, D are concepts; v C s (role inclusion),
where r, s are roles; and func(r) (functionality assertion), where r is a role.

Definition 2 (Semantics of £). The semantics is given in terms of structures
M = (M,7,-). The extension of ™ from the atomic relations and constants in
M and the satisfaction relation |= are given below. If M | ¢, then M is a

3 Here n € {1,2}.
4 In DL terms, £ corresponds to Boolean ALCHOLF knowledge bases with the ad-
ditional support for role intersection, role union, role difference and product roles.

model of ¢. We write ¥ |= ¢ if every model of ¥ is also a model of .

(cnpyM =cMnpM (r M s)M :r N sM

(CI_ID) = CcMu DM (rusyM =rpMysM

(~C)™ =M\CcM (r\)™ =rM\sM

(CXD) = CM x DM (r7) ={(e;e) | (¢',e) ™M)}
(Fr.0)M ={e|3e : (e, e) € r™M}

M CLCDif cMc DM M7 Csif rMC sM

M = func(r) if{(e,e1), (e, e2)} C r™ implies e; = e

The closure of = under A V,—,— is defined in the natural way. We abbreviate:
T = CU~C, where C is an arbitrary atomic concept and 1 = —T; a = 5 for the
formula a C 8 A S C «; and Ir for the concept Ir.T; (o,0’) for the role o x o'.
Note that TM = M and L™ = {) for any structure M = (M, 7,-).

2.3 Running Example: Content Invariants in £

Now we make the example from Section 1.1 more precise. The concepts F Lst and
PLst are interpreted as the sets of elements in the employee list resp. the project
list. mngBy, isMngr and wrkFor are roles. o.gq and oprq are the constants
which correspond to the heads of the two lists. The invariants of the systems are:

The emploee and project lists are allocated: PLst 1l ELst C Alloc
Projects and employees are distinct: PLstM ELst cC 1
wrkFor is set to null for projects: PLst C JwrkFor.onu
mmngBy is set to null for employees: ELst C dmngBy.onul
wrkFor of employees in the list point

to projects in the list or to null: JwrkFor~.ELst C PLst U opan
i1sMngr is a Boolean field: JdisMngr—.FELst C Boolean
mngBy of projects point ImngBy~.PLst C
to managers or null: (ELst N JisMngr.or) U opun
The manager of a project

must work for the project: mngBy N (T x ELst) C wrkFor~

Let the conjunction of the invariants be given by @invariants-

Consider S from Section 1. The states of the heap before and after the exe-
cution of S’ can be related by the following £ formulae. @yis¢s—upar and @p_qassgn -
Qlists—updt States that the employee list at the end of the program (ELst) is
equal to the employee list at the beginning of the program (ELstyp,), and that
the project list at the end of the program (PLst) is the same as the project list
at the beginning of the program (PLstgn,), except that PLst also contains the
new project oproj. FLstgho and wrkForg, are ghost relation symbols, whose
interpretations hold the corresponding values at the beginning of S.

Plists—updt = B Lstgho = ELst N PLstgpo U 0proj = PLst
Pp—assgn = ELstgho M IWrkForghe.onun = ELst 1 JwrkFor.op;

Ghost symbols As discussed in Section 2.3, in order to allow invariants of the
form iists—upar = ELStgho = ELst AN PLstgpo U 0proj = PLst

we need ghost symbols. We assume 7 contains, for every symbol e.g. s € 7, the
symbol sgp,. Therefore, memory structures actually contain two snapshots of the
memory: one is the current snapshot, on which the program operates, and the
other is a ghost snapshot, which is a snapshot of the memory at the beginning
of the program, and which the program does not change or interact with. We
denote the two underlying memory structures of M by M.y, and Mgp,. Since
the interpretations of ghost symbols should not change throughout the run of a
program, they will sometime require special treatment.

2.4 The Separation Logic Fragment SLis

The SL that we use is denoted SLis, and is the logic from [7] with lists and
multiple pointer fields, but without trees. It can express that the heap is par-
titioned into lists and individual cells. For example, to express that the heap
contains only the two lists FLst and PLst we can write the SLis formula
Is(pHd, null) * 1s(eH d, null).

We denote by var; € Var and f; € Fields the sets of variables respectively
fields to be used in SLis-formulae. var; are constant symbols. f; are binary
relation symbols always interpreted as functions. An SLis-formula 71X is the
conjunction of a pure part II and a spatial part X. II is a conjunction of equalities
and inequalities of variables and 0y4;. X is a spatial conjunction X = [y *-- % 3,
of formulae of the form 1s(F1, Es) and var — [f1 : E1,..., fx : Ex], where each
E; is a variable or 0,4. Additionally, 3’ can be emp and II can be T. When
II =T we write II1 Y simply as Y.

The memory model of [7] is very similar to ours. We give the semantics of
SLis in memory structures directly due to space constraints. See the appendix
for a discussion of the standard semantics of SLis. IT is interpreted in the natural
way. X indicates that Alloc™ is the disjoint union of r parts PM, ... PM. If 3;
is of the form var — [f1 : E1, ..., fx : Ex] then |[PM| =1 and, denoting v € PM,
fM(v) = EM.If By is of the form 1s(Ey, E)], then |[PM| is a list from E{M to
Bt EM might not belong to PM. If ¥ = emp then Alloc™ = ().

2.5 The Two-variable Fragment with Counting and Trees CT?

C? is the subset of first-order logic whose formulae contain at most two vari-
ables, extended with counting quantifiers 3%, 3% and 3= for all k € N. W.
Charatonik and P. Witkowski [10] recently studied an extension of C? which
trees which, as we will see, contains both our DL and our SL. CT? is the subset
of second-order logic of the form 3F o(F1) A @rorest(F1) where ¢ € C? and
©Yrorest(F1) says that Fy is a forest. Note that CT? is not closed under nega-
tion, conjunction or disjunction. However, CT? is closed under conjunction or
disjunction with C?-formulae.

A CT?-formula ¢ is satisfiable in a memory structure if there is a memory
structure M such that M = ¢. We write ¢ =, ¢ if M = 9 implies M |= ¢ for

every memory structure M. Lemma 1 states the crucial property of CT? that
we use. It follows from [10], by reducing the memory structures to closely related
finite structures. 5 (see Appendix B).

Lemma 1. Satisfiability of CT? by memory structures is in NEXPTIME.

2.6 Embedding £ and SLis in CT?
L has a fairly standard reduction (see e.g. [8]) to C?:

Lemma 2. For every vocabulary, there exists tr : L(1) — C%(7) such that for
every ¢ € L(T), ¢ and tr(y) agree on the truth value of all T-structures.

E.g., tr(Cy C Cy) = Vx Cy(z) — Ca2(x). The details of tr are given in Table 1.

The translation of SLis requires more work. Later we need the following
related translations: o : SLis — £ extracts from the SLis properties whatever
can be expressed in £. 8 : SLis — CT? captures SLis precisely.

Given a structure M, LM is a singly linked list from o}y, to o), w.r.t. the
field next™ if M satisfies the following five conditions, or it is empty. Except
for (5), the conditions are expressed fully in £ below:

(1) 0, belongs to LM; (2) 027, is pointed to by an L element; (3) o)., does
not belong to L™; (4) Every L™ element is pointed to from an L™ element,
except possibly for o). ; (5) all elements of L™ are reachable from o}, via

vary
next™. Let

al(ls) = (Ovarl C L) 043(18) = (Ova,m2 C ﬁL)

a®(Is) = (ovar, = Inext™.L) a*(ls) = (L C 0yar, U 3next™.L)
aemp*ls(ls) = (L C J—) A (Ovarl = Ovar2)

a(ls) =al(Is) A+ Aat(ls) V Qemp—1s(18)

In memory structures M satisfying a(ls), if L™ is not empty, then it contains
a list segment from O%TI to 0%7_2, but additionally L may contain additional
simple next™-cycles, which are disjoint from the list segment. Here we use the
finiteness of Alloc™ (which contains L™) and the functionality of next™. A
connectivity condition is all that is lacking to express ls precisely. a(ls) can be

extended to « : SLis — £ in a natural way (see Appendix C) such that:
Lemma 3. For every ¢ € SLis, ¢ implies a(p) over memory structures.

To rule out the superfluous cycles we turn to CT?2. Let

8°(ls) = Vavy [(L(z) A L(y)) = (Fi(z,y) > next(z,y))]A
V:C[(L(x) AVy (L(y) = —Fi(y, :v))) - (2 = opar,)}

3% (1s) states that the forest Fy coincides with next inside L and that the forest
induced by Fy on L is a tree. Let 3(1s) = 3F tr(a(ls)) A B°(18) A @forest (F1).
B(ls) € OT? and it expresses that L™ is a list. The extension of 3(ls) to the
translation function $: SLis — CT? is natural and discussed in Appendix C.
Appendix D discusses the translation of cyclic data structures under (.

% In fact [10] allows existential quantification over two forests, but will only need one.

Lemma 4. For every ¢ € SLis: ¢ and B(p) agree on all memory structures.

CT?%s flexibility allows to easily express variations of singly-linked lists, such
as doubly-linked lists, or lists in which every element points to a special head
element via a pointer head, and analogue variants of trees.

2.7 Running Example: Shape Invariants

At the loop header of the program S from the introduction, the memory contains
two distinct lists, namely PLst and FLst. ELst is partitioned into two parts:
the employees who have been visited in the loop so far, and those that have not.
This can be expressed in SLis by the formula: @y, = T'ls(eHd, e) * Is(e, nil) *
Is(pHd, nil). The translation a(py,) is given by

P, U P, U P = Alloc A a(ls(eHd, e, next, Py))A
a(ls(e,null, next, Py)) A a(ls(pHd, null, next, P3))A
PNMBPB=1lANPNP=1lANPRNPE=1Aar

The translation from SL assigns concepts P; to each of the lists. cex which occurs
in a(py,) is the translation of IT = T in ¢,. In order to clarify the meaning of
a(pe,) we relate the P; to the concept names from Section 2.3 and simplify the
formula somewhat. Let ¢ = P, U P, = ELst AN P3 = PLst. P; contains the
elements of ELst visited in the loop so far. a(pye,) is equivalent to:

o/ () = AN ELst U PLst = Alloc A ELst M PLst = 1L A a(ls(eHd, e, next, Py))
Aa(ls(e,null, next, ELst M —Py)) A a(ls(pHd, null, next, PLst))

B>(X) = B°(Is(eHd, e,next, P1)) A B°(Is(e, null, next, ELst 1 —P;))A
B°(Is(pHd, null, next, PLst))

Blpn) =3B tr(a(g) A B(E) A psorest(F)

3 Content Analysis

3.1 Syntax and Semantics of the Programming Language
Loopless Programs are generated by the following syntax:

e :wvar.f | var | null (f € Theldss Ovar € Tvar)

b (61 = 62) |Nb| (blandbg) | (bloTbg) | T | F

S :iwary = ez | vary.f :=eq | skip | S1; 52 | var := new | dispose(var) |
if bthen Sy fi|if bthen Sy else Sy fi | assume(b)

Let Exp denote the set of expressions e and Bool denote the set of Boolean
expressions b. To define the semantics of pointer and Boolean expressions, we
extend fM by fM(err) = err for every f € Tgelas. We define £.(M) : Exp —
Addresses™ U {null,err} and By(M) : Bool — {oT,oF,err} (with err & M):

Evar(M) = 0lt if oM. € AllocM Bey—e, (M) = err if &, (M) = err,i € {1,2}
Evar(M) =err, if o & Alloc™ Be,—e, (M) = or, if £, (M) = &, (M)
gar.f(M) = fM(gvar(M>) Belzeg (M) = OF, if 5‘81 (M) 7é 562 (M)

B extends naturally w.r.t. the Boolean connectives.

The operational semantics of the programming language is: For any command
S, if £ or B give the value err, then (S, M) ~ abort. Otherwise, the semantics
is as listed below. First we assume that in the memory structures involved all
relation symbols either belong to 7gelqs, are ghost symbols or are the required
symbols of memory structures (Alloc, Auz, etc.).

1. (skip, M) ~ M.
2. (vary = ez, M) ~ [M | 002, is set to E, (M)].
3. {var := new, M) ~ [M | For some t € MemPool™,
t is moved to Alloc™ and oY, is set to t],
4. If ot & Alloc™, (dispose(var), M) ~ abort;
otherwise (dispose(var), M)~ [M | o}, is removed from Alloc™].
(S1; 52, M) ~ (S2, (S1, M))
(if bthen St else Sp, M) ~ (S, M) where tv = By(M).
(if bthen S , M)~ (if bthen S else skip fi, M).
If By(M) =T, then (assume(b), M) ~ M,

otherwise (assume(b), M) ~ abort.

®© N

If M is a memory structure and (S, M) ~ M’, then M’ is a memory structure.
Now consider a relation symbol e.g. ELst. If (S, M) ~» M’, then we want to
think of ELst™ and ELstM’ as the employee list before and after the execu-
tion of S. However, the constraints that FLst™ and ELstM' are lists and that
ELstM' is indeed obtained from from ELstM by running S will be expressed
as formulae. In the ~ relation, we allow any values for ELst™ and ELstM'
For any tuple R of relation symbols which do not belong to Tgelgs, are not
ghost symbols and are not the required symbols of memory structures (Alloc,
Auz, etc.), we extend ~ as follows: if (S, M) ~ M’, then (S, (M, RM)) ~

<./\/l', RM/>, for any tuples RM and RM'.

Programs with Loops are represented as hybrids of the programming lan-
guage for loopless code and control flow graphs.

Definition 3 (Program). A program is G = (V, E {1, shp, cnt, A) such that
G = (V, E) is a directed graph with no multiple edge but possibly containing self-
loops, Linit €V has in-degree 0, shp : V — SLis, ent : V. — L(7) are functions,
and X is a function from E to the set of loopless programs.

Here is the code S from the introduction: @)
V= {ébaglvée]> E= {(ébagl)v(élagl)v(élvée)} Sb
Ay, 1) = Sy Linit =y ©o s
A, 0) = assume(~ (e = null)); Sy, Se
A, €.) = assume(e = null); S @

Sp, Sg, and S, denote the three loopless code blocks which are respectively the
code block before the loop, inside the loop and after the loop. The annotations
shp and cnt are described in Section 3.4.

10

The semantics of programs derive from the semantics of loopless programs
and is given in terms of program paths. Given a program G, a path in G is a
finite sequence of directed edges ey, ..., e; such that for all 1 <¢ <¢—1, the tail
of e; is the head of e; 1. A path may contain cycles.

Definition 4 (~* for paths). Given a program G, a path P in G, and memory
structures My and My we define whether (P, M) ~* Ma holds inductively.

— If P is empty, then (P, M) ~* Mas iff M1 = Ma.

— If e is the last edge of P, then (P, My) ~* May iff there is M3 such that
(P\{et}, M1) ~* M3 and (Me), M1) ~* Ms. P\{e;} denotes the path
obtained from P by removing the last edge e;.

3.2 Hoare-style Proof System

Now we are ready to state our two-step verification methodology that we for-
mulated in Section 1 precisely. Our methodology assumes a program P as in
Definition 3 as input (ignoring the shp and cnt functions for the moment).

I. Shape Analysis. The user annotates the program locations with SL
formulae from SLis (stored in the shp function of P). Then the user proves the
validity of the SLis annotations, for example, by using techniques from [7].

II. Content Analysis. The user annotates the program locations with £-
formulae that she wants to verify (stored in the cnt function of P). We point
out that an annotation cnt(¢) can use the concepts occurring in «(shp(f)) (recall
that « : SLis — £ maps SL formulae to £-formulae).

In the rest of the paper we discuss how to verify the cnt annotations. In Sec-
tion 3.3 we describe how to derive a verification condition for every program edge.
The verification conditions rely on the backwards propagation function © for £-
formulae which we introduce in Section 3.5. The key point of our methodology is
that the validity of the verification conditions can be discharged automatically
by a satisfiability solver for CT2-formulae. We show that all the verification con-
ditions are valid if and only if ent is inductive. Intuitively, cnt being inductive
ensures that the annotations cnt can be used in an inductive proof to show that
all reachable memory structures indeed satisfy the annotations cnt(¢) at every
program location ¢ (see Definition 6 below).

3.3 Content Verification

We want to prove that, for every initial memory structure M; from which the
computation satisfies shp and which satisfies the content pre-condition ent(€;nt),
the computation satisfies cnt. Here are the corresponding verification conditions,
which annotate the vertices of G:

Definition 5 (Verification conditions). Given a program G, VC' is the func-
tion from E to L given for e = (£, L) by

VC(e) = ~[B(shp(lo)) Atr(ent(ly)) Atr (O (a(shp(€)) A —ent(())) |
VC(e) holds if VC(e) is a tautology over memory structures (T =, VC(e)).

11

O is discussed in Section 3.5. As we will see, VC({o,f) expresses that when
running the loopless program A(e) when the memory satisfies the the annotations
of ¢y, and when the shape annotation of ¢ is at least partly true (i.e., when
a(shp(£))), the content annotation of ¢ holds.

Let J be a set of memory structures. For a formula in CT? or £, we write
J E ¢ if, for every M € J, M = ¢. Let Init be a set of memory structures.

Definition 6 (Inductive program annotation). Let f : V — CT? We
say f is inductive for Init if (i) Init = f(lini), and (i) for every edge e =
(¢1,42) € E and memory structures My and My such that M1 = f(¢1) and
(A(e), M1) ~ Mg, we have My |= f(€2). We say shp is inductive for Init if the
composition shpo 8 : V — CT? is inductive for Init. We say cnt is inductive for
Init relative to shp if shp is inductive for Init and g : V. — CT? is inductive
for Init, where g(£) = tr(ent(€)) A B(shp(L)).

Theorem 1 (Soundness and Completeness of the Verification Condi-
tions). Let G be a program such that shp is inductive for Init and Init =
ent(linit). The following statements are equivalent:

(i) For all e € E, VC(e) holds. (i1) ent is inductive for Init relative to shp.

We make the notion of a computation satisfying the verification conditions pre-
cise using the following definition:

Definition 7 (Reach({)). Given a program G, a node £ € V, and a set Init of
memory structures, Reach({) is the set of memory structures M for which there
is Minit € Init and a path P in G starting at £inie such that (P, Mpit) ~* M.

In particular, Reach(€;nit) = Init. The proof of Theorem 1 and its consequence
Theorem 2 below are given in in Appendix F.

Theorem 2 (Soundness of the Verification Methodology). Let G be a
program such that shp is inductive for Init and Init | cnt(binit). If for all
e € E, VC(e) holds, then for £ € V, Reach({) = cnt(€).

3.4 Running Example: General Methodology

To verify the correctness of the code S, the shp and cnt annotations must be
provided. The shape annotations of program S are:

shp(ly) =1s(eHd, null) x Is(pHd, null)

shp(l) = ¢,
shp(Le) = (proj = pHd)1s(eHd, null) * 1s(pHd, null)

e, = Is(eHd,null) x1s(e, null) x Is(pHd, e) was considered in Section 2.7.

The three content annotations require that the system invariants @invariants
from Section 2.3 hold. The post-condition additionally requires that ¢p_gssgn
and @yists—updes hold. Recall ¢p_qssgn states that every employee which was not

12

assigned a project, is assigned to oproj. Prists—updts States that the content of the
two lists remain unchanged, except that the project op.o; is inserted to PLst.

In order to interact with the translations a(shp(---)) of the shape annota-
tions, we need to related the P; to the concepts ELst and PLst. In Section 2.7
we defined ;, which relates the P; generated by a on shp(¢;).

Ve, = Yo, = P = ELst N P, = PLst
ent(ly) = Yo, N Pinvariants
ent(€) = Yo, A Pinvariants N Plists—updt N Pp—as—e,
ent(le) = Yu, A Pinvariants N\ Plists—updt N Pp—assgn
Pp—as—e, = PL M 3wrkForgne.onun = P1 N 3wrkFor.opre;

Pp—as—r, States that, in the part of E'Lst containing the employees visited so far
in the loop, any employee which was not assigned to a project at the start of the
program (i.e., in the ghost version of wrkFor) is assigned to the project proj.
©p—as—¢, Makes no demands on elements of E'Lst which have not been reach in
the loop so far. The verification conditions of G are, for each (¢1,43) € E,

VC(ly,ly) = = [B(shp(tr)) Atr(ent(£1)) Atr(Oxa, 1) (a(shp(l2)) A —ent(ls)))]

The verification conditions V' C(e) express that the loopless programs on the
edges e of G satisfy their annotations. To prove the correctness of G w.r.t.
VC(e) using Theorem 2, we prove that VC(e), e € E, hold, in order to get:

Conclusion 1 Reach(l) = ent(€), for all £ € V.

3.5 Backwards Propagation and the Running Example

Here we shortly discuss the backwards propagation of a formula along a loopless
program S. Let (S, M) ~ My where M; and My are memory structures over
the same vocabulary 7. E.g., in our running example, for i = 1,2, M; is

<M, ELstMi,negctMi,mngBy/Vli7 e

ELsté\g;, newt%;, oo, AllocMi | AugMi -)
We will show how to translate a formula for My to a formula for an extended
M. Fields and variables in My will be translated by the backwards propaga-

tion into expressions involving elements of M. For ghost symbols sgpo, s?ﬁ;

will be used instead of sé\gi since they do not change during the run of the

program. Let 77" C 7 be the set of the remaining symbols, i.e. the sym-
bols of 7\ ({PossibleTargets, MemPool} U Thelas) which are not ghost sym-
bols, for example FLst, but not FLstgn,, next or mngBy. We need the re-
sult of the backwards propagation to refer to the interpretations of symbols
in 77¢™ from M3 rather than M;j. Therefore, these interpretations are copied
as they are from Mo and added to M; as follows. For every R € 77", we
add a symbol R**! for the copied relation. We denote by (R°**)™: the tuple

13

(Re=tyMr : (Rert)M1 = RM2 and R € 77°™) Let 7°*' extend 7 with R®** for
each R € 77°". The backwards propagation updates the fields and variables ac-
cording to the loopless code. Afterwards, we substitute the symbols R € 77¢"" in
¢ with the corresponding R***. We present here a somewhat simplified version
of the backwards propagation lemma. The precise version is similar in spirit and
is given in Appendix E.

Lemma 5 (Simplified). Let S be a loopless program, let M1 and Mo be
memory structures, and ¢ be an L-formula over T.

1. If <S,M1> ~ Moy, then: My)Z ¢ iff <./\/l1, (Remt)M1>): @S((p).
2. If (S, My) ~ abort, then (My, (R*)M1) = Og(p).

As an example of the backwards propagation process, we consider a formula
from Section 3.4, which is part of the content annotation of ¢; and perform the
backwards propagation on the loopless program inside the loop:

Op—as—t; = P11 3wrkForghe.onun = Pr N 3wrkFor.oprej

Since next does not occur in ¢p,_qs—g,, backwards propagation of ¢, 45—, over
e := e.next does not change the formula (however a(shp(¢;)) by this command).
The backwards propagation of the if command gives

Ts,, (Pp—as—t,) = (—‘(EwTkFOT_ .0¢ = Onui) A @p,as,gl)\/
E|’LU’I”I€FO’I”7.OG = Opul A Lpe.wrkFor::;m“oj(Sﬁpfasffl))
We.wrkFor::proj (<Pp7asfll) = Pl r EIu””kF‘O"ﬂgho-Onull =
Py N 3((wrkFor\(oe X T)) U (0e, 0proj))-Oproj

Ve wrkFor:=proj (Pp—as—e,) is obtained from ¢,_4s—¢, by substituting the wrkFor
role with the correction ((wrkFor\(oe x T)) U (0e,0proj)) which updates the
value of o in wrkFor to proj. @s, (pp—as—¢,) is obtained from Ws, (pp—as—z,)
by subtituting P; with P,***. @ is differs from @ from technical reasons related
to aborting computations (see Appendix E).

4 Related Work

Shape Analysis attracted considerable attention in the literature. The classical
introductory paper to SL [23] presents an expressive SL which turned out to be
undecidable. We have restricted our attention to the better behaved fragment in
[7]. The work on SL focuses mostly on shape rather than content in our sense.
SL has been extended to object oriented languages, cf. e.g. [22,11], where shape
properties similar to those studied in the non objected oriented case are the
focus, and the main goal is to overcome difficulties introduced by the additional
features of OO languages. Other shape analyses could be potential candidates
for integration in our methodology. [24] use 3-valued logic to perform shape
analysis. Regional logic is used to check correctness of program with shared

14

dynamica memory areas [5]. [16] uses nested tree automata to represent the
heap. [20] combines monadic second order logic with SMT solvers.
Description Logics have not been considerd for verification of programs with
dynamically allocated memory, with the exception of [13] whose use (mostly un-
decidable) DLs to express shape-type invariants, ignoring content information.
In [9] the authors consider verification of loopless code (transactions) in graph
databases with integrity constraints expressed in DLs. Verification of tempo-
ral properties of dynamic systems in the presence of DL knowledge bases has
received significant attention (see [4,14] and their references). Temporal Descrip-
tion Logics, which combine classic DLs with classic temporal logics, have also
received significant attention in the last decade (see [19] for a survey).
Related Ideas. Some recent papers have studied verification strategies which
use information beyond the semantics of the source code. E.g., [18] is using
diagrams from design documentation to support verification. [12,1] infer the in-
tended use of program variables to guide a program analysis. Instead of starting
from code and verifying its correctness, [15] explores how to declaratively spec-
ify data structures with sharing and how to automatically generate code from
this specification. Given the importance of both DL as a formalism of content
representation and of program verification, and given that both are widely stud-
ied, we were surprised to find little related work. However, we believe this stems
from large differences between the research in the two communities, and from
the interdisciplinary nature of the work involved.

References

1. S. Apel, D. Beyer, K. Friedberger, F. Raimondi, and A. von Rhein. Domain types:
Abstract-domain selection based on variable usage. In HVC, pages 262-278, 2013.

2. A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev.
Reasoning over extended ER models. In Proc. of ER, pages 277-292. 2007.

3. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic handbook: theory, implementation, and applications.
Cambridge University Press, 2003.

4. F. Baader and B. Zarrie. Verification of golog programs over description logic
actions. In Proc. of FroCos, pages 181-196. Springer, 2013.

5. A. Banerjee, D. A. Naumann, and S. Rosenberg. Local reasoning for global invari-
ants, part I: Region logic. J. ACM, 60(3):18, 2013.

6. D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(12):70 — 118, 2005.

7. J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic execution with Separation
Logic. In APLAS, volume 3780, pages 52—68. Springer-Verlag, 2005.

8. A. Borgida. On the relative expressiveness of description logics and predicate
logics. Artif. Intell., 82(1-2):353-367, 1996.

9. D. Calvanese, M. Ortiz, and M. Simkus. Evolving graph databases under descrip-
tion logic constraints. In Proc. of DL, pages 120-131, 2013.

10. W. Charatonik and P. Witkowski. T'wo-variable logic with counting and trees. In
LICS, pages 73-82, 2013.

11. W. Chin, C. David, H.H. Nguyen, and S. Qin. Enhancing modular oo verification
with separation logic. POPL, pages 87-99. ACM, 2008.

15

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Y. Demyanova, H. Veith, and F. Zuleger. On the concept of variable roles and its
use in software analysis. In FMCAD, pages 226-230, 2013.

L. Georgieva and P. Maier. Description Logics for shape analysis. In SEFM, pages
321-331, 2005.

G. De Giacomo, Y. Lespérance, and F. Patrizi. Bounded situation calculus action
theories and decidable verification. In Proc. of KR, 2012.

P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv. Data structure fusion.
In APLAS, volume 6461 of LNCS, pages 204-221. Springer, 2010.

L. Holik, O. Lengél, A. Rogalewicz, J. Simécek, and T. Vojnar. Fully automated
shape analysis based on forest automata. In CAV, 2013.

S. S. Ishtiag and P. W. O’Hearn. Bi as an assertion language for mutable data
structures. POPL, pages 14-26. ACM, 2001.

D. James, T. Leonard, J. O’Leary, M. Talupur, and M. R. Tuttle. Extracting
models from design documents with mapster. PODC, 2008.

C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A survey.
In Proc. of TIME. IEEE Computer Society, 2008.

P. Madhusudan, G. Parlato, and X. Qiu. Decidable logics combining heap struc-
tures and data. POPL, pages 611-622. ACM, USA, 2011.

W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, 27 October 2009.

M. J. Parkinson and G. M. Bierman. Separation logic, abstraction and inheritance.
SIGPLAN Not., 43(1):75-86, January 2008.

J. C. Reynolds. Separation Logic: A logic for shared mutable data structures. In In
Proc. of LICS, pages 55—74, Washington, DC, USA, 2002. IEEE Computer Society.
G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract
operations for shape analysis. In TACAS, pages 530-545. 2004.

16

A Separation Logic

Here we expand on the treatment of separation logic in the paper. We have de-
fined the semantics of SL using our memory structures. The memory model used
in [7] is very similar to our memory structures. We give the standard semantics
of SL here in terms of heaps and stacks, and relate it to memory structures. It
is convenient to define first SL, which does not allow list segments, and then
extend to SLis.

The allocated cells of the memory all have the same finite collection of fields
(denoted Flields). Let Add and Val be disjoint sets. Add is the set of addresses
(locations in the terminology of [7], not to be confused with our use of “locations
in a program”). Val is a set of values which include nil. The description of the
memory consists of two parts, a heap and a stack. A heap is a partial function
h: Add = (Fields — ValU Add) which is only defined on a finite subset of Add.
A stack is a function from a finite set Var of local variables s : Var — ValUAdd.

The syntax of SL is as follows:

I:=T|E=E|E+E|IAI
Yu=emp| X xX |

var = [f1: E1,..., fx : Ex]
SL-formula ::= IT1 X

var; € Var, i € N
fi € Fields,i € N
E ::=null | var;

When IT = T we write IT1 X simply as X. The semantics of SL is given by a
relation s, h = ¢ where s € Stacks,h € Heaps. We define [var;]s = s(x) and

[nil]s def nil, and:

s, h [true always

S,h, ': E1 = E2 iff [[El]]s = [[EQ]]S

S,h ': El 75 E2 iff [[El]]s 75 [[Eg]]s

s,h =1y AN 1T iff s,h = Iy and s,h = 1T

s,h =wvary = [fi : B;) iff h = [vari]s — r where r(f;) = [Ei]s

s, h = emp iff h=10

S,h, ': 21 *EQ iff Hhohlh = ho *hl and S,ho ': EO and S,hl ': 21
s,hi=IXx iff s;h=II and s,h = X

where hg * hy enforces there is no address in Add on which both hg and hy are
defined, and h = hg * hy denotes that h is the union of hg and h;. Additionally,
not all fields in Fields need to occur in vary — [f; : E;], and those that do not
are assigned nil implicitly.

SLis extends SL by adding list segments: the syntax is extended by

XYoo= | IS(El,EQ)
and the semantics of Is(E1, E») is the least fixed point of the predicate given by

(Er = Bz Aemp) V (Ey # Ea A Jy.Ey = [n:y] *1s(y, E2))

17

Heaps and Stacks vs. Memory Structures The memory model of SL and our
memory model are easily translatable. The distinction between values in Val
and addresses in Add does not play a major role in [7], so we simplify by setting
Val = {nil, true, false}.

Given M we define sy and haq as follows. Fields is equal to Tgelgs and
Add = Addresses and we have M = Val U Add with nil = o™, true = 04! and
false = of'. For every variable var;, s(var;) = ol . For every add € Add we
define h(add) = haqq as follows: for every f € Fields, haaa(f) = f*(add).

Given s and h, we define M, = M as follows. The universe M is
Add U {0, o4, o1}, with oM, = nil, o4 = true and op' = false and
Addresses™ = Add. The set of addresses on which A is defined is Alloc™. For
every field f € Fields, f™ = hy, where hy(add) = h(add)(f) is the value the

field f of address add receives under h. For every variable var;, O%ﬁ;h = s(var;).
The above shows how to transform the memory models into each other in a
natural way. More precisely:

Lemma 6. If s,h are a stack and a heap, and if sy, ., ha, , are the stack and
heap obtained by applying the above transformations on s and h in order, then
SM,, =58 and hpa,, = h.

Remark 1. The semantics of the standard programming language used with sep-
aration logic allows memory cells to be reallocated, while our programming lan-
guage forbids this for technical simplicity.

B CT?-Satisfiability in Memory Structures

In this appendix we prove Lemma 1, i.e. we show that satisfiability of CT?
formulae by memory structures is in NEXPTIME. We employ the fact that finite
satisfiability of CT?-formulae, i.e. truth in a structure with a finite domain, is
in NEXPTIME:

Theorem 3 (W. Charatonik and P. Witkowski [10]). Finite satisfiability
of CT? is NEXPTIME-complete.

To show that satisfiability of a formula ¢» € CT? in a memory structure
can be decided in non deterministic exponential time, it suffices to construct in
linear time a formula ,,, € C? such that 1) is satisfiable in a memory structure
iff ¢, A9 is finitely satisfiable. The formula ,, is the conjunction of formulae
corresponding to requirements (3)-(9) we placed on memory structures. The
conjoined formulae are the the translations using tr : £ — C? from Table 1 of
the following formulae:

- Aur = opun U ot U oF,

- Addresses C = Aux and Addresses Ul Aux =T,

- Alloc € =MemPool, Alloc C —PossibleT argets, MemPool C —~PossibleT argets,
and
Alloc Ll PossibleTargets U MemPool C Addresses,

18

tr.(C) = C(z) C is an atomic concept
traz(r) =r(z,2) r is an atomic role

)
)
)
)
tr.(-C) = —tr.(C)
troz(rms) =trzz(r) Atrs z(s)
troz(rls) =trz(r)Vir,(s)
troz(r\ s) =tr.z(r) A —tr. z(s)
troz(r7) =trs.(r)
tr.,z(C x D) = tr,(C) A trz(D)
tr.(3r.C) = Jy.ir. z(r) A trz(C)
tr(C C D) =Va.try(C) — trz(D)
tr(r C8) =V, y.tre,y(r) = tray(s)
tr(e Np) =tr(p) Atr(y)
tr(e V) =tr(p) Vir(y)
tr(—p) = —tr(ep)
)
)

Table 1. Translation of £ into C? by employing only two variables z and y. In each
translation rule, z € {z,y}. Moreover, z =y if z=z,and z=z if 2 = y.

- 0 C = MemPool for every constant symbol o in v,

- func(f) and Addresses C 3f.~MemPool for every f of ¢ with f € Tgelas,
- MemPool C If.opu U o for every f € Tgelas, and

- C C =MemPool for every atomic concept C € 7 with C' # MemPool.

Requirements (1) and (2) hold by the correct choice of vocabulary. To see that
requirement (10) holds, namely that Alloc™ and PossibleTargets™ are finite
while MemPool™ is infinite, note that any finite model M of 1,,, A1 is almost
the desired memory structure with M = 9. The desired M is obtained by adding
to MemPool™ infinitely many fresh elements e and setting f*(e) = o2, for
all f € Thelds-

C Translations of £ and SLis into CT?

As discussed in Section 2.6, « translates SLis-formulae into £ almost exactly,
with the caveat that for every list L, some redundant cycles may exist in L.
These cycles are not reachable from the variables of the head variable of the list
through the next pointer. Since £ is a fragment of first order logic, properties
related to connectivity cannot be used to rule out these cycles. We use CT? to
express the necessary connectivity property. Recall 3°(Is) stated that the forest
F1 coincides with next inside L and that the forest induced by Fj on L is a tree.

Here we define the two translations a and 3 so that the satisfy the Lemmas
3 and 4, restated here:

19

Lemma 7. . For every heap h and stack s, if ¢ € SLis then: if s, h |= ¢ then

Msn = alp).
ii. For every heap h and stack s, if ¢ € SLis then: s,h = ¢ iff Ms) = B(p).

It is convenient to define the following notation: if ¢ = I then there exist
01, - .., 0. such that X' = d;%- - -d,. and the §; are of the form var; — [f; : E;]. We
use the concepts Py, ..., P. which partition the allocated memory cells according
to 2.

First we define the formula a(y) for ¢ € SL.

O‘(El = EQ) = (OEI = OEz)

O‘(El # EQ) = (0E1 = 0E2)

Oé(ﬂo A\ Hl) = a(Ho) A\ Oé(ﬂl)

a(true) =(TCT)

a(emp) = (Alloc= 1)

() = (P = 0ovar,) A /\f:l((ovan ,0E;) E fi),
for 6y =wvary — [fi : E;:i=1,...,k]

a(X) = Nicicr @(6)N
Ni<ty<ty<r (P M P, = 1)

ao(ltY)y =P U---UP.=Allocha(ll) A a(X)

By construction we have for every ¢ € SL, s,h = ¢ iff M), = a(p).

Now we turn to SLis. Here X~ = 61 % --- % 0, where the §; are of either of
the forms var; — [f; : E;] or ls(E1, Es). If 6; = 1s(E1, Es), then «(d;) is defined
similarly to the definition of «(ls) in Section 2.6 using P;, F; and Es:

0}(5;) = (om, C P)

a?(8;) = (o, C Inext™.F;)
a’(0;) = (op, C ~F)

a*(6;) = (P, C og, U 3next™.P)

Let
Aemp—Is (61) = (H C J—) A (0E1 = 0E2)
04(51) = al (51) ARERIAN a4(6i) \ Qemp—ls (61)

and O[(lS(El, EQ)) = Oél(ls(El, EQ)) JARERIAN a4(ls(E1, EQ))
Now we turn the translation 3. Similarly to 4°(ls) from Section 2.6, we define
B°(6;) for each §; = 1s(Ey, Es) as:

Vavy [(Pi(z) A Pi(y)) — (Fi(z,y) + next(z,y))]A
V.%‘[(Pl(,’t) AVy (Pi(y) — —Fi(y, :C))) — (= oyar)}

3%(6;) states that the forest Fy coincides with next inside L and that the forest
induced by Fy on P; is a tree. Let T C {1,...,r} be the set of 7 such that ¢; is
of the form Is(Ey, F5). Let

B(E) = Nier B°(6:)
BUTIX) = 3F tr(a(IT1 X)) A B2(X) A @forest(F1)

20

Note that to get that 3°(X) indeed states the connectivity condition for each of
the lists we use the fact that P, ..., P, are disjoint, and therefore the trees we
quantify for the different lists are disjoint.

D Cyclic Data Structures in CT?

Here we want to clarify that cyclic data structures such as cyclic lists which are
expressible in SLis are translated correctly into CT?2 by 3.

Consider the formula ls(a, b) xls(b, a) which defines a cyclic list with at least
two elements. In the translation to CT?, P; contains the elements of the list
from a to b, and P, contains the elements of the list from b to a. Importantly, b
does not belong to P;, and a does not belong to P,. This is captured by o in
the translation of SLis to £ in Section 2.6 or Appendix C.

The translation requires (in 3°) that the forest Fy coincides with next inside
P, and P». However, crucially, there is no requirement on next between P; and
P,, see the definitions of 5° and 3 in Section 2.6 and Appendix C.

As a result, in the cyclic list Is(a, b) * s(b, a), not all next edges are required
to belong to Fi. Rather, the two edges that point to a and to b respectively are
not required to belong to Fi.

In more detail, if M |=Is(a,b) * ls(b, a) then:

1. PM = {ay,...,a;} such that a; = a and the edges (a;,a;11) belong both to
next™ and to FlM, for1 <j<i-—1.

2. The edge (a;,b) belongs to next™ but might not belong to F{™.

3. PM = {b1,...,b} such that b; = b and the edges (bj,b;4+1) belong both to
next™ and to FlM, for1<j<k-1.

4. The edge (by, a) belongs to next™ but might not belong to F{™.

Additionally note that the translation of a formula of the form var; — [f; :
E;] also does not require the next edge from var; to belong to F;.

E Backwards propagation

Here we give the exact formulation of the backwards propagation lemma and
prove it.

It is convenient to consider a program S, which behaves like S, except that
it does not abort. S uses a fresh variable abo to indicate whether S aborts. The
command abo := F is added at the beginning of the code. Every command C'
of the form vary := vars.f, vars.f := vary or dispose(vars) is replaced with
C =if vary = null then abo := T else C fi. For if, assume and assignments
of the form vari.f1 := vars.fo commands the case is similar, except that there
may be two evaluations of the form var;.f;, which need to be reflected in the
condition in C. By the construction of S, S has the following properties:

1. The run of M; on S does not abort for any M;.

21

2. abo has the value T at the end of the run of S on M if and only if S aborts
on Ml.
3. If (S, M1) ~ My, then <§, M1> ~ Mas.

We need a further extension of our structures, which uses a refined ~» relation.
The refined ~ relation will get rid of some non-determinism in the semantics of
the programming language.

Given a finite set Y of labels and a tuple dy = (d, : y € Y) of ele-
ments of M, we denote by <./\/l1, (Re””t)Ml,cZy> the structure obtained from
<./\/l1, (Re””t)M1> by adding the constants d, for each y € Y. The vocabulary
¢ of (M, (Re*')M1 dy) extends 7°** by constant symbols {o, : y € Y'}.

Given a loopless program S’, we assign unique labels y to the commands of
S’. For any loopless program S’, we denote by Ys the set of labels of commands
in §”. The ~g_, relation is obtained from the ~ relation as follows:

(S, Mq) MJYS/SMQ iff (S, My) ~ My, except in the three following cases for

S’
— yrwvary i=vary. f: (8", My) ~q, My iff (S, M1) ~ My and fMl(O%‘TIQ) =

dy. Else, (S’, M1) ~q4, abort.

—y :var = new: (S, M1) ~g4, My iff (8, M) ~ M and 002 = d,,.
Otherwise, (S', M1) ~+q, abort.

— S1; 85 I (S, My) MJYS{ M and (S5, M') ngsé Mo, then (S7; S5, My) ngsll Ugysé
M.

The main observation is:

Lemma 8. For any two memory structures My and My, (S', M1) ~ My iff
there exists a tuple dy; such that (S', M1) ~g , M .
S

We are now ready to state Lemma 5 precisely:

Lemma 9. Let S be a loopless program, Yz be the set of labels of commands in
S, My and My be memory structures, dy be a tuple of M elements labeled with
the labels in Yz, dapo € M, and ¢ be an L-formula over T.

1. If (S, My) MJYg Mo, then:
M2 ': 2 Zﬁ <M17 (Rezt)Mlvngadabo> ': @S(@)
2. If (S, M1) ~g,. abort, then for every tuple Jyg of M elements, (Mj, (Rezt)Ml,Jyg, davo) -
S
Os(p).

The vocabulary of the structure (M, (R**)M1, CZyg, dabo) is Tf/gt U {Oabo }-
The definition of Og is:

22

Definition 8. Os(p) = P5(p A (0abo = 0oF))), P is obtained from ¥ by substi-
tuting every symbol R € T7¢™ in ¢ by R**, and ¥ is defined as:

Vskip (¥) =@

Uparyi—e(©) = @[ovar, /0e], € = vary or e = null
Wy:UGT1::UGT2~f (SO) = SO[OUG’Ij /Oy] /\ (Hf_'OUaTz = Oy)
Pyar. fr=e() = olf/\(ovar, X T) U (0var,,0¢)],

where e = vary or e = null
Wit b then Sy else 8o fi() = b AWs, (@) V ey AWs, (p)

Wy:var::new(‘ﬂ) = (P[Oyar/Oy][AZZOC/AHOCLl Oy]
Aoy & —Alloc
Yispose(var) () =Us,,., (@[Alloc/Alloc T —0yar]),

where Sqisp = var. fi, = null;
-+ -jvar. fi, = null
W51;52 (90) = LpSl (Wsz (90))

The notation @[A/B] should be interpreted as the syntactic replacement of any
occurrence of A with B. We write e.g. y : var := new to indicate that the com-
mand var := new is labeled with y. €y is defined inductively: for e; = es we set
ep = (Aey = Ae,), With Aper = 0var and Aygr.p = 3f ™ .0par; € extends naturally
to the Boolean connectives. In the definition of Ygispose(var)s Jris- -+ fr,, are the
members of Taelds which occur in p. W.l.o.g. we assume that S does not contain
commands of the form if b then S1 fi or vary.fi := vars.fa, since they can be
expressed using the other commands.

To prove Lemma 9 we need the following lemma:

Lemma 10. Let S be a loopless program without assume commands, Yg be the
set of labels of commands in S, Y be a set of labels disjoint from Ys, My and
My be memory structures with universe M and dy, a tuple of M elements such
that (S, M) 2y My. Let dy be a tuple of M elements and ¢ be an L-formula

over TU{oy 1y € Y}. (Ma,dy) = ¢ iff (M1, (R)M dy,dy,) = Ps(p).
Proof. We prove the lemma by induction.

— S = skip: Ys = 0, and we have (My,dy) = ¢ iff (M1, R dy) = Ps(yp),
as required.

— S =1ifbthenSyelseSs fi: depending on whether ¢, is true or false, @g, (¢)
or ®g,(p) should be used.

— wary := e, where e is a variable vary or null: every reference to vary in ¢ is
replaced by a reference to vars or null, respectively.

— wvary = vary. f: every reference to vary in ¢ is replaced with a reference to
oy, whose interpretation is d,, in accordance with Mdyg which requires that
d, be the result of applying f on vars.

— wvary.f = e, where e is a variable vary or null: the function symbol f is
updated by removing the current value of f on var; by subtracting (0yqr, X
T)Mi from fMi and setting the new value explicitly by adding the pair
(0/\/[1 OMl) to fMl_

vary? e

23

— S = var := new with label y: Ys = {y} and dy, = (d,). By the definition
of ~ g, for new commands, {d,} = Alloc™M2\ Alloc™M1. D5(p) adds o, to
Alloc and replaces every reference to var by a reference to o,.

— S = dispose(var): ®g(p) removes var from Alloc, and using an application
of @ to the program var. f, := null; - - -; var. f,,, := null, sets all of the fields
in ¢ to null.

— 5 =051;5: Ps(p) = Ps, (Ps, (¢)). Let M3 be an memory structure such that
<51,M1> ’\»gysl M3z and <52, ./\/l3> ngsz M. We have dYs = dYS1 U dYsz-
Consider first @, (). By the induction hypothesis, (Ma, dy) | @ iff (M3, RM? dy,dy,) |=
4552 (QD)

Let My be obtained from M3 be replacing every relation RM# with RM2 for
R € ¢, We have !pSQ (cp)): <M4, dy, dy52> iff@sz (cp)): <M3, RM2 N dy, dy52 >
Since we have (Sa, My) Py, M, we can apply the induction hypoth-

esis once again, this time on ¥g,. We get that <M4,Jy,JY52> E o iff
<M1,dy,dys2,dysl> ': @51(¢52 (gﬁ)) Hence, <M2,dy> ': (piﬁ <M1,RM2,dy,dYS> ':
Ds, (@52 (‘P))

Proof (Proof of Lemma 9).

Using Lemma 10 with Y = 0, if (S, M) ~~ gy, abort, then for every tuple of
relations U interpreting R®** we have <M1, U, Jys,dabo> e D5(0 A (0abo = OF)),
because abo is set to true during the run of S. If (S, M;) ~dy, Ma, Mo Eo
iff <M1, dys,dab0> ': @g((p A (Oabo = OF))

Note that dgp, is the value of abo at the beginning of the run of S. Since
the first command of S assigns abo a new value, dup, plays no role (it appears
because, technically, abo still needs a value at the beginning of the run).

Also note that in Lemma 5, Jyg strictly extends dy, since S extends S.
However, the semantics of all of the new commands in S does not actually
depend on the relevant d,, (since none of them of new commands or assignments
of the form wvary.vars. f). Hence, any extension of Jys into Jy§ will do.

Remark 2. Revisiting the example in Section 3.5 with the detailed version of
Lemma 9 in mind, we now see that © is actually the backwards propagation of
programs of the form S. The backward propagation of \(¢;.;) is similar to that
presented in Section 3.5, with @m(@pfasfel) = @m(@p,as,gl A (0abo =

OF))

F Soundness and Completeness Theorems

Here we restate and prove Theorems 1 and 2:

Theorem 1. Let G be a program such that shp is inductive for Init and Init |=
ent(binit). The following statements are equivalent:

(i) For alle € E, VC(e) holds.

(i1) cnt is inductive for Init relative to shp.

24

Proof. Assume VC(e) holds for every e € E. Let e = (¢1,f2) € E and mem-
ory structures M; and My such that My | g(¢1) and (A(e), M1) ~ Ma.
Since My E g(¢1) we have sp,,hnm, E shp(f1) and My E g(¢1). Since
shp is inductive, spq,, hat, |= shp(f2). There exists a tuple dy, ., such that
<)\(€),M1> ’\/)JY)\(C) Mg.

Let (R**)™1 be the tuple of copies of R™2 relations from Section 3.5,
ie. (Reeh)Mijs ((Re=t)M1 : (R*H)M1 = RM2 and R € 7\Thelas). Let N =
(Mo, (RE=9YMr dy,). Since suq,, b, = shp(f) and My = ent(ly), N |=
B(shp(£1)) Atr(cnt(4y)).

By Lemma 9, N = Oy (a(shp(l2)) A —ent(la)) iff M = a(shp(lz)) A
—cnt(€2). Since N | VC(e) and N | B(shp(€1)) A tr(ent(€1)), it must be
that N B Oy (a(shp(lz)) A —ent(£2)), so M B a(shp(€z)) A =ent(ls). Since
M E B(shp(£2)), in particular M = a(shp(¢2)). Hence M = ent(fs). We get
that cnt is inductive for Init relative to shp.

Conversely, assume cnt is inductive for Init relative to shp. Assume for con-
tradiction that there exists e = (¢1,¢2) € E such that VC(e) does not hold Then
there exists a memory structure N such that

N |= B(shp(£1)) Atr(ent(fy))
At (Ox(e) (a(shp(l)) A —ent(f2)))

Let N = <./\/11, (Rezt)yMa JYMS) , dab0>. Then M, is also a memory structure and
My E B(shp(€))Atr(ent(€y)), 80 Spy, ha, E shp(£1) and M = ent(€y). Since
N Oy (- -+), abo must not be set to true in the computation of A(e) starting
from M; with dy, . Therefore, there exists My such that (\(e), M1) v,
Ma. Since the computation of A(e) is not affected by the interpretations of
R € 7\Tfelas, assume w.l.o.g. that for each R € 7\Tgheqs, RM = (Re¥H)M1,
Since (A(e), M1) ~ Mo and saq,, hat, = shp(€y), we get spty, hat, = shp(le).
By Lemma 9, Ms = a(shp(f2)) A ment(€2). In particular, Ma }= cnt({3), in
contradiction to ent being inductive relative to shp.

For every e = ({1,02) € E, let Reach(e) be the set of memory structures
M € Reach({s) for which there exist M;,;: € Init and a path P in G starting
at lini and ending with e such that (P, M) ~* M.

Theorem 2. Let G be a program such that shp is inductive for Init and Init |=
ent(lini). If for all e € E, VC(e) holds, then for £ € V, Reach(f) = cnt(().

Proof. By Theorem 1, ent is inductive for Init relative to shp. Let M € Reach({),
and let P be a path and M,,;; € Init as guaranteed for members of Reach(¥).
We prove the following claim by induction on the length of P:

If for all e € E, VC(e) holds, then for ¢ € V, Reach({) = cnt(¢) and
Reach(£) = shp(?).

If P is empty, then M € Init and the claim holds.

25

If P is not empty, let e = (fo,¢) be the last edge of P, and let Py be the
path obtained from P by removing e. Let My be a memory structure such that
(Po, Minit) ~* Mg and (A(e), Mo) ~ M. Let dy,, be a tuple of M elements
such that (A(e), Mg) vy M. By the induction hypothesis, sa,, hm, E
shp(€y) and My | ent(p). Since shp is inductive, and since cnt is inductive
relative to shp, sy, ha = shp(€). and M = ent(L).

Remark 3. In the proofs in this appendix only case 1. of Lemma 9 is used. The
purpose of case 2. of Lemma 9 is to make the verification conditions less strict,
in the sense that they require nothing of aborted executions.

26

UsedList

DTree

UnusedList

