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Abstract. The goal of data integration is to provide a uniform access to a set of
heterogeneous data sources, freeing the user from the knowledge about where the
data are, how they are stored, and how they can be accessed. One of the outcomes
of the research work carried out on data integration in the last years is a clear
conceptual architecture, comprising a global schema, the source schema, and the
mapping between the source and the global schema. In this paper, we present a
comprehensive approach to, and a complete system for, ontology-based data inte-
gration. In this system, the global schema is expressed in terms of a TBox of the
tractable Description Logics DL-LiteA, the sources are relations, and the map-
ping language allows for expressing GAV sound mappings between the sources
and the global schema. The mapping language has specific mechanisms for ad-
dressing the so-called impedance mismatch problem, arising from the fact that,
while the data sources store values, the instances of concepts in the ontology are
objects. By virtue of the careful design of the various languages used in our sys-
tem, answering unions of conjunctive queries can be done through a very efficient
technique (LOGSPACE with respect to data complexity) which reduces this task
to standard SQL query evaluation. We also show that even very slight extensions
of the expressive abilities of our system lead beyond this complexity bound.

1 Introduction

The goal of data integration is to provide a uniform access to a set of heterogeneous
data sources, freeing the user from the knowledge about where the data are, how they
are stored, and how they can be accessed. The problem of designing effective data
integration solutions has been addressed by several research and development projects
in the last years. Starting from the late 90s, research in data integration has mostly
focused on declarative approaches (as opposed to procedural ones) [32,26]. One of the
outcomes of this research work is a clear conceptual architecture for (mediator-based1)
data integration. According to this architecture [26], the main components of a data
integration system are the global schema, the sources, and the mapping. Thus, a data
integration system is seen as a triple 〈G, S, M〉, where:

1 Other architectures, e.g. [4], are outside the scope of this paper.
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– G is the global schema, providing both a conceptual representation of the appli-
cation domain, and a reconciled, integrated, and virtual view of the underlying
sources.

– S is the source schema, i.e., the schema of the sources where real data are stored.
– M is the mapping between G and S, constituted by a set of assertions establish-

ing the connection between the elements of the global schema and those of the
source schema. Two basic approaches have been proposed in the literature. The
first approach, called global-as-view (or simply GAV) [11,18,20,31], focuses on
the elements of the global schema, and associates to each of them a view (query)
over the sources. On the contrary, in the second approach, called local-as-view (or
simply LAV) [10,15,23], the focus is on the sources, in the sense that a view (query)
over the global schema is associated to each of them.

We use the term “data integration management system” to denote a software tool
supporting the conceptual architecture described above. Among the various services to
be provided by a data integration management system, we concentrate on query an-
swering: Queries are posed in terms of the global schema, and are to be answered by
suitably reasoning on the global schema, and exploiting the mappings to access data at
the sources.

Data integration is still one of the major challenges in Information Technology. One
of the reasons is that large amounts of heterogeneous data are nowadays available within
an organization, but these data have been often collected and stored by different appli-
cations and systems. Therefore, the need of accessing data by means of flexible and
unified mechanisms is becoming more and more important. On the other hand, cur-
rent commercial data integration tools have several drawbacks. In particular, none of
them realizes the goal of describing the global schema independently from the sources.
In particular, these tools do not allow for specifying integrity constraints in the global
schema, and this implies that the global schema is a sort of data structure for accom-
modating a reconciled view of the source data, rather than a faithful description of the
application domain. It follows that current state-of-the-art data integration tools do not
support the conceptual architecture mentioned above.

In this paper, we present a comprehensive approach to, and a complete management
system for ontology-based data integration. The system, called MASTRO-I, is based on
the following principles:

– The system fully adheres to the conceptual architecture developed by the scientific
community.

– The global schema is specified in terms of an ontology, specifically in terms of
a TBox expressed in a tractable Description Logics, namely DL-LiteA. So, our
approach conforms to the view that the global schema of a data integration system
can be profitably represented by an ontology, so that clients can rely on a shared
conceptualization when accessing the services provided by the system.

– The source schema is the schema of a relational database. In fact, such a schema
may result from the federation of a set of heterogeneous, possibly non-relational,
data sources. This can be realized by means of a data federation tool, which
presents, without materializing them, physical data sources to MASTRO-I as they
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were a single relational database, obtained by simply transforming each source into
a set of virtual relational views and taking their union.

– The mapping language allows for expressing GAV sound mappings between the
sources and the global schema. A GAV sound mapping specifies that the exten-
sion of a source view provides a subset of the tuples satisfying the corresponding
element of the global schema.
Moreover, the mapping language has specific mechanisms for addressing the so-
called impedance mismatch problem. This problem arises from the fact that, while
the data sources store values, the instances of concepts in the ontology (global
schema) are objects, each one denoted by an identifier (e.g., a constant in logic),
not to be confused with any data item.

MASTRO-I is based on the system QUONTO [1], a reasoner for DL-LiteA, and is
coupled with a data federation tool that is in charge of federating physical data sources2.

We point out that our proposal is not the first one advocating the use of ontologies
in data integration (see, for example, [2,12]). However, to the best of our knowledge,
MASTRO-I is the first data integration management system addressing simultaneously
the following aspects:

– providing a solution to the impedance mismatch problem;
– answering unions of conjunctive queries posed to the global schema according to a

method which is sound and complete with respect to the semantics of the ontology;
– careful design of the various languages used in the system, resulting in a very effi-

cient technique (LOGSPACE with respect to data complexity), which reduces query
answering to standard SQL query evaluation over the sources.

In order to demonstrate feasibility and efficiency of the MASTRO-I approach to data
integration, we also describe in this paper an experimentation carried out over a real-
world application scenario. More precisely, we discuss some experiments in which we
make use of an ontology benchmark modeling the domain of universities to specify
the global schema of the integration system, and connect it, via MASTRO-I mappings,
to real data stored at different information systems owned by SAPIENZA University of
Rome.

Although in the present work we make use of GAV mappings, the presence of
constraints expressed in a rich ontology language in the global schema, makes query
answering in our setting more similar to what is carried out in LAV data integration
systems rather than in GAV systems. Indeed, while in general GAV systems have been
realized as (simple) hierarchies of wrappers and mediators, query answering in LAV can
be considered a form of reasoning in the presence of incomplete information, and thus
significantly more complex. Early systems based on this approach, like Information
Manifold (IM) [28,29], or INFOMASTER [16,19], have implemented algorithms [28]
for rewriting queries using views, where the views are the ones specified through the

2 The current implementation of MASTRO-I makes use of Websphere Federation Server,
the IBM tool for data federation (http://www-306.ibm.com/software/data/
integration/federation server/). However, MASTRO-I can be coupled with any
data federation tool based on SQL.

http://www-306.ibm.com/software/data/integration/federation_server/
http://www-306.ibm.com/software/data/integration/federation_server/
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(conjunctive) queries in the mappings. The relationship between LAV and GAV data in-
tegration systems is explored in [5], where it is indeed shown that a LAV system can be
converted into a GAV one by introducing suitable inclusion dependencies in the global
schema. If no functionality assertions are present in the global schema, such inclusion
dependencies can then be dealt with in a way similar to what is done here for concept
and role inclusions in DL-LiteA. We show in this paper, however, that this is no longer
possible in the presence of functionality assertions.

Indeed, one might wonder whether the expressive power of the data integration
framework underlying MASTRO-I can be improved. We answer this question by show-
ing that even very slight extensions of the expressive abilities of MASTRO-I in mod-
eling the three components of a data integration system lead beyond the LOGSPACE

complexity bound.
We finally point out that MASTRO-I addresses the problem of data integration, and

not the one of schema or ontology integration. In other words, MASTRO-I is not con-
cerned with the task of building the ontology representing the global schema starting
from the source schema, or from other ontologies. This task, which is strongly related
to other important problems, such as database schema integration [3], and ontology
alignment, matching, merging, or integration (see, e.g., [17]), are outside the scope of
MASTRO-I.

The paper is organized as follows. In Section 2, we describe in detail the various
components of the data integration framework adopted in MASTRO-I. In Section 3,
we provide a description of the semantics of a data integration system managed by
MASTRO-I. In Section 4, we illustrate the basic characteristics of the query answering
algorithm. In Section 5, we present our experiments. Finally, in Section 6 we study
possible extensions to the MASTRO-I framework, and in Section 7 we conclude the
paper.

2 The Data Integration Framework

In this section we instantiate the conceptual architecture for data integration systems
introduced in Section 1, by describing the form of the global schema, the source schema,
and the mapping for data integration systems managed by MASTRO-I.

2.1 The Global Schema

Global schemas managed by MASTRO-I are given in terms of TBoxes expressed in
DL-LiteA [30], a DL of the DL-Lite family. Besides the use of concepts and roles,
denoting sets of objects and binary relations between objects, respectively, DL-LiteA
allows one to use value-domains, a.k.a. concrete domains, denoting unbounded sets
of (data) values, and concept attributes, denoting binary relations between objects and
values3. In particular, the value-domains that we consider here are those corresponding
to unbounded (i.e., value-domains with an unbounded size) RDF data types, such as
integers, real, strings, etc.

3 In fact, all results presented in [30] and exploited in the present paper can be extended to
include role attributes, user-defined domains, as well as inclusion assertions over such domains
(see also [7]).
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To describe DL-LiteA, we first introduce the DL DL-LiteFR, which combines the
main features of two DLs presented in [8], called DL-LiteF and DL-LiteR, respectively.
We use the following notation:

– A denotes an atomic concept, B a basic concept, C a general concept, and �C the
universal concept;

– E denotes a basic value-domain, i.e., the range of an attribute, T1, . . . , Tn denote
the n pairwise disjoint unbounded RDF data types used in our logic, and F denotes
a general value-domain, which can be either an unbounded RDF data type Ti or
the universal value-domain �D;

– P denotes an atomic role, Q a basic role, and R a general role;
– U denotes an atomic attribute, and V a general attribute.

Given an attribute U , we call domain of U , denoted by δ(U), the set of objects that U
relates to values, and we call range of U , denoted by ρ(U), the set of values related to
objects by U .

We are now ready to define DL-LiteFR expressions as follows.

– Basic and general concept expressions:

B ::= A | ∃Q | δ(U) C ::= B | ¬B

– Basic and general value-domain expressions:

E ::= ρ(U) F ::= �D | T1 | · · · | Tn

– General attribute expressions:

V ::= U | ¬U

– Basic and general role expressions:

Q ::= P | P− R ::= Q | ¬Q

A DL-LiteFR TBox allows one to represent intensional knowledge by means of as-
sertions of the following forms:

– Inclusion assertions:

B � C concept inclusion assertion
Q � R role inclusion assertion
E � F value-domain inclusion assertion
U � V attribute inclusion assertion

A concept inclusion assertion expresses that a (basic) concept B is subsumed by a
(general) concept C. Analogously for the other types of inclusion assertions.

– Functionality assertions on atomic attributes or basic roles:

(funct I) functionality assertion

where I denotes either an atomic attribute or a basic role.
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DL-LiteA TBoxes are DL-LiteFR TBoxes with suitable limitations in the combi-
nation of DL-LiteFR TBox assertions. To describe such limitations we first introduce
some preliminary notions.

An atomic attribute U (resp., an atomic role P ) is called a functional property in a
TBox T , if T contains a functionality assertion (funct U) (resp., either (funct P ) or
(funct P−)). Then, an atomic attribute is called primitive in T , if it does not appear
positively in the right-hand side of an attribute inclusion assertion of T , i.e., an atomic
attribute U1 is primitive in T if there does not exist an atomic attribute U2 such that
U2 � U1 is asserted in T . Similarly, an atomic role is called primitive in T if it or its
inverse do not appear positively in the right-hand side of a role inclusion assertion of
T , i.e., an atomic role P is primitive in T if there does not exist a basic role Q such that
neither Q � P nor Q � P− is asserted in T .

Then, a DL-LiteA TBox is a DL-LiteFR TBox T satisfying the condition that every
functional property in T is primitive in T .

Roughly speaking, in our logic, functional properties cannot be specialized, i.e., they
cannot be used positively in the right-hand side of role/attribute inclusion assertions.
As shown in [30], reasoning over a DL-LiteA knowledge base (constituted by a TBox
and an ABox, which specifies the instances of concept and roles) is tractable. More
precisely, TBox reasoning is in PTIME and query answering is in LOGSPACE w.r.t.
data complexity, i.e., the complexity measured in the size of the ABox only (whereas
query answering for DL-LiteFR is PTIME-hard [8]). Thus, DL-LiteA presents the same
computational behavior of all DLs of the DL-Lite family, and therefore is particularly
suited for integration of large amounts of data.

2.2 The Source Schema

The source schema in MASTRO-I is assumed to be a flat relational database schema,
representing the schemas of all the data sources. Actually, this is not a limitation of the
system, since the source schema coupled with MASTRO-I can be the schema managed
by a data federation tool. So, the data federation tool is in charge of interacting with
data sources, presenting them to MASTRO-I as a single relational database schema,
obtained by wrapping physical sources, possibly heterogeneous, and not necessarily
in relational format. Furthermore, the data federation tool is in charge of answering
queries formulated over the source schema, by suitably transforming and asking them
to the right sources, finally combining the single results into the overall answer. In other
words, the data federation tool makes MASTRO-I independent from the physical nature
of the sources, by providing a logical representation of them (physical independence),
whereas MASTRO-I is in turn in charge of making all logical aspects transparent to the
user, by maintaining the conceptual global schema separate from the logical federated
schema, and connecting them via suitable mappings (logical independence).

2.3 The Mapping

The mapping in MASTRO-I establishes the relationship between the source schema and
the global schema, thus specifying how data stored at the sources are linked to the
instances of the concepts and the roles in the global schema. To this aim, the mapping
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specification takes suitably into account the impedance mismatch problem, i.e., the mis-
match between the way in which data is (and can be) represented in a data source, and
the way in which the corresponding information is rendered through the global schema.

The MASTRO-I mapping assertions keep data value constants separate from object
identifiers, and construct identifiers as (logic) terms over data values. More precisely,
object identifiers in MASTRO-I are terms of the form f(d1, . . . , dn), called object terms,
where f is a function symbol of arity n > 0, and d1, . . . , dn are data values stored at the
sources. Note that this idea traces back to the work done in deductive object-oriented
databases [22].

We detail below the above ideas. The mapping in MASTRO-I is specified through a
set of mapping assertions, each of the form

Φ(v) � S(w)

where

– Φ(v), called the body of the mapping, is a first-order logic (FOL) query of arity
n > 0, with distinguished variables v, over the source schema S (we will write
such query in the SQL syntax), and

– P (w), called the head, is an atom where S can be an atomic concept, an atomic
role, or an atomic attribute occurring in the global schema G, and w is a sequence
of terms.

We define three different types of mapping assertions:

1. Concept mapping assertions, in which the head is a unary atom of the form
A(f(v)), where A is an atomic concept and f is a function symbol of arity n;

2. Role mapping assertions, in which the head is a binary atom of the form
P (f1(v′), f2(v′′)), where P is an atomic role, f1 and f2 are function symbols of
arity n1, n2 > 0, and v′ and v′′ are sequences of variables appearing in v;

3. Attribute mapping assertions, in which the head is a binary atom of the form
U(f(v′), v′′ : Ti), where U is an atomic attribute, f is a function symbol of ar-
ity n′ > 0, v′ is a sequence of variables appearing in v, v′′ is a variable appearing
in v, and Ti is an RDF data type.

In words, such mapping assertions are used to map source relations (and the tuples
they store), to concepts, roles, and attributes of the ontology (and the objects and the
values that constitute their instances), respectively. Note that an attribute mapping also
specifies the type of values retrieved by the source database.

Example 1. Consider the following mapping assertions:

M1 : SELECT S CODE � Student(st(S CODE))
FROM STUDENTS
WHERE DOB <= ’1990/01/01’

M2 : SELECT S CODE,S NAME � name(st(S CODE),S NAME : xsd:string)
FROM STUDENTS
WHERE DOB <= ’1990/01/01’

M3 : SELECT S CODE,C CODE � takesCourse(st(S CODE), co(C CODE))
FROM COURSES
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Such assertions relate a source schema containing the relations STUDENTS and
COURSES to a global schema containing the atomic concept Student, the atomic at-
tribute name, and the atomic role takesCourse. M1 is a concept mapping assertion that
selects from the table STUDENTS the code (variable S CODE) of students whose date
of birth (variable DOB) is after December 31, 1989, and for each such code builds, by
means of the function symbol st, an object term representing an instance of the con-
cept Student. M2 is an attribute mapping assertion that, besides the codes, selects also
the names (variable S NAME) of the students born after December 31, 1989, and for
each selected tuple builds a pair constituted by a term of the form st(S CODE), which
is as in assertion M1, and a constant representing the name of the student. To such a
constant M2 assigns the data type xsd:string. Finally, M3 is a role mapping as-
sertion relating the relation COURSES to the global atomic role takesCourse. More
precisely, from each pair constituted by the code of a student (variable S CODE) and
the code of a course she takes (variable C CODE), M3 builds a pair of object terms
(st(S CODE),co(C CODE)), where co is a function symbol used to build object terms
representing courses taken by students.

We point out that, in fact, the body of each mapping assertion is never really evalu-
ated in order to extract values from the sources to build instances of the global schema,
but rather it is used to unfold queries posed over the global schema, and thus rewriting
them into queries posed over the source schema (cf. Section 4). Also, we notice that the
mapping designer has to specify a correct DL-LiteA data type for the values extracted
from the source, in order to guarantee coherency of the system. This aspect is detailed
in the next section.

3 Semantics

We now illustrate the semantics of a data integration system managed by MASTRO-I.
Let J = 〈G, S, M〉 be a data integration system. The general idea is to start with

a database D for the source schema S, i.e., an extension of the data sources, called
the source database for J . The source database D has to be coherent with the typing
assertions that implicitly appears in the mapping M. More precisely, this means that,
for every attribute mapping Φ(v) � U(f(v′), v′′ : Ti), the values for v′′ extracted from
D are of type Ti. In the rest of this paper, we always assume that the source database is
coherent with the mapping.

Given a source database D, we define the semantics of J as the set of interpretations
for G that both satisfy the TBox assertions of G, and satisfy the mapping assertions in
M with respect to D. This informal definition makes use of different notions that we
detail below.

– First, the notion of interpretation for G is the usual one in DL. An interpretation
I = (ΔI , ·I) for G consists of an interpretation domain ΔI and an interpretation
function ·I . ΔI is the disjoint union of the domain of objects ΔI

O , and the domain of
values ΔI

V , while the interpretation function ·I assigns the standard formal meaning
to all expressions and assertions of the logic DL-LiteA (see [7]). The only aspect
which is not standard here is the need of dealing with objects denoted by terms (see
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previous section). To this end, we now introduce two disjoint alphabets, called ΓO

and ΓV , respectively. Symbols in ΓO are called object terms, and are used to denote
objects, while symbols in ΓV , called value constants, are used to denote data values.
More precisely, ΓO is built starting from ΓV and a set Λ of function symbols of any
arity (possibly 0), as follows: If f ∈ Λ, the arity of f is n, and d1, . . . , dn ∈ ΓV ,
then f(d1, . . . , dn) is a term in ΓO, called object term. In other words, object terms
are either functional terms of arity 0, called object constants, or terms constituted
by a function symbol applied to data value constants. We are ready to state how
the interpretation function ·I treats ΓV and ΓO: ·I assigns a different value in ΔI

V

to each symbol in ΓV , and a different element of ΔI
O to every object term (not

only object constant) in ΓO. In other words, DL-LiteA enforces the unique name
assumption on both value constants and object terms.

– To the aim of describing the semantics of mapping assertions with respect to a
database D for the source schema S, we first assume that all data values stored
in the database D belong to ΓV

4. Then, if q is a query over the source schema S,
we denote by ans(q, D) the set of tuples obtained by evaluating the query q over
the database D (if q has no distinguished variables, then ans(q, D) is a boolean).
Finally, we introduce the notion of ground instance of a formula. Let γ be a FOL
formula with free variables x = (x1, . . . , xn), and let s = (s1, . . . , sn) be a tuple
of elements in ΓV ∪ ΓO. A ground instance γ[x/s] of γ is obtained from γ by
substituting every occurrence of xi with si.
We are now ready to specify the semantics of mapping assertions. We say that an
interpretation I = (ΔI , ·I) satisfies the mapping assertion Φ(v) � S(w) with
respect to D, if for every ground instance

Φ[v/s] � S[v/s]

of Φ(v) � S(w), we have that ans(Φ[v/s], D) = true implies S[v/s]I = true,
where, for a ground atom S(t), with t = (t1, . . . , tn) a tuple of terms, we have
that S(t)I = true if and only if (tI1 , . . . , tIn) ∈ pI . Note that the above definition
formalizes the notion of sound mapping, as it treats each mapping assertion as an
implication.

– With the above notion in place, we define the semantics of J with respect to D as
follows:

semD(J ) = { interpretation I | I satisfies all assertions in G and M wrt D }

We say that J is satisfiable withe respect the D if semD(J ) 	= ∅.
Among the various reasoning services that can be considered over a data integration

system, in this paper we are interested in the problem of answering unions of conjunc-
tive queries (UCQs) posed to the global schema. The semantics of query answering is
given in terms of certain answers to the query, defined as follows. Given a data integra-
tion system J = 〈G, S, M〉, and a database D for S, the set of certain answers to the
query q(x) over G with respect to D (denoted by cert(q, J , D)) is the set of all tuples
t of elements of ΓV ∪ ΓO such that q[x/t] is true in every I ∈ semD(J ).

4 We could also introduce suitable conversion functions in order to translate values stored at the
sources into value constants in ΓV , but we do not deal with this issue here.
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4 Query Answering

In this section, we sketch our query answering technique (more details can be found
in [30]). Consider a data integration system J = 〈G, S, M〉 and a database D for S,
and assume that J is satisfiable with respect to D, i.e., semD(J ) 	= ∅.

We start with the following observation. Suppose we evaluate (over D) the queries
in the left-hand sides of the mapping assertions, and we materialize accordingly the
corresponding assertions in the right-hand sides. This would lead to a set of ground
assertions, that can be considered as a DL-Lite ABox5, denoted by AM,D. It can be
shown that query answering over J and D can be reduced to query answering over the
DL-LiteA knowledge base constituted by the TBox G and the ABox AM,D. However,
due to the materializion of AM,D, the query answering algorithm resulting from this
approach would be polynomial in the size of D. On the contrary, our idea is to avoid any
ABox materialization, but rather answer Q by reformulating it into a new query that can
be afterwards evaluated directly over the database D. The resulting query answering
algorithm is constituted by four steps, which are called rewriting, filtering, unfolding
and evaluation, and are described in the following.

4.1 Rewriting

Given a UCQ Q over a data integration system J = 〈G, S, M〉, and a source database
D for J , the rewriting step computes a new UCQ Q′ over J , where the assertions of
G are compiled in. In computing the rewriting, only inclusion assertions of the form
B1 � B2, Q1 � Q2, and U1 � U2 are taken into account, where Bi, Qi, and Ui,
with i ∈ {1, 2}, are a basic concept, a basic role and an atomic attribute, respectively.
Intuitively, the query Q is rewritten according to the knowledge specified in G that
is relevant for answering Q, in such a way that the rewritten query Q′ is such that
cert(Q′, 〈∅, S, M〉, D) = cert(Q, J , D), i.e., the rewriting allows to get rid of G.

Example 2. Consider a data integration system J = 〈G, S, M〉 where G is DL-LiteA
TBox comprising the concept inclusion assertion Student � ∃takesCourse, and con-
sider the query Q(x) :− takesCourse(x, y) (written in Datalog syntax), which is asking
for individuals that take (at least) a course. The output of the rewriting step is the fol-
lowing UCQ Q′ (written in Datalog syntax):

Q′(x) :− takesCourse(x, y).
Q′(x) :− Student(x).

Since the global schema says that each student takes at least a course, the query Q′ asks
both for individuals that take a course and for individuals that are students. Then, we
can answer Q′ over J by disregarding the inclusion assertions in G, and we get the
same result we got by answering Q over J . In other words, whatever is the underlying
source database D, we have that cert(Q′, 〈∅, S, M〉, D) = cert(Q, J , D).

5 In DL jargon, an ABox is a set of membership assertions, i.e., assertions stating which are the
instances of the concepts and the roles defined in the corresponding TBox.
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We refer the reader to [30,9] for a formal description of the query rewriting algo-
rithm used by MASTRO-I and for a proof of its soundness and completeness. We only
notice here that the rewriting procedure does not depend on the source database D,
runs in polynomial time in the size of G, and returns a query Q′ whose size is at most
exponential in the size of Q.

4.2 Filtering

Let Q′ be the UCQ produced by the rewriting step above. In the filtering step we take
care of a particular problem that the disjuncts, i.e., conjunctive queries, in Q′ might
have. Specifically, a conjunctive query cq is called ill-typed if it has at least one join
variable x appearing in two incompatible positions in cq, i.e., such that the TBox G of
our data integration system logically implies that x is both of type Ti, and of type Tj ,
with Ti 	= Tj (remember that in DL-LiteA data types are pairwise disjoint). The purpose
of the filtering step is to remove from the UCQ Q′ all the ill-typed conjunctive queries.
Intuitively, such a step is needed because the query Q′ has to be unfolded and then
evaluated over the source database D (cf. the next two steps of the MASTRO-I query
answering algorithm described below). These last two steps, performed for an ill-typed
conjunctive query might produce incorrect results. Indeed, the set of certain answers
over a satisfiable data integration system for an ill-typed conjunctive query cq is always
empty (cf. Section 3). However, the SQL query that results after the unfolding step (see
below) is sent to the underlying data federation tool that uses its SQL engine for eval-
uating it over the source database, and it might happen that the data value conversions
carried out by the SQL engine make the evaluation of such an SQL query non-empty,
thus incorrectly producing a non-empty set of certain answers for cq. Obviously, this
might produce an incorrect result in all those cases in which cq occurs in the UCQ Q′.
The filtering step, by simply dropping all ill-typed queries from Q′, solves this problem
and produces a new UCQ Q′′ over J .

Example 3. Consider the boolean conjunctive query

Q :− id(x, z), age(x, z).

where id and age are two atomic attributes, asking if there exists a value constant which
is both the id and the age of a certain individual (e.g., a student). Consider now a data
integration system J = 〈G, M, S〉 where G contains the assertions

ρ(id) � xsd:string
ρ(age) � xsd:integer

specifying that the range of id is xsd:string, and the range of age is
xsd:integer. Obviously, the query Q above is ill-typed, since xsd:string and
xsd:integer are two disjoint data types.

Let us now answer Q over J , and assume that the output of the rewriting step is
Q itself (i.e., the global schema does not contain assertions that cause the rewriting
of Q). If we skipped now the filtering step, the query above would be handed to the
unfolder (see below), which would transform it into an SQL query (according to M).
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Then, its evaluation over some source database D might return some tuples, due to
some data value conversions that make the join specified in Q succeed. In other words,
cert(Q, J , D) might be non-empty and the query might incorrectly be considered true.
The filtering step, instead, simply drops the ill-typed queries from the UCQ to be sent
to the unfolder, which in this example is therefore an empty query. As a consequence,
cert(Q, J , D) is correctly empty.

4.3 Unfolding

Given the UCQ Q′′ over J computed by the filtering step, the unfolding step com-
putes, by using logic programming technology, an SQL query Q′′′ over the source
schema S, that possibly returns object terms. It can be shown [30] that Q′′′ is such
that ans(Q′′′, D) = cert(Q′′, 〈∅, S, M〉, D), i.e., unfolding allows us to get rid of M.
Moreover, the unfolding procedure does not depend on D, runs in polynomial time in
the size of M, and returns a query whose size is polynomial in the size of Q′′.

Example 4. Let us now continue Example 2, and assume that M is constituted by the
mapping assertions described in Example 1. It is easy to see that Q′ does not contain
ill-typed queries, and therefore the outut of the filtering step is Q′ itself. Also, it is easy
to see that Q′ has to be unfolded by means of mapping assertions M1 (used to unfold
Q(x) :− takesCourse(x, y)) and M3 (used to unfold Q(x) :− Student(x)). The SQL
query that results from this unfolding is the following:

SELECT CONCAT(’st(’,S CODE,’)’) FROM COURSES
UNION
SELECT CONCAT(’st(’,S CODE,’)’) FROM STUDENTS
WHERE DOB <= ’1990/01/01’

Notice that in the above query we have made use of the SQL function CONCAT6.
Such a function allows us to concatenate strings to construct object terms of the form
st(S CODE). By virtue of this mechanism, the evaluation of the above query over the
source database returns indeed a set of object terms representing individuals (in fact,
students), coherently to what the original query Q asks for.

4.4 Evaluation

The evaluation step consists in simply delegating the evaluation of the SQL query Q′′′,
produced by the unfolding step, to the data federation tool managing the data sources.
Formally, such a tool returns the set ans(Q′′′, D), i.e., the set of tuples obtained from
the evaluation of Q′′′ over D.

4.5 Correctness of Query Answering

It can be shown that the query answering procedure described above correctly com-
putes the certain answers to UCQs. Based on the computational properties of such an
algorithm, we can then characterize the complexity of our query answering method.

6 For simplicity we assume that the underlying data federation tool allows for using CONCAT
with an arbitrary number of arguments.
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Theorem 1. Let J = 〈G, S, M〉 be a MASTRO-I data integration system, and D a
source database for J . Answering a UCQ over J with respect to D can be reduced to
the evaluation of an SQL query over D, and is LOGSPACE in the size of D.

Finally, we remark that, as we said at the beginning of this section, we have assumed
that the data integration system J is consistent with respect to the database D, i.e.,
semD(J ) is non-empty. Notably, it can be shown that all the machinery we have de-
vised for query answering can also be used for checking consistency of J with respect
to D. Therefore, checking consistency can also be reduced to sending appropriate SQL
queries to the source database [30].

5 Experimentation

In this section, we comment on the results of an experimentation that we have carried
out on a real-world data integration scenario. The main aim of the experimentation is to
test on a case of real and practical interest the MASTRO-I architecture for data integra-
tion, which reflects the fundamental principle of maintaining separate the physical level
of the data sources, which remain autonomous and independent, from the conceptual
representation of the domain of discourse, whose design reflects only the ambit of in-
terest and is in principle independent from the specific data at the sources. To this aim,
we have considered a set of information sources used by different administrative offices
of SAPIENZA University of Rome, and we have used the so-called Lehigh University
Benchmark (LUBM)7 to specify the global schema of our integration system. LUBM
consists of an ontology for modeling universities, and it is a de facto standard for bench-
marking ontology reasoners. Usually, extensional data for the LUBM intensional level
are synthesized in an automatic way, possibly using benchmark generators available for
LUBM. Here, instead, by virtue of the mapping mechanism provided by MASTRO-I,
we are able to connect our specific data sources to the LUBM ontology, which has been
of course designed independently from such data.

5.1 Scenario

As data sources, we consider three legacy relational databases, containing the overall
number of 25 relations, each storing from a few tuples up to 50,000 tuples. We make
use of IBM Websphere Federation Server to federate the above data sources, in such a
way that MASTRO-I can see such sources as a single relational schema (source schema).
As already said, to model the global schema we make use of the LUBM ontology. The
ontology contains concepts for persons, students, professors, publications, courses, etc.,
as well as appropriate relationships for such a universe of discourse. The ontology is
specified in OWL-DL8, and it currently defines 43 classes and 32 properties (including
25 object properties, i.e., roles, and 7 datatype properties, i.e., attributes). Note that, in
order to use the LUBM ontology in MASTRO-I, we rephrased it in DL-LiteA, essentially

7 http://swat.cse.lehigh.edu/projects/lubm/
8 http://www.w3.org/2007/OWL/wiki/OWL Working Group

http://swat.cse.lehigh.edu/projects/lubm/
http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
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capturing all its constructs9, and also enriched it with further TBox assertions modeling
peculiar aspects of the domain not present in the original ontology. For example, we also
considered the role hasExam, to model the courses for which a student has passed the
exam.

Due to space limits, we provide below only a fragment of the DL-LiteA ontology
used in our experiments.

Student � ∃takesCourse ∃takesCourse− � Course
Course � ∃teacherOf− ∃teacherOf � Faculty
Faculty � ∃worksFor ∃worksFor− � University

University � ∃hasAlumnus ∃hasAlumnus− � Student

In words, the assertions in the first column, from top to bottom, respectively say that
each student must take a course (i.e., must be connected by the role takesCourse to a
certain individual), each course is necessarily taught by some individual, each faculty
participates to the role worksFor, each university has at least one alumnus. Assertions in
the second column, from top to bottom, respectively say that individuals in the inverse
of the role takesCourse (resp. the role teacherOf, the inverse of the role worksForUniv,
and the inverse of the role hasAlumnus) must be courses (resp. faculties, universities,
students).

5.2 Testing Query Answering

To show scalability of query answering in MASTRO-I, we tuned our system in such
a way that data stored at the sources resulted into six different source databases of
growing size. Table 1 briefly says how data coming from the information systems of
SAPIENZA University of Rome have been filtered for our experiments.

Table 1. Source databases used for tests

Name DB size Data description
(number of tuples)

DB1 118075 from 1993 to 1995 (restricted to students living in Rome)
DB2 165049 from 1993 to 1995
DB3 202305 from 1993 to 1997 (restricted to students living in Rome)
DB4 280578 from 1993 to 1997
DB5 328256 from 1993 to 1999 (restricted to students living in Rome)
DB6 482043 from 1993 to 1999

We then considered five significant queries over the global schema, and measured the
behavior of MASTRO-I in terms of both the size of the resulting answer sets (i.e., the
number of tuples in the answer to each query), and the overall time that MASTRO-I took
to produce these answer sets. Below we describe each test query (given in DATALOG
notation).

9 We recall that, since DL-LiteA is less expressive than OWL-DL, an OWL-DL ontology cannot
be in general exactly specified in DL-LiteA.
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(a) (b)

Fig. 1. Query answering: (a) Execution time (b) Number of tuples in the answer

– Query 1: It asks for all persons living in Rome

Q1(x) :− Person(x), address(x,’ROMA’).

– Query 2: It asks for the names of all students that take a course, together with the
name of such a course:

Q2(z, w) :− Student(x), name(x, z), takesCourse(x, y), name(y, w).

– Query 3: It asks for all persons that passed at least an exam:

Q3(x) :− Person(x), hasExam(x, y).

– Query 4: It asks for the names of all persons whose address is the same as the
address of the organization for which their advisor works:

Q4(z) :− Person(y), name(y, z), address(y, w), advisor(y, x),
worksFor(x, v), address(v, w).

– Query 5: It asks for all students that take a course, together with the address of the
organization for which the course teacher works:

Q5(x, c) :− Student(x), takesCourse(x, y), teacherOf(z, y), worksFor(z, w),
address(w, c).

The results of our experiments are given in Figure 1, which shows the performance
(execution time) for answering each query w.r.t. the growth of the size of the source
database (Figure 1(a)), and the number of tuples returned by each query for each source
database (Figure 1(b)).

All experiments have been carried out on an Intel Pentium IV Dual Core machine,
with 3 GHz processor clock frequency, equipped with 1 Gb of RAM, under the operat-
ing system Windows XP professional.
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5.3 Discussion

For each query, the execution time comprises the time needed for rewriting and filter-
ing the input query (both rewriting and filtering are executed by the system QUONTO,
which is at the core of MASTRO-I) unfolding the resulting query, and evaluating the un-
folded query over the underlying database (both unfolding and evaluation are delegated
to IBM Websphere Federation Server). We point out that the time needed for query
rewriting and query unfolding is negligible w.r.t. the overall execution time, and that
the major time consuming process is the evaluation of the rewritten and unfolded query
over the source database. This depends both on the number of disjuncts occurring in
the rewritten query (which is a union of conjunctive queries), and the number of source
relations mapped to concepts, roles, and attributes occurring as predicates of the query
atoms. As an example, we provide below the rewriting of Query 2 (expressed in Datalog
notation), for which we measured the worst performance in terms of execution times
(n0 below denotes a fresh existentially quantified variable introduced by the rewriting
process).

Q2(z, w) :− name(y, w), examRating(x, y, n0), name(x, z).
Q2(z, z) :− takesGraduateCourse(x, x), name(x, z).
Q2(z, w) :− name(y, w), takesGraduateCourse(x, y), name(x, z).
Q2(z, w) :− name(y, w), hasExam(x, y), name(x, z).
Q2(z, z) :− examRating(x, x, n0), name(x, z).
Q2(z, z) :− takesCourse(x, x), name(x, z).
Q2(z, z) :− hasExam(x, x), name(x, z).
Q2(z, w) :− name(y, w), takesCourse(x, y), name(x, z).

We notice that MASTRO-I shows good scalability w.r.t. the growth of the size of the
ABox, and that execution time is always limited, even for answering queries that are
rewritten into unions of conjunctive queries with several disjuncts.

6 Extending the Data Integration Framework

In this section we study whether the data integration setting presented above can be
extended while keeping the same complexity of query answering. In particular, we in-
vestigate possible extensions for all the three components 〈G, S, M〉 of the system.

6.1 Extensions to DL-LiteA

With regard to the logic used to express the global schema G, the results in [8] already
imply that it is not possible to go beyond DL-LiteA (at least by means of the usual DL
constructs) and at the same time keep the data complexity of query answering within
LOGSPACE. Here we consider the possibility of removing the unique name assumption
(UNA), i.e., the assumption that, in every interpretation of a data integration system,
both two distinct value constants, and two distinct object terms denote two different do-
main elements. Unfortunately, this leads query answering out of LOGSPACE, as shown
by the following theorem.
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Theorem 2. Let J = 〈G, S, M〉 be a MASTRO-I data integration system extended
by removing the UNA, and D a database for S. Answering a UCQ (in fact, a query
constituted by a single atom) over J with respect to D is NLOGSPACE-hard in the size
of D.

Proof. We prove the result already for a data integration system in which the global
schema is expressed in DL-LiteF [8], a sub-language of DL-LiteA, and in which the
mapping assertions have the simplest possible form, i.e., they map a single source rela-
tion to a single concept or role of the global schema10. The proof is based on a reduction
from reachability in directed graphs, which is NLOGSPACE-hard.

Let G = 〈V, E〉 be a directed graph, where V is the set of vertexes and E the set
of directed edges. Reachability is the problem of deciding, given two vertexes s, t ∈ V
whether there is an oriented path formed by edges in E in the graph that, starting from s
allows to reach t. We consider the graph represented through first-child and next-sibling
functional relations F , N , S (cf. Figure 2).

v0

v1 v2 vn

v0

v1 v2 vn

...

...

E E E

F

S S SN N N

Fig. 2. Representation of a graph through the functional relations F , N , S

We define the data integration system Juna = 〈G, S, M〉 as follows:

– The alphabet of G consists of the atomic concept Ag and the atomic roles Fg , Ng,
Sg , and Pg . G consists only of the functionality assertions {(funct Rg) | Rg ∈
{Fg, Ng, Sg, Pg}}.

– S contains the binary relational tables Fs, Ns, Ss, and Ps, with columns c1 and c2,
and the unary relational table As, with column c.

– The mapping M maps each table Rs to the corresponding role or concept Rg , i.e.,

SELECT c1, c2 FROM Rs � Rg(id(c1), id(c2)), for R ∈ {F, N, S, P}
SELECT c FROM As � Ag(id(c))

Notice that we are using a single function symbol id (that we intend to represent
the identity function).

Then, from the graph G and the two vertexes s, t, we define the source database DG as
follows:

DG = {Rs(a, b), Rs(a′, b′) | (a, b) ∈ R, for R ∈ {F, N, S}} ∪
{Ps(init , s), Ps(init , s′)} ∪ {As(t)}

10 The mapping assertions actually play no role in the proof, and the hardness result holds already
for a plain DL-LiteF knowledge base constituted by a TBox and an ABox.
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Fig. 3. Structure of the database used in the proof of Theorem 2

In other words, we encode in DG two copies of (the representation of) the graph G. In
addition, we include in DG the facts As(t), Ps(init , s), and Ps(init , s′), where init is
a database constant that does not correspond to any vertex of (the representation of) G
(cf. Figure 3).

It is now possible to prove that t is reachable from s in G iff id(t′) ∈
cert(Q, Juna , DG), where Q(x) :− Ag(x) is the query returning the instances of Ag .
Indeed, it is easy to verify that the latter holds if and only if id(t) and id(t′) are the
same object in every interpretation in semDG(Juna ), i.e., the equality id(t) = id(t′) is
entailed by Juna . This is the case if and only if id(t) and id(t′) are forced to be equal
by the functionality of the roles Pg , Fg , Ng, and Sg. Given the structure of the database
DG, such an equality is enforced if and only if t is reachable from s in G.

Notice that a simple variation of the above proof can be used to show that query an-
swering, and in particular instance checking already, in DL-LiteF without the unique
name assumption is NLOGSPACE-hard with respect to data complexity.

6.2 Different Source Schemas

Although MASTRO-I is currently only able to deal with relational sources, managed by
a relational data federation tool, it is not hard to see that all the results presented in this
paper apply also if we consider federation tools that provide a representation of the data
at the sources according to a different data model (e.g., XML). Obviously, depending
on the specific data model adopted by the data federation tool, we have to resort to
a suitable query language for expressing the source queries appearing in the mapping
assertions. To adhere to our framework, the only constraint on this language is that it is
able to extract tuples of values from the sources, a constraint that is trivially satisfied by
virtually all query languages used in practice.

6.3 Extensions to the Mapping Language

As for the language used to express the mapping M, we investigate the extension of the
mapping language to allow for GLAV assertions, i.e., assertions that relate conjunctive
queries over the sources to conjunctive queries over the global schema. Such assertions
are therefore an extension of both GAV and LAV mappings. Unfortunately, even with
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LAV mappings only, instance checking and query answering are no more in LOGSPACE

wrt data complexity, as the following theorem shows.

Theorem 3. Let J = 〈G, S, M〉 be a MASTRO-I data integration system extended
with LAV mapping assertions, and D a database for S. Answering a UCQ (in fact, a
query constituted by a single atom) over J with respect to D is NLOGSPACE-hard in
the size of D.

Proof. The proof is again by a reduction from reachability in directed graphs. Let G =
〈V, E〉 be a directed graph, where V is the set of vertexes and E the set of directed
edges. Again, we consider the graph represented through first-child and next-sibling
functional relations F , N , S (cf. Figure 2).

We define the data integration system Jlav = 〈G, S, M〉 as follows:

– The alphabet of G consists of the atomic concept Ag and the atomic roles Fg , Ng,
Sg , Pg , and copyg. G consists only of the functionality assertions {(funct Rg) |
Rg ∈ {Fg, Ng, Sg, Pg, copyg}}.

– S contains the binary relational tables Fs, Ns, and Ss, with columns c1 and c2, and
the unary relational table As, with column c.

– The LAV mapping M is defined as follows (cf. Figure 4)11:

As(x) � q1(x) :− Ag(x), copyg(x, x′), Pg(z, x), Pg(z, x′)
Rs(x, y) � q2(x, y) :− Rg(x, y), copyg(x, x′), copyg(y, y′), Rg(x′, y′),

for R ∈ {F, N, S}

A t
s

G

t'
s' G'

P

P

copy copycopy

Fig. 4. Interpretation generated by the LAV mapping used in the proof of Theorem 3

Then, from the graph G and the two vertexes s, t, we define the source database DG as
follows:

DG = {Rs(a, b) | (a, b) ∈ R, for R ∈ {F, N, S}} ∪ {As(s)}
11 For simplicity, we do not include function symbols in the mapping since, as in the proof of

Theorem 2, they would play no role in the reduction.
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Intuitively, DG is simply constituted by the binary relations Fs, Ns, and Ss, used to
represent the graph G, and a unary relation As containing s.

Now consider the query Q(x) :− copyg(x, x)}. Then, it is possible to show that t is
reachable from s in G iff t ∈ cert(Q, Jlav , DG).

7 Conclusions

We close the paper by briefly mentioning some aspects that have been considered im-
portant for the problem of (ontology-based) data integration, but that have not been
addressed in the present paper, and are left for future work on the system MASTRO-I.

A first important point is handling inconsistencies in the data, possibly using a declar-
ative, rather than an adhoc procedural approach. An interesting proposal is the one of
the INFOMIX system [27] for the integration of heterogeneous data sources (e.g., rela-
tional, XML, HTML) accessed through a relational global schema with powerful forms
of integrity constraints. The query answering technique proposed in such a system is
based on query rewriting in Datalog enriched with negation and disjunction, under sta-
ble model semantics [6,21]. A first study on how to adapt the semantics for consistent
query answering to DL-Lite ontologies can be found in [25].

A further aspect is that of instance level integration and mappings, which deals with
the situation where individual instances, rather than ontology elements, in different
sources need to be mapped to each other (cf., e.g, [24]).

Finally, one notable direction for further work is making MASTRO-I a “write-also”
data integration tool. Indeed, while the present version of MASTRO-I provides support
for answering queries posed to the data integration system, it is of interest to also deal
with updates expressed on the global schema (e.g., according to the approach described
in [13,14]. The most challenging issue to be addressed in this context is to design mech-
anisms for correctly reformulating an update expressed over the ontology into a series
of insert and delete operations on the data sources.

Acknowledgments. This research has been partially supported by the FET project
TONES (Thinking ONtologiES), funded by the EU under contract number FP6-7603,
by project HYPER, funded by IBM through a Shared University Research (SUR) Award
grant, and by the MIUR FIRB 2005 project “Tecnologie Orientate alla Conoscenza per
Aggregazioni di Imprese in Internet” (TOCAI.IT).

References

1. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri, M., Rosati,
R.: QuOnto: Querying ontologies. In: Proc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI 2005), pp. 1670–1671 (2005)

2. Amann, B., Beeri, C., Fundulaki, I., Scholl, M.: Ontology-based integration of XML web
resources. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 117–131.
Springer, Heidelberg (2002)

3. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)



46 D. Calvanese et al.

4. Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L., Zaihrayeu,
I.: Data management for peer-to-peer computing: A vision. In: Proc. of the 5th Int. Workshop
on the Web and Databases (WebDB 2002) (2002)

5. Calı̀, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: On the expressive power of data in-
tegration systems. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503. Springer, Heidelberg (2002)

6. Calı̀, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in data
integration systems. In: Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI
2003), pp. 16–21 (2003)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Linking
data to ontologies: The description logic DL-LiteA. In: Proc. of the 2nd Workshop on OWL:
Experiences and Directions (OWLED 2006) (2006)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Proc. of the 10th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2006), pp. 260–270 (2006)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

10. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Data integration in data
warehousing. Int. J. of Cooperative Information Systems 10(3), 237–271 (2001)

11. Carey, M.J., Haas, L.M., Schwarz, P.M., Arya, M., Cody, W.F., Fagin, R., Flickner, M., Lu-
niewski, A., Niblack, W., Petkovic, D., Thomas, J., Williams, J.H., Wimmers, E.L.: Towards
heterogeneous multimedia information systems: The Garlic approach. In: Proc. of the 5th
Int. Workshop on Research Issues in Data Engineering – Distributed Object Management
(RIDE-DOM 1995), pp. 124–131. IEEE Computer Society Press, Los Alamitos (1995)

12. Catarci, T., Lenzerini, M.: Representing and using interschema knowledge in cooperative
information systems. J. of Intelligent and Cooperative Information Systems 2(4), 375–398
(1993)

13. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the update of description logic
ontologies at the instance level. In: Proc. of the 21st Nat. Conf. on Artificial Intelligence
(AAAI 2006), pp. 1271–1276 (2006)

14. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the approximation of instance
level update and erasure in description logics. In: Proc. of the 22nd Nat. Conf. on Artificial
Intelligence (AAAI 2007), pp. 403–408 (2007)

15. Duschka, O.M., Genesereth, M.R.: Answering recursive queries using views. In: Proc. of the
16th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS
1997), pp. 109–116 (1997)

16. Duschka, O.M., Genesereth, M.R., Levy, A.Y.: Recursive query plans for data integration. J.
of Logic Programming 43(1), 49–73 (2000)

17. Euzenat, J., Schwaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
18. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J.D.,

Vassalos, V., Widom, J.: The TSIMMIS approach to mediation: Data models and languages.
J. of Intelligent Information Systems 8(2), 117–132 (1997)

19. Genereseth, M.R., Keller, A.M., Duschka, O.M.: Infomaster: An information integration sys-
tem. In: ACM SIGMOD Int. Conf. on Management of Data, pp. 539–542 (1997)

20. Goh, C.H., Bressan, S., Madnick, S.E., Siegel, M.D.: Context interchange: New features
and formalisms for the intelligent integration of information. ACM Trans. on Information
Systems 17(3), 270–293 (1999)

21. Grieco, L., Lembo, D., Ruzzi, M., Rosati, R.: Consistent query answering under key and ex-
clusion dependencies: Algorithms and experiments. In: Conf. on Information and Knowledge
Management (CIKM 2005), pp. 792–799 (2005)



Data Integration through DL-LiteA Ontologies 47

22. Hull, R.: A survey of theoretical research on typed complex database objects. In: Paredaens,
J. (ed.) Databases, pp. 193–256. Academic Press, London (1988)

23. Kirk, T., Levy, A.Y., Sagiv, Y., Srivastava, D.: The Information Manifold. In: Proceedings
of the AAAI 1995 Spring Symp. on Information Gathering from Heterogeneous, Distributed
Enviroments, pp. 85–91 (1995)

24. Kirsten, T., Rahm, E.: BioFuice: mapping-based data integration in bioinformatics. In: Leser,
U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 124–135.
Springer, Heidelberg (2006)

25. Lembo, D., Ruzzi, M.: Consistent query answering over description logic ontologies. In:
Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524. Springer,
Heidelberg (2007)

26. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of the 21st ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002), pp.
233–246 (2002)

27. Leone, N., Eiter, T., Faber, W., Fink, M., Gottlob, G., Greco, G., Kalka, E., Ianni, G., Lembo,
D., Lenzerini, M., Lio, V., Nowicki, B., Rosati, R., Ruzzi, M., Staniszkis, W., Terracina,
G.: The INFOMIX system for advanced integration of incomplete and inconsistent data. In:
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pp. 915–917 (2005)

28. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogenous information sources using
source descriptions. In: Proc. of the 22nd Int. Conf. on Very Large Data Bases (VLDB 1996)
(1996)

29. Levy, A.Y., Srivastava, D., Kirk, T.: Data model and query evaluation in global information
systems. J. of Intelligent Information Systems 5, 121–143 (1995)

30. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. J. on Data Semantics X, 133–173 (2008)

31. Tomasic, A., Raschid, L., Valduriez, P.: Scaling access to heterogeneous data sources with
DISCO. Trans. on Knowledge and Data Engineering 10(5), 808–823 (1998)

32. Ullman, J.D.: Information integration using logical views. In: Afrati, F.N., Kolaitis, P.G.
(eds.) ICDT 1997. LNCS, vol. 1186, pp. 19–40. Springer, Heidelberg (1996)


	Data Integration through $DL-Lite_{\mathcal A}$Ontologies
	Introduction
	The Data Integration Framework
	The Global Schema
	The Source Schema
	The Mapping

	Semantics
	Query Answering
	Rewriting
	Filtering
	Unfolding
	Evaluation
	Correctness of Query Answering

	Experimentation
	Scenario
	Testing Query Answering
	Discussion

	Extending the Data Integration Framework
	Extensions to $DL-Lite_{\mathcal A}$
	Different Source Schemas
	Extensions to the Mapping Language

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




