
Logical Foundations of Peer-To-Peer Data Integration

Diego Calvanese
Faculty of Computer Science

Free University of Bolzano/Bozen
Piazza Domenicani 3, I-39100 Bolzano, Italy

calvanese@inf.unibz.it

Giuseppe De Giacomo
Maurizio Lenzerini
Riccardo Rosati

Dipartimento di Informatica e Sistemistica
Univ. di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy

lastname@dis.uniroma1.it

ABSTRACT
In peer-to-peer data integration, each peer exports data in
terms of its own schema, and data interoperation is achieved
by means of mappings among the peer schemas. Peers are
autonomous systems and mappings are dynamically created
and changed. One of the challenges in these systems is an-
swering queries posed to one peer taking into account the
mappings. Obviously, query answering strongly depends on
the semantics of the overall system. In this paper, we com-
pare the commonly adopted approach of interpreting peer-
to-peer systems using a first-order semantics, with an al-
ternative approach based on epistemic logic. We consider
several central properties of peer-to-peer systems: modular-
ity, generality, and decidability. We argue that the approach
based on epistemic logic is superior with respect to all the
above properties. In particular, we show that, in systems in
which peers have decidable schemas and conjunctive map-
pings, but are arbitrarily interconnected, the first-order ap-
proach may lead to undecidability of query answering, while
the epistemic approach always preserves decidability. This
is a fundamental property, since the actual interconnections
among peers are not under the control of any actor in the
system.

1. INTRODUCTION
In recent years, the issue of cooperation, integration, and co-
ordination between information nodes in a networked envi-
ronment has been addressed in different contexts, including
data integration [20], the Semantic Web [17], Peer-to-Peer
and Grid computing [2, 16], service oriented computing and
distributed agent systems [24, 18]. Put in an abstract way,
all these systems are characterized by an architecture con-
stituted by various autonomous nodes (called sites, sources,
agents, or, as we call them here, peers) which hold infor-
mation, and which are linked to other nodes by means of
mappings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2004, June 14–16, 2004, Paris, France.
Copyright 2004 ACM 1-58113-858-X/04/06 ...$5.00

Here, we study data integration in such Peer-to-Peer (P2P)
systems. Each peer in the system provides part of the overall
information available from a distributed environment, with-
out relying on a single global view, and acts both as a client
and as a server in the system. Moreover, the various nodes
adopt a suitable infrastructure for managing information.
The P2P paradigm was made popular by Napster, which em-
ployed a centralized database with references to the informa-
tion items (files) on the peers. Gnutella, another well-known
P2P system, has no central database, and is based on a
communication-intensive search mechanism. More recently,
a Gnutella-compatible P2P system, called Gridella [1], has
been proposed, which follows the so-called Peer-Grid (P-
Grid) approach. A P-Grid is a virtual binary tree that dis-
tributes replication over community of peers and supports
efficient search. P-Grid’s search structure is completely de-
centralized, supports local interactions between peers, uses
randomized algorithms for access and search, and ensures
robustness of search against node failures.

As pointed out in [15], current P2P systems focus strictly
on handling semantic-free, large-granularity requests for ob-
jects by identifier, which both limits their utility and re-
stricts the techniques that might be employed to distribute
the data. These current sharing systems are largely lim-
ited to applications in which objects are described by their
name, and exhibit strong limitations in establishing com-
plex links between peers. To overcome these limitations,
data-oriented approaches to P2P have been proposed re-
cently [16, 2, 15]. For example, in the Piazza system [15],
data origins serve original content, peer nodes cooperate to
store materialized views and answer queries, nodes are con-
nected by bandwidth-constrained links and advertise their
materialized views to share resources with other peers.

Differently from the traditional setting, integration in data-
oriented P2P systems is not based on a global schema. In-
stead, each peer represents an autonomous information sys-
tem, and information integration is achieved by establish-
ing P2P mappings, i.e., mappings among the various peers.
Queries are posed to one peer, and the role of query process-
ing is to exploit both the data that are internal to the peer,
and the mappings with other peers in the system. To stress
the data-oriented nature of the framework, we assume that
the various peers export data in terms of a suitable schema,
and mappings are established among such peer schemas. A
peer schema is therefore intended to export the semantics of

information as viewed from the peer.

One of the main issue in formalizing data oriented P2P sys-
tems is the semantic characterization of P2P mappings. In
this paper, we argue that, although correct from a formal
point of view, the usual approach of resorting to a first-order
logic interpretation of P2P mappings (followed e.g. by [9,
16, 2]), has several drawbacks, both from the modeling and
from the computational perspective. In particular we ana-
lyze three central desirable properties of P2P systems:

• Modularity : i.e., how autonomous are the various peers
in a P2P system with respect to the semantics. Indeed,
since each peer is autonomously built and managed, it
should be clearly interpretable both alone and when
involved in interconnections with other peers. In par-
ticular, interconnections with other peers should not
radically change the interpretation of the concepts ex-
pressed in the peer.

• Generality : i.e., how free we are in placing connections
(P2P mappings) between peers. This is a fundamental
property, since actual interconnections among peers
are not under the control of any actor in the system.

• Decidability : i.e., are sound, complete and terminat-
ing query answering mechanisms available? If not, it
becomes critical to establish basic quality assurance of
the answers returned by the system.

We show that these desirable properties are weakly sup-
ported by approaches based directly on FOL semantics. In-
deed, such approaches essentially consider the P2P system
as a single flat logical theory. As a result, the structure of the
system in terms of peers is actually lost and remote intercon-
nections may propagate constraints that have a deep impact
on the semantics of a peer (see Section 4). Moreover, under
arbitrary P2P interconnections, query answering under the
first-order semantics is undecidable, even when the single
peers have an extremely restricted structure. Motivated by
these observations, several authors proposed suitable limita-
tions to the form of P2P mappings, such as acyclicity, thus
giving up generality to retain decidability [16, 19, 11].

To overcome the above drawbacks, we propose a new seman-
tics for P2P systems, with the following aims:

• We want to take into account that peers in our context
are to be considered autonomous sites that exchange
information. In other words, peers are modules, and
the modular structure of the system should be explic-
itly reflected in the definition of its semantics.

• We do not want to limit a-priori the topology of the
mapping assertions among the peers in the system.
In particular, we do not want to impose acyclicity of
assertions.

• We seek for a semantic characterization that leads to
a setting where query answering is decidable, and pos-
sibly, polynomially tractable.

We base our proposal of a new semantics for P2P systems
on epistemic logic, and we show that the new semantics is
clearly superior to the usual FOL semantics with respect
to all three properties mentioned above. In particular, for
fairly general P2P systems, we devise a top-down query an-
swering algorithm that is based on a recursive (Datalog)
reformulation of the query posed to one of the peer of the
P2P system, and that is polynomial time with respect to the
size of data stored in the peers. Notably, our technique can
be applied every time peers are able to do query answering
based on reformulation; this ability is at the base of several
recent results on data integration [7, 4, 3].

The paper is organized as follows. In Section 2, we introduce
a framework that captures a very general architecture for
P2P systems, and then, in Section 3, we define both the
first-order and the epistemic semantics of such a framework.
In Section 4, we discuss the issues of modularity, generality,
and decidability under the two semantics, and in Section 5
we study decidability and complexity of query processing
in P2P systems under the epistemic semantics. Finally, we
draw some conclusions in Section 6.

2. FRAMEWORK
In this section, we set up the general framework for peer-
to-peer (P2P) systems. We refer to a fixed, infinite, denu-
merable, set Γ of constants. Such constants are shared by
all peers, and are the constants that can appear in the P2P
system. Moreover, given a relational alphabet A, we denote
with LA the set of function-free first-order logic (FOL) for-
mulas whose relation symbols are in A and whose constants
are in Γ.

A conjunctive query cq of arity n over an alphabet A is
written in the form

{x | ∃y bodycq(x,y)}

where bodycq(x,y) is a conjunction of atoms of LA involv-
ing the free variables (also called the distinguished variables
of the query) x = x1, . . . , xn, the existentially quantified
variables (also called the non-distinguished variables of the
query) y = y1, . . . , ym, and constants from Γ.

A P2P system P is constituted by a set of peers, each of
which includes a set of mappings that specify the semantic
relationships with the data exported by other peers. For-
mally, each peer P ∈ P (cf. [16]) is defined as a tuple
P = (G,S, L,M), where:

• G is the schema of P , which is a finite set of formulas
of LAG

, where AG is a relational alphabet (disjoint
from the other alphabets in P) called the alphabet of
P .

• S is the (local) source schema of P , that is simply a
finite relational alphabet (again disjoint from the other
alphabets in P), which is called the local alphabet of
P .

• L is a set of (local) mapping assertions between G and
S. Each local mapping assertion is an expression of
the form

cqS ; cqG

where cqS and cqG are two conjunctive queries of the
same arity, over the source schema S and over the peer
schema G, respectively.

• M is a set of P2P mapping assertions, each of which
is an expression of the form

cq ′
; cq

The query cq , called the head of the assertion, is a con-
junctive query over the peer (schema of) P , while the
query cq ′, called the tail of the assertion, is a conjunc-
tive query of the same arity as cq , over (the schema
of) one of the other peers in P.

Intuitively, the source schema describes the structure of the
data sources of the peer (possibly obtained by wrapping
physical sources), where the real data managed by the peer
are stored, while the peer schema provides a virtual view of
the information managed by, and exported by the peer. The
local mapping assertions establish the connection between
the elements of the source schema and those of the peer
schema. In particular, an assertion of the form cqS ; cqG

specifies that all the data satisfying the query cqS over the
sources also satisfy the concept in the peer schema repre-
sented by the query cqG. This form of mapping is one of
the most expressive among those studied in the data inte-
gration literature. Indeed, in terms of the terminology used
in data integration, except for the P2P mapping assertions,
a peer in our setting corresponds to a GLAV data integra-
tion system [14] managing a set of sound data sources S
defined in terms of a (virtual) global schema G.1 Finally,
a P2P mapping assertion cq ′

; cq , where cq is a query
over the schema of the peer P , expresses the fact that P
can use, besides the data in its local sources, also the data
retrieved by cq ′ from the peer P ′ over (the schema of) which
cq ′ is expressed. Such data are mapped to the schema of P
according to what is specified by the query cq .

Observe that no limitation is imposed on the topology of
the whole set of P2P mapping assertions in the peer system
P, and hence the set of all P2P mappings may be cyclic.

Finally, we assume that queries that are posed to the P2P
system P are in fact posed to one of the peers P of P. Such
queries are expressed in a certain relational query language
LP (e.g., conjunctive queries, or Datalog – see later) over the
schema of P . For now, we make no specific assumption on
the query language LP , except that the peer P can indeed
process queries belonging to LP , and we say that the queries
in LP are those accepted by P .

3. SEMANTICS
We assume that the peers are interpreted over a fixed infinite
domain ∆. We also fix the interpretation of the constants
in Γ (cf. previous section) so that: (i) each c ∈ Γ denotes an
element d ∈ ∆; (ii) different constants in Γ denote different
elements of ∆; (iii) each element in ∆ is denoted by a con-
stant in Γ.2 It follows that Γ is actually isomorphic to ∆,
1Although we assume sources to be sound, our approach
to semantics is perfectly valid if we consider complete and
exact sources.
2In other words the constants in Γ act as standard
names [21].

so that we can use (with some abuse of notation) constants
in Γ whenever we want to denote domain elements.

3.1 Semantics of one peer
We focus first on the semantics of a single peer P =
(G,S, L,M). Let us call peer theory of P the FOL the-
ory TP defined as follows. The alphabet of TP is obtained
as union of the alphabet AG of G and the alphabet of the
local sources S of P . The axioms of TP are the formulas in
G plus one formula of the form

∀x (∃y (bodycqS
(x,y)) ⊃ ∃z bodycqG

(x, z))

for each local mapping assertion cqS ; cqG in L.

Observe that the P2P mapping assertions of P are not con-
sidered in TP , and that TP is an “open theory”, since for
the sources in P we only have the schema, S, and not the
extension. We call local source database for P , a database
D for the source schema S, i.e., a finite relational interpre-
tation of the relation symbols in S. An interpretation I of
TP is a model of P based on D if it is a model of the FOL
theory TP such that for each relational symbol s ∈ S, we
have that sI = sD.

Finally, consider a query q of arity n, expressed in the query
language LP accepted by P . Given an interpretation I of
TP , we denote with qI the set of n-tuples of constants in Γ
obtained by evaluating q in I (viewed as a database over the
relations in G), according to the semantics of LP . We define
the certain answers ans(q, P,D) to q (accepted by P) based
on a local source database D for P , as the set of tuples t of
constants in Γ such that for all models I of P based on D,
we have that t ∈ qI .

We now turn our attention to assigning a semantics to the
whole P2P system. We distinguish two different approaches.

3.2 FOL semantics for P2P systems
The first approach we discuss is what we may call the FOL
approach, followed by [9, 19, 16]. In this approach, one as-
sociates to a P2P system P a single (open) FOL theory TP ,
obtained as the disjoint union of the various peer theories
(P2P mappings are not considered in TP).

By following the approach used for a single peer, we consider
a source database D for P, simply as the (disjoint) union of
one local source database D for each peer P in P. We call
FOL model of TP based on D an interpretation I of the
FOL theory TP such that for each relational symbol s of the
source schemas in the peers of P, we have that sI = sD.
Then we call FOL model of P based on D a model I of TP

based on D that is also a model of the formula

∀x (∃y (bodycq1
(x,y)) ⊃ ∃z bodycq2

(x, z))

for each P2P mapping assertion cq1 ; cq2 in the peers of
P.

Finally, given a query q over one of the peers P in P and
a source database D for P, we define the certain answers
ans fol(q, P,P,D) to q in P based onD under FOL semantics,
as the set of tuples t of constants in Γ such that for every
FOL model I of P based on D, we have that t ∈ qI .

3.3 A new semantics for P2P systems based on
epistemic logic

We base our proposal of a new semantics for P2P systems
on epistemic logic3. We briefly remind the basic notions of
epistemic logic [21, 13]. In epistemic logic, the language is
the one of FOL, except that, besides the usual atoms, one
can use another form of atoms, namely Kφ, where φ is again
a formula. An epistemic logic theory is a set of axioms that
are formulas in the language of epistemic logic.

The semantics of an epistemic logic theory is based on the
notion of epistemic interpretation. We remind the reader
that we are referring to a unique interpretation domain Γ.
An epistemic interpretation E is a pair (I,W), where W is
a set of FOL interpretations, and I ∈ W. The notion of
satisfaction of a formula in an epistemic interpretation E =
(I,W) is analogous to the one in FOL, with the provision
that the interpretation for the atoms is as follows:

• a FOL formula constituted by an atom a(x) (where
x are the free variables in the formula) is satisfied in
(I,W) by the tuples t of constants in Γ such that a(t)
is true in I,

• an atom of the form Kφ(x) is satisfied in (I,W) by
the tuples t of constants in Γ such that φ(t) is satisfied
in all epistemic interpretations (J ,W) with J ∈ W.

Note that our definition of epistemic interpretation is a sim-
plified view of a Kripke structure of an S5 modal system,
in which every epistemic interpretation is constituted by a
set of worlds, each one connected, through the accessibility
relation, to all the other ones. Indeed, in our setting each
world corresponds to a FOL interpretation, and the accessi-
bility relation is left implicit by viewing the whole structure
as a set.

An epistemic model of an epistemic logic theory is an epis-
temic interpretation that satisfies every axiom of the theory.
In turn, an axiom φ is satisfied by an epistemic interpreta-
tion (I,W) if, for every J ∈ W, the epistemic interpretation
(J ,W) satisfies the formula φ. Observe that in order for an
epistemic interpretation (I,W) to be a model of a theory,
the axioms of the theory are required to be satisfied in every
J ∈ W. Hence, with regard to the satisfaction of axioms,
only W counts.

Observe that, in epistemic logic, the formula K(φ ∨ ψ) has
an entirely different meaning with respect to the formula
Kφ ∨ Kψ. Indeed, the former is satisfied in an interpreta-
tion (J ,W) if for every I ∈ W, there is at least one among
{φ, ψ}, that is satisfied in I. Conversely, the latter requires
either that φ is satisfied in all I ∈ W or that ψ is satisfied in
all I ∈ W. Observe also that, if φ is a FOL formula, there
is a striking difference between K(∃xφ(x)) and ∃xKφ(x).
In particular, for ∃xKφ(x) to be satisfied in (I,W) there
must be a constant c ∈ Γ such that φ(c) is satisfied in ev-
ery J ∈ W, while for K(∃xφ(x)) to be satisfied it is only

3Technically we resort to epistemic FOL with standard
names, and therefore with a fixed domain, and rigid inter-
pretation of constants [21].

required that in each J ∈ W there exists a constant c ∈ Γ
such that φ(c) is satisfied in J .

We formalize a P2P system P in terms of epistemic logic as
follows. First, as before, we consider the theory TP , obtained
as the disjoint union of the various peer theories. To such a
theory we add a set of axioms MP to capture the mapping
assertions. MP is formed by one axiom of the form

∀x (K(∃y bodycq1
(x,y)) ⊃ ∃z bodycq2

(x, z))

for each P2P mapping assertion cq1 ; cq2 in the peers of P.
Note that this formalization of the P2P mapping assertions
intuitively reflects the idea that only what is known by the
peers mentioned in the tail of the assertion is transferred to
the peer mentioned in the head.

Let us define the notion of FOL model of TP based on a
source database D for P as in Section 3.2. Then, we call
epistemic model of P based on D an epistemic interpretation
(I,W) such thatW is a set of models of TP based on D, and
(I,W) is an epistemic model of MP . This implies that, for
each P2P mapping assertion cq1 ; cq2 and for every tuple
t of objects in Γ, the fact that ∃y bodycq1

(t,y) is satisfied in

every FOL model in W implies that also ∃z bodycq2
(t, z) is

satisfied in I, and in fact in every FOL model in W (since
formulas in MP are axioms).

Finally, given a query q over one of the peers P in P and
a source database D for P, we define the certain answers
ansk(q,P,D) to q in P based on D under the epistemic
semantics, as the set of tuples t of constants in Γ such that
for every epistemic model (I,W) of P based on D, we have
that t ∈ qI .

Observe that the epistemic semantics can be considered as
a well-behaved, sound approximation of the first-order se-
mantics, since it is immediate to verify that, for each q, P,
and D, if t ∈ ansk(q,P,D), then t ∈ ans fol(q,P,D).

4. INTERACTIONS BETWEEN MAP-
PINGS IN P2P SYSTEMS

In this section, we discuss the issue of interaction between
various mappings, comparing the epistemic and FOL seman-
tics for P2P systems presented above. The comparison is
guided by three principles, namely modularity, generality,
and decidability of query answering. To highlight the differ-
ences between the two semantics, we will consider the sim-
plest setting in which interactions may occur, namely sys-
tems containing only two P2P mappings. The three types
of systems we discuss in the following are depicted in Fig-
ures 1(a), 1(b) and 1(c), and represent respectively the case
of a parallel, sequential, and cyclic architecture, where each
circle represents a peer, and an arrow from a peer P ′ to a
peer P represents a mapping assertion whose head is a con-
junctive query over P and whose tail is a conjunctive query
over P ′. We will also discuss a P2P system that roughly cor-
responds to the case of data integration (cf. Figure 1(d)).

We first need to provide some definitions. Given a peer
P = (G,S, L,M), we denote as τ(P) the peer (G,S ′, L′,M)
such that:

P2

P1

m1 m2

P2

P1

P3

m1

m2

P2

P1

m2

m1

P1

P2 P3

m1 m2

(a) (b) (c) (d)

Figure 1: Interactions between two mappings

1. S′ is obtained from S by adding a new source predi-
cate symbol r, of the same arity as cq ′, for each P2P
mapping assertion cq ′

; cq in M between a peer P ′

and P . We also denote as Q(r) the query cq ′ in the
tail of the corresponding P2P mapping assertion, and
denote as P (r) the peer P ′, i.e., the peer over which
the query Q(r) is expressed.

2. L′ is obtained from L by adding the local mapping
assertion {x | r(x)} ; cq for each P2P mapping as-
sertion cq ′

; cq in M .

Furthermore, for a P2P system P, we denote as τ(P) the
P2P system {τ(P) | P ∈ P}. For each peer P , we call aux-
iliary alphabet of P , denoted as AuxAlph(P), the set of new
source predicate symbols thus defined. Informally, in each
peer the additional sources corresponding to the predicates
in the auxiliary alphabet are used to “simulate” the effect
of the P2P mapping assertions with respect to contributing
to the data of the peer.

4.1 Parallel architecture
We consider a P2P system Ppar with the structure depicted
in Figure 1(a), and to highlight the interdependence be-
tween mappings, we further assume that P1 does not con-
tain local sources (and local mappings). Hence, Ppar is
constituted by two peers P1 = (G1, ∅, ∅, {m1,m2}), and
P2 = (G2, S2, L2, ∅).

Informally, in the context of parallel composition, we can
consider a semantics for P2P systems as modular, if for ev-
ery query q over P1, and for every source databaseD2 for P2,
the certain answers to q in Ppar with respect to D2 under the
considered semantics can be computed by first populating P1

with the data retrieved by independently applying the two
mappings and then evaluating q over such data. Formally,
let m1 be cq ′

1 ; cq1, let m2 be cq ′

2 ; cq2, and consider
the peer τ(P1) = (G1, {r1, r2}, {m

′
1,m

′
2}, {m1,m2}), where

m′
1 is {x | r1(x)} ; cq1 and m′

2 is {x | r2(x)} ; cq2.
For a local source database D2 for P2, let δ(P1, D2) be the

local source database for τ(P1) such that r
δ(P1,D2)
1 coincides

with the certain answers ans(cq ′

1, P2, D2) over the single

peer P2, and r
δ(P1,D2)
2 coincides with the certain answers

ans(cq ′

2, P2, D2) over P2. Now, semantics X is modular if
for every query q to P1 and for every source database D2

for P2, we have that ansX(q, P1,P, {D2}) coincides with the
certain answers ans(q, τ(P1), δ(P1, D2)) over τ(P1). The fol-
lowing theorems show that a P2P system as simple as Ppar is

sufficient to separate the epistemic and the FOL semantics
with respect to modularity.

Theorem 4.1. There is a P2P system Ppar = {P1, P2}
of the form as above, a source database D2 for P2,
and a query q to P1 such that ans fol(q, P1,P, {D2}) 6=
ans(q, τ(P1), δ(P1, D2)).

Proof (sketch). We exhibit Ppar = {P1, P2}, D2, and q such
that the claim holds. Let P1 = ({u/1}, ∅, ∅, {m1,m2}) and
P2 = (G2, {s/1}, {`2}, ∅), with G2 = {∀x (u3(x) ⊃ u1(x) ∨
u2(x))}, and

`2 = {x | s(x)} ; {x | u3(x)}
m1 = {x | u1(x)} ; {x | u(x)}
m2 = {x | u2(x)} ; {x | u(x)}

Consider the source database D2 = {s(a)} for P2. It is
easy to see that for the query q = {x | u(x)} we have that
ans fol(q, P1,P, {D2}) = {a}, while δ(P1, D2) = ∅, and hence
ans(q, τ(P1), δ(P1, D2)) = ∅.

For the epistemic semantics, from the results in the next
section, we get the following theorem.

Theorem 4.2. Let Ppar and D2 be as above. Then, for
every query q over P1 we have that ansk(q, P1,P, {D2}) =
ans(q, τ(P1), δ(P1, D2)).

4.2 Sequential architecture
We consider a P2P system Pseq with the structure depicted
in Figure 1(b). Again, to highlight the interaction be-
tween the mappings, we assume that both P1 and P2 do
not contain local sources. Hence, Pseq is constituted by
three peers P1 = (G1, ∅, ∅, {m1}), P2 = (G2, ∅, ∅, {m2}), and
P3 = (G3, S3, L3, ∅).

Informally, in the context of sequential composition, we can
consider a semantics for P2P systems as modular, if for ev-
ery query q1 over P1, and for every source database D3 for
P3, the certain answers to q in Pseq with respect to D3 under
the considered semantics can be computed by (i) populat-
ing P2 with the data retrieved by applying the mapping
m2, (ii) using such data to populate P1 by applying the
mapping m1, and (iii) evaluating q over P1. Formally, let
m1 be cq2 ; cq1, let m2 be cq3 ; cq ′

2, and consider
the peers τ(P1) = (G1, {r1}, {m

′
1}, {m1}) with m′

1 = {x |

r1(x)} ; cq1 and τ(P2) = (G2, {r2}, {m
′
2}, {m2}) with

m′
2 = {x | r2(x)} ; cq ′

2. For a local source database
D3 for P3, let δ(P2, D3) be the local source database

for τ(P2) such that r
δ(P2,D3)
2 = ans(cq3, P3, D3) and let

δ(P1, P2, D3) be the local source database for τ(P1) such

that r
δ(P1,P2,D3)
1 = ans(cq2, P2, δ(P2, D3)). Now, semantics

X is modular if for every query q to P1 and for every source
database D3 for P3, we have that ansX(q, P1,P, {D3}) =
ans(q, τ(P1), δ(P1, P2, D3)).

We show that also in the context of sequential composition,
while the epistemic semantics for P2P systems is modular,
the FOL semantics is not so.

Theorem 4.3. There is a P2P system Pseq =
{P1, P2, P3} of the form as above, a source database
D3 for P3, and a query q over P1 such that
ans fol(q, P1,P, {D3}) 6= ans(q, τ(P1), δ(P1, P2, D3)).

Proof (sketch). Exploiting a result in [22], we exhibit
Pseq = {P1, P2, P3}, D3, and q such that the claim holds.
Let P1 = ({u/2}, ∅, ∅, {m1}), P2 = ({v/2}, ∅, ∅, {m2}), and
P3 = ({w/2}, {s/2}, {`2}, ∅), with

m1 = {x, y | ∃z1, z2 (v(x, z1) ∧ v(z1, z2) ∧ v(z2, y))};

{x, y | u(x, y)}
m2 = {x, y | w(x, y)} ; {x, y | ∃z (v(x, z) ∧ v(z, y))}
`2 = {x, y | s(x, y)} ; {x, y | w(x, y)}

Consider the source database D3 = {s(ai, ai+1) | 1 ≤ i ≤ 7}
for P2. It is easy to see that for the query q = {x, y |
∃z (u(x, z) ∧ u(z, y))} we have that ans fol(q, P1,P, {D3}) =
{(a1, a7)}, while ans(q, τ(P1), δ(P1, P2, D3)) = ∅.

For the epistemic semantics, from the results in the next
section, we get the following theorem.

Theorem 4.4. Let Pseq and D3 be as above. Then, for
every query q over P1 we have that ansk(q, P1,P, {D3}) =
ans(q, τ(P1), δ(P1, P2, D3)).

A problem related to the one considered here for sequen-
tial P2P systems is the one of mapping composition, as de-
fined in [22]. In that paper, the authors study a system
in which peer schemas are empty, and P2P mappings are
as here (i.e., GLAV mappings between conjunctive queries),
but interpreted according to the FOL semantics. The au-
thors show that in this setting the composition of two (sets
of) P2P mappings is quite involved, and, if it exists [12], it
is generally formed by an infinite number of P2P mappings
between the first and the last peer.

Under the epistemic semantics it is actually always possible
to compose mappings, and the resulting mapping is still of
(almost) the same form as the original ones. Let us define
composition of two sequential P2P mappings as follows.

Definition 4.5. Let Pseq be constituted by the three peers
P1 = (G1, ∅, ∅, {m1}), P2 = (G2, ∅, ∅, {m2}), and P3 =

(G3, S3, L3, ∅), such that G1 and G2 are simple relational
alphabets (empty peer schemas), and m1 and m2 are the
following mapping assertions:

m1 = cq2 ; cq1

m2 = cq4 ; cq3

where cq1 is a query over P1, cq2 and cq3 are queries
over P2, and cq4 is a query over P3. Furthermore, let
r2 ∈ AuxAlph(P2) be the auxiliary predicate symbol re-
lated in τ(P2) to the mapping assertion m2, i.e., such that
Q(r2) = cq3 in τ(P2). The composition of the mapping m1

and m2, denoted by m12, is the following mapping assertion
between P1 and P3:

m12 = cq ; cq1

where:

• cq = cq ′

2[bodycq3
/r2], i.e., cq is the query obtained

from the query cq ′

2 by replacing each occurrence of
r2 with cq3 (with the proper substitution of the dis-
tinguished variables, and introducing for each substi-
tution of an occurrence of r2 fresh non-distinguished
variables);

• cq ′

2 is the perfect reformulation of the query cq2 in
τ(P2). (The notion of perfect reformulation is given in
Definition 5.3). Notably, cq ′

2 is a union of conjunctive
queries (UCQ), since it can be shown that the perfect
reformulation of a conjunctive query in this setting is
always a finite UCQ. Moreover, the only relation sym-
bol that occurs in cq ′

2 is r2;

Roughly speaking, what the above definition says is that the
composition of m1 and m2 is computed by first reformulat-
ing the tail query of m1 (i.e., the one over the intermediate
peer P2) according to P2, and then using the mapping m2

to transform such a query into a query over P3. Notably,
the data retrieved by the mapping are interpreted exactly
as before on the global schema of the first peer, since the
head of the composed mapping is identical to the head of
the first mapping.

The mapping composition above defined satisfies the notion
of correctness given in [22], i.e., the original system and the
one obtained by dropping peer P2 and using the mapping ob-
tained by composition are equivalent with respect to query
answering.

Theorem 4.6. Let Pseq be constituted by the three peers
P1, P2, P3 as in Definition 4.5 and let P ′

seq be constituted by
P ′

1 = (G1, S1, L1, {m12}) and P3, where m12 is the compo-
sition of m1 and m2. Let D1 be a local source database for
P1 (and P ′

1), let D3 be a local source database for P3, and
let D = D1 ∪D3. Then, for every query q over G1 we have
that ansk(q, P1,Pseq ,D) = ansk(q, P ′

1,P
′
seq ,D).

Proof (sketch). The proof is a consequence of Theo-
rem 5.5 and of the fact that the set of answers returned
by the execution of P1.user-query-handler(q) over D is the
same as the set of answers returned by the execution of
P ′

1.user-query-handler(q) over D.

4.3 Simple cycle between two peers
We consider a P2P system Pcyc with the structure depicted
in Figure 1(c). The presence of a cycle between two peers
suffices to make query answering undecidable under the FOL
semantics.

Theorem 4.7. There is a P2P system Pcyc = {P1, P2}
of the form as above, a source database D for Pcyc, such
that computing the certain answers to queries over the sin-
gle peers P1 and P2 is decidable, while computing the certain
answers to queries in Pcyc based on D under the FOL se-
mantics is undecidable.

Proof (sketch). The theorem follows from undecidability of
query answering under inclusion and functional dependen-
cies [23, 10, 6].

Consider a relational schema R with inclusion and func-
tional dependencies. We construct the peer P1 =
(G1, S1, L1,M1) as follows: G1 contains the relations of R,
plus two additional relations inc and fun, both containing
one attribute r.A for each attribute A in a relation r of R.
G1 contains all inclusion assertion of R, plus one inclusion
assertion r[A,B] ⊆ inc[r.A, r.B] and one functional depen-
dency fun : r.A → r.B, for each functional dependency
r : A → B in R (we have denoted by r.A the tuple of at-
tributes corresponding to A). S1 contains a source relation
sr for each relation r in R, and L1 maps such relations to
the corresponding relations in G1. M1 contains a single P2P
mapping assertion {x | inc(x)} ; {x | rem(x)}.

Then we construct the peer P2 = (G2, ∅, ∅,M2), where G2

contains only the relation rem (of the same arity as inc
and fun), and M2 contains a single P2P mapping assertion
{x | rem(x)} ; {x | fun(x)}.

Notice that query answering in P1 is decidable, since all
functional dependencies are on the relation fun, which is
not related through inclusion dependencies to the other re-
lations in G1, and the implication problems and query an-
swering problems for inclusion and functional dependencies
separately are decidable [8, 6]. Also, P2 is trivially decid-
able. On the other hand, under the FOL semantics, the P2P
mappings propagate the functional dependencies on fun to
inc, and hence in turn to the relations in G1. Therefore,
the whole set of dependencies in R are reflected in G1, thus
making query answering in the P2P system as a whole un-
decidable.

Notice that, since P1 and P2 are in general designed inde-
pendently of each other, even if care is taken to retain decid-
ability of query answering for each of them separately, when
interconnected in a P2P system, under the FOL semantics
there is no way to ensure decidability of query answering in
the whole system, since no single actor has the control on
all the P2P mappings. This is a further indication of the
lack of modularity in systems based on the FOL semantics.
Observe also that the only way to retain decidability would
be to trade it with generality, by restricting the topology of
the P2P mappings [16, 19, 11]. In practice this may even

be unfeasible, again since no actor is in control of all P2P
mappings.

Under the epistemic semantics we can retain both generality
and decidability for P2P systems with arbitrary structure,
as shown in Section 5.

4.4 Data integration
Consider a P2P system constituted by a single node, with
no P2P mapping. In other words, the only mappings in
the system are the local mappings between the peer schema
and the sources. The question is to compare the usual FOL
interpretation of the local mapping assertions (as specified
in Section 3.2), with the epistemic interpretation of such
mapping assertions. Interestingly, it is possible to show that,
in this case, the two semantics coincide.

Another way to compare P2P systems and traditional data
integration systems is to consider a P2P system Pdi with
the structure depicted in Figure 1(d), and to assume that
P1 has no local sources, and that each of the peers P2 and
P3 consists of a single data source, i.e., G consists of a single
relation and L maps such a relation to the source. This case
corresponds to the traditional data integration setting in the
following sense: P1 acts as the global schema, P2 and P3 as
sources, and the P2P mappings of P1 as GLAV mappings
between the global schema and the sources. Again, it is
possible to show that in this case the two semantics coincide.

The above observations indicate that the data integration
setting does not contain sufficient structure to get into the
subtleties that arise in P2P systems. And this justifies why,
in data integration, it has not been necessary to go beyond
FOL, for example introducing semantics based on epistemic
notions.

5. QUERY ANSWERING IN P2P SYSTEMS
In this section we address query answering in P2P systems.
We first establish the equivalence between a system P and
its transformation τ(P), then we present a distributed al-
gorithm that is able to compute the certain answers to a
query under the epistemic semantics, and finally we address
termination, correctness, and complexity of the algorithm.

5.1 Equivalence between P and τ(P)

We start by characterizing the knowledge of a P2P sys-
tem in terms of a first-order theory, called the first-order
extension of the system. Given a P2P system P and a
source database D for P, the first-order extension of P and
D, denoted as FOE(P,D), is the minimal first-order the-
ory that contains a ground fact for each tuple in D, the
peer theory TP for each peer in P, and such that, for each
peer P = (G,S, L,M) in P, for each P2P mapping as-
sertion q1 ; q2 ∈ M , and for each tuple t of elements
from Γ, if FOE(P,D) |= ∃ybodyq1

(t,y) then the sentence
∃zbodyq2

(t, z) belongs to FOE(P,D).

The next theorem is an immediate consequence of the above
definition and of the definition of epistemic model of a P2P
system provided in Section 3. In the following, we call an
epistemic model (I,W) for P based on D maximal if there

exists no epistemic model (J ,W ′) for P based on D such
that W ⊂ W ′. Moreover, it is immediate to verify that in
a maximal epistemic model (I,W) for P based on D, we
have that I ∈ W, and for each J ∈ W, (J ,W) is an epis-
temic model for P based on D. In other words, a maximal
epistemic model is completely characterized by the set of in-
terpretations W. Therefore, without loss of generality, from
now on we will assume that a maximal epistemic model is a
set of interpretations.

Theorem 5.1. Let P be a P2P system and let D be a
source database for P. The set of interpretations {I | I |=
FOE(P,D)} is the unique maximal epistemic model W for
P based on D.

Proof. Suppose there exists W ′ such that W ⊂W ′ and
W ′ is an epistemic model for P based on D. Let I ∈ W ′−W.
Then, I 6|= FOE(P,D). Since W is an epistemic model for
P based on D, and since I satisfies the peer theory TP of
all peers P ∈ P, it follows that there exists a P2P mapping
assertion q1 ; q2 ∈ M for some peer P = (G,S, L,M)
in P, and a tuple t of elements from Γ, such that I |=
∃ybodyq1

(t,y) and I 6|= ∃zbodyq2
(t, z). But this contradicts

the fact that, by definition of epistemic model, the sentence
∀x ((K ∃ybodyq1

(x,y)) ⊃ ∃zbodyq2
(x, z)) must hold in W ′.

Consequently, such a W ′ does not exists.

As a consequence, we have that the certain answers to
a query q are the answers over the maximal epistemic
model W of P based on D, i.e., ansk(q,P,D) = {t | t ∈
qI for each I ∈ W}.

We show that each P2P system P is equivalent to the system
τ(P) obtained by adding an additional source for each P2P
mapping assertion, as specified in Section 4. More precisely,
the following theorem holds.

Theorem 5.2. Let P be a P2P system, let D be a source
database for P, and let W be the maximal epistemic model
of τ(P) based on D. Then, the maximal epistemic model of
P based on D is the set of interpretations

{I′ | I ∈ W}

where I ′ is the restriction of the interpretation I to the pred-

icates in A−
⋃

P∈P

AuxAlph(P), and A denotes the union of

all predicates occurring in the schemas and in the source
schemas of all the peers in τ(P).

Proof. The proof is immediate from the definition of
first-order extension, Theorem 5.1, and the definition of
τ(P).

From the above theorem, it follows that, since the inter-
pretation of each predicate in A−

⋃
P∈P

AuxAlph(P) is the
same, answers to queries in P based on D and in τ(P) based
on D are the same. Notice that such an equivalence holds
only when considering the source database D for P as a

source database for τ(P), i.e, when assuming that each ad-
ditional source (that is, the extension of each predicate in
AuxAlph(P) in each peer) is empty.

In the following, we assume to deal with a P2P system
transformed according to τ(), i.e., in which such additional
sources are defined in each peer and the local mapping as-
sertions involving the additional sources are defined.

5.2 Datalog queries and perfect reformula-
tions

We briefly recall the notion of Datalog program, which will
be used in the rest of the section.

A Datalog rule is an expression of the form h(x) ←
conj (x,y), where h(x) is an atom, conj (x,y) is a set of
atoms, x = x1, . . . , xn and y = y1, . . . , ym, where xi and yj

are either variables or constants of Γ. We call h(x) the head
of the rule, and conj (x,y) the body.

A Datalog program DP is a pair (DPI ,DPE) where DPI ,
called the IDB (Intensional Database), is a set of Datalog
rules, and DPE , the EDB (Extensional Database), is a set of
facts. The predicates appearing in the heads of the rules in
DPI are called the IDB predicates, all the other predicates
are called EDB predicates and are the only predicates that
may appear in DPE . A Datalog query q is a pair (rq,DPI)
such that DP = (DPI , ∅) is a Datalog program with empty
EDB and having the predicate rq among its IDB predicates.

The semantics of a Datalog program DP is given through
the well-known notion of least fixpoint model LFP(DP)
of the program [25]. The evaluation of a Datalog query
q = (rq,DPI) over a FOL interpretation I of the EDB pred-
icates of DPI is the extension of the predicate rq in the least
fixpoint model of the Datalog program (DPI ,EDB(I)), i.e.,

qI = {rq(t) | rq(t) ∈ LFP((DPI ,EDB(I)))},

where EDB(I) is the set of facts that hold in the interpre-
tation I, i.e., EDB(I) = {r(t) | t ∈ rI}.

We next introduce the notion of perfect reformulation of a
query.

Definition 5.3. Given a query language LU , a peer P =
(G,S, L,M) and a query q ∈ LU over G, a Datalog query q1
over the alphabet S∪AuxAlph(P) is a perfect reformulation
of q in P , if, for each local source database D1 for τ(P), we

have that qD1

1 = ans(q, τ(P), D1).

In the following, we consider a query language LU accepted
by all peers, and such that, for each peer P ∈ P and for
each q ∈ LU , there exists a Datalog query q′ that is a
perfect reformulation of q according to the definition given
above (cf. [7, 4, 14]). We assume that the language LU

is able to express at least conjunctive queries. Moreover,
we assume that each peer P has an internal functionality
computePerfectRef(q, r, P) that, given a query q, expressed
in the language LU , issued over the schema of P , computes
in a finite amount of time a Datalog query q′ = (r,DPI)
such that q′ is a perfect reformulation of q.

5.3 The algorithm
We define a distributed algorithm for answering queries in
LU . More specifically, we define the two main functionalities
that each peer must provide in order to answer a user query
to any peer in the system. Such functionalities are executed
over a given source database D, which represents the state
of the local sources of the peers when the query is issued by
the user.

Each user query q to the peer P is the input of the user
query handler of P . This module first initiates a transaction,
that is identified in the system by a unique transaction id,
then passes the query q to its own peer query handler. Such
a functionality returns a Datalog program DP that makes
use of a special query predicate rq: the evaluation of such a
predicate over the least fixpoint model of the program DP
constitutes the answer set of the query q.

The peer query handler computes the Datalog program cor-
responding to the query q as follows: first, the perfect re-
formulation module of the peer computes the first part of
the IDB component of the Datalog program. Then, for each
source predicate of the peer P occurring in such a reformu-
lation, the set of facts that constitute the extension of such
a predicate in the source database D of the peer is added to
the extensional part of the Datalog program. Moreover, for
each predicate r in AuxAlph(P) that occurs in the reformu-
lation, corresponding to a P2P mapping assertion involving
P , the query Q(r) corresponding to the tail of the corre-
sponding mapping assertion is asked to the peer P (r) over
which such a query is expressed, i.e., the peer query han-
dler of peer P (r) is called with the mapping query Q(r) as
input. For each such call, the Datalog program obtained as
the result is added to the overall program that constitutes
the answer to q.

We remark that, in order to guarantee that a peer query han-
dler never processes the same mapping query twice in the
same transaction, suitable checks are implemented through
the procedures setTransaction and getTransaction. More pre-
cisely, two different states are associated to each predicate
symbol r in AuxAlph(P) with respect to the transaction T .
If the state of r with respect to transaction T is notProcessed,
then the mapping query Q(r) still has to be processed in the
transaction T , therefore the peer query handler has to com-
pute the answer to such a query. If the state of r with respect
to transaction T is processed, then the mapping query Q(r)
has already been processed in the transaction T , so the peer
query handler does not process it again. Of course, when
a new transaction is started by the user query handler, all
predicates are initially in the notProcessed state for such a
transaction.

The two algorithms are reported in Figure 2, where we
denote as Eval(r,DP) the extension of the predicate r in
the least fixpoint model of the Datalog program DP. Ob-
viously, Eval(r,DP) = qI where q = (r,DPI) and I is
the interpretation of the EDB predicates of DP such that
rI = {t | r(t) ∈ DPE} for each EDB predicate r of DP.
Moreover, we denote as Extension(r,D) the set of facts
with predicate r in the source database D of peer P , i.e.,
Extension(r,D) = {r(t) | r(t) ∈ D}.

Algorithm P.user-query-handler
Input: user query q ∈ LU

Output: ansk(q,P,D)
begin

generate a new transaction id T;
DP := P.peer-query-handler(q, rq , T);
return Eval(rq ,DP)

end

Algorithm P.peer-query-handler
Input: query q ∈ LU , query predicate rq , transaction id T

Output: Datalog program DP = (DPI ,DPE)
begin

DPI := computePerfectRef(q, rq , P);
DPE := ∅;
for each predicate r ∈ S ∪ AuxAlph(P) occurring in DPI do

if getTransaction(r, T) = notProcessed
then begin

setTransaction(r, T, processed);
if r ∈ S

then
DPE := DPE ∪ Extension(r, D)

else begin /* r ∈ AuxAlph(P) */
DP′ := P (r).peer-query-handler(Q(r), rQ(r), T);
DPI := DPI ∪ DP′

I ;
DPE := DPE ∪ DP′

E
end

end;
return DP

end

Figure 2: Algorithms user-query-handler and peer-

query-handler, executed over a source database D

Observe that the Datalog program DP returned to the user
query handler by P.peer-query-handler(q, rq, T) is such that
the set of EDB predicates of DP is a set of source pred-
icates of the peers, while the IDB predicates of DP are
the query predicate rq and a set of predicates from the set⋃

P∈P
AuxAlph(P), i.e., the union of the auxiliary alphabets

of the peers.

5.4 Termination, complexity, soundness and
completeness

Termination of the algorithm follows immediately from
the fact that, through the use of the transaction states
of the procedures getTransaction and setTransaction in
P.peer-query-handler, each mapping query associated with a
predicate in AuxAlph(P) is processed at most once for each
user query. Therefore, the following property holds.

Theorem 5.4. Let P be a P2P system, let D be a source
database for P, and let q ∈ LU be a query over the al-
phabet of a single peer in P. Then, the execution of
P.user-query-handler(q) over D terminates.

The next theorem gives us soundness and completeness of
the technique presented here, with respect to the epistemic
semantics.

Theorem 5.5. Let P be a P2P system, let q ∈ LU be a
query of arity n over the alphabet of a single peer P in P,
and let D be a source database for P. Then, for each n-tuple

t of constants in Γ, t is in the set of answers returned by
the execution of P.user-query-handler(q) over D if and only
if t ∈ ansk(q,P,D).

Proof. The proof of this property is based on the fol-
lowing lemma:

Lemma 5.6. Let DP be the program returned
to the user query handler by the execution of
P.peer-query-handler(q, rq, T)) over D. For each peer
P = (G,S, L,M) in P, for each predicate r ∈ AuxAlph(P)
and for each tuple t of elements from Γ, r(t) ∈ LFP(DP) if
and only if ∃ybodyQ(r)(t,y) ∈ FOE(P,D).

Proof. First of all, observe that, by the definition of
first-order extension, FOE(P,D) =

⋃
∞

i=0 FOEi, where

FOE0 = D ∪
⋃

P∈P
TP

FOEi+1 = FOEi ∪ {∃zbodyq2
(t, z) | FOEi |= ∃ybodyq1

(t,y)
and q1 ; q2 ∈M for some peer P}

Moreover, from the well-known definition of least fixpoint
model (see e.g., [25]), LFP(DP) =

⋃
∞

i=0 LFPi, where

LFP0 = D
LFPi+1 = LFPi ∪ {r(t) | r(x)← conj (x,y) ∈ DP

and ∃ tuple z s.t. conj (t, z) ⊆ LFPi}

Now, we prove the claim by induction on the construction
of LFP(DP) and FOE(P,D). For the base case, the claim
is immediately verified by the definition of FOE0 and LFP0.
As for the inductive case, if FOEi |= ∃ybodyQ(r)(t,y) then,
since by definition of the algorithm P.peer-query-handler DP
contains a Datalog query (r,DP′) that is a perfect refor-
mulation of Q(r), it follows that r(t) ∈ LFPi+1. Con-
versely, if r(t) ∈ LFPi+1, since r is defined in DP in
terms of a perfect reformulation of Q(r), it follows that
D ∪

⋃
P∈P

TP |= ∃ybodyQ(r)(t,y).

Finally, given a query q over P , by definition of the algorithm
P.peer-query-handler, the predicate rq is defined in the Data-
log program DP used by the algorithm P.user-query-handler

in terms of a perfect reformulation over the source pred-
icates of P . Therefore, by Lemma 5.6, it follows that
rq(t) ∈ LFP(DP) if and only if t ∈ ansk(q,P,D).

Finally, we analyze the complexity of our technique for query
processing with respect to the size of data stored in the peers
of P, i.e., the size of the source database D for P (data
complexity). To this aim, we point out that in each peer the
algorithm computePerfectRef is data independent, therefore
data complexity of query answering does not depend on the
time needed to compute the perfect reformulations through
computePerfectRef(q, rq, P).

The next theorem gives us a polynomial time bound in data
complexity.

Theorem 5.7. Let P be a P2P system, D be a source
database for P, q ∈ LU a query of arity n over the alphabet

of a single peer in P, and t a tuple of arity n of constants
in Γ. The problem of establishing whether t ∈ ansk(q,P,D)
is PTIME-complete in data complexity.

Proof (sketch). Membership in PTIME follows from The-
orem 5.5 and from the fact that checking whether t ∈
Eval(rq,DP), where DP is the Datalog program returned
by the execution of P.peer-query-handler(q, rq, T)) over D, is
polynomial in data complexity [25]. For the hardness part,
it is easy to verify that, for each Datalog program DP, there
exists a P2P system P, a source database D and a query q′

over a peer P ∈ P such that DP is the program returned by
the execution of P.peer-query-handler(q′, rq′ , T ′) over D.

Summarizing, the above theorems state that, given a query
language LU , under the hypothesis that the perfect refor-
mulation problem of queries from LU over a single peer is
decidable, the computation of the certain answers under the
epistemic semantics is decidable and can be done in polyno-
mial time in data complexity.

6. CONCLUSIONS
In this paper we have proposed a new semantics for P2P sys-
tems, and have argued that it is more suitable than the com-
monly adopted semantics based on FOL. We have also pre-
sented a sound, complete, and terminating procedure that,
under general conditions, can generate a Datalog program
that returns the certain answers to a query posed to the P2P
system. Notice that our query answering technique can im-
mediately be applied in all contexts in which each peer is
able to compute the perfect reformulation of queries: for in-
stance, when the peer schema is simply a relational alphabet
with no integrity constraints [14, 20]; when the peer schema
is a relational schema with integrity constraints such as keys
and foreign keys [5, 7]; or when the peer schema is written
in a variant of the entity-relationship model [4, 3].

7. ACKNOWLEDGMENTS
This research has been partially supported by the EU funded
Projects INFOMIX (IST-2001-33570) and SEWASIE (IST-
2001-34825), by MIUR — Fondo Speciale per lo Sviluppo
della Ricerca di Interesse Strategico — project “Società
dell’Informazione”, subproject SP1 “Reti Internet: Effi-
cienza, Integrazione e Sicurezza”, by MIUR — Fondo per
gli Investimenti della Ricerca di Base (FIRB) — project
“MAIS: Multichannel Adaptive Information Systems”, and
by project HYPER, funded by IBM through a Shared Uni-
versity Research (SUR) Award grant.

8. REFERENCES
[1] K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt.

Improving data access in P2P systems. IEEE Internet
Computing, 2002.

[2] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis,
J. Mylopoulos, L. Serafini, and I. Zaihrayeu. Data man-
agement for peer-to-peer computing: A vision. In Proc.
of the 5th Int. Workshop on the Web and Databases
(WebDB 2002), 2002.

[3] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenz-
erini. Accessing data integration systems through con-
ceptual schemas. In Proc. of the 10th Ital. Conf. on
Database Systems (SEBD 2002), pages 161–168, 2002.

[4] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenz-
erini. On the expressive power of data integration sys-
tems. In Proc. of the 21th Int. Conf. on Conceptual
Modeling (ER 2002), 2002.

[5] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenz-
erini. Data integration under integrity constraints. In-
formation Systems, 29:147–163, 2004.

[6] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidabil-
ity and complexity of query answering over inconsis-
tent and incomplete databases. In Proc. of the 22nd
ACM SIGACT SIGMOD SIGART Symp. on Princi-
ples of Database Systems (PODS 2003), pages 260–271,
2003.

[7] A. Cal̀ı, D. Lembo, and R. Rosati. Query rewriting and
answering under constraints in data integration sys-
tems. In Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2003), pages 16–21, 2003.

[8] M. A. Casanova, R. Fagin, and C. H. Papadimitriou.
Inclusion dependencies and their interaction with func-
tional dependencies. J. of Computer and System Sci-
ences, 28(1):29–59, 1984.

[9] T. Catarci and M. Lenzerini. Representing and using
interschema knowledge in cooperative information sys-
tems. J. of Intelligent and Cooperative Information Sys-
tems, 2(4):375–398, 1993.

[10] A. K. Chandra and M. Y. Vardi. The implication prob-
lem for functional and inclusion dependencies is unde-
cidable. SIAM J. on Computing, 14(3):671–677, 1985.

[11] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering. In Proc. of
the 9th Int. Conf. on Database Theory (ICDT 2003),
pages 207–224, 2003.

[12] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Com-
posing schema mappings: Second-order dependencies
to the rescue. In Proc. of the 23rd ACM SIGACT SIG-
MOD SIGART Symp. on Principles of Database Sys-
tems (PODS 2004), 2004.

[13] M. Fitting. Basic modal logic. In Handbook of Logic
in Artificial Intelligence and Logic Programming, vol-
ume 1, pages 365–448. Oxford Science Publications,
1993.

[14] M. Friedman, A. Levy, and T. Millstein. Navigational
plans for data integration. In Proc. of the 16th Nat.
Conf. on Artificial Intelligence (AAAI’99), pages 67–
73. AAAI Press/The MIT Press, 1999.

[15] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Su-
ciu. What can databases do for peer-to-peer? In Proc.
of the 4th Int. Workshop on the Web and Databases
(WebDB 2001), 2001.

[16] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema
mediation in peer data management systems. In Proc.
of the 19th IEEE Int. Conf. on Data Engineering
(ICDE 2003), pages 505–516, 2003.

[17] J. Heflin and J. Hendler. A portrait of the semantic web
in action. IEEE Intelligent Systems, 16(2):54–59, 2001.

[18] R. Hull, M. Benedikt, V. Christophides, and J. Su. E-
services: a look behind the curtain. In Proc. of the 22nd
ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS 2003), pages 1–14. ACM
Press and Addison Wesley, 2003.

[19] C. Koch. Query rewriting with symmetric constraints.
In Proc. of the 2nd Int. Symp. on Foundations of Infor-
mation and Knowledge Systems (FoIKS 2002), volume
2284 of Lecture Notes in Computer Science, pages 130–
147. Springer, 2002.

[20] M. Lenzerini. Data integration: A theoretical perspec-
tive. In Proc. of the 21st ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233–246, 2002.

[21] H. J. Levesque and G. Lakemeyer. The Logic of Knowl-
edge Bases. The MIT Press, 2001.

[22] J. Madhavan and A. Y. Halevy. Composing mappings
among data sources. In Proc. of the 29th Int. Conf. on
Very Large Data Bases (VLDB 2003), pages 572–583,
2003.

[23] J. C. Mitchell. The implication problem for functional
and inclusion dependencies. Information and Control,
56:154–173, 1983.

[24] M. P. Papazoglou, B. J. Kramer, and J. Yang. Leverag-
ing Web-services and peer-to-peer networks. In Proc. of
the 15th Int. Conf. on Advanced Information Systems
Engineering (CAiSE 2003), pages 485–501, 2003.

[25] J. D. Ullman. Principles of Database and Knowledge
Base Systems, volume 1. Computer Science Press, Po-
tomac, Maryland, 1988.

