
Metric Temporal Logic for Ontology-Based Data Access over Log Data

D. Calvanese, E. Güzel Kalaycı, V. Ryzhikov, G. Xiao and M. Zakharyaschev
Faculty of Computer Science Department of Computer Science

Free University of Bozen-Bolzano, Italy Birkbeck, University of London, UK
{calvanese,kalayci,ryzhikov,xiao}@inf.unibz.it michael@dcs.bbk.ac.uk

Abstract

We present a new metric temporal logic HornMTL over dense
time and its datalog extension datalogMTL. The use of
datalogMTL is demonstrated in the context of ontology-based
data access over meteorological data. We show decidabil-
ity of answering ontology-mediated queries for a practically
relevant non-recursive fragment of datalogMTL. Finally, we
discuss directions of the future work, including the potential
use-cases in analyzing log data of engines and devices.

Introduction
The aim of ontology-based data access (OBDA) (Poggi et
al. 2008) is, on one hand, to represent the information from
various heterogeneous data sources in a unified and concep-
tually transparent way by means of mappings. On the other
hand, the ontology language allows one to define concepts
in terms of other concepts, and thereby represent frequently
used query patterns as reusable concepts. The end-user, in
that case, can obtain the required information by means of
simple conceptual queries and is not required to know nei-
ther the structure of the source data nor the definitions of the
concepts he is using.

Due to up-to-date requirements of industry (see, e.g.,
(Kharlamov et al. 2014)) the OBDA approach is being ac-
tively adopted in the context of the temporal data of streams
and logs. Initially, only the classical non-temporal on-
tology languages were considered to mediate the access
to temporal data (Gutiérrez-Basulto and Klarman 2012;
Özcep et al. 2013; Baader, Borgwardt, and Lippmann 2013;
Klarman and Meyer 2014). Later, the ontology languages
with temporalized concepts were studied in this context (Ar-
tale et al. 2015; Kontchakov et al. 2016; Basulto, Jung, and
Kontchakov 2016). Such concepts are defined by means of
linear temporal logic (LTL); for example, the axiom

Hurricane← HurricaneForceWind ∧
X−HurricaneForceWind

defines a hurricane as hurricane force wind lasting for 1 hour
(X− is the previous time LTL operator). One easily notices
that this definition works only if the temporal data arrives
strictly in hourly periods, such as 13:21, 14:21, etc. If
these periods are smaller and have a fixed length, the def-
inition above can still be adjusted by using the conjunction

of the form HFW ∧X−HFW ∧X−X−HFW ∧ How-
ever, first, having the data with fixed-period timestamps is
not always a realistic assumption, and, second, doing the
adjustment above contradicts the OBDA philosophy, where
the ontology user is not required to have knowledge of the
structure of the data sources. Therefore, the following defi-
nition would be more natural

Hurricane← �61h
>0 HurricaneForceWind,

where �61h
>0 is a metric temporal operator during the pre-

vious hour. The logic required to express such statements
is a kind of metric temporal logic or modal logic of met-
ric spaces; see (Koymans 1990; Kurucz, Wolter, and Za-
kharyaschev 2005) for surveys and further references.

In this paper, we introduce a metric temporal logic
HornMTL with the operator ��d

�e , where � is either > or
> (and similarly for �) and e, d are time distances, its fu-
ture analogue ��d

�e , as well as their duals �d
�e and �d

�e . We
interpret this logic over a dense temporal domain. The rea-
son for not considering a discrete domain is that we want
to abstract from the granularities of time (periods of times-
tamps) in the data sources. In our logic, we allow the state-
ments of the form P@ι, where ι is an interval specified by a
pair of time instants, to represent the conceptualized tempo-
ral data. The meaning of, say, P@(t1, t2] is that P holds at
all times t between t1 (not including it) and t2 (including it).
We assume that we can convert data from any source with
timestamped tuples to this format by means of mappings.
For example, if a source contains the information of temper-
ature measurements taken every hour, such as 13:21: -1◦C,
14:21: 2◦C, 15:21: -1◦C, etc., we can conceptualize them
as the statements PositiveTemp@(13:21, 14:21], etc. Note
that whether to include the ends of intervals or not, as well as
whether to consider 2◦C to be the case in the hour preceding
or following 14:21, is the choice of the mapping designer.
We then extend HornMTL to datalogMTL that also allows
for standard Datalog reasoning about objects of the applica-
tion domain (weather stations, cities, sensors, etc.).

We present a few preliminary results on datalogMTL.
First, we describe a use-case of OBDA over meteorologi-
cal data with SQL mappings to a large real-world weather
database and datalogMTL as an ontology language. Sec-
ond, we develop an ontology-mediated query answering
algorithm for a non-recursive fragment datalogMTL2

nr of

datalogMTL. Finally, we report some preliminary evalua-
tion results showing the feasibility of our approach.

HornMTL and datalogMTL
Syntax. We consider a propositional temporal logic
HornMTL with the set of propositional variables P0, P1, . . .
over the temporal domain T isomorphic to (R,6) with 0 and
arithmetic operations +,−. That is, we assume dense time.
Let int(T) be the set of (non-empty) intervals on T, which
are of the form [t1, t2], [t1, t2), (t1, t2], and (t1, t2), where
ti ∈ T∪{−∞,∞}, 〈 is either (or [, and 〉 is either) or]. (We
do not distinguish between the intervals 〈t1,∞] and 〈t1,∞),
consider 〈∞,∞〉 to be empty, and analogously for−∞. We
also assume that ≤ is defined on T ∪ {−∞,∞} and +,−
are defined on pairs of elements from T and {−∞,∞}, in
a standard way.) Define a data instance D as a non-empty
finite set of data assertions (or facts) of the form:

Pi@ι,

where Pi is a propositional variable and ι ∈ int(T).
We use the temporal operators of the form:

– ��d
�e (always between e and d in the future),

– ��d
�e (always between e and d in the past),

– �d
�e (sometime between e and d in the future),

– �d
�e (sometime between e and d in the past),

where � is either < or 6, e, d are distances, that is, positive
elements of T, and � is either > or >. Thus, e.g., �<d>e
expresses ‘always between e and d in the future including e
and excluding d’ and similarly for the other operators. We
also impose the following consistency requirement on every
operator O�d

�e (henceforth we assume O ∈ {�,�, , },
2 ∈ {�,�}, and 3 ∈ { , }):
– there exists t ∈ T such that t� e and t� d.
Propositional literals are defined by the following grammar:

λ ::= Pi | O�d
�eλ.

An ontology, O, is a finite set of axioms of the form:
λ← λ1 ∧ · · · ∧ λk, ⊥ ← λ1 ∧ · · · ∧ λk. (1)

A knowledge base (KB) is a pair (O,D).

Semantics. Consider an interpretation M = (T, ·M) such
that PM

i ⊆ T for each propositional variable Pi and write
M, t |= Pi when t ∈ PM

i for t ∈ T. As usual, it is assumed
that M, t 6|= ⊥ for all t ∈ T. We extend the definition of |=
to λ as follows:
M, t |= ��d

�eλ iff M, t′ |= λ for all t′ such that

t′ − t� e and t′ − t� d, (2)

M, t |= ��d
�eλ iff M, t′ |= λ for all t′ such that

t− t′ � e and t− t′ � d, (3)

M, t |= �d
�eλ iff M, t′ |= λ for some t′ such that

t′ − t� e and t′ − t� d, (4)

M, t |= �d
�eλ iff M, t′ |= λ for some t′ such that

t− t′ � e and t− t′ � d. (5)

We say that M satisfies a data assertion P@ι if M, t |= P
for all t ∈ ι. We say that M satisfies an ontology axiom λ←
λ1∧· · ·∧λk (respectively,⊥ ← λ1∧· · ·∧λk), if M, t |= λi,
for all i = 1, . . . , k, imply M, t |= λ (resp., M, t |= ⊥), for
every t ∈ T. Thus, the ontology axioms are global. We
say that M satisfies a data instance D (resp., ontology O)
if it satisfies each statement in it. Finally, we say that M
satisfies a knowledge base (O,D) and write M |= (O,D) if
M satisfies both O and D.

Our main reasoning problem is query answering. Define
an atomic query (AQ) as an expression P@δ, where P is
a proposition and δ is an interval variable. An ontology
O and an AQ P@δ constitute an ontology-mediated query
(OMQ) Q(δ) = (O, P@δ). A certain answer to Q(δ) over
D is any interval ι ∈ int(T) such that M |= (O,D) implies
M, t |= P for all t ∈ ι.

HornMTL2 fragment. We consider one important frag-
ment HornMTL2 of HornMTL, where the operators �d

�e

and �d
�e are disallowed in the heads of the rules. Note that

each HornMTL2 KB can be converted to KB that has ��d
�e

and ��d
�e operators only, and the original KB is a conserva-

tive extension of it. For example, an axiom R← P ∧ �d
�eQ

can be replaced by the pair of axioms R ← P ∧ Q′ and
��d

�eQ
′ ← Q. Finally, we consider a non-recursive frag-

ment HornMTL2
nr of HornMTL2 by adopting the simplest

definition of non-recursivivity: consider the relation ≺ on
the symbols of O defined as P ≺ Q iff there is an axiom
in O, where P occurs in the head and Q in the body (P de-
pends on Q). We require that P ≺∗ P for no symbol P in
O, where ≺∗ is a transitive closure of ≺.

datalogMTL. Consider the predicate symbols P0, P1, . . . ,
each of some arity m ≥ 0, and a set of object vari-
ables x0, x1, Data instances D here contain assertions
P (c)@ι, where P is an m-ary predicate symbol, c an m-
tuple of individual constants, and ι ∈ int(T). This assertion
says that P (c) is true at ι. We denote by ind(D) the set of
all individual constants in D. An ontology O is a finite set
of axioms of the form (1) with the literals λ defined by the
grammar:

λ ::= (τ 6= τ ′) | (τ = τ ′) | P (x) | O�d
�eλ,

where P is a predicate symbol of arity m, x is a vector of
m variables, and τ, τ ′ are individual terms, i.e., variables or
constants. We also impose other standard datalog restric-
tions on our programs, and forbid (in)equality predicates
in the heads. We call the predicates occurring in D exten-
sional and those occurring in the head of the axioms of O
intentional. An interpretation, M, is based on the domain
∆ = ind(D) (for the individual variables and constants) and
T. For any m-ary predicate P , m-tuple c from ∆ and t ∈ T,
M specifies whether P is true on c at t, in which case we
write M, t |= P (c). Let ν be an assignment of elements of
∆ to individual terms (we adopt the standard name assump-

tion: ν(c) = c, for every individual constant c). We set:

M, t |=ν τ 6= τ ′ iff ν(x0) 6= ν(x1),

M, t |=ν τ = τ ′ iff ν(x0) = ν(x1),

M, t |=ν P (x) iff M, t |=ν P (ν(x)),

and use inductively the formulas (2)–(5) with |=ν instead
of |= for the cases O�d

�eλ. We say M satisfies an ontology
axiom λ← λ1∧ · · ·∧λk (respectively, ⊥ ← λ1∧ · · ·∧λk),
if M, t |=ν λi for each i implies M, t |=ν λ (resp., M, t |=ν

⊥), for every t ∈ T and assignment ν. Finally, M satisfies
a data assertion P (c)@ι if M, t |= P (c) for each t ∈ ι, and
M |= (O,D) is defined straightforwardly.

AQs are defined as P (x)@δ, where P is a predicate sym-
bol of arity m, and δ is an interval variable. An ontology-
mediated query is defined Q(x, δ) = (O, P (x)@δ). A
certain answer to Q(x, δ) over D is any pair (c, ι), such
that c = ν(x) for some ν, and M |= (O,D) implies
M, t |= P (c) for all t ∈ ι.

Note that HornMTL is a fragment of datalogMTL (where
all predicates have arity 0). We also consider the frag-
ments datalogMTL2 and datalogMTL2

nr defined with the
same syntactic restrictions as HornMTL2 and HornMTL2

nr.

Weather Use Case
Our OBDA approach can be used to analyze meteorological
data through ontology-mediated queries. The MesoWest1
project makes publicly available historical records of the
weather stations across the US. This data is available in the
relational tables Weather containing the following fields:

ID. Station ID. Example: KHYS.

TIME. Timestamp. Example: 11-11-2015 8:55 CST.

TMP. Temperature. Example: 15.6◦ C.

SKNT. Wind Speed. Example: 9.2 km/h.

P01I. Precipitation in 1 hour. Example: 0.09 cm.

Moreover, there are metadata tables Metadata containing,
in particular, location information of stations in the fields:

ID. Station ID. Example: KHYS.

COUNTY. Example: Ellis.

STATE. Example: Kansas.

We can conceptualize this raw data by means of the SQL
mappings. For example, to extract the data for the exten-
sional predicate Precipitation(x)@〈t1, t2〉 (with the mean-
ing precipitation occurs at x during 〈t1, t2〉), we can use the
following SQL query:

SELECT ID AS x,
lag(TIME) over (partition

by ID order by TIME) AS t1,
TIME AS t2, "(" AS 〈, "]" AS 〉

FROM Weather
WHERE P01I > lag(P01l)

over(partition by ID order by TIME)

1http://mesowest.utah.edu/

That is, we extract the intervals of the shape (t1, t2], where
t1 and t2 are the two next timestamps for a given station. The
ends of the interval are chosen to reflect the fact that, e.g.,
the precipitation is measured accumulatively and the device
produces the output in the end of the measurement interval.
Analogously to Precipitation, we populate by the data the
other extensional predicates, such as PositiveTemp (temper-
ature well above 0◦ C), HurricaneForceWind (wind with the
speed above 118 km/h), TempAbove24 and TempAbove41
(temperature above 24 and 41◦ C).

Consider the ontology containing the axioms:

Rain(x)← PositiveTemp(x) ∧ Precipitation(x),

�61h
>0 Hurricane(x)← �61h

>0 HurricaneForceWind(x),

�624h
>0 ExcessiveHeat(x)← �624h

>0 TempAbove24(x)∧
624h
>0 TempAbove41(x),

The second axiom is already discussed in the introduction
(here we use a slightly modified version to say that hurri-
cane holds also at the time point, when the hurricane force
wind begins), whereas the last axiom formalizes the defini-
tion of the situation when an excessive heat warning should
be issued according to the US Weather Forecast Offices (24
hours with the minimal temperature above 24◦ C and the
maximal above 41◦ C).

We can also populate the binary predicate
LocationOf(x, y)@〈t1, t2〉 by using:

SELECT COUNTY AS x, ID AS y,
−∞ AS t1, ∞ AS t2, "(" AS 〈, ")" AS 〉

FROM Metadata

Note that we assume that LocationOf holds between a
county and a station globally. It is now possible to define:

HurricaneAffectedCounty(x)←
LocationOf(x, y) ∧ Hurricane(y),

SpreadRainCounty(x)← LocationOf(x, y)∧
LocationOf(x, z) ∧ (y 6= z) ∧ Rain(y) ∧ Rain(z).

Query Answering in datalogMTL2
nr

In this section we first present an algorithm for computing
certain answers to an HornMTL2

nr OMQ Q(δ) = (O, P@δ)
over D.

Normal form for HornMTL2
nr. Our procedure works on

the ontology O containing only the clauses of the shape:

P ← Q ∧R, ⊥ ← Q ∧R,
��d

�eP ← Q, ��d
�e P ← Q,

P ← ��d
�eQ, P ← ��d

�eQ

It is an easy exercise to verify that every HornMTL2
nr can

be brought to the normal form by performing the following
operations:
– Substitute the axioms of the shape λ← λ1 ∧ · · · ∧ λk for
k ≥ 3 by k − 1 axioms with binary conjunctions using
fresh symbols. Analogously for the axioms with ⊥ in the
head.

– Remove 3�d
�eλ literals in the body of the axioms as

sketched in Preliminaries.
– Remove the nested modalities 2�d

�eλ by substituting them
for 2�d

�ePλ, for a fresh symbols Pλ, and adding:

– Pλ ← λ, if 2�d
�eλ occurred in the body of the axiom,

– λ← Pλ, if 2�d
�eλ occurred in the head of the axiom.

– Remove the axioms of the shape λ0 ← λ1 ∧ λ2, if λi =
2�d

�eP for some 0 ≤ i ≤ 2, as described in the previous
step. Analogously for the axioms with ⊥ in the head.

It can be readily verified that the resulting ontology in the
normal form is in HornMTL2

nr.

Algorithm. We first assume that the facts of D are stored
in the tables of the shape P ∗i (t1, t2, 〈, 〉), where t1, t2 ∈ T,
〈 is either (or [, and 〉 is either) or]. E.g., for D =
{Pi@(t1, t2], Pi@[t′1, t

′
2]} we produce the table P ∗i with two

tuples {
(
t1, t2, (,]

)
,
(
t′1, t

′
2, [,]

)
}. Consider an intentional

symbol P and assume that for all Q such that P ≺ Q the
tables Q∗ are computed. Consider now the cases:
P ← Q ∧ R. Then P ∗ is computed as the minimal table
satisfying the condition:

Q∗
(
t1,t2, 〈, 〉

)
∧R∗

(
t′1, t

′
2, 〈′, 〉′

)
∧

ints
(
t1, t2, 〈, 〉, t′1, t′2, 〈′, 〉′

)
→ P ∗

(
t′′1 , t

′′
2 , 〈′′, 〉′′

)
,

where ints(t1, t2, 〈, 〉, t′1, t′2, 〈′, 〉′) is > if 〈t1, t2〉 ∩
〈′t′1, t′2〉′ 6= ∅ (the intervals intersect), otherwise it is ⊥, and
〈′′t′′1 , t′′2〉′′ = 〈t1, t2〉 ∩ 〈′t′1, t′2〉′ (the result of the intersec-
tion). Note that P ∗ is computed as a temporal join (Gao et
al. 2005) of Q∗ and R∗. We also create a table ⊥∗ for the
axioms ⊥ ← Q ∧R.
����d

�eP ← Q. Then P ∗ is computed as a minimal table
satisfying:

Q∗
(
t1, t2, 〈, 〉

)
→ P ∗

(
t1 + e, t2 + d, ed

(
〈,�

)
, ed

(
〉,�

))
where the edge function ed(〈,�) returns [, if 〈 is [and �

is >, and (, otherwise. Then ed(〉,�) is defined symmetri-
cally. For example, if Q∗ = {

(
t1, t2, (,]

)
} and the axiom is

�<d>eP ← Q, then P ∗ = {
(
t1 + e, t2 + d, (,)

)
}. The axiom

��d
�eP ← Q is handled analogously.

P ← ����d
�eQ. Consider the following example: let Q∗ =

{
(
t1, t2, (,]

)
,
(
t2, t3, (,)

)
} and the axiom P ← �<d>eQ such

that d−e < t3−t1. Then, according to the semantics, P ∗ =
{
(
t1 − e, t3 − d, (,]

)
}. In order to compute P ∗ correctly we

need to consider the concatenation of the intervals (t1, t2]
and (t2, t3). To compute P ∗ in general we first produce a
closure Q′ of Q∗ as the minimal table satisfying:

Q∗
(
t1, t2, 〈, 〉

)
→ Q′

(
t1, t2, 〈, 〉

)
,

Q∗
(
t1, t2, 〈, 〉

)
∧Q′

(
t′1, t

′
2, 〈′, 〉′

)
∧ (t′2 ≤ t2)∧

ints
(
t1, t2, 〈, 〉, t′1, t′2,〈′, 〉′

)
→ Q′

(
t′1, t2, 〈′, 〉

)
.

After that P ∗ can be obtained by:

Q′
(
t1, t2, 〈, 〉

)
∧ fit

(
t1, t2, 〈, 〉, e, d,�,�

)
→

P ∗
(
t1 − e, t2 − d, de

(
〈,�

)
, de

(
〉,�

))
,

where fit
(
t1, t2, 〈, 〉, e, d,�,�

)
is >, if there exists t ∈ T

such that {t + t′ | t′ � e and t′ � d} ⊆ 〈t1, t2〉, and
⊥ otherwise. Essentially, fit holds if the segment {t′ |
t′ � e and t′ � d} can be shifted so that it fits inside 〈t1, t2〉.
Finally, another edge function de is needed to compute the
ends of the resulting interval. Here de

(
〈,�

)
is [, if either

〈 is (and � is >, or 〈 is [and � is >; otherwise de
(
〈,�

)
is (. The definition of de

(
〉,�

)
is symmetric. The axiom

��d
�eP ← Q is handled analogously. Observe that the com-

putation of Q′ requires recursion.
Clearly, when P occurs in the head of several axioms, the

table P ∗ is taken equal to the union of the tables computed
above. In fact, for every symbol P in O the algorithm com-
putes P ∗ that, for a consistent KB (O,D), satisfies:

• for every t ∈ T, there exists a certain answer ι to OMQ
Q(δ) = (O, P@δ) over D such that t ∈ ι iff there exists
a tuple

(
t1, t2, 〈, 〉

)
in P ∗ such that t ∈ 〈t1, t2〉.

This correctness follows directly from the semantics of
HornMTL2

nr. Then, if the table ⊥∗ is empty, as an output
of the OMQ Q(δ) = (O, G@δ) over D we produce the
table G∗ (otherwise, we return G∗ with one special tuple(
−∞,∞, (,)

)
as (O,D) is inconsistent). Clearly, the cor-

rectness above guarantees that G∗ represents the set of all
certain answers.

One can extend the approach presented above to OMQ an-
swering in datalogMTL2

nr. Indeed, it is possible to convert
an arbitrary datalogMTL2

nr ontology to the one in the normal
form similar to that used above. The tables P ∗ need to con-
tain the tuples of the shape

(
c1, . . . , cm, t1, t2, 〈, 〉

)
, where

m is the arity of P . The rules for processing the temporal
axioms essentially remain the same. The rules for comput-
ing the conjunctions (joins) need to be adjusted to correctly
handle the individual arguments of the predicates.

Discussion and Future Work
Initial Experiments. We made experiments to evalu-
ate the performance of the proposed algorithm on the
Hurricane(x)@δ and ExcessiveHeat(x)@δ OMQs with the
ontology from the weather use case. We implemented the al-
gorithm of the previous section, for a given OMQ, as an SQL
query using WITH clause and the RECURSIVE operator.
That is, the intermediate tables of the algorithm are defined
as a sequence of virtual SQL tables. The configuration of
the computer that was used for the experiments is Intel Core
i5 @ 2.7 GHz, 8 GB RAM with 1867 MHz DDR3 and OS X
El Capitan operating system in version 10.11.4. The weather
data is stored in 64 bit PostgreSQL version 9.4.5. We ran the
queries over a table including 140 881 rows. It took 3 199
ms for Hurricane and 481 876 ms for ExcessiveHeat to re-
trieve the results. We interpret this outcome as a positive
indication of the feasibility of our approach: even a straight-
forward implementation appears to work. We foresee the
following three directions of the future work:

New Use Cases. Our language is capable of expressing
complex patterns of events that are of interest for such pur-

poses as diagnostics of engines or devices. The axiom

SmoothShutDown← IdleRPM∧�<15min
>0 IntermRPM∧

625min
>15minRunningRPM,

for instance, describes the event of smooth shutdown of an
engine as being in an idle state after having intermediate
speed (RpM) for 15 minutes and having a running speed be-
fore that (not further than 25 minutes). The axiom:

ConsHighVibration← �650sec
>0

610sec
>0 HighVibration

describes consistent high vibration as high vibration occur-
ring every 10 seconds during a minute. Our OBDA approach
seems to be able to capture many industrial use-cases. In the
future, we plan to investigate such potential applications.

Open Theoretical Problems. At the moment, we do not
know whether OMQ answering in HornMTL is decid-
able. In fact, this question is open even for the fragment
HornMTL2. We plan to obtain complexity results for those
languages, and we are particularly interested in data com-
plexity (that is, the complexity in the size of D when Q(δ)
is assumed to be fixed). It is also important to under-
stand how the complexity results for HornMTL carry over
to datalogMTL. To achieve our goal, we plan to study vari-
ous techniques developed in the area of metric temporal log-
ics (Ouaknine and Worrell 2005; 2008; Hirshfeld and Ra-
binovich 2005) and modal logics over metric spaces (Kutz
et al. 2003; Sheremet, Wolter, and Zakharyaschev 2010;
Wolter and Zakharyaschev 2005).

Implementation and Optimizations. The proposed
query answering algorithm for datalogMTL2

nr clearly
allows for optimizations. For example, computing the
transitive closure of the table Q∗ when processing the
axiom P ← ��d

�eQ seems to be avoidable. Moreover, our
algorithm does not make any assumption regarding the tem-
poral ordering of the tuples. If such a realistic assumption is
made, we may be able to develop more efficient algorithms,
in particular, by using indexes on timestamps.

References
Artale, A.; Kontchakov, R.; Kovtunova, A.; Ryzhikov, V.;
Wolter, F.; and Zakharyaschev, M. 2015. First-order
rewritability of temporal ontology-mediated queries. In Pro-
ceedings of the Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, 2706–2712.
Baader, F.; Borgwardt, S.; and Lippmann, M. 2013. Tempo-
ralizing ontology-based data access. In Proc. of the 24th Int.
Conf. on Automated Deduction (CADE-24), volume 7898 of
LNCS, 330–344. Springer.
Basulto, V. G.; Jung, J.; and Kontchakov, R. 2016. Tem-
poralized EL ontologies for accessing temporal data: Com-
plexity of atomic queries. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
16). AAAI Press.

Gao, D.; Jensen, C. S.; Snodgrass, R. T.; and Soo, M. D.
2005. Join operations in temporal databases. The VLDB
Journal 14(1):2–29.
Gutiérrez-Basulto, V., and Klarman, S. 2012. Towards a uni-
fying approach to representing and querying temporal data
in description logics. In Proc. of the 6th Int. Conf. on Web
Reasoning and Rule Systems (RR 2012), volume 7497 of
LNCS, 90–105. Springer.
Hirshfeld, Y., and Rabinovich, A. 2005. Timer formulas and
decidable metric temporal logic. Information and Computa-
tion 198(2):148 – 178.
Kharlamov, E.; Solomakhina, N.; Özçep, Ö.; Zheleznyakov,
D.; Hubauer, T.; Lamparter, S.; Roshchin, M.; Soylu, A.;
and Watson, S. 2014. How semantic technologies can en-
hance data access at Siemens Energy. In Proc. of the 13th
Int. Semantic Web Conf. (ISWC 2014), Part I, volume 8796
of LNCS, 601–619. Springer.
Klarman, S., and Meyer, T. 2014. Querying temporal
databases via OWL 2 QL. In Proc. of the 8th Int. Conf. on
Web Reasoning and Rule Systems (RR 2014), volume 8741
of LNCS, 92–107. Springer.
Kontchakov, R.; Pandolfo, L.; Pulina, L.; Ryzhikov, V.; and
Zakharyaschev, M. 2016. Temporal and spatial obda with
many-dimensional halpern-shoham logic. In Proceedings of
the 25th International Joint Conference on Artificial Intelli-
gence (IJCAI-16). AAAI Press.
Koymans, R. 1990. Specifying real-time properties with
metric temporal logic. Real-Time Systems 2(4):255–299.
Kurucz, A.; Wolter, F.; and Zakharyaschev, M. 2005. Modal
logics for metric spaces: Open problems. In We Will Show
Them! Essays in Honour of Dov Gabbay, Volume Two, 193–
108.
Kutz, O.; Wolter, F.; Sturm, H.; Suzuki, N.; and Za-
kharyaschev, M. 2003. Logics of metric spaces. ACM Trans.
Comput. Log. 4(2):260–294.
Ouaknine, J., and Worrell, J. 2005. On the decidability of
metric temporal logic. In Proceedings of the 20th Annual
IEEE Symposium on Logic in Computer Science, LICS ’05,
188–197. Washington, DC, USA: IEEE Computer Society.
Ouaknine, J., and Worrell, J. 2008. Some recent results
in metric temporal logic. In Proceedings of the 6th Inter-
national Conference on Formal Modeling and Analysis of
Timed Systems, FORMATS ’08, 1–13. Berlin, Heidelberg:
Springer-Verlag.
Özcep, O.; Möller, R.; Neuenstadt, C.; Zheleznyakov, D.;
and Kharlamov, E. 2013. A semantics for temporal and
stream-based query answering in an OBDA context. Tech-
nical report, Deliverable D5.1, FP7-318338, EU.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. J. on Data Semantics X:133–173.
Sheremet, M.; Wolter, F.; and Zakharyaschev, M. 2010. A
modal logic framework for reasoning about comparative dis-
tances and topology. Ann. Pure Appl. Logic 161(4):534–559.
Wolter, F., and Zakharyaschev, M. 2005. A logic for metric
and topology. J. Symb. Log. 70(3):795–828.

