
Linking Data to Ontologies:
The Description Logic DL-LiteA

Diego Calvanese1, Giuseppe De Giacomo2, Domenico Lembo2,
Maurizio Lenzerini2, Antonella Poggi2, Riccardo Rosati2

1 Faculty of Computer Science
Free University of Bozen-Bolzano

Piazza Domenicani 3
I-39100 Bolzano, Italy

calvanese@inf.unibz.it

2 Dip. di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113
I-00198 Roma, Italy

lastname@dis.uniroma1.it

Abstract. One of the most interesting usages of shared conceptualizations is
ontology-based data access. That is, to the usual data layer of an information
system we superimpose a conceptual layer to be exported to the client. Such a
layer allows the client to have a conceptual view of the information in the sys-
tem, which abstracts away from how such information is maintained in the data
layer of the system itself. While ontologies are the best candidates for realizing
the conceptual layer, relational DBMSs are natural candidates for the manage-
ment of the data layer. The need of efficiently processing large amounts of data
requires ontologies to be expressed in a suitable fragment of OWL: the fragment
should allow, on the one hand, for modeling the kind of intensional knowledge
needed in real-world applications, and, on the other hand, for delegating to a re-
lational DBMS the part of reasoning (in particular query answering) that deals
with the data. In this paper, we propose one such a fragment, in fact the largest
fragment currently known to satisfy the above requirements.

1 Introduction

In several areas (e.g., Enterprise Application Integration, Data Integration [9], and the
Semantic Web [6]) the intensional level of the application domain can be profitably
represented by an ontology, so that clients can rely on a shared conceptualization when
accessing the services provided by the system. One of the most interesting usages of
such shared conceptualizations is ontology-based data access. That is, to the usual data
layer of an information system we superimpose a conceptual layer to be exported to
the client. Such a layer allows the client to have a conceptual view of the information
in the system, which abstracts away from how such information is maintained in the
data layer of the system itself. While ontologies are the best candidates for realizing
the conceptual layer, relational DBMSs are natural candidates for the management of
the data layer, since relational database technology is nowadays the best technology for
efficient management of very large quantities of data.

Recently, basic research has been done in understanding which fragments of OWL,
OWL-DL, or OWL-Lite would be suited to act as the formalism for representing on-
tologies in this context [4, 11, 8]. The outcome of this work is that none of the variants
of OWL is suitable, if not restricted (they all are coNP-hard w.r.t. data complexity).
Possible restrictions that guarantee polynomial reasoning (at least, if we concentrate

on instance checking only) have been looked at, such as Horn-SHIQ [8], EL++ [2],
DLP [5]. Among such fragments, of particular interest are those belonging to the DL-
Lite family [3, 4]. These logics allow for answering complex queries (namely, conjunc-
tive queries, i.e., SQL select-project-join queries, and unions of conjunctive queries) in
LOGSPACE w.r.t. data complexity (i.e., the complexity measured only w.r.t. the size of
the data). More importantly, they allow for delegating query processing, after a prepro-
cessing phase which is independent of the data, to the relational DBMS managing the
data layer.

According to [4] there are two maximal languages in the DL-Lite family that pos-
sess the above property. The first one is DL-LiteF , which allows for specifying the main
modeling features of conceptual models, including cyclic assertions, ISA on concepts,
inverses on roles, role typing, mandatory participation to roles, and functional restric-
tions on roles. The second one is DL-LiteR, which is able to fully capture (the DL
fragment of) RDFS, and has in addition the ability of specifying mandatory participa-
tion on roles and disjointness between concepts and roles. The language obtained by
unrestrictedly merging the features of DL-LiteF and DL-LiteR, while quite interesting
in general, is not in LOGSPACE w.r.t. data complexity anymore [4], and hence loses the
most interesting computational feature for ontology-based data access.

In this paper, we look in more detail at the interaction between the distinguishing
features of DL-LiteF and DL-LiteR, and we single out an extension of both DL-LiteF

and DL-LiteR that is still LOGSPACE w.r.t. data complexity, and allows for delegat-
ing the data dependent part of the query answering process to to the relational DBMS
managing the data layer. Moreover, we take seriously the distinction in OWL between
objects and values (a distinction that typically is blurred in description logics), and
introduce, besides concepts and roles, also concept-attributes and role-attributes, that
describe properties of concepts (resp., roles) represented by values rather than objects.
In fact, role attributes are currently not available in OWL, but are present in most con-
ceptual modeling formalisms such as UML class diagrams and Entity-Relationship di-
agrams. Finally, we look at the problem of accessing databases that are independent
from the ontology, and are related to the ontology through suitable mappings [9]. Ob-
serve, however, that such databases, being relational, store only values (not objects),
and hence objects need to be constructed from such values, i.e., we have to deal with
the so-called “impedance mismatch”. We would like to highlight that the current work
is one of the outcomes of the European TONES project1 and that it complies with the
TONES logical framework.

2 The description logic DL-LiteA

In this section we present a new logic of the DL-Lite family, called DL-LiteA. As usual
in DLs, all logics of the DL-Lite family allow one to represent the universe of discourse
in terms of concepts, denoting sets of objects, and roles, denoting binary relations be-
tween objects. In addition, the DLs discussed in this paper allow one to use (i) value-
domains, a.k.a. concrete domains [10], denoting sets of (data) values, (ii) concept at-
tributes, denoting binary relations between objects and values, and (iii) role attributes,
denoting binary relations between pairs of objects and values. Obviously, a role attribute
can be also seen as a ternary relation relating two objects and a value.

1 http://www.tonesproject.org/

2

We first introduce the DL DL-LiteFR, that combines the main features of two DLs
presented in [4], called DL-LiteF and DL-LiteR, respectively, and forms the basics of
DL-LiteA. In providing the specification of our logics, we use the following notation:

– A denotes an atomic concept, B a basic concept, and C a general concept;
– D denotes an atomic value-domain, E a basic value-domain, and F a general

value-domain;
– P denotes an atomic role, Q a basic role, and R a general role;
– UC denotes an atomic concept attribute, and VC a general concept attribute;
– UR denotes an atomic role attribute, and VR a general role attribute;
– >C denotes the universal concept, >D denotes the universal value-domain.

Given a concept attribute UC (resp. a role attribute UR), we call the domain of UC

(resp. UR), denoted by δ(UC) (resp. δ(UR)), the set of objects (resp. of pairs of objects)
that UC (resp. UR) relates to values, and we call range of UC (resp. UR), denoted
by ρ(UC) (resp. ρ(UR)), the set of values that UC (resp. UR) relates to objects (resp.
pairs of objects). Notice that the domain δ(UC) of a concept attribute UC is a concept,
whereas the domain δ(UR) of a role attribute UR is a role. Furthermore, we denote
with δF (UC) (resp. δF (UR)) the set of objects (resp. of pairs of objects) that UC (resp.
UR) relates to values in the value-domain F . In particular, DL-LiteFR expressions are
defined as follows.

– Concept expressions:

B ::= A | ∃Q | δ(UC)
C ::= >C | B | ¬B | ∃Q.C | δF (UC) | ∃δF (UR) | ∃δF (UR)−

– Value-domain expressions (rdfDataType denotes predefined value-domains such
as integers, strings, etc.):

E ::= D | ρ(UC) | ρ(UR)
F ::= >D | E | ¬E | rdfDataType

– Attribute expressions:
VC ::= UC | ¬UC

VR ::= UR | ¬UR

– Role expressions:

Q ::= P | P− | δ(UR) | δ(UR)−
R ::= Q | ¬Q | δF (UR) | δF (UR)−

A DL-LiteFR knowledge base (KB) K = 〈T ,A〉 is constituted by two components:
a TBox T , used to represent intensional knowledge, and an ABox A, used to represent
extensional knowledge. DL-LiteFR TBox assertions are of the form:

B v C concept inclusion assertion
Q v R role inclusion assertion
E v F value-domain inclusion assertion
UC v VC concept attribute inclusion assertion
UR v VR role attribute inclusion assertion

(funct P) role functionality assertion
(funct P−) inverse role functionality assertion
(funct UC) concept attribute functionality assertion
(funct UR) role attribute functionality assertion

3

A concept inclusion assertion expresses that a (basic) conceptB is subsumed by a (gen-
eral) concept C. Analogously for the other types of inclusion assertions. A role func-
tionality assertion expresses the (global) functionality of an atomic role. Analogously
for the other types of functionality assertions.

As for the ABox, we introduce two disjoint alphabets, called ΓO and ΓV , respec-
tively. Symbols in ΓO, called object constants, are used to denote objects, while symbols
in ΓV , called value constants, are used to denote data values. A DL-LiteFR ABox is a
finite set of assertions of the form:

A(a), D(c), P (a, b), UC(a, c), UR(a, b, c) membership assertions

where a and b are constants in ΓO, and c is a constant in ΓV .
The semantics of DL-LiteFR is given in terms of FOL interpretations. An interpre-

tation I = (∆I , ·I) consists of a first order structure over the interpretation domain∆I

that is the disjoint union of ∆I
O and ∆I

V , with an interpretation function ·I such that

– for all a ∈ ΓO, we have that aI ∈ ∆I
O;

– for all a, b ∈ ΓO, we have that a 6= b implies aI 6= bI ;
– for all c ∈ ΓV , we have that cI ∈ ∆I

V ;
– for all c, d ∈ ΓV , we have that c 6= d implies cI 6= dI ;
– and the following conditions are satisfied (below, o, o′ ∈ ∆I

O, and v ∈ ∆I
V ; more-

over, we do not report cases for δ(UC) and δ(UR) since they can be seen as abbre-
viations for δ>D

(UC) and δ>D
(UR), respectively):

>I
C = ∆I

O

>I
D = ∆I

V

AI ⊆ ∆I
O

DI ⊆ ∆I
V

P I ⊆ ∆I
O ×∆I

O

UI
C ⊆ ∆I

O ×∆I
V

UI
R ⊆ ∆I

O ×∆I
O ×∆I

V

(¬UC)I = (∆I
O ×∆I

V) \ UI
C

(¬UR)I = (∆I
O ×∆I

O ×∆I
V) \ UI

R

(ρ(UC))I = { v | ∃o. (o, v) ∈ UI
C }

(ρ(UR))I = { v | ∃o, o′. (o, o′, v) ∈ UI
R }

(P−)I = { (o, o′) | (o′, o) ∈ P I }
(δF (UC))I = { o | ∃v. (o, v) ∈ UI

C ∧ v ∈ F I }
(δF (UR))I = { (o, o′) | ∃v. (o, o′, v) ∈ UI

R ∧ v ∈ F I }
(δF (UR)−)I = { (o, o′) | ∃v. (o′, o, v) ∈ UI

R ∧ v ∈ F I }
(∃δF (UR))I = { o | ∃ o′. (o, o′) ∈ (δF (UR))I }
(∃δF (UR)−)I = { o | ∃ o′. (o, o′) ∈ (δF (UR)−)I }
(∃Q)I = { o | ∃o′. (o, o′) ∈ QI }
(∃Q.C)I = { o | ∃o′. (o, o′) ∈ QI ∧ o′ ∈ CI }
(¬Q)I = (∆I

O ×∆I
O) \QI

(¬B)I = ∆I
O \BI

(¬E)I = ∆I
V \ EI

We define when an interpretation I satisfies an assertion (i.e., is a model of the
assertion) as follows (below, each e, possibly with subscript, is an element of either ∆I

O
or ∆I

V , depending on the context, each t, possibly with subscript, is a constant of either
ΓO or ΓV , depending on the context, a and b are constants in ΓO, and c is a constant in
ΓV). Specifically, an interpretation I satisfies:

– an inclusion assertion α v β, if αI ⊆ βI ;
– a functional assertion (funct γ), where γ is either P , P−, or UC , if, for each
e1, e2, e3, (e1, e2) ∈ γI and (e1, e3) ∈ γI implies e2 = e3;

– a functional assertion (funct UR), if for each e1, e2, e3, e4, (e1, e2, e3) ∈ UI
R and

(e1, e2, e4) ∈ UI
R implies e3 = e4;

– a membership assertion α(t), where α is either A or D, if tI ∈ αI ;
– a membership assertion β(t1, t2), where β is either P or UC , if (tI1 , t

I
2) ∈ βI ;

– a membership assertion UR(a, b, c), if (aI , bI , cI) ∈ UI
R.

4

A model of a KB K is an interpretation I that is a model of all assertions in K. A KB
is satisfiable if it has at least one model. A KB K logically implies an assertion α if all
models of K are also models of α.

A conjunctive query (CQ) q over a knowledge base K is an expression of the form
q(x) ← ∃y.conj (x,y), where x are the so-called distinguished variables, y are ex-
istentially quantified variables called the non-distinguished variables, and conj (x,y)
is a conjunction of atoms of the form A(xo), P (xo, yo), D(xv), UC(xo, xv), or
UR(xo, yo, xv), where xo, yo are either variables in x and y (called object variables)
or constants in ΓO, whereas xv is either a variable in x and y (called a value vari-
able) or a constant in ΓV . A union of conjunctive queries (UCQ) is a query of the form
q(x)←

∨
i ∃yi.conj (x,yi)

A query q(x)← ϕ(x) is interpreted in I as the set qI of tuples e ∈ ∆I ×· · ·×∆I

such that, when we assign e to the variables x, the formula ϕ(x) evaluates to true in I.
The reasoning service we are interested in is query answering (for CQs and UCQs):

given a knowledge base K and a query q(x) over K, return the certain answers to q(x)
over K, i.e., all tuples t of elements of ΓV ∪ ΓO such that, when substituted to x in
q(x), we have that K |= q(t), i.e., such that tI ∈ qI for every model I of K.

From the results in [4] it follows that, in general, query answering over DL-LiteFR

KBs is PTIME-hard in data complexity (i.e., the complexity measured w.r.t. the size
of the ABox only). As a consequence, to solve query answering over DL-LiteFR KBs,
we need at least the power of general recursive Datalog. Since we are interested in
DLs where query answering can be done in LOGSPACE, we now introduce the DL
DL-LiteA, which differs from DL-LiteFR because it imposes a limitation on the use of
the functionality assertions in the TBox. As we will discuss in Section 3, such limitation
is sufficient to guarantee that query answering is in LOGSPACE w.r.t. data complexity,
and thus it can be reduced to first-order query evaluation (see Section 3).

Definition 1. A DL-LiteA knowledge base is pair 〈T ,A〉, where A is a DL-LiteFR

ABox, and T is a DL-LiteFR TBox satisfying the following conditions:

1. for every atomic or inverse of an atomic role Q appearing in a concept of the form
∃Q.C, the assertions (funct Q) and (funct Q−) are not in T ;

2. for every role inclusion assertion Q v R in T , where R is an atomic role or the
inverse of an atomic role, the assertions (funct R) and (funct R−) are not in T ;

3. for every concept attribute inclusion assertion UC v VC in T , where VC is an
atomic concept attribute, the assertion (funct VC) is not in T ;

4. for every role attribute inclusion assertion UR v VR in T , where VR is an atomic
role attribute, the assertion (funct VR) is not in T .

Roughly speaking, a DL-LiteA TBox imposes the condition that every functional role
cannot be specialized by using it in the right-hand side of role inclusion assertions; the
same condition is also imposed on every functional (role or concept) attribute. It can be
shown that functionalities specified in a DL-LiteA TBox are not implicitly propagated
in the TBox, and that this allows for LOGSPACE query answering.

Example. Let T be the TBox that models information about employees and projects
through the following assertions (in the following, concept names are written in lower-
case, role names are written in uppercase, attribute names are in boldface font, domain
names are in Courier font):

5

tempEmp v employee (1)
manager v employee (2)
employee v ∃WORKS-FOR.project (3)
δ(until) v WORKS-FOR (4)
(funct until) (5)

tempEmp v ∃δ(until) (6)
manager v ∃MANAGES (7)
MANAGES v WORKS-FOR (8)
manager v ¬∃δ(until) (9)
ρ(until) v xsd:date (10)

T states that: (1) every temporary employee is an employee; (2) every manager is an
employee; (3) every employee works for at least one project; (4) the domain of the
role attribute until is the role WORKS-FOR; (5) the role attribute until is functional;
(6) every temporary employee must participate in a role having an associated role at-
tribute until (such a role, by assertion (4), is the role WORKS-FOR); (7) every manager
participates to the role MANAGES; (8) every instance of role MANAGES is an instance
of the role WORKS-FOR; (9) no manager can participate in a role having an associated
attribute until; (10) the range of the role attribute until is xsd:date.

3 Query answering in DL-LiteA

We discuss now reasoning in DL-LiteA, and concentrate on the basic reasoning task in
the context of using ontologies to access large data repositories, namely (conjunctive)
query answering over a DL-LiteA knowledge base. The other forms of reasoning usual
in DLs can actually be reduced to query answering (through reductions analogous to
the ones reported in [3] for DL-Lite).

We now briefly sketch the technique for query answering which we have defined
for DL-LiteA. In a nutshell, the algorithm has a structure similar to the methods devel-
oped for the logics in the DL-Lite family [3]: in particular, query answering is basically
reduced to evaluation of a first-order query over a relational database representing the
ABox. Such first-order query is obtained by reformulating the original query based
on the TBox assertions. For DL-LiteA, this reformulation can be obtained through the
query reformulation technique for DLR-LiteR defined in [4]. DLR-LiteR is a logic of
the DL-Lite family which allows for expressing n-ary relations (but no functionality
assertions). The possibility of reusing the query reformulation algorithm of DLR-LiteR

is based on the fact that inclusion assertions in DL-LiteA can actually be expressed in
DLR-LiteR.

An important aspect which such a query answering strategy relies on is a separation
property between different kinds of TBox assertions: in particular, TBox assertions are
classified into: (i) positive inclusion assertions (PIs), i.e., inclusions having a positive
concept/role/concept attribute/role attribute on its right-hand side, (ii) negative inclusion
assertions (NIs), i.e., inclusions having a negated concept/role/concept attribute/role at-
tribute on its right-hand side; (iii) functionality assertions, i.e., assertions of the form
(funct ϕ), where ϕ is a role/inverse of a role/atomic concept attribute/atomic role at-
tribute. Then, it can be shown that, after saturating the TBox, query answering can be
done by considering in a separate way the set of PIs and the set of NIs and functionality
assertions. More precisely, NIs and functionality assertions are relevant for the satisfi-
ability of K (while PIs are not); moreover, in a satisfiable KB K, only PIs are relevant
for answering UCQs. We remark that the above separation property holds for DL-LiteA,
but it does not hold for DL-LiteFR.

6

On the base of the query answering algorithm discussed above, we able to provide
a LOGSPACE upper bound for the data complexity of answering UCQs in DL-LiteA.

Theorem 1. Let K = 〈T ,A〉 be a DL-LiteA KB. Answering UCQs posed to K is in
LOGSPACE with respect to data complexity.

We point out that the assumption that the TBox T is expressed in DL-LiteA rather
than in DL-LiteFR is essential for the above upper bound to hold: in fact, from the
results in [4], it follows that, answering UCQs in DL-LiteFR is PTIME-hard with respect
to data complexity. This implies that in general there exists no FOL reformulation q′ of
a UCQ q (only depending on T) such that the certain answers to q in K correspond to
the evaluation of q′ in A.

4 Linking data to DL-LiteA ontologies

Most work on DLs do not deal with the problem of how to store ABox assertions, nor
do they address the issue of how to acquire ABox assertions from existing data sources.
It is our opinion that this topic is of special importance in several contexts where the
use of ontologies is advocated, especially in the case where the ontology is used to
provide a unified conceptual model of an organization (e.g., in Enterprise Application
Integration). In these contexts, the problem can be described as follows: the ontology
is a virtual representation of a universe of discourse, and the instances of concepts and
roles in the ontology are simply an abstract representation of some real data stored in
existing data sources. Therefore, the problem arises of establishing sound mechanisms
for linking existing data to the instances of the concepts and the roles in the ontology.

In this section we sketch our solution, by presenting a mapping mechanism that en-
ables a designer to link data sources to an ontology expressed in DL-LiteA. Before delv-
ing into the details of the method, a preliminary discussion on the notorious impedance
mismatch problem between data and objects is in order. When mapping data sources
to ontologies, one should take into account that sources store data, whereas instances
of concepts are objects, where each object should be denoted by an ad hoc identifier
(e.g., a constant in logic), not to be confused with any data item. In DL-LiteA, we ad-
dress this problem by keeping data value constants separate from object identifiers, and
by accepting that object identifiers be created using data values, in particular as (logic)
terms over data items. Note that this idea traces back to the work done in deductive
object-oriented databases [7].

To realize this idea, we modify the set ΓO as follows. While ΓV contains data value
constants as before, ΓO is built starting from ΓV and a set Λ of function symbols of
any arity (possibly 0), as follows: If f ∈ Λ, the arity of f is n, and d1, . . . , dn ∈ ΓV ,
then f(d1, . . . , dn) is a term in ΓO, called object term. In other words, object terms are
either objects constants (i.e., function symbols of arity 0), or function symbols applied
to data value constants. In the following we call ΓT the subset of ΓO constituted by
object constants, i.e., object terms built with function symbols of arity 0. Also, we use
ΓVT to denote ΓV ∪ ΓT .

To define the semantics of terms in ΓO, we simply define an interpretation I =
(∆I , ·I) as before, and we observe that the interpretation function ·I now assigns a
different element of ∆I

O to every object term (not only object constant) in ΓO (i.e., we
enforce the unique name assumption also on object terms).

7

Let us now turn our attention to the problem of linking data in the sources to objects
in the ontology. To this end, we assume that data sources have been wrapped into a
relational database DB . Note that this assumption is indeed realistic, as many data
federation tools that provide exactly this kind of service are currently available. In this
way, we can assume that all relevant data are virtually represented and managed by a
relational data engine. In particular, one consequence is that we can query our data by
using SQL. Formally, we assume that the database DB is characterized by a relational
schema, and the corresponding extension. In particular, for each relation schema R,
DB contains a set of tuples whose values are taken from ΓVT . Note that, by virtue
of this assumption, DB may store both data value constants and object constants. The
evaluation of an SQL query ϕ over a database DB , denoted ans(ϕ,DB), returns the
set of tuples (of the arity of ϕ) of elements of ΓVT that satisfy ϕ in DB .

To realize the link, we adapt principles and techniques from the literature on data
integration [9]. In particular, we use the notion of mapping, which we now introduce by
means of an example.

Example. Consider a DL-LiteA TBox in which person is a concept name,
CITY-OF-BIRTH is a role name, age and cityName are concept attributes names,
and a relational database contains the ternary relation symbols S1 and S2 and the unary
relation symbol S3. We want to model the situation where every tuple (n, s, a) ∈ S1
corresponds to a person whose name is n, whose surname is s, and whose age is a, and
we want to denote such a person with p(n, s). Note that this implies that we know that
there are no two persons in our application that have the same pair (n, s) stored in S1.
Similarly, we want to model the fact that every tuple (n, s, cb) ∈ S2 corresponds to a
person whose name is n, whose surname is s, and whose city of birth is cb. Finally, we
know that source S3 directly stores object constants denoting instances of person. The
following is the set of mapping assertions modeling the above situation.

S1(n, s, a) ; person(p(n, s)),age(p(n, s), a)
S2(n, s, cb) ; CITY-OF-BIRTH(p(n, s), ct(cb)), cityName(ct(cb), cb)
S3(q) ; person(q).

Above, n, s, a, cb and q are variable symbols, p and ct are function symbols, whereas
p(n, s) and ct(n) are so-called variable object terms (see below).

The example shows that, in specifying mapping assertions, we need variable object
terms, i.e., object terms containing variables. Indeed, we extend object terms to variable
object terms by allowing also variables to appear in place of value constants.

We can now provide the definition of mapping assertions. Through a mapping we
associate a conjunctive query over atomic concepts, domains, roles, attributes, and role
attributes (generically referred to as predicates in the following) with a first-order (more
precisely, SQL) query of the appropriate arity over the database. The intuition is that,
by evaluating such a query, we retrieve the facts that constitute the ABox assertions for
the predicates appearing in the conjunctive query. Formally, a mapping assertion is an
assertion of the form

ϕ ; ψ

where ψ is a DL-LiteA conjunctive query without existential variables and without con-
stants, but whose atoms may contain variable object terms, and ϕ is an SQL query, i.e.,
an open first-order formula, over the database DB .

8

We now describe the semantics of mapping assertions. To this end, we introduce the
notion of ground instance of a formula. Let γ be a formula with free variables x, and
let s be a tuple of elements in ΓVT of the same arity as x. A ground instance γ[x/s]
of γ is obtained from γ by substituting every occurrence of xi with si. We say that an
interpretation I = (∆I , ·I) satisfies the mapping assertion ϕ ; ψ wrt DB , if for every
ground instance ϕ[x/s] ; ψ[x/s] of ϕ ; ψ, we have that ans(ϕ[x/s],DB) = true
implies ψ[x/s]I = true (where, for a ground atom p(t), with t = (t1, . . . , tn) a tuple
of object-terms, we have that p(t)I = true if (tI1 , . . . , t

I
n) ∈ pI).

Finally, we can summarize the semantics of a DL-LiteA ontology with mapping
assertions. Let DB be a database as defined above, T a DL-LiteA TBox, andM a set
of mapping assertions between DB and T . An interpretation I = (∆I , ·I) is a model
of 〈T ,M,DB〉 if I is a model of T and satisfies all mapping assertions inM wrt DB .
The notion of certain answer to queries posed to 〈T ,M,DB〉 remains the same as the
one described in Section 2.

As we have seen in the previous section, both query answering and satisfiability in
DL-LiteA reduce to query answering over an ABox seen as a database. In fact, the map-
pings define an ABox, which is the one obtained by instantiating the atoms in the con-
junctive query on the right-hand side of mapping assertions with the constants retrieved
by the SQL query on the left-hand side. Note that such constants may also instantiate
variables appearing in variable object terms, giving rise to object terms in the atoms,
and hence in the corresponding ABox. The object terms would not make any difference
for satisfiability and query answering, and hence the above techniques still apply. How-
ever, we avoid to explicitely generate such an ABox, by proceeding as follows. First,
we split each mapping assertion ϕ ; ψ into several assertions of the form ϕ ; p,
one for each atom p in ψ. Then, we unify in all possible ways the atoms in the query
q to be evaluated with the right-hand side atoms of the (split) mappings, thus obtain-
ing a (bigger) union of conjunctive queries containing variable object terms. Then, we
unfold each atom with the corresponding left-hand side mapping query. Observe that,
after unfolding, all variable object terms disappear, except those that are returned by q
as instantiations of free variables. Hence, what we have obtained is a FOL query to the
database whose answer then has to be processed in order to generate the object terms
to be returned. Notice that no post-processing is necessary in the case where the query
q does not contain any free object variable.

Example. Refer to the previous example, and consider now the following query over
the TBox, asking for the age of those people that are born in Rome:

q(z)← ∃x, y. person(x),CITY-OF-BIRTH(x, y), cityName(y,Roma),age(x, z).

Let us, for simplicity, assume that no reasoning on the TBox has to be done in order to
answer the query q, and hence let us directly evaluate such a query by exploiting the
mapping, without materializing the ABox of the KB.

We first split the mapping (left as an exercise), and then unify the atoms in the query
with the right-hand side atoms in the split mapping, thus obtaining

q(z)← person(p(n, s)),CITY-OF-BIRTH(p(n, s), ct(Roma)),
cityName(ct(Roma),Roma),age(p(n, s), z).

Then, we unfold each atom with the corresponding left-hand side of the mapping query

q(z)← S2(n, s,Roma), S1(n, s, z),

9

where w is a new (existential) variable symbol. The obtained query can be then simply
evaluated over the database in order to get the certain answers to q.

5 Conclusions

We argue that, for ontology-based data access, ontologies need to be expressed in a frag-
ment of OWL that is LOGSPACE in data complexity, and that allows for delegating to
the relational DBMS managing the data layer the part of reasoning (in particular query
answering) that deals with the data. We have proposed one such fragment, DL-LiteA,
which is in fact the biggest fragment currently known to satisfy the above requirements.
In this paper we have looked at binary roles only, but all the results presented here can
be extended to the case in which binary roles are substituted by relations of arbitrary
arity. We are currently implementing DL-LiteA on the QuOnto system2 [1] (which orig-
inally was based on DL-LiteF) to deal with all the features introduced in this paper:
attributes, role and attribute inclusions, and mappings to pre-existing databases.

Acknowledgments
This research has been partially supported by the FET IST Specific Targeted Research Project
“Thinking ONtologies (TONES) – FP6-7603 funded by the European Union under the 6th Frame-
work Programme.

References
1. A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, M. Palmieri, and

R. Rosati. QUONTO: QUerying ONTOlogies. In Proc. of AAAI 2005, pages 1670–1671,
2005.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of IJCAI 2005, pages
364–369, 2005.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable
description logics for ontologies. In Proc. of AAAI 2005, pages 602–607, 2005.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of
query answering in description logics. In Proc. of KR 2006, 2006.

5. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining
logic programs with description logic. In Proc. of WWW 2003, pages 48–57, 2003.

6. J. Heflin and J. Hendler. A portrait of the Semantic Web in action. IEEE Intelligent Systems,
16(2):54–59, 2001.

7. R. Hull. A survey of theoretical research on typed complex database objects. In J. Paredaens,
editor, Databases, pages 193–256. Academic Press, 1988.

8. U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expressive de-
scription logics. In Proc. of IJCAI 2005, pages 466–471, 2005.

9. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002, pages
233–246, 2002.

10. C. Lutz. Description logics with concrete domains: A survey. In P. Balbiani, N.-Y. Suzuki,
F. Wolter, and M. Zakharyaschev, editors, Advances in Modal Logics, volume 4. King’s Col-
lege Publications, 2003.

11. M. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity for conjunctive
query answering in expressive description logics. In Proc. of AAAI 2006, 2006.

2 http://www.dis.uniroma1.it/˜quonto/

10

