Semantic Web 2 (2011) 43-53 43
DOI 10.3233/SW-2011-0029
10S Press

The MASTRO system for ontology-based data
access

Editor(s): Thomas Lukasiewicz, Oxford University, UK
Solicited review(s): Carsten Lutz, Universitit Bremen, Germany; Roman Kontchakov, Birkbeck College London, UK; one anonymous reviewer

. * o .
Diego Calvanese ®, Giuseppe De Giacomo b Domenico Lembo °, Maurizio Lenzerini °,

Antonella Poggi ®, Mariano Rodriguez-Muro ?, Riccardo Rosati ®, Marco Ruzzi ® and
Domenico Fabio Savo®

2 Free University of Bozen-Bolzano, Piazza Domenicani 3, I-39100, Bolzano, Italy

E-mail: lastname @inf.unibz.it

b Sapienza Universita di Roma, Via Ariosto 25, I-00185, Roma, Italy

E-mail: lastname @dis.uniromal .it

Abstract. In this paper we present MASTRO, a Java tool for ontology-based data access (OBDA) developed at Sapienza Univer-
sita di Roma and at the Free University of Bozen-Bolzano. MASTRO manages OBDA systems in which the ontology is specified
in DL-Lite 4 ;q, a logic of the DL-Lite family of tractable Description Logics specifically tailored to ontology-based data access,
and is connected to external JDBC enabled data management systems through semantic mappings that associate SQL queries
over the external data to the elements of the ontology. Advanced forms of integrity constraints, which turned out to be very
useful in practical applications, are also enabled over the ontologies. Optimized algorithms for answering expressive queries
are provided, as well as features for intensional reasoning and consistency checking. MASTRO provides a proprietary API, an
OWLAPI compatible interface, and a plugin for the Protégé 4 ontology editor. It has been successfully used in several projects
carried out in collaboration with important organizations, on which we briefly comment in this paper.

Keywords: Ontology-based data access, Description Logics, reasoning over ontologies

1. Introduction reasons. For example, databases may have undergone
several manipulations during the years, often for op-
In this paper we present MASTRO, a tool for timizing applications using them, and may have lost
ontology-based data access developed at Sapienza
Universita di Roma and at the Free University of % iy
Bozen-Bolzano. Ontology-based data access (OBDA)

refers to a setting in which an ontology is used as a
high-level, conceptual view over data repositories, al-
lowing users to access data without the need to know
how they are actually organized and where they are
stored (cf. Fig. 1).

Ontolo
jb.onceptual_)
_Layer

The OBDA approach turns out to be very useful in Data
all scenarios in which accessing data in a unified and Layer
coherent way is difficult. This may happen for several
*Corresponding author. Fig. 1. Ontology-based data access.

1570-0844/11/$27.50 (© 2011 — 10S Press and the authors. All rights reserved

44 D. Calvanese et al. / The MASTRO system for ontology-based data access

their original design. They may have been distributed
or replicated without a coherent design, so that the in-
formation turns out to be dispersed over several in-
dependent (maybe heterogeneous) data sources, and
source data tend to be redundant and mutually incon-
sistent.

Through MASTRO it is possible to design and man-
age OBDA systems, i.e., systems in which an ontol-
ogy is connected to external data sources through map-
pings. As in data integration systems [22], we use map-
pings to specify the semantic correspondence between
a unified view of the domain (called global schema in
data integration terminology) and the data stored at the
sources. The distinguishing feature of the OBDA ap-
proach, however, is the fact that the global unified view
is given in terms of a conceptualization of the domain
of interest, constructed independently from the repre-
sentation adopted for the data stored at the sources.
This choice provides several advantages: it allows for a
declarative approach to data access and integration and
provides a specification of the domain that is indepen-
dent from the data layer; it realizes logical/physical in-
dependence of the information system, which is there-
fore more accessible to non-experts of the underlying
databases; the conceptual approach to data access does
not impose to fully integrate the data sources at once,
as often happens in data integration mediator-based
system, but the design can be carried out in an incre-
mental way; the conceptual model available on the top
of the system provides a common ground for the docu-
mentation of the data stores and can be seen as a formal
specification for mediator design.

MASTRO has solid theoretical basis [3-5,25]. The
ontologies it manages are specified in DL-Lite4 ;q, a
logic of the DL-Lite family of tractable Description
Logics (DLs), which are specifically tailored to the
management and querying of ontologies in which the
extensional level, i.e., the data, largely dominates the
intensional level. From the point of view of the expres-
sive power, DL-Lite 4 ;q captures the main modeling
features of a variety of representation languages, such
as basic ontology languages and conceptual data mod-
els. Furthermore, it allows for specifying advanced
forms of identification constraints [6]. General forms
of integrity constraints, which essentially corresponds
to generic first-order sentences, are also expressible
over the ontology. We call these constraints EQL con-
straints and interpret them according to the so-called
epistemic semantics, which is an approximation of
first-order semantics adopted for the other DL-Lite 4 ;4
axioms that ensures decidability and tractability of

reasoning [4]. We notice that the ability to specify
both identification and expressive integrity constraints
turned out to be very useful in practical experiences
we conducted with MASTRO [1,27], and that such con-
structs are not part of OWL 2, the current W3C stan-
dard language for specifying ontologies.

The mapping mechanism adopted by MASTRO [25]
allows for solving the so-called impedance mismatch
problem, arising from the fact that, while the data
sources store values, the instances of concepts in the
ontology are objects. Answering unions of conjunctive
queries in OBDA systems managed by MASTRO can
be done through a very efficient technique that reduces
this task to standard SQL query evaluation. Indeed,
conjunctive query answering has been shown to be in
LOGSPACE (in fact in AC®) w.r.t. data complexity, i.e.,
the complexity measured only w.r.t. the extensional
level [5,25], which is the same complexity of evaluat-
ing SQL queries over plain relational databases. Even
though very slight extensions of the expressive abilities
of our system lead beyond this complexity bound [3],
also queries that are more powerful than UCQs can
be processed in MASTRO via a similar SQL encoding.
Such queries, which we call EQL queries, essentially
correspond to all first-order queries expressible over
the ontology, and are interpreted under the epistemic
semantics [4].

MASTRO is developed in Java and can be connected
to any data management system allowing for a JDBC
connection, e.g., a relational DBMS. In those cases in
which several, possibly non-relational, sources need to
be accessed, MASTRO can be coupled with a relational
data federation tool', which wraps sources and repre-
sents them as a single (virtual) relational database.

MASTRO comes with its proprietary API, but is
equipped also with an OWLAPI compatible inter-
face that has been developed for interaction with
OWLAPI compliant applications. In particular, such
an interface has been exploited to implement the
MASTRO plugin for the Protégé 4 ontology edi-
tor>. MASTRO is currently available for download at
http://www.dis.uniromal.it/~quonto/.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly describe the framework of ontology-
based data access. In Section 3, we provide an in-depth
description of the main modules in which MASTRO is

'E.g., IBM WebSphere Application Server (http://www.ibm.com/
software/webservers/appserv/was/), Oracle Data Service Integrator
(http://www.oracle.com/us/products/middleware/data-integration/).

Zhttp://protege.stanford.edu/

D. Calvanese et al. / The MASTRO system for ontology-based data access 45

organized, briefly describing the procedures and algo-
rithms they realize. In Section 4, we report on three
main use cases in which MASTRO has been success-
fully trialed. In Section 5, we discuss related work, and
in Section 6 we conclude the paper.

2. Ontology-based data access

In OBDA, the aim is to give users access to a data
source or a collection thereof, by means of a high-
level conceptual view specified as an ontology. The
ontology is usually formalized in Description Log-
ics (DLs) [2], which are logics that allow one to rep-
resent the domain of interest in terms of concepts,
denoting sets of objects, roles, denoting binary rela-
tions between objects, and attributes, denoting rela-
tions between objects and values from predefined do-
mains (such as strings, integers, etc.). A DL ontology
O = (T, A) consists of a TBox 7, representing inten-
sional knowledge, and an ABox A representing exten-
sional knowledge.

MASTRO is able to deal with DL TBoxes that are
expressed in DL-Lite 5 ;q, a member of the DL-Lite
family of lightweight DLs [5]. In such DLs, a good
tradeoff is achieved between the expressive power of
the TBox language used to capture the domain seman-
tics, and the computational complexity of inference, in
particular when such a complexity is measured w.r.t.
the size of the data. We don’t specify here the formal
syntax and semantics of DL-Lite 4 ;q, for which we re-
fer to [6], but state only that this logic essentially cap-
tures standard conceptual modeling formalisms, such
as UML Class Diagrams and Entity-Relationship (ER)
Schemas. Indeed, DL-Lite 4 ;4 distinguishes at the se-
mantic level between abstract objects and domain val-
ues, and allows one to express in a TBox the follow-
ing kinds of logical assertions: (i) inclusion assertions
between concepts (that include projections of roles
on one of their components), expressing ISA between
them, typing of relations, mandatory participation to
roles or attributes, and disjointness between concepts
(if the negation of a concept occurs in the right-hand
side of the inclusion); (ii) inclusion assertions between
roles and attributes, to express ISA between roles and
attributes, and disjointness between roles and attributes
(if negation is used in the right-hand side of the inclu-
sion); (iii) functionality assertions, and complex forms

of identification constraints®. An ABox contains asser-
tions about specific individuals or values, such as the
fact that an individual is an instance of a concept, that
two individuals are related by arole, or that an attribute
relates an individual to some value.

In OBDA, the extensional level is not represented
directly by an ABox, but rather by a database that is
connected to the TBox by means of suitable mapping
assertions*. Such mapping assertions have the form
® ~~ U, where P, called the body of the assertion, is an
arbitrary SQL query over the underlying database, and
W, called the head, is a conjunction of atoms whose
predicates are the concepts, roles, and attributes of the
TBox. Intuitively, such a mapping assertion specifies
that the tuples returned by the SQL query ® are used
to generate the facts that instantiate the concepts, roles,
and attributes in W. Notice that, due to the fact that &
is a conjunction of atoms (as opposed to a query, possi-
bly with existentially quantified variables), such map-
pings can be considered as a special form of global-
as-view (GAV) mappings [22] (cf. also Section 5). In-
deed, in order to overcome the so-called impedance
mismatch between the database, storing values, and
the TBox, maintaining objects, the mapping assertions
are used to specify how to construct abstract objects
from the tuples of values retrieved from the database.
This is done by allowing one to use function symbols
in the atoms in W: together with the values retrieved
by ®, such function symbols generate so called object
terms, which serve as object identifiers for individuals
in the ontology. We notice that the semantics we adopt
in MASTRO (see also below) establishes that different
terms denote different objects (unique name assump-
tion), so that different terms never need to be equated
during reasoning, which is coherent with the assump-
tion of not having existentially quantified variables in
the body of mappings.

As an example, consider the mapping assertion

SELECT SSN, name
FROM TABPERS
WHERE age <= 5

Child(p(SSN)),
Name(p(SSN), name)

which specifies how to construct instances of the con-
cept Child and the attribute Name in the ontology

3Thanks to identification constraints we are able in DL-Lite A,id (O
also model, via reification, n-ary relations between concepts typical
of UML Class Diagrams and ER schemas.

4Note that, in the following, with some abuse of terminology,
when we use the term “ontology” in the context of OBDA, we im-
plicitly refer to a TBox only.

46 D. Calvanese et al. / The MASTRO system for ontology-based data access

starting from the database relation TABPERS having
among its columns SSN, name and age. As shown
in the example, the mappings used in MASTRO allow
one to establish correspondences between elements,
and instances thereof, belonging to schemas expressed
in different languages (and over different alphabets),
acting thus as a powerful reconciling mechanism.

The semantics of DLs is given in terms of standard
first-order interpretations. Traditional intensional rea-
soning tasks w.r.t. a given TBox are concept satisfia-
bility and concept subsumption [2]. Among the exten-
sional reasoning tasks w.r.t. a given ontology (7, A),
the most relevant ones are ontology satisfiability, i.e.,
checking whether (7,.A) admits at least one model,
and query answering, which amounts to computing the
certain answers to queries. The certain answers to a
query @ over (7, A) are those tuples that are in the
evaluation of @ in every model of (7,.A). For the
logics of the DL-Lite family it has been shown that
for unions of conjunctive queries (UCQs), under the
unique name assumption, query answering can be car-
ried out efficiently in the size of the data, by reduc-
ing it to SQL query evaluation over the ABox seen as
a database [5]. Also satisfiability, which is easily re-
ducible to query answering, can be solved through the
same mechanism. All the notions given above can be
easily generalized to OBDA systems, where a TBox
7T is connected to an external database D through
mappings M, denoted (7, M, D). In particular, the
models of (T, M, D) are those interpretations of 7
that satisfy the assertions in 7 and that are consistent
with the tuples retrieved by M from D (see [25] for
the formal details). Satisfiability amounts to checking
whether (7', M, D) admits at least one model, while
answering a query () amounts to computing the tu-
ples that are in the evaluation of) in every model of
(T, M, D). When 7 is a DL-Lite 4 ;4 TBox and M is
a set of assertions of the form & ~~ ¥ described above,
both satisfiability and conjunctive query answering can
be reduced to SQL query evaluation through an ex-
tension of the techniques for DL-Lite 4 ;4 ontologies
(T, A) mentioned above. Such techniques are imple-
mented in MASTRO and are briefly described in Sec-
tion 3.1, whereas we refer to [5,25] for a more com-
plete treatment.

3. Architecture of MASTRO

In this section, we describe the general architecture
of MASTRO, and some of the important aspects of the

MASTRO

QuOnto

Mapping Processor

Data

Client S
ource

EQL Processor

________(j)______;

| Datasource Manager

Consistency Checker

r \

Fig. 2. MASTRO basic architecture.

modules that constitute the system, shown in Fig. 2.
We first present each such module and the functional-
ities that concur to realize the services that MASTRO
offers. Such services amounts to intentional reasoning,
conjunctive query answering, mapping management,
EQL query and constraints management, and consis-
tency checking. We then provide the description of the
interfaces available for accessing MASTRO’s function-
alities.

3.1. The MASTRO modules

QUONTO module. QUONTO is a reasoner for DL-
Lite 4 ;4 that provides intentional reasoning services,
i.e., concept satisfiability, concept subsumption, etc.,
as well as reformulation of UCQs. In short, the refor-
mulation process takes as input a UCQ @ expressed
over a DL-Lite 5 ;4 TBox 7 and returns a UCQ @,
that represents the perfect reformulation of Q) with re-
spect to T . The evaluation of (), over any DL-Lite 4 ;4
ABox A returns the certain answers to) with respect
to (7,.A). The reformulation engine implemented in
QUONTO is based on the PerfectRef algorithm pre-
sented in [5], adapted to deal natively with OWL con-
structs captured by DL-Lite 4 ;q and not explicitly con-
sidered in [5], e.g., qualified existential restrictions
in the right-hand side of concept inclusions (see [10]
for details). Also, the reformulation is enhanced with
optimizations that allow for reducing the number of
queries it generates.

Mapping Processor module. Since MASTRO does
not explicitly manage ABoxes, but rather accesses data
stored in external systems via mappings, the set of
queries (), is not evaluated over an ABox, but pro-
cessed according to the mappings to obtain a query that
can be evaluated over the data sources. Indeed, @, is

D. Calvanese et al. / The MASTRO system for ontology-based data access 47

phrased in terms of concepts and roles of the TBox 7°
and to obtain a query expressed in terms of the vocab-
ulary of the sources, it is necessary to perform a fur-
ther rewriting step dependent on the mapping, which,
roughly, substitutes the TBox predicates occurring in
Q.- with their definitions provided by the mapping as-
sertions. Such a process is called query unfolding and
is carried out by the Mapping Processor module. Gen-
erally speaking, query unfolding is quite a straightfor-
ward procedure, widely applied in data integration ap-
plications. In MASTRO, however, query unfolding is
complicated by the presence of function symbols in
mapping assertions (see Section 2). To deal with such
aspects, the Mapping Processor implements the par-
tial evaluation-based unfolding technique from [25],
which we briefly summarize in the following: (i) we
“split” each mapping assertion ®(¢) ~» U(w), where
U is a sequence of variables and w is a sequence of
terms, into a set of assertions having exactly one on-
tology predicate in the head, i.e., for each predicate
symbol S occurring in W (), we write an assertion of
the form U(¥) ~» S(ws), where the terms in s are
contained in ; (ii) we associate an auxiliary predi-
cate auz to each SQL query ®(%¥), thus obtaining a
set of assertions of the form auz (V) ~» S(ws); (iii)
we transform each such assertion into a logic program
clause of the form S(ws) :— auz(?¥); (iv) we compute
the partial evaluation of @), with respect to the logic
program gathering all clauses constructed in the previ-
ous steps, i.e., a new set of conjunctive queries phrased
only in terms of the auxiliary predicates5 ; and, last, (v)
we translate the partial evaluation into an SQL query
over the sources, by replacing each auxiliary predicate
with the associated SQL view. The use of partial eval-
uation and auxiliary predicates gives us the flexibility
to work on the unfolding process at an abstract level,
independently from the type of data sources and the
specific form of the views that we associate to the aux-
iliary predicates. Further details on the technique can
be found in [25,27].

Datasource Manager module. This module is re-
sponsible for maintaining the connections to the data
sources, for coordinating query execution, and for the
management of database resources such as pointer
maintenance and transaction management. The most
relevant feature of this module is the ability to paral-

SThe term partial evaluation is due to the connection of this tech-
nique with the optimization technique from the logic programming
literature that carries the same name.

lelize the execution of the queries in the perfect re-
formulation to improve query answering performance.
This feature is key for fast query processing even in
the case where a very big number of queries is gen-
erated by the reformulation-unfolding process. De-
pending on the system configuration, several execu-
tion threads are spawned and queries are assigned to
the different execution threads. Each thread manages
a group of queries, which are executed sequentially
within the thread itself. When the processing of any of
these queries terminates, the result set associated to the
answer is forwarded to a result set wrapper that keeps
receiving the results of subsequent queries, while for-
warding them progressively to the client.

EQL Processor module. This module provides the
ability to specify and execute EQL queries (cf. Sec-
tion 1). Syntactically, an EQL query is an SQL query
specified over virtual relations expressed as UCQs over
the ontology. As for the semantics, answering an EQL
query consists in computing the extension of each vir-
tual relation, i.e., its certain answers with respect to the
ontology, the mapping and the source data, and evalu-
ating the SQL query over all such extensions. This ac-
tually corresponds to putting each virtual relation un-
der the scope of an epistemic operator (see [4] for de-
tails). Rather than computing the extension of the vir-
tual relations, the EQL Processor exploits the reformu-
lation service offered by the QUONTO module, and the
unfolding service provided by the Mapping Processor
module, in order to rewrite each virtual relation into
an SQL query over the sources, thus transforming the
entire EQL query into an SQL query over the sources.
Such a query is then sent to the Datasource Manager,
which is in charge of evaluating it. EQL queries are
extremely useful when the expressive power of UCQs
is not enough. For example, they allow for express-
ing negation and comparison in queries. Also, through
EQL queries it is possible to specify powerful integrity
constraints over the ontology (as shown in [9]), which
go beyond the expressivity of the DLs of the DL-Lite
family.

Consistency Checker module. This module allows
MASTRO to verify whether an OBDA system it man-
ages is satisfiable. By virtue of the characteristics of
DL-Lite 4 ;q, such a check can be reduced to answer-
ing suitable queries posed over the ontology, each one
associated to a TBox assertion or to an EQL constraint
that can be violated by data at the sources. The Con-
sistency Checker therefore relies on the services for
conjunctive and EQL query answering provided by the

48 D. Calvanese et al. / The MASTRO system for ontology-based data access

modules we described above. Indeed, apart from ba-
sic features, which enable for checking the violation
of functionality and disjointness constraints, the Con-
sistency Checker allows one to verify consistency of
identification and EQL constraints, which is reduced to
answering EQL queries over the ontology. The Consis-
tency Checker can also localize data that violate TBox
assertions and/or constraints over the ontology. It can
indeed generate those queries (UCQs or EQL) whose
answers return data that cause inconsistencies.

3.2. Interfaces

MASTRO’s functionalities can be accessed in three
ways: through a proprietary API, through an OWLAPI
compatible interface, and by means of a plugin for
the Protégé 4 ontology editor. In particular, MASTRO’s
proprietary API is used to integrate all the modules that
compose the system. This API is also used to imple-
ment specific procedures required during the deploy-
ment of the tool in application scenarios, as the ones
described in Section 4. The API also provides parser
facilities for loading ontologies with mappings using
MASTRO’s own XML and functional-style syntax [9]
and allows for accessing all the functionalities offered
by the system.

The OWLAPI compatible interface is built on
top of MASTRO’s APIL. This public interface allows
for a straightforward integration of MASTRO with
OWLAPI®-OBDALIib’ applications. The main access
point of this API is the so-called MastroOWLRea-
soner, an implementation of the OWLReasoner inter-
face from the OWLAPI, and of the OBDAReasoner
interface, which is part of the OBDALIib. Through
functionalities provided by the OWLReasoner inter-
face, clients have access to MASTRO’S services associ-
ated with traditional OWL reasoners, i.e., concept sub-
sumption, satisfiability, etc. Through the OBDARea-
soner interface, clients can access MASTRO’s OBDA
related functionalities, i.e., specification of ontology
with mappings, conjunctive query answering, etc.

In order to provide its functionalities, the OWLAPI
compatibility layer relies on an OWL to DL-Lite 4 ;q
translator module that is able to process OWL 2 on-
tologies represented by means of OWLAPI objects and
produce DL-Lite 4 ;4 ontologies represented by MAS-
TRO’s internal API objects. In particular, OWL 2 be-
ing a very expressive language, it may happen that

Shttp://owlapi.sourceforge.net/
7http://obda.inf.unibz.it/

Mastro-Plugin Protege 4
MastroOWLReasoner OWLAPI
MASTRO Native API

Fig. 3. MASTRO interfaces.

some OWL 2 assertions cannot be translated into cor-
responding DL-Lite 4 ;4 assertions, and hence are dis-
regarded by the module.

Last but not least, MASTRO can also be accessed by
means of a Protégé 4 plugin. This plugin is built on top
of the MastroOWLReasoner (cf. Fig. 3) and exposes
all functionalities of MASTRO, allowing for the use of
the facilities offered by Protégé for ontology editing
and by the OBDA Plugin for editing of mappings to-
wards external data sources. The MASTRO plugin ex-
tends Protégé with new features to express assertions
that are not part of the OWL 2 language but that are
supported by MASTRO, such as identification and EQL
constraints.

4. The system at work: Experiences on real cases

In order to demonstrate the usefulness of OBDA and
the feasibility and efficiency of the MASTRO system,
we report on three real world applications in which it
has been experimented.

SELEX Sistemi Integrati. SELEX Sistemi Integrati
(SELEX-SI) is a Finmeccanica Company, and is a
world leader in the provision of integrated defence and
air traffic control systems. We considered Configura-
tion and Data Management (C&DM) in SELEX-SI
and focused on a significant portion of the data manip-
ulated in this context [1].

C&DM is a technical management model that is
central to all SELEX-SI activities since it governs
the entire products’ life cycle. We mainly focused on
the data concerning the design and the production of
components that are used to realize complex systems,
the physical deployment of such components, and the
analysis of their obsolescence. At the time of the ex-
perimentation, such data were stored in various, par-
tially overlapping and continuously evolving sources,
and managed by five different systems under diverse
data models (relational, XML-based, etc.). We used
MASTRO to integrate such data, in such a way that rel-

D. Calvanese et al. / The MASTRO system for ontology-based data access 49

evant queries connected to important C&DM informa-
tional needs could be automatically processed.

Specifically, we first used the external data federa-
tion tool Websphere Federation Server® to present to
MASTRO all the data sources as a single relational
database. Thus, we obtained a relational schema man-
aged by Websphere, with around 50 relational tables,
with an average of 15 attributes each.

After the federation step described above, we con-
ducted an in-depth analysis of the C&DM domain,
which led to an ontology consisting of 357 DL-Lite 4 ;4
axioms over 42 concepts, 33 roles, and 51 attributes.
Then, we defined around 100 mapping assertions con-
necting the source and the ontology. Finally, we tested
a set of significative queries for C&DM.

A challenge in this experimentation has been pro-
viding the possibility of comparing analogous data
from different sources, e.g., to answer queries like “is
the component declared obsolete in source A obso-
lete also according to source B?”. This required to in-
troduce some predicates in the ontology to explicitly
represent the data sources and pieces of information
stored in each source.

The outcome of the experimentation was very
promising. In particular, it demonstrated the useful-
ness of MASTRO to easily and efficiently access in-
formation in all cases where a user would query sepa-
rately each data source, and manually combine the sin-
gle answers. This appeared to be even more remark-
able, given that the data sources were known to evolve
rapidly. Also, the possibility of comparing through the
ontology the data content of different sources turned
out to be crucial for the success of the experimentation.

Monte dei Paschi di Siena. Within a joint project
with Banca Monte dei Paschi di Siena (MPS)?, Free
University of Bozen-Bolzano, and SAPIENZA Univer-
sita di Roma, we used MASTRO for accessing a set of
data sources from the actual MPS data repository by
means of an ontology [27]. In particular, we focused
on the data exploited by MPS personnel for risk esti-
mation in the process of granting credit to bank cus-
tomers. A 15 million tuples database, stored in 12 rela-
tional tables managed by the IBM DB2 RDBMS, has
been used as data source collection in the experimen-
tation. Such source data are managed by a dedicated

8hitp://www-306.ibm.com/software/data/integration/federation_
server/

9MPS is one of the main banks, and the head company of the third
banking group in Italy (see http://english.mps.it/).

application, which is in charge of guaranteeing data in-
tegrity (in fact, the underlying database does not force
constraints on data). Not only the application performs
various updates, but data is updated on a daily basis to
identify connections between customers that are rele-
vant for the credit rating estimation.

The main challenge that we tackled within the ex-
perimentation was the ontology and mapping design.
This was a seven man-months process that required to
both inspect the data source and interview domain ex-
perts, and was complicated by the fact that the source
was managed by a specific application. The resulting
OBDA system is defined in terms of approximately
600 DL-Lite 4 ;q assertions over 79 concepts, 33 roles
and 37 attributes, and 200 mapping assertions.

The experimentation showed that the usefulness of
the MASTRO system goes beyond data integration ap-
plications and embraces data quality management. In
particular, it confirmed the importance of several dis-
tinguished features of our system, namely, identifica-
tion constraints and epistemic constraints, which have
been used extensively to model important business
rules. Checking that such rules were satisfied by data
retrieved from the sources through mappings has been
the main objective of the project. With respect to this,
we highlight two kinds of data quality problems that
we were able to detect, one related to unexpected in-
completeness in the data sources, and the other one re-
lated to inconsistency in the data.

Our work has also pointed out the importance of
the ontology itself, as a precious documentation tool
for the organization. Indeed, the ontology developed in
our project is adopted in MPS as a specification of the
relevant concepts in the organization. At present we are
still working with MPS in order to extend the work to
cover the core domain of the MPS information system,
with the idea that the ontology-based approach could
result in a basic step for the future IT architecture evo-
lution.

Network inventory systems. Finally, we briefly men-
tion an experimentation we carried out in the telecom-
munication context, and specifically in the domain of
network inventory systems. Within this experimenta-
tion, the customer was interested in accessing, through
a conceptual view, a 3 million tuples source database,
stored in 45 relational tables managed by the Ora-
cle 10g RDBMS.

The distinguishing characteristic of this experimen-
tation is the size of the OBDA system we realized.
The ontology is formed by a DL-Lite 4 ;4 TBox involv-

50 D. Calvanese et al. / The MASTRO system for ontology-based data access

ing 112 concepts, 84 roles, and 15 attributes, and con-
sisting of 920 axioms, among which 91 are identifica-
tion constraints and EQL constraints. Furthermore, the
mapping layer is formed by 348 mapping assertions.

As well as for the MPS case study, in this case the
experience demonstrated the usefulness of MASTRO
for data quality management. Actually, the experimen-
tation revealed a huge amount of “dirty data” in the ex-
ploited data source and allowed the customer to gain an
insight into where the data dirtiness came from. On the
other hand, the experimentation showed an actual need
for meta-level management capabilities. This need ap-
pears to be aligned with the work on higher-order on-
tology languages we are currently carrying out [12],
which however requires further investigation to be in-
corporated within MASTRO.

According to the idea that the quality of the data
stored in the sources can be measured in terms of the
amount of data respecting the constraints implied by
the domain description offered by the ontology, we laid
down the basis of a methodology for using MASTRO
for data quality management. The last two experiences
we have mentioned, have revealed how the same ontol-
ogy can be used both for querying data and for check-
ing the quality of data sources. The different objectives
in the two cases only partially influence the design of
the mapping, whereas the ontology design turns out to
be an independent task. Another important lesson con-
cerns the mapping generation: according to our expe-
riences, due to the complexity of extracting the right
semantics of the source tables, the bulk of the work in
mapping specification has to be essentially carried out
manually.

5. Comparison with other approaches and tools

To the best of our knowledge, MASTRO is the only
system currently available that allows for both sound
and complete conjunctive query answering over an on-
tology and for connecting it to external data sources
with powerful mappings, and that at the same time is
very efficient in doing this, even in data intensive ap-
plications. This is possible by virtue of the nice com-
putational characteristics of DL-Lite, which still hold
when it is used in combination with the mappings al-
lowed in MASTRO.

Differently from QUONTO, the reasoning engine at
the basis of MASTRO, other well-known DL reason-
ers such as RacerPro [17], Pellet [29], Fact++ [32],
and HermiT [28] are essentially focused on standard

DL reasoning services, whereas only limited forms of
query answering are supported, i.e., instance check-
ing/retrieval or grounded conjunctive query answering.
Grounded conjunctive queries are essentially charac-
terized by the fact that general joins typical of CQs are
performed only on individuals explicitly mentioned in
the ABox. For this reason some of the entailed answers
to CQs are missed in grounded conjunctive query an-
swering, thus only approximating computation of cer-
tain answers. Although some optimizations have been
implemented, such systems are not able to deal with
very large ABoxes (e.g., with several millions of mem-
bership assertions) as the ones we considered in our
experiments. This is mainly due to the inherent compu-
tational complexity of answering queries in the expres-
sive DL languages supported by the above mentioned
systems.

In KAON2 [19], reasoning is not based on tableaux
calculus, as in the above systems, but on a reduction
of SHZ Q ontologies (an expressive fragment of OWL
DL) into Disjunctive Datalog. Experimental results
show that KAON2 outperforms Pellet and Racer for
ontologies with simple TBoxes and large ABoxes [18].
Such ABoxes, however, do not contain more than hun-
dreds of thousands of assertions, which is in gen-
eral exceeded in OBDA applications, and again only
grounded conjunctive query answering is supported.

The system SHER [13] implements algorithms
based on an ABox summarization technique, which are
aimed at scalable grounded conjunctive query answer-
ing over SHZ Q ontologies. This approach requires to
manipulate the ABox, which is stored in an RDBMS,
and is therefore not extendible to an OBDA scenario,
where data sources are in general outside of the con-
trol of the integration system and are accessed at query
time only.

Both OWLIM'? and Oracle 11g!'! allow for native
storage and management of RDF data and support rea-
soning for RDFS and some fragments of OWL 2, in-
cluding the tractable profile OWL 2 RL!2, for which
conjunctive query answering has been shown to be
PTIME-complete!3. In both such tools inference is per-
formed ahead query time, and inferred triples are ma-
terialized. As for SHER, this makes such tools not di-

10http://www.ontotext.com/owlim/

http://www.oracle.com/it/products/database/

2http://www.w3.org/TR/owl2-profiles/

13Notice that DL-Lite is instead at the basis of another profile,
namely OWL 2 QL, which enables conjunctive query answering in
LOGSPACE (in fact ACY).

D. Calvanese et al. / The MASTRO system for ontology-based data access 51

rectly extendible to an OBDA scenario. Furthermore,
the form of reasoning they support is not fully charac-
terized from a formal point of view.

Differently from the above systems, the Virtu-
0so object-relational database engine'* provides a
SPARQL access to RDF data with reasoning support at
query time. However, inference is limited to consider
very few RDFS and OWL assertions, and is therefore
in general incomplete for OWL and its standard frag-
ments.

Apart QUONTO, other DL-Lite based approaches
and reasoners have been developed. In [20] an alter-
native approach to query answering is presented. Be-
sides a (less complex) query reformulation step, such
an approach requires to suitably “extend” the ABox
(managed by a RDBMS) with the aim of reducing the
amount of rewritten queries produced by the reformu-
lation step. Results given by first experiments support
well this approach (notice that in QUONTO the size of
the reformulation may be exponential in the size of the
input query). However, once again, the ABox manipu-
lation that it requires makes it difficult to apply in an
OBDA scenario.

The REQUIEM reasoner [24] implements a rewriting
algorithm which reduces the number of queries in the
final reformulation, still being purely intensional like
QUONTO. However, it currently supports none of the
QUONTO advanced features, such as identification or
EQL constraint management, nor mappings to external
databases.

The OWLGres prototype [30], which allows for
TBox specification in DL-Lite, uses the PostgreSQL
DBMS for the storage of the ABox, and provides con-
junctive query processing. The algorithm for query an-
swering implemented in OWLGres, however, is not
complete with respect to the computation of the certain
answers to user queries. More details on the compar-
ison between OWLGres and QUONTO can be found
in [10].

None of the above mentioned systems provides a
mechanism for connecting an ontology to external in-
dependent data sources with powerful mappings. In
fact, Virtuoso, as well as, Ontobroker!’, which is a
commercial version of KAON2, provide some form of
support to information integration, which allows for
accessing multiple ontologies or data sources. Such
features however are not characterized in a formal way

4http://virtuoso.openlinksw.com/
5http://www.ontoprise.de/en/home/products/ontobroker/

and cannot be framed in terms of the conceptual archi-
tecture at the basis of semantic data integration [22]. A
similar observation can be made on commercial prod-
ucts nowadays offered by several major software ven-
dors (Oracle, IBM, Microsoft, etc.): such tools can be
seen as a collection of wrappers allowing the users to
access a variety of data sources and to see such sources
as a single database. However, while suitable for sys-
tem interoperation, no real semantic integration is car-
ried out. Such systems may have to be considered more
as data federation tools rather than semantic data in-
tegration tools. From the research point of view, se-
mantic data integration [22] has been studied deeply in
the last two decades, producing a number of interest-
ing results. The various approaches can be classified
according to the form they adopt for the mapping that
connects the global view to the sources. In the global-
as-view (GAV) approach, in which the entities of the
global schema are defined by means of queries over
the sources, whereas in the local-as-view (LAV) ap-
proach source entities are defined by means of queries
over the global schema. We notice that currently MAS-
TRO adopts a very general form of GAV mapping.
Examples of GAV systems are TSIMMIS [14], and
Garlic [31]. Information Manifold [23], INFOMAS-
TER [15], and Picsel [16] are instead notable examples
of LAV systems.

Notice, however, that all the data integration sys-
tems mentioned above suffer from some weaknesses
from the modeling perspective, mainly due to the lim-
ited expressive power of the languages provided to
model the global schema of the integration system. In
this direction, MASTRO aims at overcoming this limi-
tation by providing the best expressive power allowed
while preserving tractability of conjunctive query an-
swering and of the integration tasks.

6. Conclusions

In this paper we presented MASTRO, a system for
ontology-based data access, which provides a compre-
hensive solution to such a problem by offering features
both for specifying and reasoning on an ontology, and
for mapping external data sources to it. Efficient algo-
rithms for advanced forms of query answering are im-
plemented, which enable effective data access. Expe-
riences on real cases yielded very encouraging results,
showing the applicability of the MASTRO approach to
real-world problems.

52 D. Calvanese et al. / The MASTRO system for ontology-based data access

We plan to extend MASTRO in the following direc-
tions:

(i) Enriching the ontology representation and rea-
soning layer with inconsistency tolerant capabilities:
indeed, when integrating different data sources under
the same ontology, it may happen that the reconciled
data do not satisfy the ontology. In such cases, repair-
ing the data could be inconvenient, or not possible at
all. However, it is possible and important to exploit
techniques for consistent query answering [8] in order
to make MASTRO able to support meaningful query
answering even in the presence of inconsistent data.
Theoretical results at the basis of the approach we want
to implement can be found in [21].

(ii) Allowing for more expressive forms of map-
pings: LAV mappings could be adopted for those set-
tings in which source data may be incomplete with re-
spect to the ontology used to access the sources under-
lying the system.

(iii) Implementing “write-also” capabilities: most
of the studies carried out in information integration,
and the systems proposed to solve the integration prob-
lem are mainly oriented towards a read-only approach.
This means that the data flows from the sources to
the global ontology only. However, several studies
have been carried out on the update problem [7,11],
attempting to reflect over the sources an update ex-
pressed in terms of the global ontology. We already
carried out some experiments in this direction and plan
to extend MASTRO in order to support such features.

(iv) Finally, we are currently working to optimize
the reformulation step in QUONTO, following the line
of research of [24,26], in order to reduce the number
of queries produced: this aspect may have a crucial im-
pact on the performance of the whole system.

Acknowledgments

This research has been partially supported by the
EU under FP7 project ACSI — Artifact-Centric Service
Interoperation (grant n. FP7-257593), and by Regione
Lazio under the project “Integrazione semantica di dati
e servizi per le aziende in rete”.

References

[1] A. Amoroso, G. Esposito, D. Lembo, P. Urbano, and R. Ver-
tucci. Ontology-based data integration with MASTRO-I for
configuration and data management at SELEX Sistemi Inte-
grati. In Proc. of SEBD 2008, pages 81-92, 2008.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
PF. Patel-Schneider, editors. The Description Logic Hand-
book: Theory, Implementation and Applications. Cambridge
University Press, 2003.

[3] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Data complexity of query answering in description
logics. In Proc. of KR 2006, pages 260-270, 2006.

[4] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. EQL-Lite: Effective first-order query processing in
description logics. In Proc. of IJCAI 2007, pages 274-279,
2007.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Tractable reasoning and efficient query answering in
description logics: The DL-Lite family. J. of Automated Rea-
soning, 39(3):385-429, 2007.

[6] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Path-based identification constraints in description
logics. In Proc. of KR 2008, pages 231-241, 2008.

[7] D. Calvanese, E. Kharlamov, W. Nutt, and D. Zheleznyakov.
Evolution of DL-Lite knowledge bases. In Proc. of ISWC 2010,
volume 6496 of LNCS, pages 112—128. Springer, 2010.

[8] J. Chomicki. Consistent query answering: Five easy pieces.
In Proc. of ICDT 2007, volume 4353 of LNCS, pages 1-17.
Springer, 2007.

[9] C. Corona, E. Di Pasquale, A. Poggi, M. Ruzzi, and D.F. Savo.
‘When OWL met DL-Lite In Proc. of SWAP 2008, 2008.

[10] C. Corona, M. Ruzzi, and D.F. Savo. Filling the gap between
OWL 2 QL and QuOnto: ROWLKit. In Proc. of DL 2009,
volume 477 of CEUR, ceur-ws.org, 2009.

[11] G.De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the
update of description logic ontologies at the instance level. In
Proc. of AAAI 2006, pages 1271-1276, 2006.

[12] G. De Giacomo, M. Lenzerini, and R. Rosati. Towards higher-
order DL-Lite. In Proc. of DL 2008, volume 353 of CEUR,
ceur-ws.org, 2008.

[13] J. Dolby, A. Fokoue, A. Kalyanpur, L. Ma, E. Schonberg,
K. Srinivas, and X. Sun. Scalable grounded conjunctive query
evaluation over large and expressive knowledge bases. In
Proc. of ISWC 2008, volume 5318 of LNCS, pages 403-418.
Springer, 2008.

[14] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajara-
man, Y. Sagiv, J.D. Ullman, V. Vassalos, and J. Widom. The
TSIMMIS approach to mediation: Data models and languages.
J. of Intelligent Information Systems, 8(2):117-132, 1997.

[15] M.R. Genereseth, A.M. Keller, and O.M. Duschka. Infomaster:
An information integration system. In Proc. of ACM SIGMOD,
pages 539-542, 1997.

[16] F. Goasdoue, V. Lattes, and M.-C. Rousset. The use of
CARIN language and algorithms for information integration:
The Picsel system. Int. J. of Cooperative Information Systems,
9(4):383-401, 2000.

[17] V. Haarslev, R. Moller, and M. Wessel. Description logic in-
ference technology: Lessions learned in the trenches. In Proc.
of DL 2005, volume 147 of CEUR, ceur-ws.org, 2005.

[18] U. Hustadt, B. Motik, and U. Sattler. A decomposition rule
for decision procedures by resolution-based calculi. In Proc.
of LPAR 2004, pages 21-35, 2004.

[19] U. Hustadt, B. Motik, and U. Sattler. Reasoning in description
logics by a reduction to Disjunctive Datalog. J. of Automated
Reasoning, 39(3):351-384, 2007.

D. Calvanese et al. / The MASTRO system for ontology-based data access 53

[20] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Za-
kharyaschev. The combined approach to query answering in
DL-Lite. In Proc. of KR 2010, 2010.

[21] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D.F. Savo.
Inconsistency-tolerant semantics for description logics. In
Proc. of RR 2010, 2010.

[22] M. Lenzerini. Data integration: A theoretical perspective. In
Proc. of PODS 2002, pages 233-246, 2002.

[23] A.Y. Levy, A. Rajaraman, and J.J. Ordille. Querying heteroge-
nous information sources using source descriptions. In Proc.
of VLDB’96, 1996.

[24] H. Pérez-Urbina, B. Motik, and I. Horrocks. A comparison of
query rewriting techniques for DL-lite. In Proc. of DL 2009,
volume 477 of CEUR, ceur-ws.org, 2009.

[25] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenz-
erini, and R. Rosati. Linking data to ontologies. J. on Data
Semantics, X:133-173, 2008.

[26] R. Rosati and A. Almatelli. Improving query answering over
DL-Lite ontologies. In Proc. of KR 2010, 2010.

[27] D.E. Savo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, V. Romagnoli, M. Ruzzi, and G. Stella. MASTRO at
work: Experiences on ontology-based data access. In Proc.
of DL 2010, volume 573 of CEUR, ceur-ws.org, pages 20-31,
2010.

[28] R. Shearer, B. Motik, and 1. Horrocks. HermiT: A highly-
efficient OWL reasoner. In Proc. of OWLED 2008, volume 432
of CEUR, ceur-ws.org, 2008.

[29] E. Sirin and B. Parsia. Pellet: An OWL DL reasoner. In Proc.
of DL 2004, volume 104 of CEUR, ceur-ws.org, 2004.

[30] M. Stocker and M. Smith. Owlgres: A scalable OWL reasoner.
In Proc. of OWLED 2008, volume 432 of CEUR, ceur-ws.org,
2008.

[31] M. Tork Roth, M. Arya, L.M. Haas, M.J. Carey, W.F. Cody,
R. Fagin, PM. Schwarz, J.T. II, and E.L. Wimmers. The Garlic
project. In Proc. of ACM SIGMOD, page 557, 1996.

[32] D. Tsarkov and I. Horrocks. FaCT++ description logic rea-
soner: System description. In Proc. of IJCAR 2006, pages 292—
297, 2006.

