
ar
X

iv
:1

31
2.

66
24

v3
 [

cs
.P

L
]

 9
 J

ul
 2

01
4

Shape and Content ⋆

Incorporating Domain Knowledge into Shape Analysis

D. Calvanese1, T. Kotek2, M. Šimkus2, H. Veith2, and F. Zuleger2

1 Free University of Bozen-Bolzano
2 Vienna University of Technology

Abstract. The verification community has studied dynamic data struc-
tures primarily in a bottom-up way by analyzing pointers and the shapes
induced by them. Recent work in fields such as separation logic has made
significant progress in extracting shapes from program source code. Many
real world programs however manipulate complex data whose structure
and content is most naturally described by formalisms from object ori-
ented programming and databases. In this paper, we look at the verifi-
cation of programs with dynamic data structures from the perspective
of content representation. Our approach is based on description logic,
a widely used knowledge representation paradigm which gives a logical
underpinning for diverse modeling frameworks such as UML and ER.
Technically, we assume that we have separation logic shape invariants
obtained from a shape analysis tool, and requirements on the program
data in terms of description logic. We show that the two-variable frag-
ment of first order logic with counting and trees can be used as a joint
framework to embed suitable fragments of description logic and separa-
tion logic.

1 Introduction

The manipulation and storage of complex information in imperative program-
ming languages is often achieved by dynamic data structures. The verification
of programs with dynamic data structures, however, is notoriously difficult, and
is a highly active area of current research. While much progress has been made
recently in analyzing and verifying the shape of dynamic data structures, most
notably by separation logic (SL) [23,17], the content of dynamic data structures
has not received the same attention.

In contrast, disciplines as databases, modeling and knowledge representation
have developed highly-successful theories for content representation and verifi-
cation. These research communities typically model reality by classes and binary
relationships between these classes. For example, the database community uses

⋆ Kotek, Veith and Zuleger were supported by the Austrian National Research Network
S11403-N23 (RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science
and Technology Fund (WWTF) through grants PROSEED and ICT12-059. Simkus
was supported by the FWF grant P25518 and the WWTF grant ICT12-15

http://arxiv.org/abs/1312.6624v3

entity-relationship (ER) diagrams, and UML diagrams have been studied in re-
quirements engineering. Content representation in the form of UML and ER has
become a central pillar of industrial software engineering. In complex software
projects, the source code is usually accompanied by design documents which
provide extensive documentation and models of data structure content. This
documentation is both an opportunity and a challenge for program verification.
Recent hardware verification papers have demonstrated how design diagrams
can be integrated into an industrial verification workflow [18].

In this paper, we propose the use of Description Logics (DLs) for the formu-
lation of content specifications. DLs are a well established and highly popular
family of logics for representing knowledge in artificial intelligence [3]. In particu-
lar, DLs allow to precisely model and reason about UML and ER diagrams [6,2].
DLs are mature and well understood, they have good algorithmic properties and
have efficient reasoners. DLs are very readable and form a natural base for de-
veloping specification languages. For example, they are the logical backbone of
the Web Ontology Language (OWL) for the Semantic Web [21]. DLs vary in ex-
pressivity and complexity, and are usually selected according to the expressivity
needed to formalize the given target domain.

Unfortunately, the existing content representation technology cannot be ap-
plied directly for the verification of content specifications of pointer-manipulating
programs. This is to due the strict separation between high-level content descrip-
tions such as UML/ER and the way data is actually stored. For example, query
languages such as SQL and Datalog provide a convenient abstraction layer for
formulating data queries while ignoring how the database is stored on the disk.
In contrast, programs with dynamic data structures manipulate their data struc-
tures directly. Moreover, database schemes are usually static while a program
may change the content of its data structures over time.

The main goal of this paper is to develop a verification methodology that
allows to employ DLs for formulating and verifying content specifications of
pointer-manipulating programs. We propose a two-step Hoare-style verification
methodology: First, existing shape-analysis techniques are used to derive shape
invariants. Second, the user strengthens the derived shape invariants with con-
tent annotations; the resulting verification conditions are then checked automat-
ically. Technically, we employ a very expressive DL (henceforth called L), based
on the so called ALCHOIF , which we specifically tailor to better support rea-
soning about complex pointer structures. For shape analysis we rely on the SL
fragment from [7]. In order to reason automatically about the verification con-
ditions involving DL as well as SL formulae, we identify a powerful decidable
logic CT 2 which incorporates both logics [10]. We believe that our main con-
tribution is conceptual, integrating these different formalisms for the first time.
While the current approach is semi-manual, our long term goal is to increase the
automatization of the method.

2

Overview and Contributions:

– In Section 2, we introduce our formalism. In particular, we formally define
memory structures for representing the heap and we study the DL L as a
formalism for expressing content properties of memory structures.

– In Section 2, we further present the building blocks for our verification
methodology: We give an embedding of L and an embedding of a fragment of
the SL from [7] into CT 2 (Lemmata 2 and 3). Moreover, we give a complexity-
preserving reduction of satisfiability of CT 2 over memory structures to finite
satisfiability of CT 2 (Lemma 1).

– In Section 3, we describe a program model for sequential imperative heap-
manipulating programs without procedures. Our main contribution is a Hoare-
style proof system for verifying content properties on top of (already verified)
shape properties stated in SL.

– Our main technical result is a precise backward-translation of content prop-
erties along loop-less code (Lemma 5). This backward-translation allows us
to reduce the inductiveness of the Hoare-annotations to satisfiability in CT 2.
Theorem 1 states the soundness and completeness of this reduction.

1.1 Running Example: Information System of a Company

Client

LargeProject

Employee

Project Manager

Department

orderedBy

1

*

works-
For

0..1

*

contact-
Person

0..1

0..1

managedBy

0..1 0..1

headedBy

0..1

1

belongsTo

* 1

Our running example will
be a simple information
system for a company
with the following UML
diagram:. The UML gives
the relationships between
entities in the informa-
tion system, but says nothing regarding the implementations of the data struc-
tures that hold the data. We focus mostly on projects, and on the employees
and managers which work on them. Here is an informal description of the pro-
grammers’ intention. The employees and projects are stored in two lists, both
using the next pointer. The heads of the two lists are pHd and eHd respectively.
Here are some properties of our information system. (i)-(iii) extends the UML
somewhat. (iv)-(vi) do not appear in the UML, but can be expressed in DL:

(i) Each employee in the list of employees has a pointer wrkFor to a project
on the list of projects, indicating the project that the employee is working
on (or to null, in case no project is assigned to that employee).

(ii) Each project in the list has a pointermngBy to the employee list, indicating
the manager of the project (or to null, if the project doesn’t have one).

(iii) Employees have a Boolean field isMngr marking them as managers, and
only they can manage projects.

(iv) The manager of a project works for the project.
(v) At least 10 employees work on each large project.
(vi) The contact person for a large-scale project is a manager.

3

We will refer to these properties as the system invariants.
The programmer has written a program S (stated below) for verification.

The programmer has the following intuition about her program: The code S
adds a new project proj to the project list, and assigns to it all employees in the
employee list which are not assigned to any project.

ℓb : p ro j := new ;
p ro j . next :=pHd ;
pHd := pro j ;
e := eHd ;

ℓl : while ∼(e = null) do

i f (e . wrkFor = null)
then e . wrkFor := proj ;
e := e . next ;

od

ℓe : end ;

The programmer wants to verify that the
system invariants are true after the execution
of S, if they were true in the beginning (1).
Note that during the execution of the code,
they might not be true! Additionally the pro-
grammer wants to verify that after executing
S, the project list has been extended by proj,
the employee list still contains the same em-
ployees and indeed all employees who did not
work for a project before now work for project proj (2). We will formally prove
the correctness of S following our verification methodology discussed in the in-
troduction. In Section 2.3 we describe how our DL can be used for specifying
the verification goals (1) and (2). In Section 3.4 we state verification conditions
that allow to conclude the correctness of (1) and (2) for S.

2 Logics for Invariant Specification

2.1 Memory Structures

We use ordinary first order structures to represent memory in a precise way.
A structure (or, interpretation) is a tuple M = (M, τ, ·), where (i) M is an
infinite set (the universe), (ii) τ is a set of constants and relation symbols with
an associated non-negative arity, and (iii) · is an interpretation function, which
assigns to each constant c ∈ τ an element cM ∈ M , and to each n-ary relation
symbol R ∈ τ an n-ary relation RM over M . Each relation is either unary or
binary (i.e. n ∈ {1, 2}). Given A ⊆M , a binary RM, RM and e ∈ AM, we may
use the notation RM(e) if RM is known to be a function over AM.

A Memory structure describes a snapshot of the heap and the local variables.
We assume sets τvar ⊆ τ of constants τfields ⊆ τ of binary relation symbols. We
will later employ these symbols for variables and fields in programs. A memory
structure is a structure M = (M, τ, ·) that satisfies the following conditions:

(1) τ includes the constants onull, oT, oF.
(2) τ has the unary relations Addresses, Alloc, PossibleTargets, MemPool,

and Aux.
(3) AuxM = {oMnull, o

M
T
, oM

F
} and |AuxM| = 3.

(4) AddressesM ∩ AuxM = ∅ and AddressesM ∪ AuxM =M .
(5) AllocM, PossibleTargetsM andMemPoolM form a partition ofAddressesM.
(6) cM ∈M\MemPoolM for every constant c of τ .
(7) For all f ∈ τfields, f

M is a function from AddressesM to M\MemPoolM.
(8) If e ∈MemPoolM, then fM(e) ∈ {oMnull, o

M
F
}.

4

(9) RM ⊆ (M\MemPoolM)n for every3 n-ary R ∈ τ \ ({MemPool} ∪ τfields).

(10) AllocM and PossibleTargetsM are finite. MemPoolM is infinite.

We explain the intuition behind memory structures. Variables in programs
will either have a Boolean value or be pointers. Thus, to represent null and the
Boolean values T and F, we employ the auxiliary relation AuxM storing 3 ele-
ments corresponding to the 3 values. AddressesM represents the memory cells.
The relation AllocM is the set of allocated cells, PossibleTargetsM contains all
cells which are not allocated, but are pointed to by allocated cells (for technical
reasons it possibly contains some other unallocated cells). MemPoolM contains
the cells which are not allocated, do not have any field values other than null and
F, are not pointed to by any field, do not participate in any other relation and
do not interpret any constant (see (6-9)). The memory cells in MemPool are
the candidates for allocation during the run of a program. Since the allocated
memory should by finite at any point of the execution of a program, we require
that AllocM and PossibleTargetsM are finite (see (10)), while the available
memory AddressesM and the memory pool MemPoolM are infinite. Finally,
each cell is seen as a record with the fields of τfields.

2.2 The Description Logic L

L is defined w.r.t. a vocabulary τ consisting of relation and constant symbols. 4

Definition 1 (Syntax of L). The sets of roles and concepts of L is defined
inductively: (1) every unary relation symbol is a concept (atomic concept); (2)
every constant symbol is a concept; (3) every binary relation symbol is a role
(atomic role); (4) if r, s are roles, then r ∪ s, r ∩ s, r\s and r− are roles; (5) if
C,D are concepts, then so are C ⊓D, C ⊔D, and ¬C; (6) if r is a role and C
is a concept, then ∃r.C is also a concept; (7) if C,D are concepts, then C ×D
is a role (product role).

The set of formulae of L is the closure under ∧,∨,¬,→ of the atomic formu-
lae: C ⊑ D (concept inclusion), where C,D are concepts; r ⊑ s (role inclusion),
where r, s are roles; and func(r) (functionality assertion), where r is a role.

Definition 2 (Semantics of L). The semantics is given in terms of structures
M = (M, τ, ·). The extension of ·M from the atomic relations and constants in
M and the satisfaction relation |= are given below. If M |= ϕ, then M is a

3 Here n ∈ {1, 2}.
4 In DL terms, L corresponds to Boolean ALCHOIF knowledge bases with the ad-
ditional support for role intersection, role union, role difference and product roles.

5

model of ϕ. We write ψ |= ϕ if every model of ψ is also a model of ϕ.

(C ⊓D)M = CM ∩DM (r ⊓ s)M = rM ∩ sM

(C ⊔D)M = CM ∪DM (r ⊔ s)M = rM ∪ sM

(¬C)M =M \ CM (r \ s)M = rM \ sM

(C ×D)M = CM ×DM (r−)M = {(e, e′) | (e′, e) ∈ rM)}
(∃r.C)M = {e | ∃e′ : (e, e′) ∈ rM}
M |= C ⊑ D if CM ⊆ DM M |= r ⊑ s if rM ⊆ sM

M |= func(r) if{(e, e1), (e, e2)} ⊆ rM implies e1 = e2

The closure of |= under ∧ ∨,¬,→ is defined in the natural way. We abbreviate:
⊤ = C⊔¬C, where C is an arbitrary atomic concept and ⊥ = ¬⊤; α ≡ β for the
formula α ⊑ β ∧ β ⊑ α; and ∃r for the concept ∃r.⊤; (o, o′) for the role o × o′.
Note that ⊤M =M and ⊥M = ∅ for any structure M = (M, τ, ·).

2.3 Running Example: Content Invariants in L

Now we make the example from Section 1.1 more precise. The concepts ELst and
PLst are interpreted as the sets of elements in the employee list resp. the project
list. mngBy, isMngr and wrkFor are roles. oeHd and opHd are the constants
which correspond to the heads of the two lists. The invariants of the systems are:
The emploee and project lists are allocated: PLst ⊔ ELst ⊑ Alloc
Projects and employees are distinct: PLst ⊓ ELst ⊑ ⊥
wrkFor is set to null for projects: PLst ⊑ ∃wrkFor.onull
mngBy is set to null for employees: ELst ⊑ ∃mngBy.onull
wrkFor of employees in the list point
to projects in the list or to null: ∃wrkFor−.ELst ⊑ PLst ⊔ onull
isMngr is a Boolean field: ∃isMngr−.ELst ⊑ Boolean

mngBy of projects point ∃mngBy−.PLst ⊑
to managers or null: (ELst ⊓ ∃isMngr.oT) ⊔ onull
The manager of a project
must work for the project: mngBy ∩ (⊤ × ELst) ⊑ wrkFor−

Let the conjunction of the invariants be given by ϕinvariants.

Consider S from Section 1. The states of the heap before and after the exe-
cution of S can be related by the following L formulae. ϕlists−updt and ϕp−assgn.
ϕlists−updt states that the employee list at the end of the program (ELst) is
equal to the employee list at the beginning of the program (ELstgho), and that
the project list at the end of the program (PLst) is the same as the project list
at the beginning of the program (PLstgho), except that PLst also contains the
new project oproj . ELstgho and wrkForgho are ghost relation symbols, whose
interpretations hold the corresponding values at the beginning of S.

ϕlists−updt = ELstgho ≡ ELst ∧ PLstgho ⊔ oproj ≡ PLst

ϕp−assgn = ELstgho ⊓ ∃wrkForgho.onull ≡ ELst ⊓ ∃wrkFor.oproj

6

Ghost symbols As discussed in Section 2.3, in order to allow invariants of the
form ϕlists−updt = ELstgho ≡ ELst ∧ PLstgho ⊔ oproj ≡ PLst
we need ghost symbols. We assume τ contains, for every symbol e.g. s ∈ τ , the
symbol sgho. Therefore, memory structures actually contain two snapshots of the
memory: one is the current snapshot, on which the program operates, and the
other is a ghost snapshot, which is a snapshot of the memory at the beginning
of the program, and which the program does not change or interact with. We
denote the two underlying memory structures of M by Mcur and Mgho. Since
the interpretations of ghost symbols should not change throughout the run of a
program, they will sometime require special treatment.

2.4 The Separation Logic Fragment SLls

The SL that we use is denoted SLls, and is the logic from [7] with lists and
multiple pointer fields, but without trees. It can express that the heap is par-
titioned into lists and individual cells. For example, to express that the heap
contains only the two lists ELst and PLst we can write the SLls formula
ls(pHd, null) ∗ ls(eHd, null).

We denote by vari ∈ V ar and fi ∈ Fields the sets of variables respectively
fields to be used in SLls-formulae. vari are constant symbols. fi are binary
relation symbols always interpreted as functions. An SLls-formula Π | Σ is the
conjunction of a pure part Π and a spatial part Σ.Π is a conjunction of equalities
and inequalities of variables and onull. Σ is a spatial conjunction Σ = β1 ∗· · ·∗βr
of formulae of the form ls(E1, E2) and var 7→ [f1 : E1, . . . , fk : Ek], where each
Ei is a variable or onull. Additionally, Σ can be emp and Π can be T. When
Π = T we write Π |Σ simply as Σ.

The memory model of [7] is very similar to ours. We give the semantics of
SLls in memory structures directly due to space constraints. See the appendix
for a discussion of the standard semantics of SLls. Π is interpreted in the natural
way. Σ indicates that AllocM is the disjoint union of r parts PM

1 , . . . , PM
r . If βi

is of the form var 7→ [f1 : E1, . . . , fk : Ek] then |PM
i | = 1 and, denoting v ∈ PM

i ,
fM
j (v) = EM

j . If βi is of the form ls(E1, E2)], then |PM
i | is a list from EM

1 to

EM
2 . EM

2 might not belong to PM
i . If Σ = emp then AllocM = ∅.

2.5 The Two-variable Fragment with Counting and Trees CT
2

C2 is the subset of first-order logic whose formulae contain at most two vari-
ables, extended with counting quantifiers ∃≤k, ∃≥k and ∃=k for all k ∈ N. W.
Charatonik and P. Witkowski [10] recently studied an extension of C2 which
trees which, as we will see, contains both our DL and our SL. CT 2 is the subset
of second-order logic of the form ∃F1 ϕ(F1) ∧ ϕforest(F1) where ϕ ∈ C2 and
ϕforest(F1) says that F1 is a forest. Note that CT 2 is not closed under nega-
tion, conjunction or disjunction. However, CT 2 is closed under conjunction or
disjunction with C2-formulae.

A CT 2-formula ϕ is satisfiable in a memory structure if there is a memory
structure M such that M |= ϕ. We write ψ |=m ϕ if M |= ψ implies M |= ϕ for

7

every memory structure M. Lemma 1 states the crucial property of CT 2 that
we use. It follows from [10], by reducing the memory structures to closely related
finite structures. 5 (see Appendix B).

Lemma 1. Satisfiability of CT 2 by memory structures is in NEXPTIME.

2.6 Embedding L and SLls in CT
2

L has a fairly standard reduction (see e.g. [8]) to C2:

Lemma 2. For every vocabulary, there exists tr : L(τ) → C2(τ) such that for
every ϕ ∈ L(τ), ϕ and tr(ϕ) agree on the truth value of all τ-structures.

E.g., tr(C1 ⊑ C2) = ∀xC1(x) → C2(x). The details of tr are given in Table 1.
The translation of SLls requires more work. Later we need the following

related translations: α : SLls → L extracts from the SLls properties whatever
can be expressed in L. β : SLls → CT 2 captures SLls precisely.

Given a structure M, LM is a singly linked list from oMvar1 to oMvar2 w.r.t. the
field nextM if M satisfies the following five conditions, or it is empty. Except
for (5), the conditions are expressed fully in L below:
(1) oMvar1 belongs to LM; (2) oMvar2 is pointed to by an LM element; (3) oMvar2 does
not belong to LM; (4) Every LM element is pointed to from an LM element,
except possibly for oMvar1 ; (5) all elements of LM are reachable from oMvar1 via
nextM. Let

α1(ls) = (ovar1 ⊑ L) α3(ls) = (ovar2 ⊑ ¬L)
α2(ls) = (ovar2 ⊑ ∃next−.L) α4(ls) = (L ⊑ ovar1 ⊔ ∃next−.L)
αemp−ls(ls) = (L ⊑ ⊥) ∧ (ovar1 = ovar2)
α(ls) = α1(ls) ∧ · · · ∧ α4(ls) ∨ αemp−ls(ls)

In memory structures M satisfying α(ls), if LM is not empty, then it contains
a list segment from oMvar1 to oMvar2 , but additionally L

M may contain additional
simple nextM-cycles, which are disjoint from the list segment. Here we use the
finiteness of AllocM (which contains LM) and the functionality of nextM. A
connectivity condition is all that is lacking to express ls precisely. α(ls) can be
extended to α : SLls → L in a natural way (see Appendix C) such that:

Lemma 3. For every ϕ ∈ SLls, ϕ implies α(ϕ) over memory structures.

To rule out the superfluous cycles we turn to CT 2. Let

β5(ls) = ∀x∀y
[

(L(x) ∧ L(y)) → (F1(x, y) ↔ next(x, y))
]

∧
∀x

[(

L(x) ∧ ∀y (L(y) → ¬F1(y, x))
)

→ (x ≈ ovar1)
]

β5(ls) states that the forest F1 coincides with next inside L and that the forest
induced by F1 on L is a tree. Let β(ls) = ∃F1 tr(α(ls)) ∧ β5(ls) ∧ ϕforest(F1).
β(ls) ∈ CT 2 and it expresses that LM is a list. The extension of β(ls) to the
translation function β : SLls → CT 2 is natural and discussed in Appendix C.
Appendix D discusses the translation of cyclic data structures under β.

5 In fact [10] allows existential quantification over two forests, but will only need one.

8

Lemma 4. For every ϕ ∈ SLls: ϕ and β(ϕ) agree on all memory structures.

CT 2’s flexibility allows to easily express variations of singly-linked lists, such
as doubly-linked lists, or lists in which every element points to a special head
element via a pointer head, and analogue variants of trees.

2.7 Running Example: Shape Invariants

At the loop header of the program S from the introduction, the memory contains
two distinct lists, namely PLst and ELst. ELst is partitioned into two parts:
the employees who have been visited in the loop so far, and those that have not.
This can be expressed in SLls by the formula: ϕℓl = T | ls(eHd, e) ∗ ls(e, nil) ∗
ls(pHd, nil). The translation α(ϕℓl) is given by

P1 ⊔ P2 ⊔ P3 ≡ Alloc ∧ α(ls(eHd, e, next, P1))∧
α(ls(e, null, next, P2)) ∧ α(ls(pHd, null, next, P3))∧
P1 ⊓ P2 ≡ ⊥ ∧ P1 ⊓ P3 ≡ ⊥ ∧ P2 ⊓ P3 ≡ ⊥ ∧ αT

The translation from SL assigns concepts Pi to each of the lists. αT which occurs
in α(ϕℓl) is the translation of Π = T in ϕℓl . In order to clarify the meaning of
α(ϕℓl) we relate the Pi to the concept names from Section 2.3 and simplify the
formula somewhat. Let ψl = P1 ⊔ P2 ≡ ELst ∧ P3 ≡ PLst. P1 contains the
elements of ELst visited in the loop so far. α(ϕℓl) is equivalent to:

α′(ϕℓl) = ψl ∧ ELst ⊔ PLst ≡ Alloc ∧ ELst ⊓ PLst ≡ ⊥ ∧ α(ls(eHd, e, next, P1))
∧α(ls(e, null, next, ELst ⊓ ¬P1)) ∧ α(ls(pHd, null, next, PLst))

β5(Σ) = β5(ls(eHd, e, next, P1)) ∧ β
5(ls(e, null, next, ELst ⊓ ¬P1))∧

β5(ls(pHd, null, next, PLst))
β(ϕℓl) = ∃F1 tr(α(ϕ) ∧ β5(Σ) ∧ ϕforest(F1)

3 Content Analysis

3.1 Syntax and Semantics of the Programming Language

Loopless Programs are generated by the following syntax:

e :: var.f | var | null (f ∈ τfields, ovar ∈ τvar)
b :: (e1 = e2) | ∼ b | (b1 and b2) | (b1 or b2) | T | F
S :: var1 := e2 | var1.f := e2 | skip | S1;S2 | var := new | dispose(var) |

if b then S1 fi | if b then S1 else S2 fi | assume(b)

Let Exp denote the set of expressions e and Bool denote the set of Boolean
expressions b. To define the semantics of pointer and Boolean expressions, we
extend fM by fM(err) = err for every f ∈ τfields. We define Ee(M) : Exp →
AddressesM ∪ {null, err} and Bb(M) : Bool → {oT, oF, err} (with err 6∈M):

Evar(M) = oMvar , if o
M
var ∈ AllocM Be1=e2(M) = err if Eei(M) = err, i ∈ {1, 2}

Evar(M) = err, if oMvar 6∈ AllocM Be1=e2(M) = oT, if Ee1(M) = Ee2(M)
Ear.f (M) = fM(Evar(M)) Be1=e2(M) = oF, if Ee1(M) 6= Ee2(M)

9

B extends naturally w.r.t. the Boolean connectives.
The operational semantics of the programming language is: For any command

S, if E or B give the value err, then 〈S,M〉 ; abort. Otherwise, the semantics
is as listed below. First we assume that in the memory structures involved all
relation symbols either belong to τfields, are ghost symbols or are the required
symbols of memory structures (Alloc, Aux, etc.).

1. 〈skip,M〉 ; M.
2. 〈var1 := e2,M〉 ; [M | oMvar1 is set to Ee2(M)].
3. 〈var := new,M〉 ; [M | For some t ∈MemPoolM,
t is moved to AllocM and oMvar is set to t],

4. If oMvar 6∈ AllocM, 〈dispose(var),M〉 ; abort;
otherwise 〈dispose(var),M〉 ; [M | oMvar is removed from AllocM].

5. 〈S1;S2,M〉 ; 〈S2, 〈S1,M〉〉
6. 〈if b then ST else SF,M〉 ; 〈Stv,M〉 where tv = Bb(M).
7. 〈if b then S ,M〉 ; 〈if b then S else skip fi,M〉.
8. If Bb(M) = T, then 〈assume(b),M〉 ; M;

otherwise 〈assume(b),M〉 ; abort.

If M is a memory structure and 〈S,M〉 ; M′, then M′ is a memory structure.
Now consider a relation symbol e.g. ELst. If 〈S,M〉 ; M′, then we want to

think of ELstM and ELstM
′

as the employee list before and after the execu-
tion of S. However, the constraints that ELstM and ELstM

′

are lists and that
ELstM

′

is indeed obtained from from ELstM by running S will be expressed
as formulae. In the ; relation, we allow any values for ELstM and ELstM

′

.
For any tuple R̄ of relation symbols which do not belong to τfields, are not

ghost symbols and are not the required symbols of memory structures (Alloc,
Aux, etc.), we extend ; as follows: if 〈S,M〉 ; M′, then

〈

S,
〈

M, R̄M
〉〉

;
〈

M′, R̄M′

〉

, for any tuples R̄M and R̄M′

.

Programs with Loops are represented as hybrids of the programming lan-
guage for loopless code and control flow graphs.

Definition 3 (Program). A program is G = 〈V,E, ℓinit, shp, cnt, λ〉 such that
G = (V,E) is a directed graph with no multiple edge but possibly containing self-
loops, ℓinit ∈ V has in-degree 0, shp : V → SLls, cnt : V → L(τ) are functions,
and λ is a function from E to the set of loopless programs.

Here is the code S from the introduction: ℓb

ℓ Sℓ

ℓe

Sb

Se

V = {ℓb, ℓl, ℓe} E = {(ℓb, ℓl), (ℓl, ℓl), (ℓl, ℓe)}
λ(ℓb, ℓl) = Sb ℓinit = ℓb
λ(ℓl, ℓl) = assume(∼ (e = null));Sℓl

λ(ℓl, ℓe) = assume(e = null);Se

Sb, Sℓl and Se denote the three loopless code blocks which are respectively the
code block before the loop, inside the loop and after the loop. The annotations
shp and cnt are described in Section 3.4.

10

The semantics of programs derive from the semantics of loopless programs
and is given in terms of program paths. Given a program G, a path in G is a
finite sequence of directed edges e1, . . . , et such that for all 1 ≤ i ≤ t− 1, the tail
of ei is the head of ei+1. A path may contain cycles.

Definition 4 (;∗ for paths). Given a program G, a path P in G, and memory
structures M1 and M2 we define whether 〈P,M1〉 ;

∗ M2 holds inductively.

– If P is empty, then 〈P,M1〉 ;
∗ M2 iff M1 = M2.

– If et is the last edge of P , then 〈P,M1〉 ;
∗ M2 iff there is M3 such that

〈P\{et},M1〉 ;
∗ M3 and 〈λ(et),M1〉 ;

∗ M3. P\{et} denotes the path
obtained from P by removing the last edge et.

3.2 Hoare-style Proof System

Now we are ready to state our two-step verification methodology that we for-
mulated in Section 1 precisely. Our methodology assumes a program P as in
Definition 3 as input (ignoring the shp and cnt functions for the moment).

I. Shape Analysis. The user annotates the program locations with SL
formulae from SLls (stored in the shp function of P). Then the user proves the
validity of the SLls annotations, for example, by using techniques from [7].

II. Content Analysis. The user annotates the program locations with L-
formulae that she wants to verify (stored in the cnt function of P). We point
out that an annotation cnt(ℓ) can use the concepts occurring in α(shp(ℓ)) (recall
that α : SLls → L maps SL formulae to L-formulae).

In the rest of the paper we discuss how to verify the cnt annotations. In Sec-
tion 3.3 we describe how to derive a verification condition for every program edge.
The verification conditions rely on the backwards propagation function Θ for L-
formulae which we introduce in Section 3.5. The key point of our methodology is
that the validity of the verification conditions can be discharged automatically
by a satisfiability solver for CT 2-formulae. We show that all the verification con-
ditions are valid if and only if cnt is inductive. Intuitively, cnt being inductive
ensures that the annotations cnt can be used in an inductive proof to show that
all reachable memory structures indeed satisfy the annotations cnt(ℓ) at every
program location ℓ (see Definition 6 below).

3.3 Content Verification

We want to prove that, for every initial memory structure M1 from which the
computation satisfies shp and which satisfies the content pre-condition cnt(ℓinit),
the computation satisfies cnt. Here are the corresponding verification conditions,
which annotate the vertices of G:

Definition 5 (Verification conditions). Given a program G, V C is the func-
tion from E to L given for e = (ℓ0, ℓ) by

V C(e) = ¬
[

β(shp(ℓ0)) ∧ tr(cnt(ℓ0)) ∧ tr
(

Θλ(e)

(

α(shp(ℓ)) ∧ ¬cnt(ℓ)
))]

V C(e) holds if V C(e) is a tautology over memory structures (⊤ |=m V C(e)).

11

Θ is discussed in Section 3.5. As we will see, V C(ℓ0, ℓ) expresses that when
running the loopless program λ(e) when the memory satisfies the the annotations
of ℓ0, and when the shape annotation of ℓ is at least partly true (i.e., when
α(shp(ℓ))), the content annotation of ℓ holds.

Let J be a set of memory structures. For a formula in CT 2 or L, we write
J |= ϕ if, for every M ∈ J , M |= ϕ. Let Init be a set of memory structures.

Definition 6 (Inductive program annotation). Let f : V → CT 2. We
say f is inductive for Init if (i) Init |= f(ℓinit), and (ii) for every edge e =
(ℓ1, ℓ2) ∈ E and memory structures M1 and M2 such that M1 |= f(ℓ1) and
〈λ(e),M1〉 ; M2, we have M2 |= f(ℓ2). We say shp is inductive for Init if the
composition shp◦β : V → CT 2 is inductive for Init. We say cnt is inductive for
Init relative to shp if shp is inductive for Init and g : V → CT 2 is inductive
for Init, where g(ℓ) = tr(cnt(ℓ)) ∧ β(shp(ℓ)).

Theorem 1 (Soundness and Completeness of the Verification Condi-
tions). Let G be a program such that shp is inductive for Init and Init |=
cnt(ℓinit). The following statements are equivalent:
(i) For all e ∈ E, V C(e) holds. (ii) cnt is inductive for Init relative to shp.

We make the notion of a computation satisfying the verification conditions pre-
cise using the following definition:

Definition 7 (Reach(ℓ)). Given a program G, a node ℓ ∈ V , and a set Init of
memory structures, Reach(ℓ) is the set of memory structures M for which there
is Minit ∈ Init and a path P in G starting at ℓinit such that 〈P,Minit〉 ;

∗ M.

In particular, Reach(ℓinit) = Init. The proof of Theorem 1 and its consequence
Theorem 2 below are given in in Appendix F.

Theorem 2 (Soundness of the Verification Methodology). Let G be a
program such that shp is inductive for Init and Init |= cnt(ℓinit). If for all
e ∈ E, V C(e) holds, then for ℓ ∈ V , Reach(ℓ) |= cnt(ℓ).

3.4 Running Example: General Methodology

To verify the correctness of the code S, the shp and cnt annotations must be
provided. The shape annotations of program S are:

shp(ℓb) = ls(eHd, null) ∗ ls(pHd, null)
shp(ℓl) = ϕℓl

shp(ℓe) = (proj = pHd) | ls(eHd, null) ∗ ls(pHd, null)

ϕℓl = ls(eHd, null) ∗ ls(e, null) ∗ ls(pHd, e) was considered in Section 2.7.
The three content annotations require that the system invariants ϕinvariants

from Section 2.3 hold. The post-condition additionally requires that ϕp−assgn

and ϕlists−updts hold. Recall ϕp−assgn states that every employee which was not

12

assigned a project, is assigned to oproj . ϕlists−updts states that the content of the
two lists remain unchanged, except that the project oproj is inserted to PLst.

In order to interact with the translations α(shp(· · ·)) of the shape annota-
tions, we need to related the Pi to the concepts ELst and PLst. In Section 2.7
we defined ψl, which relates the Pi generated by α on shp(ℓl).

ψℓb = ψℓe = P1 ≡ ELst ∧ P2 ≡ PLst

cnt(ℓb) = ψℓb ∧ ϕinvariants

cnt(ℓl) = ψℓl ∧ ϕinvariants ∧ ϕlists−updt ∧ ϕp−as−ℓl

cnt(ℓe) = ψℓe ∧ ϕinvariants ∧ ϕlists−updt ∧ ϕp−assgn

ϕp−as−ℓl = P1 ⊓ ∃wrkForgho.onull ≡ P1 ⊓ ∃wrkFor.oproj

ϕp−as−ℓl states that, in the part of ELst containing the employees visited so far
in the loop, any employee which was not assigned to a project at the start of the
program (i.e., in the ghost version of wrkFor) is assigned to the project proj.
ϕp−as−ℓl makes no demands on elements of ELst which have not been reach in
the loop so far. The verification conditions of G are, for each (ℓ1, ℓ2) ∈ E,

V C(ℓ1, ℓ2) = ¬
[

β(shp(ℓ1)) ∧ tr(cnt(ℓ1)) ∧ tr
(

Θλ(l1,l2)(α(shp(ℓ2)) ∧ ¬cnt(ℓ2))
)]

The verification conditions V C(e) express that the loopless programs on the
edges e of G satisfy their annotations. To prove the correctness of G w.r.t.
V C(e) using Theorem 2, we prove that V C(e), e ∈ E, hold, in order to get:

Conclusion 1 Reach(ℓ) |= cnt(ℓ), for all ℓ ∈ V .

3.5 Backwards Propagation and the Running Example

Here we shortly discuss the backwards propagation of a formula along a loopless
program S. Let 〈S,M1〉 ; M2 where M1 and M2 are memory structures over
the same vocabulary τ . E.g., in our running example, for i = 1, 2, Mi is

〈

M,ELstMi , nextMi ,mngByMi, · · · ,
ELstMi

gho, next
Mi

gho, · · · , Alloc
Mi, AuxMi · · ·

〉

We will show how to translate a formula for M2 to a formula for an extended
M1. Fields and variables in M2 will be translated by the backwards propaga-
tion into expressions involving elements of M1. For ghost symbols sgho, s

M1

gho

will be used instead of sM2

gho since they do not change during the run of the
program. Let τrem ⊆ τ be the set of the remaining symbols, i.e. the sym-
bols of τ \ ({PossibleTargets,MemPool} ∪ τfields) which are not ghost sym-
bols, for example ELst, but not ELstgho, next or mngBy. We need the re-
sult of the backwards propagation to refer to the interpretations of symbols
in τrem from M2 rather than M1. Therefore, these interpretations are copied
as they are from M2 and added to M1 as follows. For every R ∈ τrem, we
add a symbol Rext for the copied relation. We denote by (R̄ext)M1 the tuple

13

(

(Rext)M1 : (Rext)M1 = RM2 and R ∈ τrem
)

Let τext extend τ with Rext for
each R ∈ τrem. The backwards propagation updates the fields and variables ac-
cording to the loopless code. Afterwards, we substitute the symbols R ∈ τrem in
ϕ with the corresponding Rext. We present here a somewhat simplified version
of the backwards propagation lemma. The precise version is similar in spirit and
is given in Appendix E.

Lemma 5 (Simplified). Let S be a loopless program, let M1 and M2 be
memory structures, and ϕ be an L-formula over τ .

1. If 〈S,M1〉 ; M2, then: M2 |= ϕ iff
〈

M1, (R̄
ext)M1

〉

|= ΘS(ϕ).

2. If 〈S,M1〉 ; abort, then
〈

M1, (R̄
ext)M1 ,

〉

6|= ΘS(ϕ).

As an example of the backwards propagation process, we consider a formula
from Section 3.4, which is part of the content annotation of ℓl and perform the
backwards propagation on the loopless program inside the loop:

ϕp−as−ℓl = P1 ⊓ ∃wrkForgho.onull ≡ P1 ⊓ ∃wrkFor.oproj

Since next does not occur in ϕp−as−ℓl , backwards propagation of ϕp−as−ℓl over
e := e.next does not change the formula (however α(shp(ℓl)) by this command).
The backwards propagation of the if command gives

ΨSℓl
(ϕp−as−ℓl) =

(

¬(∃wrkFor− .oe ≡ onull) ∧ ϕp−as−ℓl

)

∨
∃wrkFor−.oe ≡ onull ∧ Ψe.wrkFor:=proj(ϕp−as−ℓl)

)

Ψe.wrkFor:=proj(ϕp−as−ℓl) = P1 ⊓ ∃wrkForgho .onull ≡
P1 ⊓ ∃((wrkFor\(oe ×⊤)) ∪ (oe, oproj)).oproj

Ψe.wrkFor:=proj(ϕp−as−ℓl) is obtained from ϕp−as−ℓl by substituting the wrkFor
role with the correction ((wrkFor\(oe × ⊤)) ∪ (oe, oproj)) which updates the
value of oe in wrkFor to proj. ΦSℓl

(ϕp−as−ℓl) is obtained from ΨSℓl
(ϕp−as−ℓl)

by subtituting P1 with P1
ext. Θ is differs from Φ from technical reasons related

to aborting computations (see Appendix E).

4 Related Work

Shape Analysis attracted considerable attention in the literature. The classical
introductory paper to SL [23] presents an expressive SL which turned out to be
undecidable. We have restricted our attention to the better behaved fragment in
[7]. The work on SL focuses mostly on shape rather than content in our sense.
SL has been extended to object oriented languages, cf. e.g. [22,11], where shape
properties similar to those studied in the non objected oriented case are the
focus, and the main goal is to overcome difficulties introduced by the additional
features of OO languages. Other shape analyses could be potential candidates
for integration in our methodology. [24] use 3-valued logic to perform shape
analysis. Regional logic is used to check correctness of program with shared

14

dynamica memory areas [5]. [16] uses nested tree automata to represent the
heap. [20] combines monadic second order logic with SMT solvers.
Description Logics have not been considerd for verification of programs with
dynamically allocated memory, with the exception of [13] whose use (mostly un-
decidable) DLs to express shape-type invariants, ignoring content information.
In [9] the authors consider verification of loopless code (transactions) in graph
databases with integrity constraints expressed in DLs. Verification of tempo-
ral properties of dynamic systems in the presence of DL knowledge bases has
received significant attention (see [4,14] and their references). Temporal Descrip-
tion Logics, which combine classic DLs with classic temporal logics, have also
received significant attention in the last decade (see [19] for a survey).
Related Ideas. Some recent papers have studied verification strategies which
use information beyond the semantics of the source code. E.g., [18] is using
diagrams from design documentation to support verification. [12,1] infer the in-
tended use of program variables to guide a program analysis. Instead of starting
from code and verifying its correctness, [15] explores how to declaratively spec-
ify data structures with sharing and how to automatically generate code from
this specification. Given the importance of both DL as a formalism of content
representation and of program verification, and given that both are widely stud-
ied, we were surprised to find little related work. However, we believe this stems
from large differences between the research in the two communities, and from
the interdisciplinary nature of the work involved.

References

1. S. Apel, D. Beyer, K. Friedberger, F. Raimondi, and A. von Rhein. Domain types:
Abstract-domain selection based on variable usage. In HVC, pages 262–278, 2013.

2. A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev.
Reasoning over extended ER models. In Proc. of ER, pages 277–292. 2007.

3. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic handbook: theory, implementation, and applications.
Cambridge University Press, 2003.

4. F. Baader and B. Zarrieß. Verification of golog programs over description logic
actions. In Proc. of FroCos, pages 181–196. Springer, 2013.

5. A. Banerjee, D. A. Naumann, and S. Rosenberg. Local reasoning for global invari-
ants, part I: Region logic. J. ACM, 60(3):18, 2013.

6. D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(12):70 – 118, 2005.

7. J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic execution with Separation
Logic. In APLAS, volume 3780, pages 52–68. Springer-Verlag, 2005.

8. A. Borgida. On the relative expressiveness of description logics and predicate
logics. Artif. Intell., 82(1-2):353–367, 1996.

9. D. Calvanese, M. Ortiz, and M. Šimkus. Evolving graph databases under descrip-
tion logic constraints. In Proc. of DL, pages 120–131, 2013.

10. W. Charatonik and P. Witkowski. Two-variable logic with counting and trees. In
LICS, pages 73–82, 2013.

11. W. Chin, C. David, H.H. Nguyen, and S. Qin. Enhancing modular oo verification
with separation logic. POPL, pages 87–99. ACM, 2008.

15

12. Y. Demyanova, H. Veith, and F. Zuleger. On the concept of variable roles and its
use in software analysis. In FMCAD, pages 226–230, 2013.

13. L. Georgieva and P. Maier. Description Logics for shape analysis. In SEFM, pages
321–331, 2005.

14. G. De Giacomo, Y. Lespérance, and F. Patrizi. Bounded situation calculus action
theories and decidable verification. In Proc. of KR, 2012.

15. P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv. Data structure fusion.
In APLAS, volume 6461 of LNCS, pages 204–221. Springer, 2010.

16. L. Hoĺık, O. Lengál, A. Rogalewicz, J. Simácek, and T. Vojnar. Fully automated
shape analysis based on forest automata. In CAV, 2013.

17. S. S. Ishtiaq and P. W. O’Hearn. Bi as an assertion language for mutable data
structures. POPL, pages 14–26. ACM, 2001.

18. D. James, T. Leonard, J. O’Leary, M. Talupur, and M. R. Tuttle. Extracting
models from design documents with mapster. PODC, 2008.

19. C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A survey.
In Proc. of TIME. IEEE Computer Society, 2008.

20. P. Madhusudan, G. Parlato, and X. Qiu. Decidable logics combining heap struc-
tures and data. POPL, pages 611–622. ACM, USA, 2011.

21. W3C OWLWorking Group. OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, 27 October 2009.

22. M. J. Parkinson and G. M. Bierman. Separation logic, abstraction and inheritance.
SIGPLAN Not., 43(1):75–86, January 2008.

23. J. C. Reynolds. Separation Logic: A logic for shared mutable data structures. In In

Proc. of LICS, pages 55–74, Washington, DC, USA, 2002. IEEE Computer Society.
24. G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract

operations for shape analysis. In TACAS, pages 530–545. 2004.

16

A Separation Logic

Here we expand on the treatment of separation logic in the paper. We have de-
fined the semantics of SL using our memory structures. The memory model used
in [7] is very similar to our memory structures. We give the standard semantics
of SL here in terms of heaps and stacks, and relate it to memory structures. It
is convenient to define first SL, which does not allow list segments, and then
extend to SLls.

The allocated cells of the memory all have the same finite collection of fields
(denoted Fields). Let Add and V al be disjoint sets. Add is the set of addresses
(locations in the terminology of [7], not to be confused with our use of “locations
in a program”). V al is a set of values which include nil. The description of the
memory consists of two parts, a heap and a stack. A heap is a partial function

h : Add
fin
→ (Fields→ V al∪Add) which is only defined on a finite subset of Add.

A stack is a function from a finite set V ar of local variables s : V ar → V al∪Add.
The syntax of SL is as follows:

vari ∈ V ar, i ∈ N

fi ∈ Fields, i ∈ N

E ::= null | vari

Π ::= T | E = E | E 6= E | Π ∧Π
Σ ::= emp | Σ ∗Σ |
var 7→ [f1 : E1, . . . , fk : Ek]
SL-formula ::= Π |Σ

When Π = T we write Π | Σ simply as Σ. The semantics of SL is given by a

relation s, h |= φ where s ∈ Stacks, h ∈ Heaps. We define [[vari]]s
def
= s(x) and

[[nil]]s
def
= nil, and:

s, h |= true always
s, h |= E1 = E2 iff [[E1]]s = [[E2]]s
s, h |= E1 6= E2 iff [[E1]]s 6= [[E2]]s
s, h |= Π0 ∧Π1 iff s, h |= Π0 and s, h |= Π1

s, h |= var1 7→ [fi : Ei] iff h = [[var1]]s → r where r(fi) = [[Ei]]s
s, h |= emp iff h = ∅
s, h |= Σ1 ∗Σ2 iff ∃h0h1. h = h0 ∗ h1 and s, h0 |= Σ0 and s, h1 |= Σ1

s, h |= Π |Σ iff s, h |= Π and s, h |= Σ

where h0 ∗ h1 enforces there is no address in Add on which both h0 and h1 are
defined, and h = h0 ∗ h1 denotes that h is the union of h0 and h1. Additionally,
not all fields in Fields need to occur in var1 7→ [fi : Ei], and those that do not
are assigned nil implicitly.

SLls extends SL by adding list segments: the syntax is extended by

Σ ::= · · · | ls(E1, E2)

and the semantics of ls(E1, E2) is the least fixed point of the predicate given by

(E1 = E2 ∧ emp) ∨ (E1 6= E2 ∧ ∃y.E1 7→ [n : y] ∗ ls(y, E2))

17

Heaps and Stacks vs. Memory Structures The memory model of SL and our
memory model are easily translatable. The distinction between values in V al
and addresses in Add does not play a major role in [7], so we simplify by setting
V al = {nil, true, false}.

Given M we define sM and hM as follows. Fields is equal to τfields and
Add = Addresses and we have M = V al∪Add with nil = oMnull, true = oM

T
and

false = oM
F
. For every variable vari, s(vari) = oMvari . For every add ∈ Add we

define h(add) = hadd as follows: for every f ∈ Fields, hadd(f) = fM(add).
Given s and h, we define Ms,h = M as follows. The universe Ms,h is

Add ∪ {oMnull, o
M
T
, oM

F
}, with oMnull = nil, oM

T
= true and oM

F
= false and

AddressesM = Add. The set of addresses on which h is defined is AllocM. For
every field f ∈ Fields, fM = hf , where hf (add) = h(add)(f) is the value the

field f of address add receives under h. For every variable vari, o
Ms,h
vari = s(vari).

The above shows how to transform the memory models into each other in a
natural way. More precisely:

Lemma 6. If s, h are a stack and a heap, and if sMs,h
, hMs,h

are the stack and
heap obtained by applying the above transformations on s and h in order, then
sMs,h

= s and hMs,h
= h.

Remark 1. The semantics of the standard programming language used with sep-
aration logic allows memory cells to be reallocated, while our programming lan-
guage forbids this for technical simplicity.

B CT
2-Satisfiability in Memory Structures

In this appendix we prove Lemma 1, i.e. we show that satisfiability of CT 2

formulae by memory structures is in NEXPTIME. We employ the fact that finite
satisfiability of CT 2-formulae, i.e. truth in a structure with a finite domain, is
in NEXPTIME:

Theorem 3 (W. Charatonik and P. Witkowski [10]). Finite satisfiability
of CT 2 is NEXPTIME-complete.

To show that satisfiability of a formula ψ ∈ CT 2 in a memory structure
can be decided in non deterministic exponential time, it suffices to construct in
linear time a formula ψm ∈ C2 such that ψ is satisfiable in a memory structure
iff ψm ∧ ψ is finitely satisfiable. The formula ψm is the conjunction of formulae
corresponding to requirements (3)-(9) we placed on memory structures. The
conjoined formulae are the the translations using tr : L → C2 from Table 1 of
the following formulae:

- Aux ≡ onull ⊔ oT ⊔ oF,
- Addresses ⊑ ¬Aux and Addresses ⊔ Aux ≡ ⊤,
- Alloc ⊑ ¬MemPool,Alloc ⊑ ¬PossibleTargets,MemPool ⊑ ¬PossibleTargets,
and
Alloc ⊔ PossibleTargets⊔MemPool ⊑ Addresses,

18

trz(C) = C(z) C is an atomic concept
trz,z̄(r) = r(z, z̄) r is an atomic role

trz(C ⊓D) = trz(C) ∧ trz(D)
trz(C ⊓D) = trz(C) ∨ trz(D)
trz(¬C) = ¬trz(C)

trz,z̄(r ⊓ s) = trz,z̄(r) ∧ trz,z̄(s)
trz,z̄(r ⊔ s) = trz,z̄(r) ∨ trz,z̄(s)
trz,z̄(r \ s) = trz,z̄(r) ∧ ¬trz,z̄(s)
trz,z̄(r

−) = trz̄,z(r)
trz,z̄(C ×D) = trz(C) ∧ trz̄(D)

trz(∃r.C) = ∃y.trz,z̄(r) ∧ trz̄(C)

tr(C ⊑ D) = ∀x.trx(C) → trx(D)
tr(r ⊑ s) = ∀x, y.trx,y(r) → trx,y(s)
tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)
tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)
tr(¬ϕ) = ¬tr(ϕ)

tr(func(r)) = ∀x∃≤1y.trx,y(r)
tr(¬ϕ) = ¬tr(ϕ)

Table 1. Translation of L into C2 by employing only two variables x and y. In each
translation rule, z ∈ {x, y}. Moreover, z̄ = y if z = x, and z̄ = x if z = y.

- o ⊑ ¬MemPool for every constant symbol o in ψ,
- func(f) and Addresses ⊑ ∃f.¬MemPool for every f of ψ with f ∈ τfields,
- MemPool ⊑ ∃f.onull ⊔ oF for every f ∈ τfields, and
- C ⊑ ¬MemPool for every atomic concept C ∈ τ with C 6=MemPool.

Requirements (1) and (2) hold by the correct choice of vocabulary. To see that
requirement (10) holds, namely that AllocM and PossibleTargetsM are finite
while MemPoolM is infinite, note that any finite model M of ψm ∧ψ is almost
the desired memory structure withM |= ψ. The desiredM is obtained by adding
to MemPoolM infinitely many fresh elements e and setting fM(e) = oMnull for
all f ∈ τfields.

C Translations of L and SLls into CT
2

As discussed in Section 2.6, α translates SLls-formulae into L almost exactly,
with the caveat that for every list L, some redundant cycles may exist in L.
These cycles are not reachable from the variables of the head variable of the list
through the next pointer. Since L is a fragment of first order logic, properties
related to connectivity cannot be used to rule out these cycles. We use CT 2 to
express the necessary connectivity property. Recall β5(ls) stated that the forest
F1 coincides with next inside L and that the forest induced by F1 on L is a tree.

Here we define the two translations α and β so that the satisfy the Lemmas
3 and 4, restated here:

19

Lemma 7. i. For every heap h and stack s, if ϕ ∈ SLls then: if s, h |= ϕ then
Ms,h |= α(ϕ).

ii. For every heap h and stack s, if ϕ ∈ SLls then: s, h |= ϕ iff Ms,h |= β(ϕ).

It is convenient to define the following notation: if ϕ = Π |Σ, then there exist
δ1, . . . , δr such that Σ = δ1∗· · ·∗δr and the δi are of the form var1 7→ [fi : Ei]. We
use the concepts P1, . . . , Pr which partition the allocated memory cells according
to Σ.

First we define the formula α(ϕ) for ϕ ∈ SL.

α(E1 = E2) = (oE1 ≡ oE2)
α(E1 6= E2) = ¬ (oE1 ≡ oE2)
α(Π0 ∧Π1) = α(Π0) ∧ α(Π1)
α(true) = (⊤ ⊑ ⊤)
α(emp) = (Alloc ≡ ⊥)

α(δt) = (Pt ≡ ovar1) ∧
∧k

i=1((ovar1 , oEi
) ⊑ fi),

for δt = var1 7→ [fi : Ei : i = 1, . . . , k]
α(Σ) =

∧

1≤t≤r α(δt)∧
∧

1≤t1<t2≤r(Pt1 ⊓ Pt2 ≡ ⊥)

α(Π |Σ) = P1 ⊔ · · · ⊔ Pr ≡ Alloc ∧ α(Π) ∧ α(Σ)

By construction we have for every ϕ ∈ SL, s, h |= ϕ iff Ms,h |= α(ϕ).
Now we turn to SLls. Here Σ = δ1 ∗ · · · ∗ δr where the δi are of either of

the forms var1 7→ [fi : Ei] or ls(E1, E2). If δi = ls(E1, E2), then α(δi) is defined
similarly to the definition of α(ls) in Section 2.6 using Pi, E1 and E2:

α1(δi) = (oE1 ⊑ Pi)
α2(δi) = (oE2 ⊑ ∃next−.Pi)
α3(δi) = (oE2 ⊑ ¬Pi)
α4(δi) = (Pi ⊑ oE1 ⊔ ∃next−.Pi)

Let

αemp−ls(δi) = (Pi ⊑ ⊥) ∧ (oE1 = oE2)

α(δi) = α1(δi) ∧ · · · ∧ α4(δi) ∨ αemp−ls(δi)

and α(ls(E1, E2)) = α1(ls(E1, E2)) ∧ · · · ∧ α4(ls(E1, E2)).
Now we turn the translation β. Similarly to β5(ls) from Section 2.6, we define

β5(δi) for each δi = ls(E1, E2) as:

∀x∀y
[

(Pi(x) ∧ Pi(y)) → (F1(x, y) ↔ next(x, y))
]

∧
∀x

[(

Pi(x) ∧ ∀y (Pi(y) → ¬F1(y, x))
)

→ (x ≈ ovar1)
]

β5(δi) states that the forest F1 coincides with next inside L and that the forest
induced by F1 on Pi is a tree. Let I ⊆ {1, . . . , r} be the set of i such that δi is
of the form ls(E1, E2). Let

β5(Σ) =
∧

i∈I β
5(δi)

β(Π |Σ) = ∃F1 tr(α(Π |Σ)) ∧ β5(Σ) ∧ ϕforest(F1)

20

Note that to get that β5(Σ) indeed states the connectivity condition for each of
the lists we use the fact that P1 . . . , Pr are disjoint, and therefore the trees we
quantify for the different lists are disjoint.

D Cyclic Data Structures in CT
2

Here we want to clarify that cyclic data structures such as cyclic lists which are
expressible in SLls are translated correctly into CT 2 by β.

Consider the formula ls(a, b) ∗ ls(b, a) which defines a cyclic list with at least
two elements. In the translation to CT 2, P1 contains the elements of the list
from a to b, and P2 contains the elements of the list from b to a. Importantly, b
does not belong to P1, and a does not belong to P2. This is captured by α3 in
the translation of SLls to L in Section 2.6 or Appendix C.

The translation requires (in β5) that the forest F1 coincides with next inside
P1 and P2. However, crucially, there is no requirement on next between P1 and
P2, see the definitions of β5 and β in Section 2.6 and Appendix C.

As a result, in the cyclic list ls(a, b) ∗ ls(b, a), not all next edges are required
to belong to F1. Rather, the two edges that point to a and to b respectively are
not required to belong to F1.

In more detail, if M |= ls(a, b) ∗ ls(b, a) then:

1. PM
1 = {a1, ..., ai} such that a1 = a and the edges (aj , aj+1) belong both to
nextM and to FM

1 , for 1 ≤ j ≤ i− 1.
2. The edge (ai, b) belongs to next

M but might not belong to FM
1 .

3. PM
2 = {b1, ..., bk} such that b1 = b and the edges (bj , bj+1) belong both to
nextM and to FM

1 , for 1 ≤ j ≤ k − 1.
4. The edge (bk, a) belongs to next

M but might not belong to FM
1 .

Additionally note that the translation of a formula of the form var1 7→ [fi :
Ei] also does not require the next edge from var1 to belong to F1.

E Backwards propagation

Here we give the exact formulation of the backwards propagation lemma and
prove it.

It is convenient to consider a program S, which behaves like S, except that
it does not abort. S uses a fresh variable abo to indicate whether S aborts. The
command abo := F is added at the beginning of the code. Every command C
of the form var1 := var2.f , var2.f := var1 or dispose(var2) is replaced with
C = if var2 = null then abo := T else C fi. For if , assume and assignments
of the form var1.f1 := var2.f2 commands the case is similar, except that there
may be two evaluations of the form vari.fj , which need to be reflected in the
condition in C. By the construction of S, S has the following properties:

1. The run of M1 on S does not abort for any M1.

21

2. abo has the value T at the end of the run of S on M1 if and only if S aborts
on M1.

3. If 〈S,M1〉 ; M2, then
〈

S,M1

〉

; M2.

We need a further extension of our structures, which uses a refined ; relation.
The refined ; relation will get rid of some non-determinism in the semantics of
the programming language.

Given a finite set Y of labels and a tuple d̄Y = (dy : y ∈ Y) of ele-
ments of M , we denote by

〈

M1, (R̄
ext)M1 , d̄Y

〉

the structure obtained from
〈

M1, (R̄
ext)M1

〉

by adding the constants dy for each y ∈ Y . The vocabulary

τextY of
〈

M1, (R̄
ext)M1 , d̄Y

〉

extends τext by constant symbols {oy : y ∈ Y }.

Given a loopless program S′, we assign unique labels y to the commands of
S′. For any loopless program S′, we denote by YS′ the set of labels of commands
in S′. The ;d̄Y ′

S

relation is obtained from the ; relation as follows:

〈S′,M1〉 ;d̄Y
S′

M2 iff 〈S′,M1〉 ; M2, except in the three following cases for

S′:

– y : var1 := var2.f : 〈S′,M1〉 ;dy
M2 iff 〈S′,M1〉 ; M2 and fM1(oM1

var2
) =

dy. Else, 〈S
′,M1〉 ;dy

abort.

– y : var := new: 〈S′,M1〉 ;dy
M2 iff 〈S′,M1〉 ; M2 and oM2

var = dy.
Otherwise, 〈S′,M1〉 ;dy

abort.

– S′
1;S

′
2: If 〈S

′
1,M1〉 ;d̄Y

S′

1

M′ and 〈S′
2,M

′〉 ;d̄Y
S′

2

M2, then 〈S′
1;S

′
2,M1〉 ;d̄Y

S′

1

∪d̄Y
S′

2

M2.

The main observation is:

Lemma 8. For any two memory structures M1 and M2, 〈S′,M1〉 ; M2 iff
there exists a tuple d̄Y ′

S
such that 〈S′,M1〉 ;d̄Y ′

S

M2 .

We are now ready to state Lemma 5 precisely:

Lemma 9. Let S be a loopless program, YS be the set of labels of commands in
S, M1 and M2 be memory structures, d̄Y

S
be a tuple of M elements labeled with

the labels in YS , dabo ∈M , and ϕ be an L-formula over τ .

1. If 〈S,M1〉 ;d̄Y
S

M2, then:

M2 |= ϕ iff
〈

M1, (R̄
ext)M1 , d̄Y

S
, dabo

〉

|= ΘS(ϕ).

2. If 〈S,M1〉 ;d̄Y
S

abort, then for every tuple d̄Y
S
ofM elements,

〈

M1, (R̄
ext)M1 , d̄Y

S
, dabo

〉

6|=

ΘS(ϕ).

The vocabulary of the structure
〈

M1, (R̄
ext)M1 , d̄Y

S
, dabo

〉

is τextYS
∪ {oabo}.

The definition of ΘS is:

22

Definition 8. ΘS(ϕ) = ΦS(ϕ ∧ (oabo ≡ oF))), Φ is obtained from Ψ by substi-
tuting every symbol R ∈ τrem in ϕ by Rext, and Ψ is defined as:

Ψskip(ϕ) = ϕ
Ψvar1:=e(ϕ) = ϕ[ovar1/oe], e = var2 or e = null
Ψy:var1:=var2.f (ϕ) = ϕ[ovar1/oy] ∧ (∃f−.ovar2 ≡ oy)
Ψvar1.f :=e(ϕ) = ϕ[f/f\(ovar1 ×⊤) ∪ (ovar1 , oe)],

where e = var2 or e = null
Ψif b then S1 else S2 fi(ϕ) = εb ∧ ΨS1(ϕ) ∨ ¬εb ∧ ΨS2(ϕ)
Ψy:var:=new(ϕ) = ϕ[ovar/oy][Alloc/Alloc ⊔ oy]

∧oy ⊑ ¬Alloc
Ψdispose(var)(ϕ) = ΨSdisp

(ϕ[Alloc/Alloc ⊓ ¬ovar]),
where Sdisp = var.fk1 := null;
· · · ; var.fkw

:= null
ΨS1;S2(ϕ) = ΨS1(ΨS2(ϕ))

The notation ϕ[A/B] should be interpreted as the syntactic replacement of any
occurrence of A with B. We write e.g. y : var := new to indicate that the com-
mand var := new is labeled with y. εb is defined inductively: for e1 = e2 we set
εb = (Ae1 ≡ Ae2), with Avar = ovar and Avar.f = ∃f−.ovar; ε extends naturally
to the Boolean connectives. In the definition of Ψdispose(var), fk1 , . . . , fkw

are the
members of τfields which occur in ϕ. W.l.o.g. we assume that S does not contain
commands of the form if b then S1 fi or var1.f1 := var2.f2, since they can be
expressed using the other commands.

To prove Lemma 9 we need the following lemma:

Lemma 10. Let S be a loopless program without assume commands, YS be the
set of labels of commands in S, Y be a set of labels disjoint from YS, M1 and
M2 be memory structures with universe M and d̄YS

a tuple of M elements such
that 〈S,M1〉 ;d̄YS

M2. Let d̄Y be a tuple of M elements and ϕ be an L-formula

over τ ∪ {oy : y ∈ Y }.
〈

M2, d̄Y
〉

|= ϕ iff
〈

M1, (R̄
ext)M1 , d̄Y , d̄YS

〉

|= ΦS(ϕ).

Proof. We prove the lemma by induction.

– S = skip: YS = ∅, and we have
〈

M2, d̄Y
〉

|= ϕ iff
〈

M1, R̄
ext, d̄Y

〉

|= ΦS(ϕ),
as required.

– S = if b thenS1 else S2 fi: depending on whether εb is true or false, ΦS1(ϕ)
or ΦS2(ϕ) should be used.

– var1 := e, where e is a variable var2 or null: every reference to var1 in ϕ is
replaced by a reference to var2 or null, respectively.

– var1 := var2.f : every reference to var1 in ϕ is replaced with a reference to
oy, whose interpretation is dy, in accordance with ;d̄YS

, which requires that

dy be the result of applying f on var2.
– var1.f := e, where e is a variable var2 or null: the function symbol f is

updated by removing the current value of f on var1 by subtracting (ovar1 ×
⊤)M1 from fM1 and setting the new value explicitly by adding the pair
(oM1

var1
, oM1

e) to fM1 .

23

– S = var := new with label y: YS = {y} and d̄YS
= (dy). By the definition

of ;d̄YS
for new commands, {dy} = AllocM2\AllocM1. ΦS(ϕ) adds oy to

Alloc and replaces every reference to var by a reference to oy.
– S = dispose(var): ΦS(ϕ) removes var from Alloc, and using an application

of Φ to the program var.fk1 := null; · · · ; var.fkw
:= null, sets all of the fields

in ϕ to null.
– S = S1;S2: ΦS(ϕ) = ΦS1(ΦS2(ϕ)). LetM3 be an memory structure such that

〈S1,M1〉 ;d̄YS1

M3 and 〈S2,M3〉 ;d̄YS2

M2. We have d̄YS
= d̄YS1

∪ d̄YS2
.

Consider first ΦS2(ϕ). By the induction hypothesis,
〈

M2, d̄Y
〉

|= ϕ iff
〈

M3, R̄
M2 , d̄Y , d̄YS2

〉

|=
ΦS2(ϕ).
Let M4 be obtained from M3 be replacing every relation RM3 with RM2 for
R ∈ τrem. We have ΨS2(ϕ) |=

〈

M4, d̄Y , d̄YS2

〉

iff ΦS2(ϕ) |=
〈

M3, R̄
M2 , d̄Y , d̄YS2

〉

.
Since we have 〈S2,M4〉 ;d̄YS2

M2, we can apply the induction hypoth-

esis once again, this time on ΨS2 . We get that
〈

M4, d̄Y , d̄YS2

〉

|= ϕ iff
〈

M1, d̄Y , d̄YS2
, d̄YS1

〉

|= ΦS1(ΦS2(ϕ)). Hence,
〈

M2, d̄Y
〉

|= ϕ iff
〈

M1, R̄
M2 , d̄Y , d̄YS

〉

|=
ΦS1(ΦS2(ϕ)).

Proof (Proof of Lemma 9).
Using Lemma 10 with Y = ∅, if 〈S,M1〉 ;d̄YS

abort, then for every tuple of

relations Ū interpreting R̄ext we have
〈

M1, Ū , d̄YS
, dabo

〉

6|= ΦS(ϕ∧ (oabo ≡ oF)),

because abo is set to true during the run of S. If 〈S,M1〉 ;d̄YS
M2, M2 |= ϕ

iff
〈

M1, d̄YS
, dabo

〉

|= ΦS(ϕ ∧ (oabo ≡ oF)).

Note that dabo is the value of abo at the beginning of the run of S. Since
the first command of S assigns abo a new value, dabo plays no role (it appears
because, technically, abo still needs a value at the beginning of the run).

Also note that in Lemma 5, d̄Y
S

strictly extends d̄YS
, since S extends S.

However, the semantics of all of the new commands in S does not actually
depend on the relevant dy (since none of them of new commands or assignments
of the form var1.var2.f). Hence, any extension of d̄YS

into d̄YS
will do.

Remark 2. Revisiting the example in Section 3.5 with the detailed version of
Lemma 9 in mind, we now see that Θ is actually the backwards propagation of
programs of the form S. The backward propagation of λ(ℓl.ℓl) is similar to that
presented in Section 3.5, with Θ

λ(ℓl.ℓl)
(ϕp−as−ℓl) = Φ

λ(l.l)(ϕp−as−ℓl ∧ (oabo ≡

oF)).

F Soundness and Completeness Theorems

Here we restate and prove Theorems 1 and 2:

Theorem 1. Let G be a program such that shp is inductive for Init and Init |=
cnt(ℓinit). The following statements are equivalent:

(i) For all e ∈ E, V C(e) holds.
(ii) cnt is inductive for Init relative to shp.

24

Proof. Assume V C(e) holds for every e ∈ E. Let e = (ℓ1, ℓ2) ∈ E and mem-
ory structures M1 and M2 such that M1 |= g(ℓ1) and 〈λ(e),M1〉 ; M2.
Since M1 |= g(ℓ1) we have sM1 , hM1 |= shp(ℓ1) and M1 |= g(ℓ1). Since
shp is inductive, sM2 , hM2 |= shp(ℓ2). There exists a tuple d̄Yλ(e)

such that
〈λ(e),M1〉 ;d̄Yλ(e)

M2.

Let (R̄ext)M1 be the tuple of copies of RM2 relations from Section 3.5,
i.e. (R̄ext)M1 is

(

(Rext)M1 : (Rext)M1 = RM2 and R ∈ τ\τfields
)

. Let N =
〈

M1, (R̄
ext)M1 , d̄Yλ(e)

〉

. Since sM1 , hM1 |= shp(ℓ1) and M1 |= cnt(ℓ1), N |=
β(shp(ℓ1)) ∧ tr(cnt(ℓ1)).

By Lemma 9, N |= Θλ(e)

(

α(shp(ℓ2)) ∧ ¬cnt(ℓ2)
)

iff M |= α(shp(ℓ2)) ∧
¬cnt(ℓ2). Since N |= V C(e) and N |= β(shp(ℓ1)) ∧ tr(cnt(ℓ1)), it must be
that N 6|= Θλ(e)

(

α(shp(ℓ2)) ∧ ¬cnt(ℓ2)
)

, so M 6|= α(shp(ℓ2)) ∧ ¬cnt(ℓ2). Since
M |= β(shp(ℓ2)), in particular M |= α(shp(ℓ2)). Hence M |= cnt(ℓ2). We get
that cnt is inductive for Init relative to shp.

Conversely, assume cnt is inductive for Init relative to shp. Assume for con-
tradiction that there exists e = (ℓ1, ℓ2) ∈ E such that V C(e) does not hold Then
there exists a memory structure N such that

N |= β(shp(ℓ1)) ∧ tr(cnt(ℓ1))

∧tr
(

Θλ(e)

(

α(shp(ℓ2)) ∧ ¬cnt(ℓ2)
))

Let N =
〈

M1, (R̄
ext)M1 , d̄Yλ(e)

, dabo
〉

. Then M1 is also a memory structure and
M1 |= β(shp(ℓ1))∧tr(cnt(ℓ1)), so sM1 , hM1 |= shp(ℓ1) andM1 |= cnt(ℓ1). Since
N |= Θλ(e)(· · ·), abo must not be set to true in the computation of λ(e) starting
from M1 with d̄Yλ(e)

. Therefore, there exists M2 such that 〈λ(e),M1〉 ;d̄Yλ(e)

M2. Since the computation of λ(e) is not affected by the interpretations of
R ∈ τ\τfields, assume w.l.o.g. that for each R ∈ τ\τfields, RM = (Rext)M1 .
Since 〈λ(e),M1〉 ; M2 and sM1 , hM1 |= shp(ℓ1), we get sM2 , hM2 |= shp(ℓ2).
By Lemma 9, M2 |= α(shp(ℓ2)) ∧ ¬cnt(ℓ2). In particular, M2 6|= cnt(ℓ2), in
contradiction to cnt being inductive relative to shp.

For every e = (ℓ1, ℓ2) ∈ E, let Reach(e) be the set of memory structures
M ∈ Reach(ℓ2) for which there exist Minit ∈ Init and a path P in G starting
at ℓinit and ending with e such that 〈P,Minit〉 ;

∗ M.

Theorem 2. Let G be a program such that shp is inductive for Init and Init |=
cnt(ℓinit). If for all e ∈ E, V C(e) holds, then for ℓ ∈ V , Reach(ℓ) |= cnt(ℓ).

Proof. By Theorem 1, cnt is inductive for Init relative to shp. LetM ∈ Reach(ℓ),
and let P be a path and Minit ∈ Init as guaranteed for members of Reach(ℓ).
We prove the following claim by induction on the length of P :

If for all e ∈ E, V C(e) holds, then for ℓ ∈ V , Reach(ℓ) |= cnt(ℓ) and
Reach(ℓ) |= shp(ℓ).

If P is empty, then M ∈ Init and the claim holds.

25

If P is not empty, let e = (ℓ0, ℓ) be the last edge of P , and let P0 be the
path obtained from P by removing e. Let M0 be a memory structure such that
〈P0,Minit〉 ;

∗ M0 and 〈λ(e),M0〉 ; M. Let d̄Yλ(e)
be a tuple of M elements

such that 〈λ(e),M0〉 ;d̄Yλ(e)
M. By the induction hypothesis, sM0 , hM0 |=

shp(ℓ0) and M0 |= cnt(ℓ0). Since shp is inductive, and since cnt is inductive
relative to shp, sM, hM |= shp(ℓ). and M |= cnt(ℓ).

Remark 3. In the proofs in this appendix only case 1. of Lemma 9 is used. The
purpose of case 2. of Lemma 9 is to make the verification conditions less strict,
in the sense that they require nothing of aborted executions.

26

DTree

U
n
u
s
e
d
L
i
s
t

n

n

UsedList

n n n

dF

dF

dF

fC

nSnS
fCfC

DTree

