
Mathematical Structures in Computer Science (2020), 30, pp. 271–313
doi:10.1017/S0960129520000067

PAPER

SMT-based verification of data-aware processes:
a model-theoretic approach
Diego Calvanese1, Silvio Ghilardi2 , Alessandro Gianola1,∗ , Marco Montali1 and Andrey Rivkin1

1Free University of Bozen-Bolzano and 2Università degli Studi di Milano
∗Corresponding author. Email: gianola@inf.unibz.it

(Received 12 December 2018; revised 22 February 2020; accepted 26 February 2020; first published online 3 April 2020)

Abstract
In recent times, satisfiability modulo theories (SMT) techniques gained increasing attention and obtained
remarkable success in model-checking infinite-state systems. Still, we believe that whenever more expres-
sivity is needed in order to specify the systems to be verified, more and more support is needed from
mathematical logic and model theory. This is the case of the applications considered in this paper: we
study verification over a general model of relational, data-aware processes, to assess (parameterized) safety
properties irrespectively of the initial database (DB) instance. Toward this goal, we take inspiration from
array-based systems and tackle safety algorithmically via backward reachability. To enable the adoption of
this technique in our rich setting, we make use of the model-theoretic machinery of model completion,
which surprisingly turns out to be an effective tool for verification of relational systems and represents
the main original contribution of this paper. In this way, we pursue a twofold purpose. On the one hand,
we isolate three notable classes for which backward reachability terminates, in turn witnessing decidabil-
ity. Two of such classes relate our approach to conditions singled out in the literature, whereas the third
one is genuinely novel. On the other hand, we are able to exploit SMT technology in implementations,
building on the well-known MCMT (Model Checker Modulo Theories) model checker for array-based
systems and extending it to make all our foundational results fully operational. All in all, the present con-
tribution is deeply rooted in the long-standing tradition of the application of model theory in computer
science. In particular, this paper applies these ideas in an original mathematical context and shows how
these techniques can be used for the first time to empower algorithmic techniques for the verification of
infinite-state systems based on arrays, so as to make such techniques applicable to the timely, challenging
settings of data-aware processes.

Keywords: Verification of data-aware processes; satisfiability modulo theories; model completeness; well-quasi-orders;
database theory

1. Introduction
The main contribution of this paper comes from a rather surprising confluence of two well-
established research traditions: model-theoretic algebra from mathematical logic and satisfiability
modulo theories (SMT), an emerging technologically oriented area in computational logic. We
believe that such seemingly very different scientific paradigms can indeed cooperate in formal
verification, and we shall supply an evidence for this claim by developing an innovative applica-
tion to the hot topic of the management of dynamic data-aware processes. In this introduction, we
shall briefly explain how the above-mentioned ingredients fit into the plan of our paper.

© The Author(s) 2020. Published by Cambridge University Press

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067
https://orcid.org/0000-0001-6449-6883
https://orcid.org/0000-0003-4216-5199
mailto:gianola@inf.unibz.it
https://doi.org/10.1017/S0960129520000067


272 D. Calvanese et al.

1.1 Model-theoretic algebra
Finding solutions to equations is a challenge at the heart of both mathematics and computer sci-
ence. Model-theoretic algebra, originating with the ground-breaking work of Robinson (1951,
1963), cast the problem of solving equations in a logical form and used this setting to solve alge-
braic problems via model theory. The central notion is that of an existentially closed model, which
we explain now. Call a quantifier-free formula with parameters in a modelM solvable if there is an
extensionM′ ofM where the formula is satisfied. A modelM is existentially closed if any solvable
quantifier-free formula already has a solution inM itself. For example, the field of real numbers is
not existentially closed, but the field of complex numbers is.

Although this definition is formally clear, it has a main drawback: it is not a first-order notion
in general. However, in fortunate and important cases, the class of existentially closed models
of T is exactly the models of another first-order theory T∗. In this case, the theory T∗ can be
characterized abstractly as the model companion of T. Model companions become model com-
pletions (cf. Definition 2.2) in the case of universal theories with the amalgamation property; in
such model completions, quantifier elimination holds, unlike in the original theory T. The model
companion/model completion of a theory identifies the class of those models where all satisfi-
able existential statements can be satisfied. For example, the theory of algebraically closed fields is
the model companion of the theory of fields, and dense linear orders without endpoints give the
model companion of linear orders.

In declarative approaches to model checking, the runs of a system are identified with certain
definable paths in the models of a theory T: we shall show that, without loss of generality, one may
restrict to paths within existentially closed models, thus taking profit from the properties enjoyed by
the model completion T∗ (quantifier elimination being the key property to be carefully exploited).

Model completeness has other well-known applications in computer science. It has been
applied to discover interesting connections between temporal logic and monadic second-order
logic (Ghilardi and van Gool 2016, 2017). In automated reasoning, it has been used to design
complete algorithms for constraint satisfiability in combined theories over non-disjoint signa-
tures (Baader et al. 2006; Ghilardi 2004; Ghilardi et al. 2008b; Nicolini et al. 2009a,b, 2010) and
in theory extensions (Sofronie-Stokkermans 2016, 2018). Applications to combined interpolation
(both for modal logics and for software verification theories) can be found in Ghilardi and Gianola
(2017, 2018).

1.2 Satisfiability modulo theories
The SMT-LIB project http://smtlib.cs.uiowa.edu/ (started in 2003) aims at bringing together peo-
ple interested in developing powerful tools combining sophisticated techniques in SAT-solving
with dedicated decision procedures involving specific theories used in applications (especially in
software verification). SMT-tools are at the heart of declarative approaches to model checking,
both in the bounded and in the unbounded case: they are employed in many advanced tech-
niques, for instance, in interpolation-based (McMillan 2006) and IC3-based (Hoder and Bjørner
2012) techniques.

Specifically, our approach is grounded in array-based systems. Array-based systems are a
declarative formalism originally introduced in Ghilardi et al. (2008a), Ghilardi and Ranise (2010a)
to handle the verification of distributed systems and afterwards successfully employed also to
attack the static analysis of other types of systems (Alberti et al. 2014a, 2017). Distributed systems
are parameterized in their essence: the numberN of interacting processes within a distributed sys-
tem is unbounded, and the challenge is that of supplying certifications that are valid for all possible
values of the parameterN. The overall state of the system is typically described by means of arrays
indexed by process identifiers and used to store the content of process variables like locations and
clocks. These arrays are genuine second-order variables. In addition, first-order quantifiers are used
to represent sets of system states. Quantified formulae and second-order function variables are at

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

http://smtlib.cs.uiowa.edu/
https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 273

the heart of the model-checking methodologies developed in Ghilardi et al. (2008a), Ghilardi and
Ranise (2010a) and following papers.

It is worth noting that the term “array-based systems” is an umbrella term generically referring
to transition systems specified with logical formulae having second-order variables (i.e., arrays).
The precise formal notion depends on the application and is defined on the spot (in this paper,
we shall introduce a specific instance of the notion of an array-based system tailored to database-
driven verification).

Model checkers for array-based systems handle safety problems by backward reachability: they
iteratively regress bad states by computing their predecessors, the predecessors of the predecessors,
etc., until a fixpoint is reached or the initial state(s) is intersected. This is done symbolically by
manipulating logical formulae that describe sets of states. Depending on the specific features of the
array-based system, to guarantee the regressability of such formulae, the procedure may require
to eliminate existentially quantified variables present in the formula.

There is an historical reason for choosing backward reachability: it was known since the sem-
inal paper (Abdulla et al. 1996) that backward search decides safety problems for a large class of
systems, called well-structured transition systems. What backward search in array-based systems is
meant to achieve is precisely to reproduce the results of Abdulla et al. (1996) in a declarative set-
ting: in such a declarative setting, the abstract wqo underlying well-structured transitions systems
is replaced by the standard model-theoretic notion of an embedding between finitely generated
models (in many practical cases, in fact, such embeddability relation can be proved to be a wqo,
using a suitable version of Dickson or of Higman lemma).

Backward search, once done in a declarative symbolic setting, requires discharging proof obli-
gations that can be reduced to satisfiability tests for quantified formulae, albeit of a restricted
syntactic shape. This raises the question of how to handle such (first-order) quantifiers. In the
original papers (Ghilardi et al. 2008a; Ghilardi and Ranise 2010a), first-order quantifiers were han-
dled in satisfiability tests by instantiation, whereas in successive applications (Alberti et al. 2014a;
Carioni et al. 2010), quantifier elimination was also used to handle quantifiers ranging over data
structures (typically, real-valued clocks). There, quantifier elimination was made possible by the
fact that theories axiomatizing such data structures were limited to light versions of arithmetics
(mostly even strictly included in what is called “difference logic” in SMT terminology), where
quantifier elimination is indeed available and at least in the examples arising from benchmarks
seems not to be as harmful as in the general arithmetic case. Suitable combinations of quantifier
instantiations and quantifier eliminations are needed at the foundational level to design complete
algorithms for the satisfiability tests that a model checker for array-based systems has to discharge
during search: a specific form of such combination will be developed in this paper too. By means
of such combinations, satisfiability tests involving quantified formulae of special shape are reduced
to satisfiability tests at quantifier-free level, to be very efficiently discharged by existing SMT-solvers
(as confirmed by the extensive experiments, see Section 6 for a brief historical account).

1.3 Data-aware processes
To capture data-aware processes, we follow the traditional line of research focused on the formal
representation of artifact systems (Calvanese et al. 2013; Damaggio et al. 2012; Deutsch et al. 2018,
2009; Hull 2008; Vianu 2009). Since their initial versions (e.g., in Deutsch et al. 2009), such sys-
tems are traditionally formalized using three components: (i) a read-only database (DB), storing
background information that does not change during the system evolution; (ii) an artifact work-
ing memory, storing data and lifecycle information about artifact(s) that does change during the
system evolution; (iii) actions (also called services) that access the read-only DB and the working
memory and determine how the working memory itself has to be updated.

Different variants of this framework have been considered toward decidability of verification,
by carefully tuning the expressive power of the three components. For instance, for the working
memory, radically different models are obtained depending on whether only a single artifact

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


274 D. Calvanese et al.

instance is evolved, or whether instead the co-evolution of multiple instances of possibly different
artifacts is supported. In particular, early formal models for artifact systems merely considered a
fixed set of so-called artifact variables, altogether instantiated into a single tuple of data. This, in
turn, allows one to capture the evolution of a single artifact instance (Deutsch et al. 2009). We call
artifact systems of this form Simple Artifact System (SAS ). Instead, more sophisticated types of
artifact systems have been studied recently in Deutsch et al. (2016), Li et al. (2017), Deutsch et al.
(2019). Here, the working memory is not only equipped with artifact variables as in SAS , but also
with so-called artifact relations, which supports storing arbitrarily many tuples, each accounting
for a different artifact instance that can be separately evolved on its own. We call artifact systems
of this form Relational Artifact System (RAS ).

Actions are usually specified using logical formulae relating the content of the read-only
DB as well as the current configuration of the working memory to (possibly different) next
configurations. An applicable action may be executed, nondeterministically transforming the
current configuration of working memory in one of such next configurations.

1.4 Bringing all the ingredients together
RASs naturally fit the paradigm of array-based systems: the read-only DB is axiomatized by a
suitable universal first-order theory T, and the artifact variables and relations are modeled by
second-order variables. The identifiers of the tuples (i.e., the “entries”) of the artifact relations play
the role of the identifiers of the processes in distributed systems: formally, in both cases, they are
just sorted first-order variables whose sort is the domain sort of a second-order function variable.

The resulting framework, however, requires novel and nontrivial extensions of the array-based
technology to make it operational. In fact, as we saw, quantifiers are handled in array-based
systems both by quantifier instantiation and by quantifier elimination. Quantifier instantiation
(ultimately referring to variants of the Herbrand Theorem) can be transposed to the new frame-
work, whereas quantifier elimination becomes problematic. In fact, quantifier elimination should
be applied to data variables, which do not simply range over data types (like integers, reals, or
enumerated sets) as in standard array-based systems, but instead point to the content of a whole,
full-fledged (read-only) relational database, and there is no reason for the theory T axiomatizing
it to enjoy quantifier elimination. Here, model-theoretic algebra comes into the picture: we show
that, without loss of generality, we can assume that system runs take place in existentially closed
structures, so that we can exploit quantifier elimination, provided T has a model completion.

The question on whether T admits or not a model completion is related to the way we represent
the read-only DB. Model completions exist in case the read-only DB is represented in the most
simple way, as consisting on free n-ary relations, not subject to any kind of constraint. However,
applications require the introduction of some minimal integrity constraints, like primary and for-
eign keys. A naif declarative modeling of such requirements (for instance, via relations which are
partially functional) would destroy amalgamation property, thus compromising the existence of
model completions. Instead, we propose “functional view” of relations, where the read-only DB
and the artifact relations forming the working memory are represented with sorted unary function
symbols. We introduce formally the above framework in Section 3 (Definitions 3.1 and 3.2): there
we supply a detailed example (Example 3.1 and Figure 1) and we also show how to recover the
traditional relational model (Subsection 3.1).1

1.5 Main contributions
By exploiting the above explained machinery and its model-theoretic properties, we then provide
a fourfold contribution.

Our first contribution is to define a general framework for SASs and RASs, in which artifacts
are formalized in the spirit of array-based systems, one of the most sophisticated setting within
the SMT tradition. In this setting, SASs are a particular class of RASs, where only artifact variables

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 275

are allowed. RASs employ arrays to capture a very rich working memory that simultaneously
accounts for artifact variables storing single data elements, and full-fledged artifact relations stor-
ing unboundedly many tuples. Each artifact relation is captured using a collection of arrays, so
that a tuple in the relation can be retrieved by inspecting the content of the arrays with a given
index. The elements stored therein may be fresh values injected into the RAS , or data elements
extracted from the read-only DB, whose relations are subject to key and foreign key constraints.

To attack this modeling complexity within array-based systems, RASs encode the read-only
DB using a functional, algebraic view, where relations and constraints are captured using multiple
sorts and unary functions. To the best of our knowledge, this encoding has never been explored in
the past but is essential in our context. In fact, more direct attempts to encode the read-only DB
into standard array-based systems would fail; for example, not using unary functions for relations
with key dependencies would destroy amalgamability, which is a model-theoretic notion that is
crucial toward decidability of verification (Bojańczyk et al. 2013).

Our resulting RASmodel captures the essential features of Li et al. (2017), which in turn is
tightly related (though incomparable) to one of the most sophisticated formal models for artifact-
centric systems of Deutsch et al. (2016, 2019).

Our second contribution is the development of a new version of the backward reachability
algorithm employed in traditional array-based systems (Ghilardi et al. 2008a; Ghilardi and Ranise
2010a), making it able to assess safety of RASs (and consequently SASs) in a sound and complete
way. The main technical difficulty, which makes the original algorithm not applicable anymore,
is that transition formulae in RASs contain special existentially quantified “data” variables point-
ing to the read-only DB, which contains data elements possibly constrained by primary keys and
foreign keys. Such data variables are central in our approach as they are needed:

— from the modeling point of view, to equip array-based systems with the ability of querying
the read-only DB;

— again for modeling reasons, to express nondeterministic inputs from the external environ-
ment, such as users (a feature that is customary in business processes);

— to encode typical forms of updates employed in the artifact-centric literature (Deutsch et al.
2016; Li et al. 2017).

The presence of these quantified data variables constitutes a big leap from traditional array-
based systems. In previous works on array-based systems, existentially quantified variables to be
eliminated were just arithmetic variables, and the corresponding quantifier elimination pro-
cedures were consequently the standard ones studied in the context of arithmetics (such as
Fourier–Motzkin and Presburger). Due to the peculiar nature of data variables pointing to the
read-only DB, and in particular of the constraints that they must satisfy, such standard techniques
do not carry over. Hence, genuinely novel research is needed in order to eliminate new existen-
tially quantified data variables that are introduced during the computation of predecessors in the
backward reachability procedure.

From a theoretical point of view, we solve this problem by introducing a dedicated machinery
based on model completions. While in the case of arithmetic variables the corresponding theo-
ries admit themselves quantifier elimination, this is not the case anymore for our data variables.
However, we show that quantifier elimination for data variables that is available in the model
completion of their theory can actually be safely employed in the context of backward reachability,
retaining soundness and completeness when checking safety of RASs. This requires to significantly
modify the original procedure and the original proofs.

In the general case, backward reachability is not guaranteed to terminate when checking safety
of SASs and RASs. As a third contribution, we consequently isolate three notable classes of RASs
for which backward reachability is guaranteed to terminate, in turn witnessing decidability of
safety. The first class restricts the working memory to variables only, that is, focuses on SAS . The
second class focuses on RAS operating under the restrictions imposed in Li et al. (2017): it requires

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


276 D. Calvanese et al.

acyclicity of foreign keys and requires a sort of locality principle in the action guards, ensuring that
different artifact tuples are not compared. Consequently, it reconstructs in our setting the essence
of the decidability result exploited in Li et al. (2017) if one restricts the verification logic used there
to safety properties only. In addition, our second class supports full-fledged bulk updates, which
greatly increase the expressive power of dynamic systems (Schmitz and Schnoebelen 2013) and,
in our setting, witness the incomparability of our results and those in Li et al. (2017). The third
class is genuinely novel, and while it further restricts foreign keys to form a tree-shaped structure,
it does not impose any restriction on the shape of updates, consequently supporting not only bulk
updates, but also comparisons between artifact tuples. To prove termination of backward reacha-
bility for this class, we resort to techniques based on well-quasi-orders (in particular, a nontrivial
application of Kruskal’s Tree Theorem Kruskal 1960).

Our fourth and last contribution is to implement the new version of backward reachabil-
ity required to handle the verification of RASs. We do so by extending the well-known MCMT
(Model Checker Modulo Theories) model checker for array-based systems (Ghilardi and Ranise
2010b). The resulting version of MCMT (version 2.8) provides a fully operational counterpart to all
the foundational results presented in the paper. Even though implementation and experimental
evaluation are not the central goal of this paper, we also note that our model checker correctly
handles the examples produced to test VERIFAS (Li et al. 2017), as well as additional examples
that go beyond the verification capabilities of VERIFAS, and report some interesting case here.
The performance of MCMT to conduct verification of these examples is very encouraging and
indeed provides the first stepping stone toward effective, SMT-based verification techniques for
artifact-centric systems.

All in all, the present contribution is deeply rooted in the long-standing tradition of the appli-
cation of model theory in computer science, as witnessed by notable approaches like the one
in Ghilardi (2004), Baader et al. (2006), Ghilardi et al. (2008b), Ghilardi and van Gool (2017),
Nicolini et al. (2009a,b, 2010), Sofronie-Stokkermans (2008, 2016, 2018), Ghilardi and Gianola
(2017, 2018). In particular, this paper applies these ideas in a genuinely novel mathematical con-
text and shows how these techniques can be used for the first time to empower algorithmic
techniques for the verification of infinite-state systems based on arrays in the style of Ghilardi
et al. (2008a), Ghilardi and Ranise (2010a,b), Alberti et al. (2014a,b, 2017), Conchon et al. (2012,
2015, 2018a,b), Delzanno (2018), Cimatti et al. (2018), so as to make such techniques applica-
ble to the timely, challenging settings of data-aware processes (Calvanese et al. 2019d). For an
explicit linking between the use of model completeness in computer science and our application
to verification, see in particular the survey (Calvanese et al. 2019b).

1.6 Plan of the paper and prerequisites
There are no specific prerequisites in model checking or in database theory to read this paper; we
only assume some familiarity with some basic model theory (like that supplied in a one-semester
course); some elementary notions will be revised mainly to fix notations. All definitions we intro-
duce concerning read-only databases and relational artifact systems are explained with the help
of a running example; however, we did not give the straightforward (and rather boring) details
showing how basic operations on artifact relations (like insertion/deletions, resetting, etc.) can be
modeled in our systems: there is a preliminary but more elementary exposition of the content of
this paper available from the network (Calvanese et al. 2018b) which covers these low-level details
and some more model-theoretic prerequisites.

The paper is organized as follows. After fixing preliminary notions in Section 2, in Section 3, we
introduce our functional view of databases and discuss the related model-theoretic properties. In
Section 4, we introduce a comprehensive framework for artifact-centric systems: SASs are studied
in Subsection 4.1, whereas the most general framework of RASs is investigated in Subsection 4.2.
Termination and decidability results are supplied in Section 5. Finally, first experiments are
discussed in Section 6, and Section 7 concludes.

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 277

2. Preliminaries
We adopt the usual first-order syntactic notions of signature, term, atom, (ground) formula, and
so on; our signatures are multi-sorted and include equality for every sort. This implies that vari-
ables are sorted as well. For simplicity, most basic definitions in this section will be supplied for
single-sorted languages only (the adaptation to multi-sorted languages is straightforward). We
compactly represent a tuple 〈x1, . . . , xn〉 of variables as x. The notation t(x), φ(x) means that the
term t, the formula φ has free variables included in the tuple x.

We assume that a function arity can be deduced from the context. Whenever we build terms
and formulae, we always assume that they are well typed, in the sense that the sorts of variables,
constants, and function sources/targets match. A formula is said to be universal (respectively,
existential) if it has the form ∀x(φ(x)) (respectively, ∃x(φ(x))), where φ is a quantifier-free formula.
Formulae with no free variables are called sentences.

From the semantic side, we use the standard notion of a �-structure M and of truth of a
formula in a�-structure under a free variables assignment.

A �-theory T is a set of �-sentences; a model of T is a �-structure M, where all sentences in
T are true. We use the standard notation T |= φ (“ϕ is a logical consequence of T”) to say that φ
is true in all models of T for every assignment to the variables occurring free in φ. We say that
φ is T-satisfiable iff there is a model M of T and an assignment to the variables occurring free
in φ making φ true in M. Thus, according to this definition, φ is T-satisfiable iff its existential
closure is true in a model of T (notice that this convention might not be uniform in the literature).
A�-theory T is complete iff for every�-sentence ϕ, either ϕ or ¬ϕ is a logical consequence of T.

A�-formula φ is a�-constraint (or just a constraint) iff it is a conjunction of literals. The con-
straint satisfiability problem for T is the following: we are given an existential formula ∃y φ(x, y)
(with φ a constraint, but, for the purposes of this definition, we may equivalently take φ to be
quantifier-free), and we are asking whether there exist a model M of T and an assignment α to
the free variables x such thatM, α |= ∃y φ(x, y).

A theory T has quantifier elimination iff for every formula φ(x) in the signature of T there is a
quantifier-free formula φ′(x) such that T |= φ(x)↔ φ′(x). It is well known (and easily seen) that
quantifier elimination holds in case we can eliminate quantifiers from primitive formulae, that is,
from formulae of the kind ∃y φ(x, y), where φ is a conjunction of literals (i.e., of atomic formulae
and their negations). Since we are interested in effective computability, we assume that whenever
we talk about quantifier elimination, an effective procedure for eliminating quantifiers is given.

Let � be a first-order signature. The signature obtained from � by adding to it a set a of new
constants (i.e., 0-ary function symbols) is denoted by �a. Analogously, given a �-structure A,
the signature � can be expanded to a new signature �|A| :=� ∪ {ā | a ∈ |A|} by adding a set
of new constants ā (the name for a), one for each element a ∈ |A|, with the convention that two
distinct elements are denoted by different name constants (we use |A| to denote the support of
the structure A). A can be expanded to a �|A|-structure A′ := (A, a)a∈|A| just interpreting the
additional constants over the corresponding elements. From now on, when the meaning is clear
from the context, we will freely use the notation A and A′ interchangeably: in particular, given a
�-structure A, a �-formula φ(x), and elements a from |A|, we will write, by abuse of notation,
A |= φ(a) instead ofA′ |= φ(ā).

A�-homomorphism (or, simply, a homomorphism) between two�-structuresA and B is any
mapping μ : |A| −→ |B| among the support sets |A| ofA and |B| of B satisfying the condition

A |= ϕ ⇒ B |= ϕ (1)

for all �|A|-atoms ϕ (here – as above – A is regarded as a �|A|-structure, by interpreting each
additional constant a ∈ |A| into itself and B is regarded as a �|A|-structure by interpreting each
additional constant a ∈ |A| into μ(a)). In case condition (1) holds for all �|A|-literals, the homo-
morphism μ is said to be an embedding (denoted by μ :A ↪→ B), and if it holds for all first-order

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


278 D. Calvanese et al.

formulae, the embedding μ is said to be elementary. If μ :A−→ B is an embedding which is just
the identity inclusion |A| ⊆ |B|, we say thatA is a substructure of B or that B is an extension ofA.
A�-structureA is said to be generated by a setX included in its support |A| iff there are no proper
substructures ofA including X.

2.1 Robinson diagrams and amalgamation
Let A be a �-structure. The diagram of A, denoted by ��(A), is defined as the set of ground
�|A|-literals (i.e., atomic formulae and negations of atomic formulae) that are true in A. For the
sake of simplicity, once again by abuse of notation, we will freely say that ��(A) is the set of
�|A|-literals which are true inA.

An easy but nevertheless important basic result, called Robinson Diagram Lemma (Chang and
Keisler 1990), says that, given any�-structure B, the embeddingsμ :A−→ B are in bijective cor-
respondence with expansions ofB to�|A|-structures which aremodels of��(A). The expansions
and the embeddings are related in the obvious way: ā is interpreted as μ(a).

Amalgamation is a classical algebraic concept. We give the formal definition of this notion.

Definition 2.1 (Amalgamation). A theory T has the amalgamation property if for every couple of
embeddings μ1 :M0 −→M1, μ2 :M0 −→M2 among models of T, there exists a model M of T
endowed with embeddings ν1 :M1 −→M and ν2 :M2 −→M such that ν1 ◦μ1 = ν2 ◦μ2

M

M1 M2

The triple (M,μ1,μ2) (or, by abuse,M itself) is said to be a T-amalgam ofM1,M2 overM0

2.2 Model completions
We recall a standard notion in model theory, namely, the notion of a model completion of a first-
order theory (Chang and Keisler 1990) (we limit the definition to universal theories, because we
shall use only this case):

Definition 2.2. Let T be a universal �-theory and let T	 ⊇ T be a further �-theory; we say that
T	 is a model completion of T iff: (i) every model of T can be embedded into a model of T	; (ii) for
every modelM of T, we have that T	 ∪��(M) is a complete theory in the signature �|M|.

Since T is universal, condition (ii) is equivalent to the fact that T	 has quantifier elimination; on
the other hand, a standard argument (based on diagrams and compactness) shows that condition
(i) is the same as asking that T and T	 have the same universal consequences. Thus, we have an
equivalent definition (Ghilardi 2004) (to be used in the following):

Proposition 2.1. Let T be a universal�-theory and let T	 ⊇ T be a further�-theory; T	 is a model
completion of T iff: (i) every�-constraint satisfiable in a model of T is also satisfiable in a model of
T∗; (ii) T∗ has quantifier elimination.

As stated before, we assume that a model completion has an effective procedure for eliminat-
ing quantifiers. We also recall that the model completion T	 of a theory T is unique, if it exists
(see Chang and Keisler 1990 for these results and for examples). It is well known that a universal
theory T which admits a model completion is also amalgamable (Chang and Keisler 1990).

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 279

Example 2.1. The theory of undirected graphs admits a model completion (and, hence, is amal-
gamable); this is the theory T whose signature � contains only a binary relational symbol R, and
whose axioms are specified as follows:

T := {∀x¬R(x, x), ∀x∀y (R(x, y)→ R(y, x))}.
Indeed, it is folklore that the model completion of T is the theory of the Rado graph (Rado 1964): a
Rado (also called random) graph is a countably infinite graph in which, given any non-empty sets
X= {x0, ..., xm} and Y = {y0, ..., yn} of nodes with X ∩ Y =∅, there is a node z (with z �∈ X ∪ Y)
such that there is an edge between z and all elements of X and there is no edge between z and any
element of Y . This theory is first-order definable (Fagin 1976).

2.3 Definable extensions and λ-notations
In the following, we specify transitions of artifact-centric systems using first-order formulae. To
obtain a more compact representation, we make use of definable extensions as a means to intro-
duce case-defined functions, abbreviating more complicated (still first-order) expressions. Let us
fix a signature � and a �-theory T; a T-partition is a finite set κ1(x), . . . , κn(x) of quantifier-free
formulae such that T |= ∀x∨n

i=1 κi(x) and T |=
∧

i�=j ∀x¬(κi(x)∧ κj(x)). Given such a T-partition
κ1(x), . . . , κn(x) together with �-terms t1(x), . . . , tn(x) (all of the same target sort), a case-
definable extension is the �′-theory T′, where �′ =� ∪ {F}, with F a “fresh” function symbol
(i.e., F �∈�) , and T′ = T ∪⋃n

i=1{∀x (κi(x)→ F(x)= ti(x))}. Arity, source sorts, and target sort
for F can be deduced from the context (considering that everything is well typed).

Intuitively, F represents a case-defined function, which can be reformulated using nested if-
then-else expressions and can be written as

F(x) := case of {κ1(x) : t1; · · · ;κn(x) : tn}.
By abuse of notation, we shall identify T with any of its case-definable extensions T′. In fact, it is
easy to produce from a �′-formula φ′ a �-formula φ that is equivalent to φ′ in all models of T′:
just remove (in the appropriate order) every occurrence F(v) of the new symbol F in an atomic
formula A, by replacing A with

∨n
i=1 (κi(v)∧A(ti(v))).

We also exploit λ-abstractions (see, e.g., formula (13) below) for more “compact” repre-
sentation of some complex expressions and always use them in atoms like b= λy.F(y, z) as
abbreviations of ∀y. b(y)= F(y, z) (where, typically, F is a symbol introduced in a case-defined
extension as above). Thus, also our formulae containing lambda abstractions can be converted
into plain first-order formulae.

3. Read-Only DB Schemas
We now provide a formal definition of (read-only) DB schemas by relying on an algebraic,
functional characterization and derive some key model-theoretic properties instrumental to the
technical treatment.

Definition 3.1. A DB schema is a pair 〈�, T〉, where (i) � is a DB signature, that is, a finite
multi-sorted signature whose only symbols are equality, unary functions, and constants; (ii) T is a
DB theory, that is, a set of universal �-sentences.

Next, we refer to a DB schema simply through its (DB) signature � and (DB) theory T. Given
a DB signature �, we denote by �srt the set of sorts and by �fun the set of functions in �. Since
� contains only unary function symbols and equality, all atomic �-formulae are of the form
t1(v1)= t2(v2), where t1 and t2 are possibly complex terms and v1 and v2 are either variables or
constants.

We associate to a DB signature � a characteristic (directed) graph G(�) capturing the depen-
dencies induced by functions over sorts. Specifically, G(�) is an edge-labeled graph whose set of

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


280 D. Calvanese et al.

Figure 1. On the left: characteristic graph of the human resources DB signature from Example 3.1. On the right: relational
viewof theDB signature; each cell denotes an attributewith its type, underlined attributes denote primary keys, anddirected
edges capture foreign keys.

nodes is�srt , and with a labeled edge S
f−→ S′ for each f : S−→ S′ in �fun. We say that� is acyclic

if G(�) is so. The leaves of� are the nodes of G(�) without outgoing edges. These terminal sorts
are divided into two subsets, respectively, representing unary relations and value sorts. Non-value
sorts (i.e., unary relations and non-leaf sorts) are called id sorts and are conceptually used to rep-
resent (identifiers of) different kinds of objects. Value sorts, instead, represent datatypes such as
strings, numbers, and clock values. We denote the set of id sorts in � by �ids, and that of value
sorts by�val, hence�srt =�ids ��val.

We now consider extensional data.

Definition 3.2. A DB instance of DB schema 〈�, T〉 is a �-structure M that is a model of T and
such that every id sort of � is interpreted inM on a finite set.

Contrast this to arbitrary models of T, where no finiteness assumption is made. What may
appear as not customary in Definition 3.2 is the fact that value sorts can be interpreted on infi-
nite sets. This allows us, at once, to reconstruct the classical notion of DB instance as a finite
model (since only finitely many values can be pointed from id sorts using functions), at the same
time supplying a potentially infinite set of fresh values to be dynamically introduced in the work-
ing memory during the evolution of the artifact system. More details on this will be given in
Section 3.1.

We, respectively, denote by SM, fM, and cM the interpretation in M of the sort S (this is a
set), of the function symbol f (this is a set-theoretic function), and of the constant c (this is an
element of the interpretation of the corresponding sort). Obviously, fM and cM must match the
sorts in�. For example, if f has source S and target U, then fM has domain SM and range UM.

Example 3.1. The human resource (HR) branch of a company stores the following information
inside a relational DB: (i) users registered to the company website, who are potentially interested
in job positions offered by the company; (ii) the different, available job categories; (iii) employ-
ees belonging to HR, together with the job categories they are competent in (in turn indicating
which job applicants they could interview). To formalize these different aspects, we make use of a
DB signature �hr consisting of: (i) four id sorts, used to, respectively, identify users, employees,
job categories, and the competence relationship connecting employees to job categories; (ii) one
value sort containing strings used to name users and employees and describe job categories. In
addition, �hr contains five function symbols mapping: (i) user identifiers to their corresponding
names; (ii) employee identifiers to their corresponding names; (iii) job category identifiers to their
corresponding descriptions; (iv) competence identifiers to their corresponding employees and job
categories. The characteristic graph of�hr is shown in Figure 1 (left part). �

We close the formalization of DB schemas by discussing DB theories. The role of a DB the-
ory is to encode background axioms to express constraints on the different elements of the

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 281

corresponding signature. We illustrate a typical background axiom, required to handle the pos-
sible presence of undefined identifiers/values in the different sorts. This, in turn, is essential to
capture artifact systems whose working memory is initially undefined, in the style of Deutsch
et al. (2016), Li et al. (2017). To accommodate this, to specify an undefined value, we add to every
sort S of� a constant undefS (written from now on, by abuse of notation, just as undef, used also
to indicate a tuple). Then, for each function symbol f of�, we add the following axiom to the DB
theory:

∀x (x= undef↔ f (x)= undef) (2)
This axiom states that the application of f to the undefined value produces an undefined value,
and it is the only situation for which f is undefined.

Remark 3.1. In the artifact-centric model in the style of Deutsch et al. (2016), Li et al. (2017) that
we intend to capture, the DB theory consists of Axioms (2) only. However, our technical results
do not require this specific choice, and more general sufficient conditions will be discussed in
Section 3.2.

Remark 3.2. If desired, we can freely extend DB schemas by adding arbitrary n-ary relation
symbols to the signature �. For this purpose, we give the following definition.

Definition 3.3. A DB extended-schema is a pair 〈�, T〉, where (i) � is a DB extended-signature,
that is, a finite multi-sorted signature whose only symbols are equality, n-ary relations, unary
functions, and constants and (ii) T is a DB extended-theory, that is, a set of universal �-sentences.

For simplicity, even if our implementation takes into account also the case of “free” relations,
that is, without key dependencies, we restrict our focus on DB schemas, which are sufficient to
capture those constraints (as explained in the following subsection). The extension is straightfor-
ward and left to the reader. In fact, we can give in analogous the definitions of the characteristic
graph G(�) and of acyclicity for extended DB schemas. We notice that, in case Assumption 3.4
discussed below holds for DB extended-theories, all the results presented in Section 4 still hold
even considering DB extended-schemas instead of DB schemas.

3.1 Relational view of DB schemas
We now clarify how the algebraic, functional characterization of DB schema and instance can be
actually reinterpreted in the classical, relational model. Definition 3.1 naturally corresponds to
the definition of relational DB schemas equipped with single-attribute primary keys and foreign
keys (plus a reformulation of constraint (2)). To technically explain the correspondence, we adopt
the named perspective, where each relation schema is defined by a signature containing a relation
name and a set of typed attribute names. Let 〈�, T〉 be a DB schema. Each id sort S ∈�ids corre-
sponds to a dedicated relation RS with the following attributes: (i) one identifier attribute idS with
type S; (ii) one dedicated attribute af with type S′ for every function symbol f ∈�fun of the form
f : S−→ S′.

The fact thatRS is built starting from functions in� naturally induces different database depen-
dencies in RS. In particular, for each non-id attribute af of RS, we get a functional dependency from
idS to af ; altogether, such dependencies in turn witness that idS is the (primary) key of RS. In addi-
tion, for each non-id attribute af of RS whose corresponding function symbol f has id sort S′ as
image, we get an inclusion dependency from af to the id attribute idS′ of RS′ ; this captures that af
is a foreign key referencing RS′ .

Example 3.2. The diagram on the right in Figure 1 graphically depicts the relational view
corresponding to the DB signature of Example 3.1. �

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


282 D. Calvanese et al.

Given a DB instance M of 〈�, T〉, its corresponding relational instance I is the minimal
set satisfying the following property: for every id sort S ∈�ids, let f1, . . . , fn be all functions
in � with domain S; then, for every identifier o ∈ SM, I contains a labeled fact of the form
RS(idS : oM, af1 : fM1 (oM), . . . , afn : fMn (oM)). With this interpretation, the active domain of I
is the set ⋃

S∈�ids
(SM \ {undefM})

∪
⎧⎨
⎩v ∈⋃V∈�val

VM
∣∣∣∣∣∣
v �= undefM and there exist f ∈�fun

and o ∈ dom(fM) s.t. fM(o)= v

⎫⎬
⎭

consisting of all (proper) identifiers assigned by M to id sorts, as well as all values obtained in
M via the application of some function. Since such values are necessarily finitely many, one may
wonder why in Definition 3.2 we allow for interpreting value sorts over infinite sets. The reason is
that, in our framework, an evolving artifact system may use such infinite provision to inject and
manipulate new values into the working memory. From the definition of active domain above,
exploiting Axioms (2), we get that the membership of a tuple (x0, . . . , xn) to a generic n+ 1-ary
relation RS with key dependencies (corresponding to an id sort S) can be expressed in our setting
by using just unary function symbols and equality:

RS(x0, . . . , xn) iff x0 �= undef∧ x1 = f1(x0)∧ · · · ∧ xn = fn(x0) (3)

Hence, the representation of negated atoms is the one that directly follows from negating (3):

¬RS(x0, . . . , xn) iff x0 = undef∨ x1 �= f1(x0)∨ · · · ∨ xn �= fn(x0) (4)

This relational interpretation of DB schemas exactly reconstructs the requirements posed
by Deutsch et al. (2016), Li et al. (2017) on the schema of the read-only DB: (i) each relation
schema has a single-attribute primary key; (ii) attributes are typed; (iii) attributes may be foreign
keys referencing other relation schemas; and (iv) the primary keys of different relation schemas
are pairwise disjoint.

We stress that all such requirements are natively captured in our functional definition of a
DB signature and do not need to be formulated as axioms in the DB theory. The DB theory is
used to express additional constraints, like that in Axiom (2). In the following subsection, we
thoroughly discuss which properties must be respected by signatures and theories to guarantee
that our verification machinery is well behaved.

One may wonder why we have not directly adopted a relational view for DB schemas. This
will become clear during the technical development. We anticipate the main, intuitive reasons.
First, our functional view allows us to guarantee that our framework remains well behaved even
in the presence of key dependencies, since our DB theories do enjoy the crucial condition of
Assumption 3.4 introduced below (i.e., that the DB theories admit a model completion), whereas
relational structures with key constraints do not. Second, our functional view makes the depen-
dencies among different types explicit. In fact, our notion of characteristic graph, which is readily
computed from a DB signature, exactly reconstructs the central notion of foreign key graph used
in Deutsch et al. (2016) toward the main decidability results.

3.2 Formal properties of DB schemas
The theory T from Definition 3.1 must satisfy few crucial requirements for our approach to
work. In this section, we define such requirements and show that they are matched, for example,
when we are concerned with an acyclic signature � and with key dependencies (i.e., the setting

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 283

presented in Li et al. 2017). Actually, acyclicity is a stronger requirement than needed, which,
however, simplifies our exposition.

3.2.1 Finite model property
We say that T has the finite model property (for constraint satisfiability) iff every constraint φ that
is satisfiable in a model of T is satisfiable in a DB instance of T. It can be easily seen that this
implies that φ is satisfiable also in a DB instance interpreting also value sorts into finite sets.

Observe that if � is acyclic, there are only finitely many terms involving a single variable x: in
fact, there are as many terms as paths in G(�) starting from the sort of x. If k� is the maximum
number of terms involving a single variable, then (since all function symbols are unary) there are
at most k� · n terms involving n variables.

Proposition 3.1. Let (�, T) be a DB schema (cf. Definition 3.1); T has the finite model property in
case � is acyclic.

Proof. If T := ∅, then congruence closure ensures that the finite model property holds and decides
constraint satisfiability in polynomial time (Bradley and Manna 2007).

Otherwise, we reduce the argument to theHerbrand Theorem (recall thatT is universal accord-
ing to Definition 3.1). Indeed, suppose to have a finite set � of universal formulae and let φ(x)
be the constraint we want to test for satisfiability. Replace the variables x with free constants
a. Herbrand Theorem states that �∪ {φ(a)} has a model iff the set of ground �a-instances of
�∪ {φ(a)} has a model. These ground instances are finitely many by acyclicity, so we can apply
congruence closure (as done in the case of the empty theory) to these ground instances.

Remark 3.3. If T is finite, Proposition 3.1 ensures decidability of constraint satisfiability. In order
to obtain a decision procedure, it is sufficient to instantiate the axioms of T and the axioms of
equality (reflexivity, transitivity, symmetry, congruence) and to use a SAT-solver to decide con-
straint satisfiability. Alternatively, one can decide constraint satisfiability via congruence closure
(Bradley and Manna 2007) and avoid instantiating the equality axioms.

Remark 3.4. Acyclity is a strong condition, often too strong. However, some condition must be
imposed (otherwise, we have undecidability and then failure of finite model property, by reduc-
tion to word problem for finite presentations of monoids). In fact, the empty theory and the
theory axiomatized by Axioms (2) both have the finite model property even without acyciclity
assumptions.

The finite model property implies the decidability of the constraint satisfiability problem in
case T is recursively axiomatized. Indeed, in this case, it is possible to enumerate unsatisfiable
constraints via a logical calculus, and this enumeration can be interleaved with the enumeration
of finite models, thus supplying a full decision procedure.

3.2.2 Model completion of DB theories
A DB theory T does not necessarily have quantifier elimination; it is, however, often possible to
strengthen T in a conservative way (with respect to constraint satisfiability) and get quantifier
elimination. In order to do that, we study the model completion of T, when it exists, and we will
show that model completion turns out to be quite effective to attack the verification of dynamic
systems operating over relational databases.

The following lemma gives a useful folklore technique for finding model completions:

Lemma 3.1. Suppose that for every primitive�-formula ∃x φ(x, y), it is possible to find a quantifier-
free formula ψ(y) such that

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


284 D. Calvanese et al.

(i) T |= ∀x ∀y (φ(x, y)→ψ(y));

(ii) for every modelM of T, for every tuple of elements a from the support ofM such thatM |=
ψ(a), it is possible to find another model N of T such that M embeds into N and N |=
∃xφ(x, a).

Then, T has a model completion T∗ axiomatized by the infinitely many sentences

∀y (ψ(y)→∃x φ(x, y)) . (5)

Proof. From (i) and (5), we clearly get that T	 admits quantifier elimination: in fact, in order
to prove that a theory enjoys quantifier elimination, it is sufficient to eliminate quantifiers from
primitive formulae (then, the quantifier elimination for all formulae can be easily shown by an
induction over their complexity). This is exactly what is guaranteed by (i) and (5).

Let M be a model of T. We show (by using a chain argument) that there exists a model M′
of T	 such that M embeds into M′. For every primitive formula ∃xφ(x, y), consider the pair
(a, ∃xφ(x, a)) such thatM |=ψ(a) (where ψ is related to φ as in (i)). By Zermelo’s Theorem, the
set of all pairs {(a, ∃xφ(x, a))} can be well ordered: let {(ai, ∃xφi(x, ai))}i∈I be such a well-ordered
set (where I is an ordinal). By transfinite induction on this well-order, we define M0 :=M and,
for each i ∈ I, Mi as an extension of

⋃
j<i Mj such that Mi |= ∃xφi(x, ai), which exists for (ii)

since
⋃

j<i Mj |=ψi(ai) (remember that validity of ground formulae is preserved passing through
substructures and superstructures, andM0 |=ψi(ai)).

Now we take the chain unionM1 :=⋃i∈I Mi: since T is universal,M1 is again a model of T,
and it is possible to construct an analogous chain M2 as done above, starting from M1 instead
ofM. Clearly, we getM0 :=M⊆M1 ⊆M2 by construction. At this point, we iterate the same
argument countably many times, so as to define a new chain of models of T:

M0 :=M⊆M1 ⊆ ...⊆Mn ⊆ ...

Defining M′ :=⋃n Mn, we trivially get that M′ is a model of T such that M⊆M′ and
satisfies all the sentences of type (5). The last fact can be shown using the following finiteness
argument.

Fix φ,ψ as in (5). For every tuple a′ ∈M′ such that M′ |=ψ(a′), by definition of M′
there exists a natural number k such that a′ ∈Mk: since ψ(a′) is a ground formula, we get
that also Mk |=ψ(a′). Therefore, we consider the step k of the countable chain: there, we
have that the pair (a′, ∃xφ(x, a′)) appears in the enumeration given by the well-ordered set of
pairs {(ai, ∃xφi(x, ai))}i∈I such that Mk |=ψi(ai). Hence, by construction, we have that Mk

i |=∃xφ(x, a′) for some i. In conclusion, since the existential formulae are preserved passing to
extensions, we obtainM′ |= ∃xφ(x, a′), as wanted.
Proposition 3.2. T has a model completion in case it is axiomatized by universal one-variable
formulae and � is acyclic.

Proof. We freely take inspiration from an analogous result in Wheeler (1976). We preliminar-
ily show that T is amalgamable. Then, for a suitable choice of ψ suggested by the acyclicity
assumption, the amalgamation property will be used to prove the validity of the condition (ii)
of Lemma 3.1: this fact (together with condition (i)) yields that T has a model completion which
is axiomatized by the infinitely many sentences (5).

Let M1 and M2 be two models of T with a submodel M0 of T in common (we suppose for
simplicity that |M1| ∩ |M2| = |M0|).We define a T-amalgamM ofM1,M2 overM0 as follows
(we use in an essential way the fact that� contains only unary function symbols). Let the support
ofM be the set-theoretic union of the supports ofM1 andM2, that is, |M| := |M1| ∪ |M2|.M
has a natural�-structure inherited by the�-structuresM1 andM2: for every function symbol f
in�, we define, for eachmi ∈ |Mi|(i= 1, 2), fM(mi) := fMi(mi), that is, the interpretation of f in

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 285

M is the interpretation of f inMi for every elementmi ∈ |Mi|. This is well defined since, for every
a ∈ |M1| ∩ |M2| = |M0|, we have that fM(a) := fM1 (a)= fM0 (a)= fM2 (a). It is clear thatM1
andM2 are substructures ofM, and their inclusions agree onM0.

We show that the�-structureM, as defined above, is a model of T. By hypothesis, T is axiom-
atized by universal one-variable formulae: so, we can consider T as a theory formed by axioms
φ which are universal closures of clauses with just one variable, that is, φ := ∀x(A1(x)∧ ...∧
An(x)→ B1(x)∨ ...∨ Bm(x)), where Aj and Bk (j= 1, ..., n and k= 1, ...,m) are atoms.

We show that M satisfies all such formulae φ. In order to do that, suppose that, for every
a ∈ |M|, M |=Aj(a) for all j= 1, ..., n. If a ∈ |Mi|, then M |=Aj(a) implies Mi |=Aj(a), since
Aj(a) is a ground formula. Since Mi is a model of T and so Mi |= φ, we get that Mi |= Bk(a) for
some k= 1, ...,m, which means that M |= Bk(a), since Bk(a) is a ground formula. Thus, M |= φ
for every axiom φ of T, that is, M |= T and, hence, M is a T-amalgam of M1,M2 over M0, as
wanted.

Now, given a primitive formula ∃xφ(x, y), we find a suitable ψ such that the hypothesis
of Lemma 3.1 holds. We define ψ(y) as the conjunction of the set of all quantifier-free χ(y)-
formulae such that φ(x, y)→ χ(y) is a logical consequences of T (they are finitely many – up to
T-equivalence – because � is acyclic). By definition, clearly we have that (i) of Lemma 3.1 holds.

We show that also condition (ii) is satisfied. Let M be a model of T such that M |=ψ(a) for
some tuple of elements a from the support of M. Then, consider the �-substructure M[a] of
M generated by the elements a: this substructure is finite (since � is acyclic), it is a model of
T, and we trivially have that M[a] |=ψ(a), since ψ(a) is a ground formula. In order to prove
that there exists an extension N ′ of M[a] such that N |= ∃xφ(x, a), it is sufficient to prove (by
the Robinson Diagram Lemma) that the �|M[a]|∪{e}-theory �(M[a])∪ {φ(e, a)} is T-consistent.
For reduction to absurdity, suppose that the last theory is T-inconsistent. Then, there are finitely
many literals l1(a), ..., lm(a) from �(M[a]) (remember that �(M[a]) is a finite set of literals
since M[a] is a finite structure) such that φ(e, a) |=T ¬(l1(a)∧ ...∧ lm(a)). Therefore, defining
A(a) := l1(a)∧ ...∧ lm(a), we get that φ(e, a) |=T ¬A(a), which implies that ¬A(a) is one of the
χ(y)-formulae appearing in ψ(a). Since M[a] |=ψ(a), we also have that M[a] |= ¬A(a), which
is a contraddiction: in fact, by definition of diagram,M[a] |=A(a) must hold. Hence, there exists
an extensionN ′ ofM[a] such thatN ′ |= ∃xφ(x, a). Now, by amalgamation property, there exists
a T-amalgam N of M and N ′ over M[a]: clearly, N is an extension of M and, since N ′ ↪→N
andN ′ |= ∃xφ(x, a), alsoN |= ∃xφ(x, a) holds, as required.

Remark 3.5. The proof of Proposition 3.2 gives an algorithm for quantifier elimination in the
model completion. The algorithm works as follows (see the formula (5)): to eliminate the quanti-
fier ∃x from ∃x φ(x, y) take the conjunction of the clauses χ(y) implied by φ(x, y). This algorithm
is far from optimal from two points of view. First, contrary to what happens in linear arith-
metics, the quantifier elimination needed to prove Proposition 3.2 has a much better behavior
(from the complexity point of view) if obtained via a suitable version of the Knuth–Bendix
procedure (Baader and Nipkow 1998) or of the Superposition Calculus (Nieuwenhuis and Rubio
2001). Since these aspects concerning quantifier elimination are rather delicate, we started study-
ing them in a dedicated paper (Calvanese et al. 2019c) and in its extended version (Calvanese et al.
2018a) (our MCMT implementation, however, already partially takes into account such develop-
ment), where, by using a constrained version of Superposition, we show that in the case of free
unary functions and free relations the complexity has a quadratic bound even without assuming
acyclicity.

Secondly, it is worth noting that the algorithm presented in Proposition 3.2 uses the acyclicity
assumption, whereas such assumption, as just noticed, is in general not needed for Proposition 3.2
to hold: for instance, when T := ∅ or when T contains only Axiom (2), a model completion can be
proved to exist, even if� is not acyclic, by using the constrained version of Superposition Calculus
studied in Calvanese et al. (2018a, 2019c).

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


286 D. Calvanese et al.

Remark 3.6. Proposition 3.2 holds also for DB extended-schemas, in case the universal one-
variable formulae do not involve the relation symbols (so, the relations are “free”): as explained
in Calvanese et al. (2018a), our implementation of the quantifier elimination algorithm takes into
account also this case. More generally, the model completion exists whenever we consider an
acyclic DB extended-schemawith aDB extended-theoryT that enjoys the amalgamation property.

Hereafter, we make the following assumption:

Assumption 3.4. The DB theories we consider have decidable constraint satisfiability problem,
finite model property, and admit a model completion.

This assumption is matched, for instance, in the following three cases: (i) when T is empty;
(ii)when T is axiomatized by Axioms (2); (iii)when� is acyclic and T is axiomatized by universal
one-variable formulae (such as Axioms (2)).

Hence, the artifact-centric model in the style of Deutsch et al. (2016), Li et al. (2017) that we
intend to capturematches Assumption 3.4.

Remark 3.7. Notice that the DB extended-schemas obtained by adding “free” relations to the DB
schemas of (i), (ii), (iii) above match Assumption 3.4.

4. Artifact-Centric Systems
We are now in the position to define our formal models of SASs and RASs and to study parame-
terized safety problems over SASs and RASs. Since RASs are formalized in the spirit of array-based
systems, we start by recalling the intuition behind them.

In general terms, an array-based system is described using a multi-sorted theory that contains
two types of sorts, one accounting for the indexes of arrays and the other for the elements stored
therein. The system variables changing over time are both individual first-order variables for data
and second-order variables for arrays. The latter are referred to using second-order function vari-
ables, whose interpretation in a state is that of a total function mapping indexes to elements (so
that applying the function to an index denotes the classical read operation for arrays). The def-
inition of an array-based system with array and data variables a always requires: a formula ι(a)
describing the initial configuration of the variables a and a formula τ (a, a′) describing a transition
that transforms the content of the variables from a to a′. In such a setting, verifying whether the
system can reach unsafe configurations described by a formula υ(a) amounts to check whether
the formula ι(a0)∧ τ (a0, a1)∧ · · · ∧ τ (an−1, an)∧ υ(an) is satisfiable for some n.

Next, we make these ideas formally precise by grounding array-based systems in the artifact-
centric setting. We start considering the case where we only have individual variables for data and
then we pass to the complete framework where we also have second-order variables formalizing
artifact relations (that is, relations which are mutable during system evolution).

4.1 Simple artifact systems

The SAS formal model. In this subsection, we consider systems manipulating only individual
variables and reading data from a given DB instance. In order to introduce verification problems
in a symbolic setting, one first has to specify which formulae are used to represent sets of states, the
system initializations, and system evolution. Given a DB schema 〈�, T〉 and a tuple x= x1, . . . , xn
of variables, we introduce the following classes of�-formulae:
– a state formula is a quantifier-free�-formula φ(x);
– an initial formula is a conjunction of equalities of the form

∧n
i=1 xi = ci, where each ci is a

constant (typically, ci is an undef constant mentioned in Section 3);
– a transition formula τ̂ is an existential formula

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 287

∃y
(
G(x, y)∧∧n

i=1 x′i = Fi(x, y)
)

(6)

where x′ are renamed copies of x,G is quantifier-free, and F1, . . . , Fn are case-defined functions.
We call G the guard and Fi the updates of Formula (6).

Definition 4.1. A Simple Artifact System (SAS ) has the form
S = 〈�, T, x, ι(x), τ (x, x′)〉

where (i) 〈�, T〉 is a DB schema, (ii) x= x1, . . . , xn are variables (called artifact variables), (iii) ι is
an initial formula, and (iv) τ is a disjunction of transition formulae of the type (6).

We notice that a formula τ̂ of the kind (6) is a single transition formula, where τ from
Definition 4.1 is a disjunction of formulae of the kind (6); hence, such τ symbolically represents
the union of all the possible transitions of the system.

Example 4.1. We consider a SASworking over the DB schema of Example 3.1. It captures a
global, single-instance artifact tracking the main, overall phases of a hiring process. The job hiring
artifact employs a dedicated pState variable to store the current process state. Initially, hiring is
disabled, which is captured by setting the pState variable to undef. A transition of the process from
disabled to enabledmay occur provided that the read-only HR DB contains at least one registered
user (who, in turn, may decide to apply for a job). Technically, we introduce a dedicated artifact
variable uId initialized to undef and used to load the identifier of such a registered user, if (s)he
exists. The enabling action is then captured by the following transition formula:

∃y : UserId

(
pState= undef∧ y �= undef
∧ pState′ = enabled∧ uId′ = y

)

The existential quantified variable y : UserId is a data variable pointing to the read-only DB
and is used to represent an external user input. Notice in particular how the existence of a user is
checked using the typed variable y, checking that it is not undef and correspondingly assigning it
to uId. �

Parameterized safety via backward reachability for SAS . A safety formula for a SASS is a state
formula υ(x) describing undesired states of S . We say that S is safe with respect to υ if intuitively
the system has no finite run leading from ι to υ. Formally, there is no DB instance M of 〈�, T〉,
no k≥ 0, and no assignment inM to the variables x0, . . . , xk such that the formula

ι(x0)∧ τ (x0, x1)∧ · · · ∧ τ (xk−1, xk)∧ υ(xk) (7)
is true inM (here xi’s are renamed copies of x). The safety problem for S is the following: given a
safety formula υ decide whether S is safe with respect to υ.

Example 4.2. We provide an example of a safety formula for Example 4.1. Consider the unsafe
configuration where the process is enabled but the identifier of the registered user loaded into uId
is undef. Formally, this can be represented by the following state formula:

pState= enabled∧ uId= undef
Notice that the following formula

∃y (pState= enabled∧ y �= undef∧ uId= y
)

is not a safety formula, because of the existential quantified data variable y, but it is equivalent to
pState= enabled∧ uId �= undef

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


288 D. Calvanese et al.

Algorithm 1: Backward reachability algorithm
Function BReach(υ)

1 φ←− υ; B←−⊥;
2 while φ ∧¬B is T-satisfiable do
3 if ι∧ φ is T-satisfiable then

return unsafe
4 B←− φ ∨ B;
5 φ←− Pre(τ , φ);
6 φ←−QE(T∗, φ);

return safe;

which is a safety formula. We will see in Lemma 4.2 that this equivalence (in some sense) holds in
the general case of RASs (which SASs are a specific case of).

Algorithm 1 describes themodified version of the backward reachability algorithm (simply called
backward reachability or backward search in the following) for handling the safety problem for S
(the original version of the backward reachability algorithm can be found in Ghilardi et al. 2008a;
Ghilardi and Ranise 2010a). An integral part of Algorithm 1 is to compute preimages. For that pur-
pose, we define for any φ1(z, z′) and φ2(z) (where z′ are renamed copies of z), Pre(φ1, φ2) as the
formula ∃z′(φ1(z, z′)∧ φ2(z′)). The preimage of the set of states described by a state formula φ(x) is
the set of states described by Pre(τ , φ). Notice that, when τ =∨ τ̂ , then Pre(τ , φ)=∨ Pre(τ̂ , φ).
The modified algorithm presents a new subprocedure QE(T∗, φ) in Line 6 for computing quanti-
fier elimination in the model completion T∗. The subprocedure QE(T∗, φ) applies the quantifier
elimination algorithm ofT∗ to the existential formula φ. Algorithm 1 computes iterated preimages
of υ and applies to them quantifier elimination, until a fixpoint is reached or until a set intersect-
ing the initial states (i.e., satisfying ι) is found. Inclusion (Line 2) and disjointness (Line 3) tests can
be discharged via proof obligations to be handled by SMT solvers. The fixpoint is reached when
the test in Line 2 returns unsat, which means that the preimage of the set of the current states is
included in the set of states reached by the backward search so far.

In the following, partial correctness means that, when the algorithm terminates, it gives a cor-
rect answer, whereas effectivenessmeans that all subprocedures in the algorithm can be effectively
executed. We state now the main result of this subsection:

Theorem 4.2. Let 〈�, T〉 be a DB schema. Then, for every SASS = 〈�, T, x, ι, τ 〉, the following
hold: (1) backward search is effective and partially correct for solving safety problems for S ; (2) if�
is acyclic, backward search terminates and decides safety problems for S in PSPACE in the combined
size of x, ι, and τ .

Proof. Part (1). Recall formula (7)

ι(x0)∧ τ (x0, x1)∧ · · · ∧ τ (xk−1, xk)∧ υ(xk).

By definition, S is unsafe iff for some n, the formula (7) is satisfiable in a DB instance of 〈�, T〉.
Thanks to Assumption 3.4, T has the finite model property, and consequently, as (7) is an existen-
tial �-formula, S is unsafe iff for some n, formula (7) is satisfiable in a model of T; furthermore,
again by Assumption 3.4, S is unsafe iff for some n, formula (7) is satisfiable in a model of T∗.
Thus, we shall concentrate on satisfiability in models of T∗ in order to prove the theorem.

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 289

Let us call Bn (respectively, φn), with n≥ 0, the status of the variable B (respectively, φ) after n
executions in Line 4 (respectively, Line 6) of Algorithm 1 (n= 0 corresponds to the status of the
variables in Line 1). Notice that we have

T∗ |= φj+1↔ Pre(τ , φj) (8)
for all j and that

T |= Bn↔
∨

0≤j<n
φj (9)

is an invariant of the algorithm.
Since we are considering satisfiability in models of T∗, we can apply quantifier elimination

and so the satisfiability of (7) is equivalent to the satisfiability of ι∧ φn: this is a quantifier-free
formula (because of line 6 of Algorithm 1), whose satisfiability (w.r.t. T or equivalently w.r.t. T∗)2
is decidable by Assumption 1, so if Algorithm 1 terminates with an unsafe outcome, then S is
really unsafe.

Now consider the satisfiability test in Line 2. This is again a satisfiability test for a quantifier-
free formula, thus it is decidable. In case of a safe outcome, we have that T |= φn→ Bn; we claim
that, if we continued executing the loop of Algorithm 1, we would nevertheless get that:

T∗ |= Bm↔ Bn (10)
for allm≥ n. We justify Claim (10) below.

From T |= φn→ Bn, taking into consideration that T∗ ⊇ T and that Formula (8) holds, we
get T∗ |= φn+1→ Pre(τ , Bn). Since Pre commutes with disjunctions (i.e., Pre(τ ,

∨
j φj) is logically

equivalent to
∨

j Pre(τ , φj)), we also have T∗ |= Pre(τ , Bn)↔∨
1≤j≤n φj by the Invariant (9) and

by Formula (8) again. By using the entailment T |= φn→ Bn once more, we get T∗ |= φn+1→ Bn
and also that T∗ |= Bn+1↔ Bn; thus, we finally obtain that T∗ |= φn+1→ Bn+1. Since φn+1→
Bn+1 is quantifier-free, T∗ |= φn+1→ Bn+1 implies T |= φn+1→ Bn+1. This argument can be
repeated for allm≥ n, obtaining that T∗ |= Bm↔ Bn for allm≥ n, that is, Claim (10).

This would entail that ι∧ φm is always unsatisfiable (because of (9) and because ι∧ φj was
unsatisfiable for all j< n), which is the same (as remarked above) as saying that all formulae (7)
are unsatisfiable. Thus S is safe.
Part (2). In case � is acyclic, there are only finitely many quantifier-free formulae (in which the
finite set of variables x occur), so it is evident that the algorithm must terminate: because of (9),
the unsatisfiability test of Line 2 must eventually succeed, if the unsatisfiability test of Line 3 never
does so.

Concerning complexity, we need to modify Algorithm 1 (we make it nondeterministic and use
Savitch’s Theorem saying that PSPACE= NPSPACE).

Since � is acyclic, there are only finitely many terms involving a single variable: let this num-
ber be k� (we consider T,� and hence k� constant for our problems). Then, since all function
symbols are unary, it is clear that we have at most 2O(n2) conjunctions of sets of literals involving
at most n variables and that if the system is unsafe, unsafety can be detected with a run whose
length is at most 2O(n2). Thus, we introduce a counter to be incremented during the main loop
(lines 2–6) of Algorithm 1. The fixpoint test in line 2 is removed, and loop is executed only until
the maximum length of an unsafe run is not exceeded (notice that an exponential counter requires
polynomial space).

Inside the loop, line 4 is removed (we do not need anymore the variable B) and line 6 ismodified
as follows. We replace line 6 of the algorithm by

6′. φ←− α(x);
where α is a nondeterministically chosen conjunction of literals implying QE(T∗, φ). Notice that
to check the latter, there is no need to compute QE(T∗, φ): recalling the proof of Proposition 3.2

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


290 D. Calvanese et al.

and Remark 3.5, it is sufficient to check that T |= α→ C holds for every clause C(x) such that
T |= φ→ C.

The algorithm is now in PSPACE, because all the satisfiability tests we need are, as a conse-
quence of the proof of Proposition 3.1, in NP (Nondeterministic Polynomial Time): all such tests
are reducible to T-satisfiability tests for quantifier-free �-formulae involving the variables x and
the additional (skolemized) quantified variables occurring in the transitions.3 In fact, all these sat-
isfiability tests are applied to formulae whose length is polynomial in the size of x, of ι and of τ .

The proof of Theorem 4.2 shows that, whenever� is not acyclic, backward search is still a semi-
decision procedure: if the system is unsafe, backward search always terminates and discovers it; if
the system is safe, the procedure can diverge (but it is still correct).

Remark 4.1. We remark that Theorem 4.2 holds also for DB extended-schemas (so, even adding
“free relations” to the DB signatures). Moreover, notice that it can be shown that every existen-
tial formula φ(x, x′) can be turned into the form of Formula (6). Furthermore, we highlight that
the proof of the decidability result of Theorem 4.2 requires that the considered background the-
ory T: (i) admits a model completion; (ii) is locally finite, that is, up to T-equivalence, there are
only finitely many atoms involving a fixed finite number of variables (this condition is implied by
acyclicity); (iii) is universal; and (iv) enjoys decidability of constraint satisfiability. Conditions (iii)
and (iv) imply that one can decide whether a finite structure is a model of T. If (ii) and (iii) hold, it
is well known that (i) is equivalent to amalgamation (Lipparini 1982;Wheeler 1976).Moreover, (ii)
alone always holds for relational signatures and (iii) is equivalent toT being closed under substruc-
tures (this is a standard preservation theorem in model theory Chang and Keisler 1990). It follows
that arbitrary relational signatures (or locally finite theories in general, even allowing n-ary rela-
tion and n-ary function symbols) require only amalgamability and closure under substructures.
Thanks to these observations, Theorem 4.2 is reminiscent of an analogous result in Bojańczyk et al.
(2013), that is, Theorem 5, the crucial hypotheses of which are exactly amalgamability and closure
under substructures, although the setting in that paper is different (there, key dependencies are
not discussed, whereas we are interested only in DB (extended-) theories).

In our first-order setting, we can perform verification in a purely symbolic way, by using
(semi-)decision procedures provided by SMT-solvers, even when local finiteness fails. As men-
tioned before, local finiteness is guaranteed in the relational context, but it does not hold anymore
when arithmetic operations are introduced. Note that the theory of a single uninterpreted binary
relation (i.e., the theory of directed graphs) has a model completion, whereas it can be easily seen
that the theory of one binary relation which is a partial function does not (since it is not amalgam-
able). If primary key dependencies are formalized using partial functions, model completability
is compromized. So, the second distinctive feature of our setting naturally follows from this
observation: thanks to our many-sorted functional representation of DB schemas (with keys), the
amalgamation property, required by Theorem 4.2, holds, witnessing that our framework remains
well behaved even in the presence of key dependencies.

4.2 Relational artifact systems

The RAS formal model. Following the tradition of artifact-centric systems (Deutsch et al. 2009,
2016), a RAS consists of a read-only DB, a read–write workingmemory for artifacts, and a finite set
of actions (also called services) that inspect the relational database and the working memory and
determine the new configuration of the working memory. In an RAS , the working memory con-
sists of individual and higher order variables. These higher order variables (usually called arrays)
are supposed to model evolving relations, so-called artifact relations in Deutsch et al. (2016),
Li et al. (2017). The idea is to treat artifact relations in a uniform way as we did for the read-only

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 291

DB: we need extra sort symbols (recall that each sort symbol corresponds to a DB relation symbol)
and extra unary function symbols, the latter being treated as second-order variables.

Given a DB schema�, an artifact extension of� is a signature�ext obtained from� by adding
to it some extra sort symbols.4 These new sorts (usually indicated with E, E1, E2 . . . ) are called
artifact sorts (or artifact relations by some abuse of terminology), whereas the old sorts from �

are called basic sorts. In RAS , artifacts and basic sorts correspond, respectively, to the index and
the elements sorts mentioned in the literature on array-based systems. Below, given 〈�, T〉 and an
artifact extension �ext of �, when we speak of a �ext-model of T, a DB instance of 〈�ext , T〉, or a
�ext-model of T∗, we mean a �ext-structure M whose reduct to �, respectively, is a model of T,
a DB instance of 〈�, T〉, or a model of T∗.

An artifact setting over �ext is a pair (x, a) given by a finite set x of individual variables and a
finite set a of unary function variables: the latter are required to have an artifact sort as source sort
and a basic sort as target sort. Variables in x are called (as before) artifact variables, and variables
in a artifact components. Given a DB instanceM of�ext , an assignment to an artifact setting (x, a)
over �ext is a map α assigning to every artifact variable xi ∈ x of sort Si an element xα ∈ SMi and
to every artifact component aj : Ej −→Uj (with aj ∈ a) a set-theoretic function aαj : EMj −→UM

j .
We can view an assignment to an artifact setting (x, a) as a DB instance extending the DB

instance M as follows. Let all the artifact components in (x, a) having source E be ai1 : E−→
S1, · · · , ain : E−→ Sn. Viewed as a relation in the artifact assignment (M, α), the artifact relation
E “consists” of the set of tuples

{〈
e, aαi1 (e), . . . , a

α
in(e)

〉 | e ∈ EM}
.

Thus, each element of E is formed by an “entry” e ∈ EM (uniquely identifying the tuple) and
by “data” aαi (e) taken from the read-only DB M. When the system evolves, the set EM of
entries remains fixed, whereas the components aαi (e) may change: typically, we initially have
aαi (e)= undef, but these values are changed when some defined values are inserted into the rela-
tion modeled by E; the values are then repeatedly modified (and possibly also reset to undef, if the
tuple is removed and e is reset to point to undefined values). In accordance with MCMT conven-
tions, we denote the application of an artifact component a to a term (i.e., constant or variable) v
also as a[v] (standard notation for arrays), instead of a(v).

To introduce RASs, we discuss the kind of formulae we use. In such formulae, we use notations
like φ(z, b) to mean that φ is a formula whose free individual variables are among the z and whose
free unary function variables are among the b.

Let (x, a) be an artifact setting over �ext , where x= x1, . . . , xn are the artifact variables and
a= a1, . . . , am are the artifact components (their source and target sorts are left implicitly
specified). We list the kind of formulae we shall use:

• An initial formula is a formula ι(x, a) of the form

(∧n
i=1 xi = ci

)∧ (∧m
j=1 aj = λy.dj

)
(11)

where ci and dj are constants from � (typically, ci and dj are undef). Recall that aj = λy.dj
abbreviates ∀y aj(y)= dj.
• A state formula has the form

∃e φ(e, x, a) (12)

where φ is quantifier-free and the e are individual variables of artifact sorts.

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


292 D. Calvanese et al.

• A transition formula τ̂ has the form

∃e
⎛
⎝γ (e, x, a)∧

∧
i x′i = Fi(e, x, a)

∧∧j a′j = λy.Gj(y, e, x, a)

⎞
⎠ (13)

where e are individual variables (of both basic and artifact sorts), γ (the “guard”) is quantifier-
free, x′ and a′ are the renamed copies of x and a, and the Fi, Gj (the “updates”) are case-
defined functions.

Note that transition formulae as above can express, e.g., (i) insertion (with/without duplicates)
of a tuple in an artifact relation, (ii) removal of a tuple from an artifact relation, (iii) transfer of a
tuple from an artifact relation to artifact variables (and vice versa), and (iv) removal/modification
of all the tuples satisfying a certain condition from an artifact relation. All the above operations can
also be constrained; the formalization of the above operations in the formalism of our transition
is straightforward (the reader can see all the details in Appendix F from Calvanese et al. 2018b).

Definition 4.3. A Relational Artifact System (RAS ) has the form

S = 〈�, T,�ext , x, a, ι(x, a), τ (x, a, x′, a′)〉
where (i) 〈�, T〉 is a (read-only) DB schema, (ii) �ext is an artifact extension of �, (iii) (x, a) is an
artifact setting over�ext, (iv) ι is an initial formula, and (v) τ is a disjunction of transition formulae
of the type (13).

Notice that SASs are a particular class of RASs where the working memory consists only of
artifact variables (without artifact relations).

Example 4.3. We transform the SAS of Example 4.1 into an RASShr containing a multi-instance
artifact accounting for the evolution of job applications. Each job category may receive mul-
tiple applications from registered users. Such applications are then evaluated, finally deciding
which are accepted and which are rejected. The example is inspired by the job hiring process
presented in Silver (2011) to show the intrinsic difficulties of capturing real-life processes with
many-to-many interacting business entities using conventional process modeling notations (such
as Business Process Model and Notation (BPMN)). An extended version of this example, captur-
ing the co-evolution of multiple instances of two different artifacts, is presented in Appendix A.1
of Calvanese et al. (2018b).

As for the read-only DB, Shr works over the DB schema of Example 3.1, extended with a further
value sort Score used to score job applications. Score contains 102 values in the range [-1, 100],
where -1 denotes the non-eligibility of the application, and a score from 0 to 100 indicates the
actual one assigned after evaluating the application. For the sake of readability, we use usual pred-
icates<,>, and= to compare variables of type Score. This is syntactic sugar and does not require
to introduce rigid predicates (i.e., first-order logic relational symbols that have a predetermined
interpretation in an assigned quantified domain) in our framework: in the following, we do not
need to introduce a new relational symbol > that has to be interpreted in the model of natural
numbers as the standard numerical relation >. Indeed, since in our case > is applied to a fixed
finite number of elements (i.e., the natural numbers in [-1, 100]), a literal of the form s> 80 can
be substituted by a disjunction of a finite number of equalities (i.e., s> 80 iff (s= 81 or s= 82
or...or s= 100)).

As for the working memory, Shr consists of two artifacts: the single-instance job hiring arti-
fact tracking the three main phases of the overall process (and described in Example 4.1) and a
multi-instance artifact accounting for the evolution of user applications. To model applications,

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 293

we take the DB signature �hr of the read-only DB of HRs and enrich it with an artifact extension
containing an artifact sort appIndex used to index (i.e., “internally” identify) job applications. The
management of job applications is then modeled by an artifact setting with: (i) artifact compo-
nents with domain appIndex capturing the artifact relation that stores the different job applica-
tions and (ii) additional individual variables as a temporary memory to manipulate the artifact
relation. Specifically, each application consists of a job category, the identifier of the applicant
user and that of an HR employee responsible for the application, the application score, and
the final result (indicating whether the application is among the winners or the losers for the
job offer). These information slots are encapsulated into dedicated artifact components, that
is, function variables with domain appIndex that collectively realize the application artifact
relation:

appJobCat : appIndex −→ JobCatId

applicant : appIndex −→ UserId

appResp : appIndex −→ EmpId

appScore : appIndex −→ Score

appResult : appIndex −→ String

We now discuss the relevant transitions for inserting and evaluating job applications. When
writing transition formulae, we make the following assumption: if an artifact variable/compo-
nent is not mentioned at all, it is meant that it is updated identically; otherwise, the relevant
update function will specify how it is updated. Notice that, as mentioned also in the introduc-
tion, nondeterministic updates can be formalized using existentially quantified variables in the
transition. The insertion of an application into the system can be executed when the hiring pro-
cess is enabled (cf. Example 4.1) and consists of two consecutive steps. To indicate when a step
can be applied, also ensuring that the insertion of an application is not interrupted by the insertion
of another one, we manipulate a string artifact variable aState. The first step is executable when
aState is undef and aims at loading the application data into dedicated artifact variables through
the following simultaneous effects: (i) the identifier of the user who wants to submit the appli-
cation and that of the targeted job category are selected and, respectively, stored into variables
uId and jId; (ii) the identifier of an HR employee who becomes responsible for the application is
selected and stored into variable eId, with the requirement that such an employee must be com-
petent in the job category targeted by the application; (iii) aState evolves into state received.
Formally:

∃u:UserId, j:JobCatId, e:EmpId, c:CompInId⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pState= enabled∧ aState= undef

∧ u �= undef∧ j �= undef∧ e �= undef∧ c �= undef

∧who(c)= e∧what(c)= j

∧ pState′ = enabled∧ aState′ = received

∧ uId′ = u∧= j∧ eId′ = e∧ cId′ = c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The second step transfers the application data into the application artifact relation, using its cor-
responding function variables, at the same time resetting all application-related artifact variables
to undef (including aState, so that new applications can be inserted). For the insertion, a “free”

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


294 D. Calvanese et al.

index (i.e., an index pointing to an undefined applicant) is picked. The newly inserted application
gets a default score of -1 (thus initializing it to “not eligible”), while the final result is undef:

∃i:appIndex⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pState= enabled∧ aState= received

∧ applicant[i]= undef

∧ pState′ = enabled∧ aState′ = undef∧ cId′ = undef

∧ appJobCat′ = λj. (if j= i then jId else appJobCat[j]
)

∧ applicant′ = λj. (if j= i then uId else applicant[j]
)

∧ appResp′ = λj. (if j= i then eId else appResp[j]
)

∧ appScore′ = λj. (if j= i then -1 else appScore[j]
)

∧ appResult′ = λj. (if j= i then undef else appResult[j]
)

∧ jId′ = undef∧ uId′ = undef∧ eId′ = undef

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Notice that such a transition does not prevent the possibility of inserting exactly the same appli-
cation twice, at different indexes. If this is not wanted, the transition can be suitably changed so
as to guarantee that no two identical applications can coexist in the same artifact relation (see
Appendix A.1 of Calvanese et al. 2018b for an example).

Each application currently considered as not eligible can be made eligible by assigning a proper
score to it:

∃i:appIndex, s:Score⎛
⎝pState= enabled∧ appScore[i]= -1∧ s≥ 0

∧ pState′ = enabled∧ appScore′[i]= s

⎞
⎠

Finally, application results are computed when the process moves to state notified. This is
handled by the bulk transition:

pState= enabled∧ pState′ = notified

∧ appResult′ = λj.
(
if appScore[j]> 80 then winner
else loser

)

which declares applications with a score above 80 as winning, and the others as losing. �

Parameterized safety via backward reachability for RAS . As for SAS , a safety formula for a
RASS is a state formula υ(x). We say that S is safe with respect to υ if there is no DB instance
M of 〈�ext , T〉, no k≥ 0, and no assignment inM to the variables x0, a0 . . . , xk, ak such that the
formula

ι(x0, a0)∧ τ (x0, a0, x1, a1)
∧ · · · ∧ τ (xk−1, ak−1, xk, ak)∧ υ(xk, ak)

(14)

is true inM (here xi, ai are renamed copies of x, a). The safety problem is defined as for SAS .

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 295

Example 4.4. We consider a safety property for the RAS from Example 4.3 that checks whether,
after having received the evaluation notification, there are no applicants left without winner or
loser status being assigned:

∃i:appIndex⎛
⎝pState= notified∧ applicant[i] �= undef

∧ appResult[i] �= winner∧ appResult[i] �= loser

⎞
⎠

The job hiring RASShr turns out to be safe with respect to this property (cf. Section 6). �

Interestingly, we can still run backward search for handling safety problems in RASs. In fact,
Algorithm 1 presents the same structure. Notice that in this case the definition of Pre(τ , φ) gives
us ∃x′∃a′(τ (x, a, x′, a′)∧ φ(x′, a′)). The subprocedure QE(T∗, φ) mentioned on Line 6 is extended
so as to convert the preimage Pre(τ , φ) of a state formula φ into a state formula (equivalent to it
modulo the axioms of T∗), witnessing its regressability: this is possible since T∗ eliminates from
primitive formulae the existentially quantified variables over the basic sorts, whereas elimina-
tion of quantified variables over artifact sorts is not possible, because these variables occur as
arguments of artifact components (see Lemmas 4.1 and 4.2 below for details). In addition, the sat-
isfiability tests fromLines 2–3 can still be discharged (in fact, we prove in Lemma 4.3 below that the
entailment between state formulae can be decided via instantiation techniques). In the following,
when we refer to Algorithm 1, we mean Algorithm 1 adapted to RASs as explained above.

In analogy to Statement (1) of Theorem 4.2, we obtain the following.

Theorem 4.4. Backward search (cf. Algorithm 1) is effective and partially correct for solving safety
problems for RASs.

The proof of the above result occupies next paragraph.

Proof of Theorem 4.4.When introducing our transition formulae in (6) and (13), we made use of
definable extensions and also of some function definitions via λ-abstraction. We already observed
that such uses are due to notational convenience and do not really go beyond first-order logic.
We are clarifying one more point now, before going into formal proofs. The lambda-abstraction
definitions in (13) will make the proof of Lemma 4.1 below smooth. Recall that an expression like

b= λy.F(y, z)
can be seen as a mere abbreviation of ∀y b(y)= F(y, z). However, the use of such abbreviation
makes clear that, for example, a formula like

∃b (b= λy.F(y, z)∧ φ(z, b))
is equivalent to

φ(z, λy.F(y, z)/b). (15)

Since our φ(z, b) is in fact a first-order formula, our b can occur in it only in terms like b(t), so that
in (15) all occurrences of λ can be eliminated by the so-called β-conversion: replace λyF(y, z)(t) by
F(t, z). Thus, in the end, either we use definable extensions or definitions via lambda abstractions,
the formulae we manipulate can always be converted into plain first-order �- or �ext-formulae.

Let us call extended state formulae the formulae of the kind ∃e φ(e, x, a), where φ is quantifier-
free and the e are individual variables of both artifact and basic sorts.

Lemma 4.1. The preimage of an extended state formula is logically equivalent to an extended state
formula.

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


296 D. Calvanese et al.

Proof. Wemanipulate the formula

∃x′ ∃a′ (τ (x, a, x′, a′)∧ ∃e φ(e, x′, a′)) (16)

up to logical equivalence, where τ is given by5

∃e0
(
γ (e0, x, a)∧ x′ = F(e0, x, a)∧ a′ = λy.G(y, e0, x, a)

)
(17)

(here, we used plain equality for conjunctions of equalities, for example, x′ = F(e0, x, a) stands for∧
i x′i = Fi(e, x, a)). Repeated substitutions show that (16) is equivalent to

∃e ∃e0
(
γ (e0, x, a)∧ φ(e, F(e0, x, a)/x′, λy.G(y, e0, x, a)/a′)

)
(18)

which is an extended state formula.

Lemma 4.2. For every extended state formula, there is a state formula equivalent to it in all �ext-
models of T∗.
Proof. Let ∃e ∃y φ(e, y, x, a) be an extended state formula, where φ is quantifier-free, the e are
variables whose sort is an artifact sort, and the y are variables whose sort is a basic sort.

Now observe that, according to our definitions, the artifact components have an artifact sort
as source sort and a basic sort as target sort; since equality is the only predicate, the literals in φ
can be divided into equalities/inequalities between variables from e and literals where the e can
only occur as arguments of an artifact component. Let a[e] be the tuple of the terms among the
terms of the kind aj[es] which are well typed; using disjunctive normal forms, our extended state
formula can be written as a disjunction of formulae of the kind

∃e ∃y (φ1(e)∧ φ2(y, x, a[e]/z)) (19)

where φ1 is a conjunction of equalities/inequalities, φ2(y, x, z) is a quantifier-free �-formula, and
φ2(y, x, a[e]/z) is obtained from φ2 by replacing the variables z by the terms a[e]. Moving inside
the existential quantifiers y, we can rewrite (19) to

∃e (φ1(e)∧ ∃y φ2(y, x, a[e]/z)) (20)

Since T∗ has quantifier elimination, we have that there is ψ(x, z) which is equivalent to
∃y φ2(y, x, z)) in all models of T∗; thus in all�ext-models of T∗, the formula (20) is equivalent to

∃e (φ1(e)∧ ψ(x, a[e]/z))
which is a state formula.

We underline that Lemmas 4.1 and 4.2 both give an explicit effective procedure for comput-
ing equivalent (extended) state formulae. Used one after the other, such procedures extend the
procedure QE(T∗, φ) in Line 6 of Algorithm 1 to (non-simple) artifact systems. Thanks to such
procedure, the only formulae we need to test for satisfiability in lines 2 and 3 of the backward
reachability algorithm are the ∃∀-formulae introduced below.

Let us call ∃∀-formulae the formulae of the kind

∃e ∀i φ(e, i, x, a) (21)

where the variables e and i are variables whose sort is an artifact sort and φ is quantifier-free.
The crucial point for the following lemma to hold is that the universally quantified variables in
∃∀-formulae are all of artifact sorts:

Lemma 4.3. The satisfiability of a ∃∀-formula in a �ext-model of T is decidable. Moreover, given a
∃∀-formula χ , the following three statements are equivalent:

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 297

— χ is satisfiable in a �ext-model of T
— χ is satisfiable in a DB instance of 〈�ext , T〉
— χ is satisfiable in a �ext-model of T∗.

Proof. First of all, notice that a ∃∀-formula (21) is equivalent to a disjunction of formulae of the
kind

∃e (AllDiff(e)∧ ∀i φ(e, i, x, a)) (22)

where AllDiff(e) says that any two variables of the same sort from the e are distinct (to this aim, it is
sufficient to guess a partition and to keep, via a substitution, only one element for each equivalence
class).6 So we can freely assume that ∃∀-formulae are all of the kind (22).

Let us consider now the set of all (sort-matching) substitutions σ mapping the i to the e. The
formula (22) is satisfiable (respectively, in a �ext-model of T, in a DB instance of 〈�ext , T〉, in a
�ext-model of T∗) iff so it is the formula

∃e (AllDiff(e)∧
∧
σ

φ(e, iσ , x, a)) (23)

(here iσ means the componentwise application of σ to the i): this is because, if (23) is satisfiable
in M, then we can take as M′ the same �ext-structure as M, but with the interpretation of the
artifact sorts restricted only to the elements named by the e and get in this way a �ext-structure
M′ satisfying (22) (notice that M′ is still a DB instance of 〈�ext , T〉 or a �ext-model of T∗, if so
wasM). Thus, we can freely concentrate on the satisfiability problem of formulae of the kind (23)
only.

Now, by the way�ext is built, the only atoms occurring in the subformula φ(e, iσ , x, a)) of (23)
whose argument terms are terms of artifact sorts are of the kind es = ej, so all such atoms can be
replaced either by� or by⊥ (depending on whether we have s= j or not). So we can assume that
there are no such atoms in φ(e, iσ , x, a)) and as a result, the variables e can only occur there as
arguments of the a.

Let now a[e] be the tuple of the terms among the terms of the kind aj[es] which are well typed.
Since in (23), the e can only occur as arguments of the artifact components, as observed above, the
formula (23) is in fact of the kind

∃e (AllDiff(e)∧ψ(x, a[e]/z)) (24)

where ψ(x, z) is a quantifier-free�-formula and ψ(x, a[e]/z) is obtained from ψ by replacing the
variables z by the terms a[e] (notice that the z are of basic sorts because the target sorts of the
artifact components are basic sorts).

It is now evident that (24) is satisfiable (respectively, in a �ext-model of T, in a DB instance of
〈�ext , T〉, in a�ext-model of T∗) iff the formula

ψ(x, z) (25)

is satisfiable (respectively, in a �-model of T, in a DB instance of 〈�, T〉, in a �-model of T∗). In
fact, if we are given a �-structureM and an assignment satisfying (25), we can easily expandM
to a�ext-structure by taking the e’s themselves as the elements of the interpretation of the artifact
sorts; in the so-expanded�ext-structure, we can interpret the artifact components a by taking the
a[e] to be the elements assigned to the z in the satisfying assignment for (25).

Thanks to Assumption 3.4, the satisfiability of (25) in a �-model of T, in a DB instance of
〈�, T〉, or in a�-model of T∗ are all equivalent and decidable.

The instantiation algorithm of Lemma 4.3 can be used to discharge the satisfiability tests in
lines 2 and 3 of Algorithm 1 because the conjunction of a state formula and of the negation of
a state formula is a ∃∀-formula (notice that ι is itself the negation of a state formula, according
to (11)).

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


298 D. Calvanese et al.

Theorem 4.4. The backward search algorithm (cf. Algorithm 1) is effective and partially correct for
solving the safety problem for RASs.

Proof. Recall that S is unsafe iff there is no DB instance M of 〈�ext , T〉, no k≥ 0, and no
assignment inM to the variables x0, a0 . . . , xk, ak such that the formula (14)

ι(x0, a0)∧ τ (x0, a0, x1, a1)∧ · · · ∧ τ (xk−1, ak−1, xk, ak)∧ υ(xk, ak)
is true inM. It is sufficient to show that this is equivalent to saying that there is no�ext-modelM
of T∗, no k≥ 0, and no assignment inM to the variables x0, a0 . . . , xk, ak such that (14) is true in
M (once this is shown, the proof goes in the same way as the proof of Theorem 4.2).

Now, the formula (14) is satisfiable in a �ext-structure M under a suitable assignment iff the
formula

ι(x0, a0) ∧ ∃a1∃x1(τ (x0, a0, x1, a1)∧ · · ·
· · · ∧ ∃ak∃xk(τ (xk−1, ak−1, xk, ak)∧ υ(xk, ak)) · · ·)

is satisfiable inM under a suitable assignment; by Lemma 4.1, the latter is equivalent to a formula
of the kind

ι(x, a) ∧ ∃e ∃y φ(e, y, x, a) (26)

where ∃e ∃y φ(e, y, x, a) is an extended state formula (thus φ is quantifier-free, the e are variables
of artifact sorts, and the y are variables of basic sorts - we renamed x0, a0 as x, a). However, the
satisfiability of (26) is the same as the satisfiability of ∃e (ι(x, a)∧ φ(e, y, x, a)); the latter, in view
of (11), is a ∃∀-formula and so Lemma 4.3 applies and shows that its satisfiability in a DB instance
of 〈�ext , T〉 is the same as its satisfiability in a�ext-model of T∗.

To sum up, in this subsection, we remarked that for Algorithm 1, to be effective, we need
decision procedures for discharging the satisfiability tests in Lines 2–3. Thanks to the subproce-
dure QE(T∗, φ), the only formulae we need to test in these lines have a specific form (i.e., they
are ∃∀-formulae). In fact, by our hypotheses in Assumption 3.4, we can freely assume that all
the runs we are interested in take place inside models of T∗ (where we can eliminate quantifiers
binding variables of basic sorts). Then, in two first technical lemmas (Lemmas 4.1 and 4.2), we
show that the preimage of a state formula is an extended state formula and that such an extended
state formula can be converted back (modulo T∗) into a state formula; finally, in a third tech-
nical lemma (Lemma 4.3), we show that entailments between state formulae (more generally,
satisfiability of formulae of the kind ∃∀) can be decided via finite instantiation techniques. These
observations make both safety and fixpoint tests effective and constitute the skeleton of the proof
of Theorem 4.4.

Remark 4.2. Notice that the role of quantifier elimination (Line 6 of Algorithm 1) is twofold:
(i) It allows to discharge the fixpoint test of Line 2 (see Lemma 4.3). (ii) It ensures termination in
significant cases, namely those where (strongly) local formulae, introduced in the next section, are
involved.

5. Termination Results for RASs
Theorem 4.4 gives a semi-decision procedure for unsafety: if the system is unsafe, the procedure
discovers it, but if the system is safe, the procedure (still correct) may not terminate. Termination
is much more difficult to achieve for RASs, since acyclicity of � seems not to be sufficient to
guarantee it. We present two termination results for RASs, both obtained via the use of well-
quasi-orders. The strategy for proving termination consists of isolating sufficient conditions that

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 299

imply that the embeddability relation between DB instances is a well-quasi-ordering. Since there
is no guarantee that this fact holds in general, RASs are not well-structured transition systems.

5.1 Termination with local updates
Consider an acyclic signature�, a theory T (satisfying our Assumption 3.4), and an artifact setting
(x, a) over an artifact extension �ext of �. We call a state formula local if it is a disjunction of the
formulae

∃e1 · · · ∃ek (δ(e1, . . . , ek)∧
∧k

i=1 φi(ei, x, a)), (27)
and strongly local if it is a disjunction of the formulae

∃e1 · · · ∃ek (δ(e1, . . . , ek)∧ψ(x)∧
∧k

i=1 φi(ei, a)). (28)
In (27) and (28), δ is a conjunction of variable equalities and disequalities, φi andψ are quantifier-
free, and e1, . . . , ek are individual variables varying over artifact sorts. The key expressivity
limitation of local state formulae is that they cannot compare entries belonging to different tuples
of artifact relations: in fact, each φi in (27) and (28) can contain only the existentially quantified
variable ei.

A transition formula τ̂ is local (respectively, strongly local) if whenever a formula φ is local
(respectively, strongly local), so is Pre(τ̂ , φ) (modulo the axioms of T∗).

Below in Theorem 5.4, we show that (for acyclic �) Algorithm 1 terminates when applied
to a local safety formula in an RASwhose τ is a disjunction of local transition formulae. Note
that Theorem 5.4 can be used to reconstruct (restricted to safety problems) the essence of the
decidability results of Li et al. (2017). Specifically, it can be shown by a direct computation that
transitions in Li et al. (2017) are strongly local which, in turn, can be shown using quantifier
elimination (see Appendix F in Calvanese et al. 2018b for all the details, where we also show how
to represent transitions from Li et al. 2017 by the means of existentially quantified data variables).
Interestingly, Theorem 5.4 can be applied to more cases not covered in Li et al. (2017). For exam-
ple, one can provide transitions enforcing updates over unboundedly many tuples (bulk updates)
that are strongly local (cf. Appendix F in Calvanese et al. 2018b).

Example 5.1. By inspecting the transitions of our running example, one can see that all of them
are strongly local. Consequently, it is decidable to check safety of local state formulae. For example,
we show that the first transition of Example 4.3 is strongly local (the computations for all the other
transitions are analogous, and all the details about the format of transitions that are (strongly) local
can be found in Appendix F of Calvanese et al. 2018b).

The first transition of Example 4.3 represents the first step of the insertion of an application
into the system. This step is executable when the artifact variable aState is undef, aims at loading
the application data (user ID, job ID, and employee ID) into dedicated artifact variables (uId, jId,
eId, respectively), and evolves aState into state received. Formally, we have

∃u:UserId, j:JobCatId, e:EmpId, c:CompInId⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pState= enabled∧ aState= undef

∧ u �= undef∧ j �= undef∧ e �= undef∧ c �= undef

∧who(c)= e∧what(c)= j

∧ pState′ = enabled∧ aState′ = received

∧ uId′ = u∧= j∧ eId′ = e∧ cId′ = c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(29)

For simplicity, we can rewrite Formula (29) into the following equivalent but more succinct
formula:

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


300 D. Calvanese et al.

∃d
⎛
⎝π(x1, x2) ∧ ψ(d) ∧ d1 = enabled ∧ d2 = received

∧ (x′1 := x1 ∧ x′2 := d ∧ a′ := a)

⎞
⎠ (30)

where d := 〈d1, d2, u, j, e, c〉, x1 are the artifact variables of the system that are not updated, x2
are the artifact variables of the system that are updated, π(x1, x2) and ψ(d) are quantifier-free
�-formulae, and a are the artifact components of the systems.

We show that the preimage along (30) of a strongly local formula is strongly local.
Given a strongly local state formula φ, we can easily suppose that φ has the following format:

φ :=ψ ′(x)∧ ∃i (AllDiff(i)∧�(a)
)

where x are all the artifact variables of the system, i are variables of artifact sorts, and� is a formula
involving all the artifact components a.

We compute the preimage Pre(30, φ):

∃d

⎛
⎜⎜⎝
π(x1, x2) ∧ ψ(d) ∧ d1 = enabled ∧ d2 = received

∧ (x′1 := x1 ∧ x′2 := d ∧ a′ := a)

∧ψ ′(x′)∧ ∃i (AllDiff(i)∧�(a′)
)

⎞
⎟⎟⎠ (31)

which can be rewritten as follows:

∃d
⎛
⎝π(x1, x2) ∧ ψ(d) ∧ d1 = enabled ∧ d2 = received

∧ψ ′(x1, d)∧ ∃i
(
AllDiff(i)∧�(a)

)
⎞
⎠ (32)

Now, we canmove the existential quantifier ∃d in front of χ(d, x1) := (ψ(d)∧ d1 = enabled∧
d2 = received∧ψ ′(x1, d)). We eliminate the quantifiers (applying the quantifier elimination
procedure for T∗) from the subformula ∃d(χ(d, x1)) obtaining a formula of the kind θ(x1).

The final result is

π(x1, x2) ∧ θ(x1) ∧ ∃i
(
AllDiff(i)∧�(a)

)
(33)

which is a strongly local formula.
The interested reader can find additional details about applications of (strongly) local RASs

to data-aware business processes in Calvanese et al. (2019a). Specifically, this paper contains a
running example (verified against several properties) that can be represented using a RAS that is
strongly local.

In addition, Theorem 5.4 covers also problems coming from a different source, like coverabil-
ity problems for broadcast protocols (Delzanno et al. 1999; Esparza et al. 1999): these problems
can be encoded using local formulae over the trivial one-sorted signature containing just one
basic sort, finitely many constants and one artifact sort with one artifact component. We remark
that coverability for broadcast protocols can be decided with a non-primitive recursive lower
bound (Schmitz and Schnoebelen 2013); this proves that our framework is quite expressive (the
problems in Li et al. 2017 have, for instance, an EXPSPACE upper bound). Recalling that Li
et al. (2017) handles verification of LTL-FO (First Order Linear Temporal Logic), thus going
beyond safety problems, this shows that the two settings are incomparable. Finally, notice that
Theorem 5.4 implies also the decidability of the safety problem for SASs, in case of� acyclic.

Before stating and proving Theorem 5.4, we need to recall some basic facts about well-quasi-
orders. Recall that a well-quasi-order (wqo) is a setW endowed with a reflexive-transitive relation
≤ having the following property: for every infinite succession

w0,w1, . . . ,wi, . . .

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 301

of elements fromW, there are i, j such that i< j and wi ≤wj The fundamental result about wqo’s
is the following theorem, which is a recursive version of Higman’s Lemma (Higman 1952), and is
a special case of the well-known Kruskal’s Tree Theorem (Kruskal 1960):

Theorem 5.1. If (W,≤ ) is a wqo, then so is the partial order of the finite lists over W, ordered by
componentwise subword comparison (i.e., w≤w′ iff there is a subword w0 of w′ of the same length
as w, such that the i-th entry of w is less or equal to – in the sense of (W,≤ ) – the i-th entry of w0,
for all i= 0, . . . |w|).

Various wqo’s can be recognized by applying the above theorem; in particular, the theorem
implies that the cartesian product of wqo’s is a wqo. As an application, notice that N is a wqo,
hence the following corollary (known as Dickson’s Lemma) follows:

Corollary 5.2. The cartesian product of k-copies of N (and also of N∪ {∞}), with componentwise
ordering, is a wqo.

Let �̃ be �ext ∪ {a, x}, that is, �ext expanded with function symbols a and constants x (thus, a
�̃-structure is a�ext-structure endowed with an assignment to x and a, which were variables and
now are treated as symbols of �̃). For the following, we need the following definition:

Definition 5.3. A �̃-structure M is called cyclic7 if it is generated by a single element e ∈ EM
(called generator ofM), where E is an artifact sort (i.e., e belongs to the interpretation of an artifact
sort E).

The previous definition intuitively means that all the elements of the cyclic structures are
obtained from the generator by applying the function symbols of �̃ to the generator.

Since � is acyclic, so is �̃, and then one can show that there are only finitely many cyclic
�̃-structures C1, . . . , CN up to isomorphism. With a �̃-structure M, we associate the tuple
of numbers k1(M), . . . , kN(M) ∈N∪ {∞} counting the numbers of elements generating (as
singletons) cyclic substructures isomorphic to C1, . . . , CN , respectively.

Now, we show that, if the tuple associated with M is componentwise bigger than the one
associated withN , thenM satisfies all the local formulae satisfied byN .

Lemma 5.1. LetM,N be �̃-structures. If the inequalities
k1(M)≤ k1(N ), . . . , kN(M)≤ kN(N )

hold, then all local formulae true inM are also true inN .

Proof. Notice that local formulae (viewed in �̃) are sentences, because they do not have free
variable occurrences – the a, x are now constant function symbols and individual constants,
respectively. The proof of the lemma is fairly obvious: notice that, once we assigned some α(ei) in
M to the variable ei, the truth of a formula like φ(ei, x, a) under such an assignment depends only
on the �̃-substructure generated by α(ei), because φ is quantifier-free and ei is the only �̃-variable
occurring in it. In fact, if a local state formula ∃e1 · · · ∃ek

(
δ(e1, . . . , ek)∧

∧k
i=1 φi(ei, x, a)

)
is true

in M, then there exist elements ē1, . . . , ēk (in the interpretation of some artifact sorts), each of
which makes φi true. Hence, φi is also true in the corresponding cyclic structure generated by ēi.
Since k1(M)≤ k1(N ), . . . , kN(M)≤ kN(N ) hold, then also in N there are at least as many ele-
ments in the interpretation of artifact sorts as there are inM that validate all the φi . Thus, we get
that the formula ∃e1 · · · ∃ek

(
δ(e1, . . . , ek)∧

∧k
i=1 φi(ei, x, a)

)
is true also inN , as wanted.

Now we are ready to prove our first termination and decidability result.

Theorem 5.4. If � is acyclic, backward search (cf. Algorithm 1) terminates when applied
to solve the safety problem, with respect to a (strongly) local safety formula υ(x, a), for an

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


302 D. Calvanese et al.

RAS 〈�, T,�ext , x, a, ι(x, a), τ (x, a, x′, a′)〉, where τ is a disjunction of (strongly) local transition
formulae.

Proof. Suppose the algorithm does not terminate. Then the fixpoint test of Line 2 fails infinitely
often. Recalling that the T-equivalence of Bn and of

∨
0≤k<n φk is an invariant of the algorithm

(here φn, Bn are the status of the variables φ and B after n execution of the main loop), this means
that there are models

M0,M1, . . . ,Mj, . . .
such that for all j, we have thatMj |= φj andMj �|= φi (all i< j). But the φj are all local formulae,
so considering the tuple of cardinals k1(Mj), . . . , kN(Mj) and Lemma 5.1, we get a contradiction,
in view of Dickson’s Lemma. This is because, by Dickson’s Lemma, (N∪ {∞})N is a wqo, so there
exist i, j such that i< j and k1(Mi)≤ k1(Mj), . . . , kN(Mi)≤ kN(Mj). Using Lemma 5.1, we get
that φi, which is local and true inMi, is also true inMj, which is a contradiction.

5.2 Termination with tree-like signatures
� is tree-like if it is acyclic and all non-leaf nodes have outdegree 1. An artifact setting over �
is tree-like if �̃ :=�ext ∪ {a, x} is tree-like. In tree-like artifact settings, artifact relations have a
single “data” component, and basic relations are unary or binary.

Proving termination for RASwith a tree-like artifact setting is more complex but follows a
similar schema as in the case of local transition formulae.

If (W,≤ ) is a partial order, we consider the set M(W) of finite multisets of W as a partial
order in the following way:8 say that M ≤N holds iff there is an injection p :M−→N such that
m≤ p(m) holds for all m ∈M (in other words, p associates with every occurrence of an element
m of M an occurrence p(m) of an element of N such that p(m)≥m – this is moreover done
injectively, that is, in such a way that different occurrences are associated to different occurrences).

Corollary 5.5. If (W,≤ ) is a wqo, then so is (M(W),≤ ) as defined above.

Proof. This is due to the fact that one can convert amultisetM to a list L(M) so that if L(M)≤ L(N)
holds, then also M ≤N holds (such a conversion L can be obtained by ordering the occurrences
of elements inM in any arbitrarily chosen way).

We assume that the graph G(�̃) associated to �̃ is a tree (the generalization to the case where
such a graph is a forest is trivial). This means in particular that each sort is the domain of at most
one function symbol and that there just one sort which is not the domain of any function symbol
(let us call it the root sort of �̃ and let us denote it with Sr).

By induction on the height of a sort S (defined as the length of the longest path from S to a
leaf) in the above graph, we define a wqo w(S) (in the definition, we use the fact that the carte-
sian product of wqo’s is a wqo and Corollary 5.5). Let S1, . . . , Sn be the sons of S in the tree;
we put

w(S) := M(w(S1))× · · · ×M(w(Sn)) (34)
(thus, if S is a leaf, w(S) is the trivial one-element wqo – its only element is the empty tuple).

Let now M be a finite �̃-structure; we indicate with SM the interpretation in M of the sort
S (it is a finite set). For a ∈ SM, we define MM(a) ∈w(S), again by induction on the height of S.
Suppose that S1, . . . , Sn are the sons of S and that the arc from Si to S is labeled by the function
symbol fi; then, we put

MM(a) := 〈{MM(b1) | b1 ∈ SM1 and fM1 (b1)= a}, . . .
. . . , {MM(bn) | bn ∈ SMn and fMn (bn)= a}〉

where fMi (i= 1, . . . , n) is the interpretation of the symbol fi inM.
https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 303

Moreover, for every sort S, we let

MM(S) := {MM(a) | a ∈ SM}. (35)

Finally, we define

M(M) := MM(Sr). (36)

For termination, the relevant lemma is the following:

Lemma 5.2. Suppose that �̃ is tree-like and does not contain constant symbols; given two finite
�̃-structuresM andN , we have that if M(M)≤M(N ), thenM embeds intoN . As a consequence,
the finite �̃-structures are a wqo with respect to the embeddability quasi-order.

Proof. Again, we make an induction on the height of S, proving the claim for the subsignature of
�̃ having S as a root (let us call this the S-subsignature).

Let M be a model over the S-subsignature. For every a ∈ SM, and for every fi : Si −→ S, if we
restrict M to the elements in the fi-fibers of a, we get a model Mfi,a for the Si-subsignature (an
element c ∈ S̃M is in the fi-fiber of a if, taking the term t corresponding to the composition of
the functions symbols going from S̃ to Si, we have that fMi (tM(c))= a). In addition, ifMM(a)=
(M1, . . . ,Mn), thenMi =M(Mfi,a) by definition. Finally, observe that the restriction ofM to the
Si-subsignature is the disjoint union of the fi-fibers modelsMfi,a, varying a ∈ SM.

Suppose now that M,N are models over the S-subsignature such that M(M)≤M(N ); this
means that we can find an injective map μ mapping SM into SN so that MM(a)≤MN (μ(a)).
If MM(a)= (M1, . . . ,Mn) and MN (μ(a))= (N1, . . . ,Nn), we then have that Mi ≤Ni for every
i= 1, . . . , n. Considering that, as noticed above, Mi =Mfi,a and Ni =Nfi,μ(a), by induction
hypothesis, we have embeddings νi,a for the fi-fibers models of a and μ(a) (for every a ∈ SM and
i= 1, . . . , n). Glueing these embeddings to the disjoint union (varying i, a) and adding them μ as
S-component, we get the desired embedding ofM intoN .

Theorem 5.6. Backward search (cf. Algorithm 1) terminates when applied to a safety problem in
an RASwith a tree-like artifact setting.

Proof. For simplicity, we start giving the argument for the case where we do not have constants
and artifact variables. Similarly to the proof of Theorem 5.4, suppose the algorithm does not ter-
minate. Then, the fixpoint test of Line 2 fails infinitely often. Recalling that the T-equivalence of
Bn and of

∨
0≤k<n φk is an invariant of the algorithm (here φn and Bn are the status of the variables

φ, B after n execution of the main loop), this means that there are models

M0,M1, . . . ,Mj, . . .

such that for all j, we have that Mj |= φj and Mj �|= φi (all i< j). The models can be taken to be
all finite, by Lemma 4.3. But the φj are all existential sentences in �̃, so this is incompatible to the
fact that, by Lemma 5.2, there are i< j withMi embeddable intoMj.

Concerning the general case, it is sufficient to consider the following observation that shows
how to extend the proof to the case where we have constants and artifact variables. Recall that in
�̃, the artifact variables are seen as constants, so we need to consider only the case of constants. Let
�̃+ be �̃ where each constant symbol c of sort S is replaced by a new sort Sc and a new function
symbol fc : Sc −→ S. Now every model M of �̃ can be transformed into a model M+ of �̃+ by
interpreting Sc as a singleton set {∗} and fc as the map sending ∗ to cM. This transformation has
the following property: �̃-embeddings of M into N are in bijective correspondence with �̃+-
embeddings ofM+ into N+. Since �̃+ is still tree-like and does not have constant symbols, this
shows that Theorem 5.6 holds for �̃ too.

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


304 D. Calvanese et al.

Figure 2. A characteristic graph of the flight management pro-
cess, where blue and yellow boxes respectively represent basic
and artifact sorts.

While tree-like RAS restricts artifact relations to be unary, their transitions are not subject to
any locality restriction. This allows for expressing rich forms of updates, including general bulk
updates (which allow us to capture non-primitive recursive verification problems9) and tran-
sitions comparing at once different tuples in artifact relations. The flight management process
presented in the following example shows these advanced features, with a tree-like RASwhose
safety verification is indeed decidable. Finally, notice that tree-like RASs are incomparable:
(i)with the “tree” classes of Bojańczyk et al. (2013), since the former use artifact relations, whereas
the latter only individual variables; (ii) with the decidability class of Li et al. (2017), since tree-
like RASs express transitions able to compare at once values stored in different tuples in artifact
relations.

Example 5.2. We consider a simple RAS that falls in the scope of the tree-like decidability result.
Specifically, this example has a tree-like artifact setting (see Figure 2), thus assuring that, when
solving the safety problem for it, the backward search algorithm is guaranteed to terminate. Note,
however, that the termination result adopted here is the one of Theorem 5.6 due to the non-locality
of certain transitions, as explained in detail below.

The flight management process represents a simplified version of a flight management system
adopted by an airline. To prepare a flight, the company picks a corresponding destination (that
meets the aviation safety compliance indications) and consequently reports on a number of pas-
sengers that are going to attend the flight. Then, an airport dispatcher may pick a manned flight
and put it in the airports flight plan. In case the flight destination becomes unsafe (e.g., it was
struck by a hurricane or the hosting airport had been seized by terrorists), the dispatcher uses the
system to inform the airline about this condition. In turn, the airline notifies all the passengers of
the affected destination about the contingency, and temporary cancels their flights.

To formalize these different aspects, wemake use of a DB signature�fm that consists of: (i) two
id sorts, used to identify flights and cities; (ii) one function symbol destination : FlightId−→
CityId mapping flight identifiers to their corresponding destinations (i.e., city identifiers). Note
that, in a classical relational model (cf. Section 3.1), our signature would contain two relations:
one binary RFlightId that defines flights and their destinations, and another unary RCityId identifying
cities, that are referenced by RFlightId using destination.

We assume that the read-only flight management database contains data about at least one
flight and one city. To start the process, one needs at least one city to meet the aviation safety
compliances. It is assumed that, initially, all the cities are unsafe. An airport dispatcher, at once,
may change the safety status only of one city.

We model this action by performing two consequent actions. First, we select the city identifier
and store it in the designated artifact variable safeCitytId:

∃c:CityId (c �= undef∧ safeCitytId= undef∧ safeCitytId′ = c
)

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 305

Then, we place the extracted city identifier into a unary artifact relation safeCity : CityIndex−→
CityId, that is used to represent safe cities and where CityIndex is its artifact sort.

∃i:CityIndex⎛
⎜⎜⎜⎜⎜⎝

safeCity[i]= undef∧ safeCitytId �= undef∧ safeCitytId′ = undef

∧ safeCity′ = λj.

⎛
⎜⎜⎝
if j= i then safeCitytId
else if safeCity[j]= safeCitytId then undef

else safeCity[j]

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

Note that the two previous transitions can be rewritten as a unique one, hence showing a more
compact way of specifying RAS transitions. This, in turn, can augment the performance of the
verifier while working with large-scale cases. The unified transition actually looks as follows:

∃c:CityId, ∃i:CityIndex⎛
⎜⎜⎜⎜⎜⎝

c �= undef∧ safeCity[i]= undef

∧ safeCity′ = λj.

⎛
⎜⎜⎝
if j= i then c
else if safeCity[j]= c then undef

else safeCity[j]

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

Then, to register passengers with booked tickets on a flight, the airline needs tomake sure that a
corresponding flight destination is actually safe. To perform the passenger registration, the airline
selects a flight identifier that is assigned to the route and uses it to populate entries in an unary
artifact relation regdPassenger : PassengerIndex−→ FlightId. Note that there may be more than
one passenger taking the flight, and therefore, more than one entry in regdPassenger with the same
flight identifier.

∃i:CityIndex, f :FlightId, p:PassengerIndex⎛
⎜⎜⎝
f �= undef∧ destination(f )= safeCity[i]∧ regdPassenger[p]= undef

∧ regdPassenger′ = λj.
(
if j= p then f
else regdPassenger[j]

)
⎞
⎟⎟⎠

We also assume that the airline owns aircraft of one type that can contain no more than k
passengers. In case there were more than k passengers registered on the flight, the airline receives
a notification about its overbooking and temporary suspends all passenger registrations associated
to this flight. This is modelled by checking whether there are at least k+ 1 entries in regdPassenger.
If so, the flight identifier is added to a unary artifact relation overbooked : FligthIndex−→ FlightId
and all the passenger registrations in regdPassenger that reference this flight identifier are nullified
by updating unboundedly many entries in the corresponding artifact relation:10

∃p1:PassengerIndex, . . . pk+1:PassengerIndex,m:FligthIndex⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∧
i,i′∈{1,...,k+1},i�=i′

(
pi �= pi′ ∧ regdPassenger[pi] �= undef∧ regdPassenger[pi]= regdPassenger[pi′ ]

)
∧ overbooked[m]= undef

∧ regdPassenger′ = λj.
⎛
⎝if regdPassenger[j]= regdPassenger[p1] then undef

else regdPassenger[j]

⎞
⎠

∧ overbooked′[m]= regdPassenger[p1]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


306 D. Calvanese et al.

Notice that this transition is not local, since its guard contains literals of the form
regdPassenger[pi]= regdPassenger[pi′] (with pi �= pi′), which involve more than one element of
one artifact sort.

In case of any contingency, the airport dispatchermay change the city status from safe to unsafe.
To do it, we first select one of the safe cities, make it unsafe (i.e., remove it from safeCity relation)
and store its identifier in the artifact variable unsafeCityId:

∃i:CityIndex
⎛
⎝unsafeCityId= undef∧ safeCity[i] �= undef∧
∧ unsafeCityId′ = safeCity[i]∧ safeCity′[i]= undef

⎞
⎠

Then, we use the remembered city identifier to cancel all the passenger registrations for flights
that use this city as their destination:⎛

⎜⎜⎝
unsafeCityId �= undef∧ unsafeCityId′ = undef∧

∧ regdPassenger′ = λj.
(
if destination(regdPassenger[j])= unsafeCityId then undef
else regdPassenger[j]

)
⎞
⎟⎟⎠

Similarly to the previous case, this transition performs the intended action by updating unbound-
edly many entries in the artifact relation.

Also in this case, we can shrink the last two transitions into a single transition:

∃i:CityIndex

⎛
⎜⎜⎝
safeCity[i] �= undef∧

∧regdPassenger′ = λj.
(
if destination(regdPassenger[j])= safeCity[i] then undef
else regdPassenger[j]

)
⎞
⎟⎟⎠

However, as in the previous case, the transition turns out to be not local. Specifically, it is due
to the literal destination(regdPassenger[j])= safeCity[i] that involves more than one element of
(different) artifact sorts.

6. First Experiments
We implemented a prototype of our backward reachability algorithm for artifact systems on top
of the MCMT model checker, extending it with the features required to formalize and verify RASs.
MCMT manages verification in the infinite-state case by exploiting as its model-theoretic frame-
work the declarative formalism of array-based systems. Since their first introduction in Ghilardi
et al. (2008a), Ghilardi and Ranise (2010a), array-based systems have been provided with various
implementations of the standard backward reachability algorithms (including more sophisticated
variants and heuristics). Starting from its first version (Ghilardi and Ranise 2010b), MCMT was
successfully applied to cache coherence and mutual exclusions protocols (Ghilardi and Ranise
2010a), timed (Carioni et al. 2010), and fault-tolerant (Alberti et al. 2010, 2012b) distributed
systems, and then to imperative programs (Alberti et al. 2014b, 2017); interesting case studies
concerned waiting time bounds synthesis in parameterized timed networks (Bruttomesso et al.
2012) and internet protocols (Bruschi et al. 2017). Further related tools include SAFARI (Alberti
et al. 2012a) and ASASP (Alberti et al. 2011); finally, Conchon et al. (2012, 2013, 2015, 2018a)
implement the array-based setting on a parallel architecture with further powerful extensions.

The work principle of MCMT is rather simple: the tool generates the proof obligations arising
from the safety and fixpoint tests in backward search (Lines 2–3 of Algorithm 1) and passes them
to the background SMT-solver (currently it is YICES Dutertre and De Moura 2006). In practice,
the situation is more complicated because SMT-solvers are quite efficient in handling satisfia-
bility problems in combined theories at quantifier-free level but may encounter difficulties with

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 307

Table 1. Summary of the experimental examples

Example #(AC) #(AV) #(T)

E1 JobHiring 9 18 15

E2 Acquisition-following-RFQ 6 13 28

E3 Book-Writing-and-Publishing 4 14 13

E4 Customer-Quotation-Request 9 11 21

E5 Patient-Treatment-Collaboration 6 17 34

E6 Property-and-Casualty-Insurance-Claim-Processing 2 7 15

E7 Amazon-Fulfillment 2 28 38

E8 Incident-Management-as-Collaboration 3 20 19

quantifiers. For this reason, MCMT implements modules for quantifier elimination and quantifier
instantiation. A specific module for the quantifier elimination problems mentioned in Line 6 of
Algorithm 1 has been added to Version 2.8 of MCMT.

We base our experimental evaluation on the already existing benchmark provided in
Li et al. (2017) that samples 32 real-world BPMN workflows published at the official BPM website
(http://www.bpmn.org/). Specifically, we select seven examples of varying complexity (see Table 1)
and provide their faithful encoding in the array-based specification using MCMT Version 2.8.
Moreover, we enrich our experimental set with an extended version of the running example of
this paper (see Appendix A.1 of Calvanese et al. 2018b). Each example has been checked against
at least one safe and one unsafe conditions. Since MCMT performs safety verification parameter-
ized on the read-only DB, the result is independent on the size of specific DB instances. Moreover,
MCMT can in principle handle unbounded DB schemas and unboundedly many DB constants:
we have ascertained that the size of the DB schema does not affect the performances as much as
the number of transitions involved in the verified RAS . We leave for future work a systematic
experimental evaluation of those preliminary observations.

Experiments were performed on a machine with Ubuntu 16.04, 2.6GHz Intel Core i7 and
16GB RAM. The benchmark set is available as part of the last distribution 2.8 of MCMT

http://users.mat.unimi.it/users/ghilardi/mcmt/
(see the subdirectory /examples/dbdriven of the distribution); the user manual, also included
in the distribution, contains a dedicated section (pp. 36–39) giving essential information on how
to use the capabilities of the new version of MCMT (by activating the “db_driven” mode), how
to encode RASs in MCMT specifications, and how to produce user-defined examples in the DB-
driven framework. All the verified examples include transitions with quantified “data” variables
and rely on and the algebraic framework of DB theories introduced in the paper. Consequently,
the experiments were carried out on the new version of MCMT and could not be verified with the
previous versions.

In Table 1, the columns #(AV), #(AC), and #(T) represent, respectively, the number of artifact
variables, artifact components, and transitions used in the example specification; in Table 2, the
column Time is the MCMT execution time. The most critical measures in Table 2 are #(N), depth
and #(SMT-calls) that, respectively, define the number of nodes and the depth of the tree used for
the backward reachability procedure adopted by MCMT, and the number of the SMT-solver calls.
Indeed, MCMT computes the iterated preimages of the formula describing the unsafe states along
the various transitions. Such computation produces a tree, whose nodes are labeled by formulae
describing sets of states that can reach an unsafe state and whose arcs are labelled by a transition.

To stress test our encoding, we came up with a few formulae describing unsafe configurations
(sets of “bad” states), that is, the configurations that the system should not incur throughout its
execution. Property references encodings of examples endowed with specific (un)safety properties

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

http://www.bpmn.org/
http://users.mat.unimi.it/users/ghilardi/mcmt/
https://doi.org/10.1017/S0960129520000067


308 D. Calvanese et al.

Table 2. Experimental results for safety properties

Example Property Result Time #(N) Depth #(SMT-calls)

E1 E1P1 SAFE 0.06 3 3 1238

E1P2 UNSAFE 0.36 46 10 2371

E1P3 UNSAFE 0.50 62 11 2867

E1P4 UNSAFE 0.35 42 10 2237

E2 E2P1 SAFE 0.72 50 9 3156

E2P2 UNSAFE 0.88 87 10 4238

E2P3 UNSAFE 1.01 92 9 4811

E2P4 UNSAFE 0.83 80 9 4254

E3 E3P1 SAFE 0.05 1 1 700

E3P2 UNSAFE 0.06 14 3 899

E4 E4P1 SAFE 0.12 14 6 1460

E4P2 UNSAFE 0.13 18 8 1525

E5 E5P1 SAFE 4.11 57 9 5618

E5P2 UNSAFE 0.17 13 3 2806

E6 E6P1 SAFE 0.04 7 4 512

E6P2 UNSAFE 0.08 28 10 902

E7 E7P1 SAFE 1.00 43 7 5281

E7P2 UNSAFE 0.20 7 4 3412

E8 E8P1 SAFE 0.70 77 11 3720

E8P2 UNSAFE 0.15 25 7 1652

done in MCMT, whereas Result shows their verification outcome that can be of the two following
types: SAFE and UNSAFE. The MCMT tool returns SAFE, if the undesirable property it was asked
to verify represents a configuration that the system cannot reach. At the same time, the result is
UNSAFE if there exists a path of the system execution that reaches “bad” states.

To conclude, we would like to point out that seemingly high number of SMT solver calls in
#(SMT-calls) against relatively small execution time demonstrates that MCMT could be consid-
ered as a promising tool supporting the presented line of research. This is due to the following
two reasons. On the one hand, the SMT technology underlying solvers like YICES (Dutertre and
De Moura 2006) is quite mature and impressively well-performing. On the other hand, the back-
ward reachability algorithm generates proof obligations which are relatively easy to be analyzed as
(un)satisfiable by the solver.

A thorough comparison with VERIFAS (Li et al. 2017) is at the moment rather problematic,
for various reasons, due, for instance, to the different specification languages and to the different
set of benchmarks covered. In fact, the two systems tackle incomparable verification problems:
on the one hand, we deal with safety problems, whereas VERIFAS handles more general LTL-
FO properties. On the other hand, we tackle features not available in VERIFAS, like bulk updates
and comparisons between artifact tuples. We leave this for future, more experimentally oriented,
work: the comparisonmight be interesting because the two tools apply quite different technologies
(VERIFAS is based on VASS encoding, whereas MCMT follows a purely declarative paradigm). We
just point out that Table 2 shows the very encouraging results: in fact, MCMT seems to effectively
handle the benchmark with a similar performance to that shown in other, well-established settings,
with verification times below 1s in most cases.

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 309

7. Conclusions and Future Work
We have laid the foundations of SMT-based verification for artifact systems, focusing on safety
problems and relying on array-based systems as underlying inspiring model. We have shown
how to overcome the main technical difficulty arising from this approach, namely reconstructing
quantifier elimination techniques in the rich setting of artifact systems, using the model-theoretic
machinery of model completions. On top of this framework, we have identified three classes
of systems for which safety is decidable, which impose different combinations of restrictions
on the form of actions and the shape of DB constraints. The presented techniques have been
implemented on top of the well-established MCMT model checker, making our approach fully
operational. Notably, the machinery presented in this paper has been already employed to formal-
ize and verify a data-aware extension of the de-facto processmodeling standard BPMN (Calvanese
et al. 2019a), starting a line of research that aims at transferring our technical results into practical,
end user-oriented settings.

It is important to stress that the artifact systems we study here are radically different from
other formal models integrating dynamics with data, such as Data Petri Nets (Lazic et al. 2008),
ν-PNs (Rosa-Velardo and de Frutos-Escrig 2011), and multiset rewriting systems with data and
constraints (Delzanno 2002). Let us consider Data Petri Nets as a representative example of this
class of approaches. In Data Petri Nets, one can generate tokens that carry fresh values not already
present in the current marking. The requirement that a value is fresh can be encoded in the model
(Rosa-Velardo and de Frutos-Escrig 2011). Such values can only be mutually related using the
comparison predicates over the underlying domain. In our setting, instead, the working memory
of an artifact system may contain data elements arbitrarily taken from value sorts, or extracted
from the (active domain of a) read-only DB. When loading a data element from a value sort, this
may or not be present in the active domain, and thus it may be possibly fresh (but notice that fresh-
ness cannot be enforced in our model). When loading data elements from the read-only DB, it is
crucial to consider that they are mutually related via constraints present therein. These constraints
are primary keys, foreign keys, and additional axioms present in the DB theory. The read-only DB
it is fixed within a run, but model checking of safety properties is studied parametrically with
respect to all possible read-only DBs over a given schema. During model checking, we are exam-
ining sets of reachable states described by logical formulae, whose validity depends on properties
that might happen to be true in the read-only DB, depending on the constraints present therein.
To handle data elements coming from the read-only DB and their corresponding constraints,
we therefore need a specialized machinery that is different from the one typically used to tame the
infinity brought by freshness. In fact, it is not enough to embed the read-only DB in a larger model
that admits fresh values to obtain quantifier elimination, which is essential in our model-checking
algorithm. Quantifier elimination becomes available only when such a “larger model” possesses
suitable model-theoretic properties, which we have studied in the paper. In particular, we have
argued that such properties are captured by the well-known model-theoretic notion of existen-
tially closed structure and its intimately related notion of model completion. Notably, resorting
to model completion can be seen as the “most natural” way to obtain quantifier elimination, as
it is the “closest” theory to the original one that at once admits quantifier elimination and pre-
serves satisfiability of existential formulae. This is precisely what we intensively exploit in our
model-checking algorithm.

From the foundational point of view, it is an open, non-trivial research question to see whether
our framework and Data Petri nets (or similar approaches) can be inter-reduced to each other
when we restrict our attention to the three decidable fragments studied in the paper. We are
also interested in using the present contribution as the starting point for a full line of research
dedicated to SMT-based techniques for the effective verification of data-aware processes, con-
sidering richer forms of verification going beyond safety, and richer classes of artifact systems
incorporating concrete data types and arithmetic operations. We also intend to investigate more

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


310 D. Calvanese et al.

integrity constraints used in database theory: this study should extend decidability and model-
completability results beyond the cases covered in this paper. In addition, it would be interesting
to study whether the decidable classes considered here are tight, or whether interesting variations
can be found for which decidability is preserved, possibly guaranteeing termination of the our
backward reachability procedure.

From the algorithmic point of view, we intend to develop more sophisticated techniques for
the quantifier elimination module required in our backward reachability procedure. A first step-
ping stone in this direction, relying on a constrained version of the Superposition Calculus (SC)
(Nieuwenhuis and Rubio 2001), can be found in Calvanese et al. (2019c): indeed, thanks to our
constrained version of the SC, suitably combined with congruence closure, we show that it is
possible to obtain a quadratic bound for the complexity of the quantifier elimination procedure in
the case of interest for our applications (Calvanese et al. 2018a, 2019c).

As for experiments, we aim at building on the encouraging results reported here toward an
extensive experimental evaluation of our approach, using the benchmark of Li et al. (2017) and
the concrete specification language in Calvanese et al. (2019a) as a starting point. A natural next
step is then to study how the computation of over-approximations, abstractions, and invariants
(a capability that MCMT already supports but that should be adapted to the “db_driven” mode)
and well-established techniques for SMT-based model checking like CEGAR (Alberti et al. 2014a;
McMillan 2006) and IC3 (Bradley 2011, 2012; Hoder and Bjørner 2012) can be used to speed up
the verification of artifact systems.

Financial Support. This research has been partially supported by the UNIBZ CRC project REKAP: Reasoning and
Enactment for Knowledge-Aware Processes and by the CHIST-ERA project PACMEL: Process-Aware Analytics Support Based
on Conceptual Models for Event Logs.

Notes
1 We underline the fact that free n-ary relations (modeling plain relations without integrity constraints) can be added to our
sorted unary functions framework without compromizing our model-checking techniques to apply. We shall briefly mention
such trivial extensions in the paper (see, e.g., Definition 3.3).
2 T-satisfiability and T∗-satisfiability are equivalent, by the definition of T∗, as far as existential (in particular, quantifier-free)
formulae are concerned.
3 For the test in line 3, we just need replace in φ the x by their values given by ι, conjoin the result with all the ground
instances of the axioms of T, and finally decide satisfiability with congruence closure algorithm of a polynomial size ground
conjunction of literals.
4 By “signature” we always mean “signature with equality,” so as soon as new sorts are added, the corresponding equality
predicates are added too.
5 Actually, τ is a disjunction of such formulae, but it is easily seen that disjunction can be accommodated by moving
existential quantifiers back-and-forth through them.
6 In the MCMT implementation, state formulae are always maintained so that all existential variables occurring in them are
differentiated and there is no need of this expensive computation step.
7 This is unrelated to cyclicity of� defined in Section 3 and comes from universal algebra terminology.
8 This is not the canonical ordering used for multisets, as introduced, for example, in Baader and Nipkow (1998).
9 Notice that the artifact setting described above to capture coverability problems for broadcast protocols is both local and
tree-like.
10 For simplicity of presentation, we simply remove such data from the artifact relation. In a real setting, this information
would actually be transferred to a dedicated, historical table, so as to reconstruct the status of past, overbooked flights.

References
Abdulla, P. A., Cerans, K., Jonsson, B. and Tsay, Y.-K. (1996). General decidability theorems for infinite-state systems. In:

Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (LICS), 313–321.
Alberti, F., Armando, A. and Ranise, S. (2011). ASASP: automated symbolic analysis of security policies. In: Proceedings of

the 23rd International Conference on Automated Deduction (CADE), LNCS (LNAI), vol. 6803, Springer, 26–33.

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 311

Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S. and Sharygina, N. (2012a). SAFARI: SMT-based abstraction for arrays
with interpolants. In: Proceedings of the 24th International Conference on Computer Aided Verification (CAV), LNCS, vol.
7358, Springer, 679–685.

Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S. and Sharygina, N. (2014a). An extension of lazy abstraction with
interpolation for programs with arrays. Formal Methods in System Design 45 (1) 63–109.

Alberti, F., Ghilardi, S., Pagani, E., Ranise, S. and Rossi, G. P. (2010). Brief announcement: automated support for the design
and validation of fault tolerant parameterized systems - A case study. In: Proceeding of 24th International Symposium on
Distributed Computing DISC, LNCS, vol. 6343, Springer, 392–394.

Alberti, F., Ghilardi, S., Pagani, E., Ranise, S. and Rossi, G. P. (2012b). Universal guards, relativization of quantifiers, and
failure models in Model Checking Modulo Theories. Journal on Satisfiability, Boolean Modeling and Computation 8 (1/2)
29–61.

Alberti, F., Ghilardi, S. and Sharygina, N. (2014b). Booster: an acceleration-based verification framework for array programs.
In: Proceedings of the 12th International Symposium on Automated Technology for Verification and Analysis (ATVA), LNCS,
vol. 8837, Springer, 18–23.

Alberti, F., Ghilardi, S. and Sharygina, N. (2017). A framework for the verification of parameterized infinite-state systems.
Fundamenta Informaticae 150 (1) 1–24.

Baader, F., Ghilardi, S. and Tinelli, C. (2006). A new combination procedure for the word problem that generalizes fusion
decidability results in modal logics. Information and Computation 204 (10) 1413–1452.

Baader, F. and Nipkow, T. (1998). Term Rewriting and All That, Cambridge University Press.
Bojańczyk, M., Segoufin, L. and Toruńczyk, S. (2013). Verification of database-driven systems via amalgamation. In:

Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), 63–74.
Bradley, A. R. (2011). SAT-based model checking without unrolling. In: Proceedings of the 12th International Conference on

Verification, Model Checking, and Abstract Interpretation VMCAI, LNCS, vol. 6538, Springer, 70–87.
Bradley, A. R. (2012). IC3 and beyond: incremental, inductive verification. In: Proceedings of the 24th International Conference

on Computer Aided Verification (CAV), LNCS, vol. 7358, Springer, 4.
Bradley, A. R. and Manna, Z. (2007). The Calculus of Computation - Decision Procedures with Applications to Verification,

Springer.
Bruschi, D., Di Pasquale, A., Ghilardi, S., Lanzi, A. and Pagani, E. (2017). Formal verification of ARP (address resolution

protocol) through SMT-based model checking - A case study. In: Proceedings of the 13th International Conference on
Integrated Formal Methods (IFM), LNCS, vol. 10510, Springer, 391–406.

Bruttomesso, R., Carioni, A., Ghilardi, S. and Ranise, S. (2012). Automated analysis of parametric timing-based mutual exclu-
sion algorithms. In: Proceedings of the 4th International Symposium on NASA Formal Methods (NFM), LNCS, vol. 7226,
Springer, 279–294.

Calvanese, D., De Giacomo, G. and Montali, M. (2013). Foundations of data-aware process analysis: a database theory
perspective. In: Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS), 1–12.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M. and Rivkin, A. (2018a). Quantifier Elimination for Database Driven
Verification. Technical Report arXiv:1806.09686, arXiv.org.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M. and Rivkin, A. (2018b). Verification of Data-Aware Processes via Array-
Based Systems (Extended Version). Technical Report arXiv:1806.11459, arXiv.org.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M. and Rivkin, A. (2019a). Formal modeling and SMT-based parameterized
verification of data-aware BPMN. In: Proceeding of the 17th International Conference on Business Process Management
(BPM), LNCS, vol. 11675, Springer, 157–175.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M. and Rivkin, A. (2019b). From model completeness to verification of
data aware processes. In: Lutz C., Sattler U., Tinelli C., Turhan A.-Y., and Wolter F. (eds.) Description Logic, Theory
Combination, and All That, LNCS, vol. 11560, Springer, 212–239.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M. and Rivkin, A. (2019c). Model completeness, covers and superposition.
In: Proceedings of 27th International Conference on Automated Deduction (CADE), LNCS (LNAI), vol. 11716, Springer,
142–160.

Calvanese, D., Ghilardi, S., Gianola, A., Montali, M. and Rivkin, A. (2019d). Verification of data-aware processes: challenges
and opportunities for automated reasoning. In: Proceedings of the 2nd International Workshop on Automated Reasoning:
Challenges, Applications, Directions, Exemplary Achievements (ARCADE), EPTCS, vol. 311.

Carioni, A., Ghilardi, S. and Ranise, S. (2010). MCMT in the land of parametrized timed automata. In: Proceedings of the 6th
International Verification Workshop (VERIFY), 47–64.

Chang, C.-C. and Keisler, J. H. (1990).Model Theory. North-Holland Publishing Co.
Cimatti, A., Stojic, I. and Tonetta, S. (2018). Formal specification and verification of dynamic parametrized architectures. In:

Proceedings of the 22nd International Symposium on Formal Methods (FM), LNCS, vol. 10951, Springer, 625–644.
Conchon, S., Declerck, D. and Zaidi, F. (2018a). Cubicle-W: parameterized model checking on weak memory. In: Proceedings

of the 9th International Joint Conference on Automated Reasoning (IJCAR), LNCS (LNAI), vol. 10900, Springer, 152–160.

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://arXiv.org/abs/1806.09686
https://arXiv.org/abs/1806.11459
https://doi.org/10.1017/S0960129520000067


312 D. Calvanese et al.

Conchon, S., Delzanno, G. and Ferrando, A. (2018b). Declarative parameterized verification of topology-sensitive distributed
protocols. In: Proceedings of the 6th International Conference on Networked Systems (NETYS), LNCS, vol. 11028, Springer,
209–224.

Conchon, S., Goel, A., Krstic, S., Mebsout, A. and Zaïdi, F. (2012). Cubicle: a parallel SMT-based model checker for
parameterized systems - Tool paper. In: Proceedings of the 24th International Conference on Computer Aided Verification
(CAV), LNCS, vol. 7358, Springer, 718–724.

Conchon, S., Goel, A., Krstic, S., Mebsout, A. and Zaïdi, F. (2013). Invariants for finite instances and beyond. In: Proceedings
of the International Conference on Formal Methods in Computer-Aided Design (FMCAD), 61–68.

Conchon, S., Mebsout, A. and Zaïdi, F. (2015). Certificates for parameterized model checking. In: Proceeding of the 20th
International Symposium on Formal Methods (FM), LNCS, vol. 9109, Springer, 126–142.

Damaggio, E., Deutsch, A. and Vianu, V. (2012). Artifact systems with data dependencies and arithmetic. ACM Transactions
on Database Systems 37 (3) 22:1–22:36.

Delzanno, G. (2002). An overview of MSR(C): a CLP-based framework for the symbolic verification of parameterized
concurrent systems. Electronic Notes in Theoretical Computer Science 76 65–82.

Delzanno, G. (2018). Parameterized verification of publish/subcribe protocols via infinite-state model checking. In:
Proceedings of the 33rd Italian Conference on Computational Logic (CILC), 97–111.

Delzanno, G., Esparza, J. and Podelski, A. (1999). Constraint-based analysis of broadcast protocols. In: Proceeding of 13th
International Workshop on Computer Science Logic (CSL), LNCS, vol. 1683, Springer, 50–66.

Deutsch, A., Hull, R., Li, Y. and Vianu, V. (2018). Automatic verification of database-centric systems. SIGLOG News 5 (2)
37–56.

Deutsch, A., Hull, R., Patrizi, F. and Vianu, V. (2009). Automatic verification of data-centric business processes. In:
Proceedings of the 12th International Conference on Database Theory (ICDT), 252–267.

Deutsch, A., Li, Y. and Vianu, V. (2016). Verification of hierarchical artifact systems. In: Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), 179–194.

Deutsch, A., Li, Y. and Vianu, V. (2019). Verification of hierarchical artifact systems. ACM Transactions on Database Systems
44 (3) 12:1–12:68.

Dutertre, B. and De Moura, L. (2006). The YICES SMT Solver. Technical Report, SRI International.
Esparza, J., Finkel, A. andMayr, R. (1999). On the verification of broadcast protocols. In: Proceedings of the 14th Annual IEEE

Symposium on Logic in Computer Science (LICS), 352–359.
Fagin, R. (1976). Probabilities on finite models. Journal of Symbolic Logic 41 (1) 50–58.
Ghilardi, S. (2004). Model theoretic methods in combined constraint satisfiability. Journal of Automated Reasoning 33 (3–4)

221–249.
Ghilardi, S. and Gianola, A. (2017). Interpolation, amalgamation and combination (the non-disjoint signatures case). In:

Proceedings of the 11th International Symposium on Frontiers of Combining Systems (FroCoS), LNCS (LNAI), vol. 10483,
Springer, 316–332.

Ghilardi, S. and Gianola, A. (2018). Modularity results for interpolation, amalgamation and superamalgamation. Annals of
Pure and Applied Logic 169 (8) 731–754.

Ghilardi, S., Nicolini, E., Ranise, S. and Zucchelli, D. (2008a). Towards SMT model checking of array-based systems. In:
Proceedings of the 4th International Joint Conference on Automated Reasoning (IJCAR), LNCS (LNAI), vol. 5195, Springer,
67–82.

Ghilardi, S., Nicolini, E. and Zucchelli, D. (2008b). A comprehensive framework for combined decision procedures. ACM
Transactions on Computational Logic 9 (2) 8:1–8:54.

Ghilardi, S. and Ranise, S. (2010a). Backward reachability of array-based systems by SMT solving: termination and invariant
synthesis. Logical Methods in Computer Science 6 (4).

Ghilardi, S. and Ranise, S. (2010b). MCMT: a model checker modulo theories. In: Proceedings of the 5th International Joint
Conference on Automated Reasoning (IJCAR), LNCS (LNAI), vol. 6173, Springer, 22–29.

Ghilardi, S. and van Gool, S. J. (2016). Monadic second order logic as the model companion of temporal logic. In: Proceedings
of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 417–426.

Ghilardi, S. and van Gool, S. J. (2017). A model-theoretic characterization of monadic second order logic on infinite words.
Journal of Symbolic Logic 82 (1) 62–76.

Higman, G. (1952). Ordering by divisibility in abstract algebras. Proceedings of the LondonMathematical Society 3 (2) 326–336.
Hoder, K. and Bjørner, N. (2012). Generalized property directed reachability. In: Proceedings of the 15th International

Conference on Theory and Applications of Satisfiability Testing (SAT), LNCS, vol. 7317, Springer, 157–171.
Hull, R. (2008). Artifact-centric business process models: brief survey of research results and challenges. In: Proceedings of the

OTM Confederated International Conferences, LNCS, vol. 5332, Springer, 1152–1163.
Kruskal, J. B. (1960). Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the American

Mathematical Society 95 210–225.
Lazic, R., Newcomb, T. C., Ouaknine, J., Roscoe, A.W. andWorrell, J. (2008). Nets with tokens which carry data. Fundamenta

Informaticae 88 (3) 251–274.

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067


Mathematical Structures in Computer Science 313

Li, Y., Deutsch, A. and Vianu, V. (2017). VERIFAS: a practical verifier for artifact systems. Proceedings of the VLDB
Endowment 11 (3) 283–296.

Lipparini, P. (1982). Locally finite theories with model companion. In: Atti della Accademia Nazionale dei Lincei. Classe di
Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, vol. 72, Accademia Nazionale dei Lincei.

McMillan, K. L. (2006). Lazy abstraction with interpolants. In: Proceedings of the 18th International Conference on Computer
Aided Verification (CAV), LNCS, vol. 4144, Springer, 123–136.

Nicolini, E., Ringeissen, C. and Rusinowitch, M. (2009a). Data structures with arithmetic constraints: a non-disjoint combi-
nation. In: Proceedings of the 7th International Symposium on Frontiers of Combining Systems (FroCoS), LNCS (LNAI), vol.
5749, Springer, 319–334.

Nicolini, E., Ringeissen, C. and Rusinowitch, M. (2009b). Satisfiability procedures for combination of theories sharing integer
offsets. In: Proceedings of the 15th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), LNCS, vol. 5505, Springer, 428–442.

Nicolini, E., Ringeissen, C. and Rusinowitch, M. (2010). Combining satisfiability procedures for unions of theories with a
shared counting operator. Fundamenta Informaticae 105 (1–2) 163–187.

Nieuwenhuis, R. and Rubio, A. (2001). Paramodulation-based theorem proving. In: Robinson J. A., and Voronkov A. (eds.)
Handbook of Automated Reasoning (in 2 Volumes), MIT Press, 371–443.

Rado, R. (1964). Universal graphs and universal functions. Acta Arithmetica 9 331–340.
Robinson, A. (1951). On the Metamathematics of Algebra, North-Holland.
Robinson, A. (1963). Introduction to Model Theory and to the Metamathematics of Algebra, Studies in Logic and the

Foundations of Mathematics, North-Holland.
Rosa-Velardo, F. and de Frutos-Escrig, D. (2011). Decidability and complexity of Petri nets with unordered data. Theoretical

Computer Science 412 (34) 4439–4451.
Schmitz, S. and Schnoebelen, P. (2013). The power of well-structured systems. In: Proceedings of the 24th International

Conference on Concurrency Theory (CONCUR), LNCS, vol. 8052, Springer, 5–24.
Silver, B. (2011). BPMNMethod and Style, 2nd edn., Cody-Cassidy.
Sofronie-Stokkermans, V. (2008). Interpolation in local theory extensions. Logical Methods in Computer Science 4 (4).
Sofronie-Stokkermans, V. (2016). On interpolation and symbol elimination in theory extensions. In: Proceedings of the 8th

International Joint Conference on Automated Reasoning (IJCAR), LNCS (LNAI), vol. 9706, Springer, 273–289.
Sofronie-Stokkermans, V. (2018). On interpolation and symbol elimination in theory extensions. Logical Methods in

Computer Science 14 (3).
Vianu, V. (2009). Automatic verification of database-driven systems: a new frontier. In: Proceedings of the 12th International

Conference on Database Theory (ICDT), 1–13.
Wheeler, W. H. (1976). Model-companions and definability in existentially complete structures. Israel Journal of Mathematics

25 (3–4) 305–330.

Cite this article: Calvanese D, Ghilardi S, Gianola A, Montali M and Rivkin A (2020). SMT-based verification of data-aware
processes: a model-theoretic approach. Mathematical Structures in Computer Science 30, 271–313. https://doi.org/10.1017/
S0960129520000067

https://doi.org/10.1017/S0960129520000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000067
https://doi.org/10.1017/S0960129520000067
https://doi.org/10.1017/S0960129520000067

	SMT-based verification of data-aware processes:a model-theoretic approach
	Introduction
	Model-theoretic algebra
	Satisfiability modulo theories
	Data-aware processes
	Bringing all the ingredients together
	Main contributions
	Plan of the paper and prerequisites

	Preliminaries
	Robinson diagrams and amalgamation
	Model completions
	Definable extensions and -notations

	Read-Only DB Schemas
	Relational view of DB schemas
	Formal properties of DB schemas
	Finite model property
	Model completion of DB theories


	Artifact-Centric Systems
	Simple artifact systems
	Relational artifact systems

	Termination Results for RASs
	Termination with local updates
	Termination with tree-like signatures

	First Experiments
	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


