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Abstract
Uniform interpolants were largely studied in non-classical propositional logics since the
nineties, and their connection to model completeness was pointed out in the literature. A suc-
cessive parallel research line inside the automated reasoning community investigated uniform
quantifier-free interpolants (sometimes referred to as “covers”) in first-order theories. In this
paper, we investigate cover transfer to theory combinations in the disjoint signatures case.We
prove that, for convex theories, cover algorithms can be transferred to theory combinations
under the same hypothesis needed to transfer quantifier-free interpolation (i.e., the equality
interpolating property, aka strong amalgamation property). The key feature of our algorithm
relies on the extensive usage of the Beth definability property for primitive fragments to con-
vert implicitly defined variables into their explicitly defining terms. In the non-convex case,
we show by a counterexample that covers may not exist in the combined theories, even in case
combined quantifier-free interpolants do exist. However, we exhibit a cover transfer algo-
rithm operating also in the non-convex case for special kinds of theory combinations; these
combinations (called ‘tame combinations’) concern multi-sorted theories arising in many
model-checking applications (in particular, the ones oriented to verification of data-aware
processes).
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1 Introduction

This paper is devoted to combination results concerninguniform interpolants. In this introduc-
tion, we summarize the two main (quite independant indeed) research lines that investigated
uniform interpolants in the last three decades. We first recall what uniform interpolants are;
we fix a logic or a theory T and a suitable fragment (propositional, first-order quantifier-free,
etc.) of its language L . Given an L-formula φ(x, y) (here x, y are the variables occurring in
φ), a uniform interpolant of φ (w.r.t. y) is an L-formula φ′(x)where only the x occur, and that
satisfies the following two properties: (i) φ(x, y) �T φ′(x); (ii) for any further L-formula
ψ(x, z) such that φ(x, y) �T ψ(x, z), we have φ′(x) �T ψ(x, z). Whenever uniform inter-
polants exist, one can compute an interpolant for an entailment like φ(x, y) �T ψ(x, z) in a
way that is independent of ψ .

Uniform interpolants were originally studied in the context of non-classical logics, starting
from the pioneeringwork by Pitts [40]. Uniform interpolants have in such non-classical logics
context a ‘local’ and a ’global’ version, depending on how the entailment�T is interpreted: in
the local version it is interpreted as ‘provability of implication’, whereas in the global version
is interpreted as ‘provability under assumption’ (the two versions coincide for intuitionistic
logic, but not for modal logics). The local version of uniform interpolation allows an (albeit
not faithful) interpretation of the second order propositional calculus into plain propositional
calculus, whereas the global version can be used in the axiomatization of model completions
for the corresponding classes of algebras (see below).Uniform interpolants can be sematically
connected to some appropriate notion of bisimulation at the level of Kripke models [13].

The existence of uniform interpolants is an exceptional phenomenon, which is however
not so infrequent, as witnessed by a large literature in non-classical logics (a non-exhaustive
list includes [1, 16, 22, 23, 25, 34, 37, 42, 45, 46]). The main results from the above papers
are that uniform interpolants exist for intuitionistic logic and for some modal systems (like
the Gödel-Löb system and the S4.Grz system); they do not exist for instance in S4 and K4,
whereas for the basic modal system K they exist for the local version but not for the global
version (the opposite situation is also well-possible, already in the locally finite case, as a
consequence of Maksimova’s results on amalgamation and super-amalgamation [35, 36]).
The connection between (global) uniform interpolants andmodel completions (for equational
theories axiomatizing the varieties corresponding to propositional logics) was first stated in
[24] and further developed in [25, 34, 37, 45].

In the last decade, also the automated reasoning community developed an increasing
interest in uniform interpolants, with particular focus on quantifier-free fragments of first-
order theories. This is witnessed by various talks and drafts by D. Kapur presented in many
conferences and workshops (FloC 2010, ISCAS 2013-14, SCS 2017 [33]), as well as by the
paper [32] by Gulwani and Musuvathi in ESOP 2008. In this last paper uniform interpolants
were renamed as covers, a terminology we shall frequently adopt in this paper too. In these
contributions, examples of cover computations were supplied and also some algorithms were
sketched. The first formal proof about existence of covers in EUF was however published by
the present authors only in [6]; such a proof was equipped with powerful semantic tools (the
Cover-by-Extensions Lemma 1 below) coming from the connection to model-completeness,
as well as with an algorithm relying on a constrained variant of the Superposition Calculus
(two simpler algorithms are studied in [27], the related completeness proofs are available
in [26, 30]). The usefulness of covers in model checking was already stressed in [32] and
further motivated by our recent line of research on the verification of data-aware processes
[4, 5, 7, 9]. Notably, it is also operationally mirrored in the MCMT [21] implementation

123



Combination of Uniform Interpolants via Beth Definability

since version 2.8. Covers (via quantifier elimination in model completions and hierarchical
reasoning) play an important role in symbol elimination problems in theory extensions, as
witnesssed in the comprehensive paper [43] and in related papers [39] studying invariant
synthesis in model checking applications.

An important question suggested by the applications is the cover transfer problem for
combined theories: for instance, when modeling and verifying data-aware processes, it is
natural to consider the combination of different theories, such as the theories accounting for
the read-write and read-only data storage of the process aswell as those for the elements stored
therein [5–7, 10]. Formally, the cover transfer problem can be stated as follows: by supposing
that covers exist in theories T1, T2, under which conditions do they exist also in the combined
theory T1 ∪T2? In this paper we show that the answer is affirmative in the disjoint signatures
convex case, using the same hypothesis (that is, the equality interpolating condition) under
which quantifier-free interpolation transfers. Thus, for convex theories we essentially obtain
a necessary and sufficient condition, in the precise sense captured by Theorem 6 below. We
also prove that if convexity does not hold (as it happens, e.g., for integer difference logic
IDL or for linear integer arithmetics LIA), the non-convex equality interpolating property
[2] may not be sufficient to ensure the cover transfer property. As a witness for this, we show
that EUF combinedwith integer difference logic or with linear integer arithmetics constitutes
a counterexample.

The main tool employed in our combination result is the Beth definability theorem for
primitive formulae (this theorem has been shown to be equivalent to the equality interpolating
condition in [2]). In order to design a combined cover algorithm, we exploit the equivalence
between implicit and explicit definability that is supplied by the Beth theorem. Implicit
definability is reformulated, via covers for input theories, at the quantifier-free level. Thus,
the combined cover algorithm guesses the implicitly definable variables, then eliminates
them via explicit definability, and finally uses the component-wise input cover algorithms
to eliminate the remaining (non implicitly definable) variables. The identification and the
elimination of the implicitly defined variables via explicitly defining terms is an essential
step towards the correctness of the combined cover algorithm: when computing a cover
of a formula φ(x, y) (w.r.t. y), the variables x are (non-eliminable) parameters, and those
variables among the y that are implicitly definable need to be discovered and treated in the
same way as the parameters x . Only after this preliminary step (Lemma 6 below), the input
cover algorithms can be suitably exploited (Proposition 2 below).

The combination result we obtain is quite strong, as it is a typical ‘black box’ combination
result: it applies not only to theories used in verification (like the combination of real arith-
metics with EUF), but also in other contexts. For instance, since the theory B of Boolean
algebras satisfies our hypotheses (being model completable and strongly amalgamable [19]),
we get that uniform interpolants exist in the combination of B with EUF . The latter is the
equational theory algebraizing the basic non-normal classical modal logic system E from
[41] (extended to n-ary modalities). Notice that this result must be contrasted with the case
of many systems of Boolean algebras with operators where existence of uniform interpola-
tion fails [34] (recall that operators on a Boolean algebra are not just arbitrary functions, but
are required to be monotonic and also to preserve either joins or meets in each coordinate).

As a last important comment on related work, it is worth mentioning that Gulwani and
Musuvathi in [32] also have a combined cover algorithm for some convex, signature disjoint
theories. Their algorithm looks quite different from ours; apart from the fact that a full
correctness and completeness proof for such an algorithm has never been published, we
underline that our algorithm is rooted on different hypotheses. In fact, we only need the
equality interpolating condition and we show that this hypothesis is not only sufficient, but
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also necessary for cover transfer in convex theories; consequently, our result is formally
stronger. The equality interpolating condition was known to the authors of [32] (but not even
mentioned in their paper [32]): in fact, it was introduced by one of them some years before
[47]. The equality interpolating condition was then extended to the non convex case in [2],
where it was also semantically characterized via the strong amalgamation property.

The paper is organized as follows: after some preliminaries in Section 2, the crucial
Covers-by-Extensions Lemma and the relationship between covers and model completions
from [6] are recalled in Sect. 3. In Sect. 4, we present some preliminary results from the
literature on interpolation, amalgamation, strong amalgamation and Beth definability that
are instrumental to our machinery. After some useful facts about convex theories in Sect. 5,
we introduce the combined cover algorithms for the convex case and we prove its correctness
in Sect. 6; we also present a detailed example of application of the combined algorithm in
case of the combination of EUF with linear real arithmetic, and we show that the equality
interpolating condition is, in a natural sense, necessary for combining covers. In Sect. 7
we exhibit a counterexample to the existence of combined covers in the non-convex case.
Finally, in Sect. 8 we prove that for the ‘tame’ multi-sorted theory combinations used in our
applications to data-aware processes verification, covers existence transfers to the combined
theory under only the stable infiniteness requirement for the shared sorts. Section 9 is devoted
to the conclusions and discussion of future work. The current paper is the extended version
of [8]; in addition to supplying full self-contained proofs of the results of [8], it contains the
entirely new Sect. 8 dedicated to the positive results for the non-convex tame case.

2 Preliminaries

We adopt the usual first-order syntactic notions of signature, term, atom, (ground) formula,
and so on; our signatures are always finite or countable and include equality. To avoid con-
sidering limit cases, we assume that signatures always contain at least an individual constant.
We compactly represent a tuple 〈x1, . . . , xn〉 of variables as x ; by abuse of notation, we
sometimes use 〈x1, . . . , xn〉 to denote also sets of variables (not just tuples). The notation
t(x), φ(x) means that the term t , the formula φ has free variables included in the tuple x .
This tuple is assumed to be formed by distinct variables, thus we underline that when we
write e.g. φ(x, y), we mean that the tuples x, y are made of distinct variables that are also
disjoint from each other.

A formula is said to be universal (resp., existential) if it has the form ∀x(φ(x)) (resp.,
∃x(φ(x))), where φ is quantifier-free. Formulae with no free variables are called sentences.
On the semantic side, we use the standard notion of Σ-structureM and of truth of a formula
in aΣ-structure under a free variables assignment. The support ofM is denoted as |M|. The
interpretation of a (function, predicate) symbol σ in M is denoted σM.

AΣ-theory T is a set ofΣ-sentences; amodel of T is aΣ-structureMwhere all sentences
in T are true. We use the standard notation T |	 φ to say that φ is true in all models of T for
every assignment to the variables occurring free in φ. We say that φ is T -satisfiable iff there
is a model M of T and an assignment to the variables occurring free in φ making φ true in
M.

We now focus on the constraint satisfiability problem and quantifier elimination for a
theory T . A Σ-formula φ is a Σ-constraint (or just a constraint) iff it is a conjunction of
literals. The constraint satisfiability problem for T is the following: we are given a constraint
φ(x) and we are asked whether there exist a model M of T and an assignment I to the
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free variables x such that M, I |	 φ(x). A theory T has quantifier elimination iff for
every formula φ(x) in the signature of T there is a quantifier-free formula φ′(x) such that
T |	 φ(x) ↔ φ′(x). Since we are in a computational logic context, when we speak of
quantifier elimination, we assume that it is effective, namely that it comes with an algorithm
for computing φ′ out of φ. It is well-known that quantifier elimination holds in case we can
eliminate quantifiers from primitive formulae, i.e., formulae of the kind ∃y φ(x, y), with φ

a constraint.
We recall also some further basic notions. Let Σ be a first-order signature. The signature

obtained from Σ by adding to it a set a of new constants (i.e., 0-ary function symbols) is
denoted by Σa . Analogously, given a Σ-structureM, the signature Σ can be expanded to a
new signature Σ |M| := Σ ∪ {ā | a ∈ |M|} by adding a constant ā (the name for a) for each
element a in the support ofM, with the convention that two distinct elements are denoted by
different “name” constants.M can be expanded to aΣ |M|-structureM := (M, a)a∈|M| just
interpreting the additional constants over the corresponding elements. Fromnowon,when the
meaning is clear from the context, we will freely use the notationM andM interchangeably:
in particular, given a Σ-structure M and a Σ-formula φ(x) with free variables that are all
in x , we will write, by abuse of notation, M |	 φ(a) instead of M |	 φ(ā).

We say that a theory T is stably infinite iff every T -satisfiable constraint is satisfiable
in an infinite model of T . Moreover, a theory T is convex iff for every constraint δ, if
T � δ → ∨n

i=1 xi = yi then T � δ → xi = yi holds for some i ∈ {1, . . . , n}. Strictly
speaking, convexity says that if, for a set of literals φ and for a non empty disjunction of
variables

∨n
i=1 xi = yi , we have T |	 φ → ∨n

i=1 xi = yi , then we have also T |	 φ →
xi = yi for some i = 1, . . . , n. If, instead of variables, we have terms, the same property
nevertheless applies: if we have T |	 φ → ∨n

i=1 ti = ui , then for fresh variables xi , yi we
get T |	 φ ∧ ∧n

i=1(xi = ti ∧ yi = ui ) → ∨n
i=1 xi = yi , which implies, by applying the

definition of convexity, the same property for terms.
A Σ-homomorphism (or, simply, a homomorphism) between two Σ-structures M and

N is a map μ : |M| −→ |N | among the support sets |M| of M and |N | of N satisfying
the condition (M |	 ϕ ⇒ N |	 ϕ) for all Σ |M|-atoms ϕ (M is regarded as a Σ |M|-
structure, by interpreting each additional constant a ∈ |M| into itself andN is regarded as a
Σ |M|-structure by interpreting each additional constant a ∈ |M| into μ(a)). In case the last
condition holds for all Σ |M|-literals, the homomorphism μ is said to be an embedding and
if it holds for all first order formulae, the embedding μ is said to be elementary.

If μ : M −→ N is an embedding which is just the identity inclusion |M| ⊆ |N |, we
say thatM is a substructure ofN or thatN is an extension ofM. Universal theories can be
characterized as those theories T having the property that ifN |	 T andM is a substructure
of N , then M |	 T (see [11]). If M is a structure and X ⊆ |M|, then there is the smallest
substructure ofM including X in its support; this is called the substructure generated by X .
If X is the set of elements of a finite tuple a, then the substructure generated by X has in its
support precisely the b ∈ |M| such that M |	 b = t(a) for some term t .

Let M be a Σ-structure. The diagram of M, written ΔΣ(M) (or just Δ(M)), is the set
of ground Σ |M|-literals that are true in M. An easy but important result, called Robinson
Diagram Lemma [11], says that, given any Σ-structure N , the embeddings μ : M −→ N
are in bijective correspondencewith expansions ofN toΣ |M|-structureswhich aremodels of
ΔΣ(M). The expansions and the embeddings are related in the obvious way: ā is interpreted
as μ(a).
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3 Uniform Interpolants

We report the notion of a cover taken from [32] and also the basic results proved in [6,
10]. Fix a theory T and an existential formula ∃e φ(e, y); call a residue of ∃e φ(e, y) any
quantifier-free formula belonging to the set of quantifier-free formulae

Res(∃e φ) = {θ(y, z) | T |	 φ(e, y) → θ(y, z)} = {θ(y, z) | T |	 ∃e φ(e, y) → θ(y, z)}
(the above two sets are trivially equal, by applying the ∃-left introduction rule). A quantifier-
free formula ψ(y) is said to be a T -cover (or, simply, a cover) of ∃e φ(e, y) iff ψ(y) ∈
Res(∃e φ) and ψ(y) implies (modulo T ) all the other formulae in Res(∃e φ). The follow-
ing “cover-by-extensions” Lemma [6] (to be widely used throughout the paper) supplies a
semantic counterpart to the notion of a cover:

Lemma 1 [Cover-by-Extensions] A formula ψ(y) is a T -cover of ∃e φ(e, y) iff it satisfies
the following two conditions:

(i) T |	 ∀y (∃e φ(e, y) → ψ(y));
(ii) for every model M of T , for every tuple of elements a from the support of M such that

M |	 ψ(a) it is possible to find another modelN of T such thatM embeds intoN and
N |	 ∃e φ(e, a).

Proof See [6]. ��
We underline that, since our language is at most countable, we can assume that the models

M, N from (ii) above are at most countable too, by a Löwenheim-Skolem argument.
We say that a theory T has uniform quantifier-free interpolation iff every existential for-

mula ∃e φ(e, y) (equivalently, every primitive formula ∃e φ(e, y)) has a T -cover. Notice that
a cover is also called (quantifier-free) uniform interpolant for the following reason. Indeed, it
is clear that if T has uniform quantifier-free interpolation, then it has ordinary quantifier-free
interpolation [2], in the sense that if we have T |	 φ(e, y) → φ′(y, z) (for quantifier-free
formulae φ, φ′), then there is a quantifier-free formula θ(y) such that T |	 φ(e, y) → θ(y)
and T |	 θ(y) → φ′(y, z). In fact, if T has uniform quantifier-free interpolation, then the
interpolant θ is independent onφ′ (the same θ(y) can be used as interpolant for all entailments
T |	 φ(e, y) → φ′(y, z), varying φ′). Hence, it is straightforward to see that the definition
of cover is equivalent to the one of uniform interpolant given in the introduction.

We say that a universal theory T has a model completion iff there is a stronger theory
T ∗ ⊇ T (still within the same signature Σ of T ) such that:

(i) every Σ-constraint that is satisfiable in a model of T is satisfiable in a model of T ∗;
(ii) T ∗ eliminates quantifiers.

Other equivalent definitions are possible [11]: for instance, (i) is equivalent to the fact that
T and T ∗ prove the same universal formulae or again to the fact that every model of T
can be embedded into a model of T ∗. We recall that the model completion, if it exists, is
unique and that its existence implies the quantifier-free interpolation property for T [11] (the
latter can be seen directly or via the correspondence between quantifier-free interpolation
and amalgamability, see [2]).
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A close relationship between model completion and uniform interpolation emerged in
the area of propositional logic (see the book [25]) and can be formulated roughly as fol-
lows. It is well-known that most propositional calculi, via Lindenbaum constructions, can
be algebraized: the algebraic analogue of classical logic are Boolean algebras, the algebraic
analogue of intuitionistic logic are Heyting algebras, the algebraic analogue of modal cal-
culi are suitable varieties of modal algebras, etc. Under suitable hypotheses, it turns out that
a propositional logic has uniform interpolation (for the global consequence relation) iff the
equational theory axiomatizing the corresponding variety of algebras has amodel completion
[25]. In the context of first order theories, we prove an even more direct connection:

Theorem 1 Suppose that T is a universal theory. Then T has a model completion T ∗ iff T
has uniform quantifier-free interpolation. If this happens, T ∗ is axiomatized by the infinitely
many sentences

∀y (ψ(y) → ∃e φ(e, y)), (1)

where ∃e φ(e, y) is a primitive formula and ψ is a cover of it.

Proof The proof is rather standard, via Lemma 1, by iterating a chain construction, see [3,
9, 10]. ��

4 Equality Interpolating Condition and Beth Definability

We report here some definitions and results we need concerning combined quantifier-free
interpolation. Most definitions and results come from [2], but are simplified here

because we restrict them to the case of universal convex theories.
We recall that a theory T is stably infinite iff every T -satisfiable constraint is satisfiable

in an infinite model of T . The following lemma comes from a compactness argument:

Lemma 2 If T is stably infinite, then every finite or countablemodelM of T can be embedded
in a model N of T such that |N | \ |M| is countable.
Proof Consider T ∪ Δ(M) ∪ {ci �= a | a ∈ |M|}i ∪ {ci �= c j }i �= j , where {ci }i is a
countable set of fresh constants: by the Diagram Lemma and the downward Löwenheim-
Skolem theorem [11], it is sufficient to show that this set is consistent

(in fact if this set is consistent, there will be a superstructure N of M in which the
countably many constants ci will be interpreted on elements which are different from each
others and also different from the elements from the support of M).

Suppose the above set is not consistent; then by compactness T ∪ Δ0 ∪ Δ1 ∪ Δ2 is not
satisfiable, for a finite subset Δ0 of Δ(M), a finite subset Δ1 of {ci �= a | a ∈ |M|}i
and a finite subset Δ2 of ∪{ci �= c j }i �= j . However, this is a contradiction because by stable
infiniteness Δ0 (being satisfiable in M) is satisfiable in an infinite model of T . ��

We also recall that theory T is convex iff for every constraint δ, if T � δ → ∨n
i=1 xi = yi

then T � δ → xi = yi holds for some i ∈ {1, . . . , n}.
A convex theory T is ‘almost’ stably infinite in the sense that it can be shown that every

constraint which is T -satisfiable in a T -model whose support has at least two elements is
satisfiable also in an infinite T -model. The one-element model can be used to build coun-
terexamples, though: e.g., the theory of Boolean algebras is convex (like any other universal
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Horn theory) but the constraint x = 0 ∧ x = 1 is only satisfiable in the degenerate one-
element Boolean algebra. Since we take into account these limit cases, we do not assume
that convexity implies stable infiniteness.

Definition 1 A convex universal theory T is equality interpolating iff
for everypair y1, y2 of variables and for everypair of constraints δ1(x, z1, y1), δ2(x, z2, y2)

such that

T � δ1(x, z1, y1) ∧ δ2(x, z2, y2) → y1 = y2 (2)

there exists a term t(x) such that

T � δ1(x, z1, y1) ∧ δ2(x, z2, y2) → y1 = t(x) ∧ y2 = t(x). (3)

Quantifier-free interpolation and combined quantifier-free interpolation can be semanti-
cally characterized, as we are going to show.

Definition 2 A universal theory T has the amalgamation property iff whenever we are given
models M1 and M2 of T and

their common substructureM0, there exists a furthermodelM of T endowedwith embed-
dings μ1 : M1 −→ M and μ2 : M2 −→ M whose restrictions to |M0| coincide.

A universal theory T has the strong amalgamation property if the above embeddings
μ1, μ2 and the above model M can be chosen so as to satisfy the following additional
condition: if for some m1,m2 we have μ1(m1) = μ2(m2), then there exists an element a in
|M0| such that m1 = a = m2.

Theorem 2 [2] The following two conditions are equivalent for a convex universal theory
T :

(i) T is equality interpolating and has quantifier-free interpolation;
(ii) T has the strong amalgamation property.

Proof For the sake of completeness, we report the proof of the implication (i) ⇒ (ii) (this is
the only fact used in the paper). Suppose that T is equality interpolating and has quantifier-
free interpolation; we prove that it is strongly amalgamable. If the latter property fails, by
RobinsonDiagramLemma, there existmodelsM1,M2 of T togetherwith a shared submodel
A such that the set of sentences

ΔΣ(M1) ∪ ΔΣ(M2) ∪ {m1 �= m2 | m1 ∈ |M1| \ |A|, m2 ∈ |M2| \ |A|}
is not T -consistent. By compactness, the sentence

δ1(a,m1) ∧ δ2(a,m2) →
∨

n1∈m1,n2∈m2

n1 = n2

is T -valid, for some tuples a ⊆ |A|, m1 ⊆ (|M1| \ |A|), m2 ⊆ (|M2| \ |A|) and for some
ground formulae δ1(a,m1), δ2(a,m2) true in M1,M2, respectively.

If the disjunction is empty, we get T |	 δ1(a,m1) → ¬δ2(a,m2) and then we get
a contradiction by the quantifier-free interpolation property (the argument is the same as
below). Otherwise, by convexity, there are n1 ∈ m1, n2 ∈ m2 such that

δ1(a,m1) ∧ δ2(a,m2) → n1 = n2
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is T -valid. By the equality interpolating property, there is a term t(a) such that

δ1(a,m1) ∧ δ2(a,m2) → n1 = t(a)

is T -valid. By the quantifier-free interpolation property, there is a quantifier-free formula
θ(a) such that

δ1(a,m1) ∧ n1 �= t(a) → θ(a)

and

θ(a) → ¬δ2(a,m2)

are both T -valid. Since n1 ∈ |M1| \ |A|, we have that n1 �= t(a) is true inM1. But then we
have a contradiction because θ(a) is true inM1,A and inM2 as well (truth of quantifier-free
formulae moves back and forth via substructures). ��

We underline that Theorem 2 extends also to the non convex case provided the notion of
an equality interpolating theory is suitably adjusted [2].

Next two results (supplied without proof) will be used only in Sect. 6.1 to show that, in
some sense, the sufficient conditions of our main combination Theorem 5 are also necessary.

Theorem 3 [2, 47] Let T1 and T2 be two universal, convex, stably infinite theories over
disjoint signatures Σ1 and Σ2. If both T1 and T2 are equality interpolating and have
quantifier-free interpolation property, then so does T1 ∪ T2.

The previous theorem essentially states that the equality interpolating property is a suffi-
cient condition for the transfer of quantifier-free interpolation to theory combinations. There
is a converse of the previous result, in the sense that it is possible to show that the equal-
ity interpolating property is, to some extent, necessary in order to guarantee the transfer
of quantifier-free interpolation for minimal combinations with signatures adding only unin-
terpreted symbols. For this purpose, for a signature Σ , we call EUF(Σ) the pure equality
theory over the signature Σ (this theory is equality interpolating and has the quantifier-free
interpolation property).

Theorem 4 [2] Let T be a stably infinite, universal, convex theory admitting quantifier-free
interpolation and let Σ be a signature disjoint from the signature of T containing at least a
unary predicate symbol. Then, T ∪EUF(Σ) has quantifier-free interpolation iff T is equality
interpolating.

In [2] the above definitions and results are extended to the non-convex case and a long list
of universal quantifier-free interpolating and equality interpolating theories is given. The list
includes EUF(Σ), recursive data theories, as well as linear arithmetics. For linear arithmetics
(and fragments of its), it is essential to make a very careful choice of the signature, see again
[2] (especially Subsection 4.1) for details. All the above theories admit a model completion
(which coincides with the theory itself in case the theory admits quantifier elimination).

The equality interpolating property in a theory T can be equivalently characterized using
Beth definability as follows. Consider a primitive formula ∃zφ(x, z, y) (here φ is a conjunc-
tion of literals); we say that ∃z φ(x, z, y) implicitly defines y in T iff the formula

∀y ∀y′ (∃zφ(x, z, y) ∧ ∃zφ(x, z, y′) → y = y′) (4)

is T -valid. We say that ∃zφ(x, z, y) explicitly defines y in T iff there is a term t(x) such that
the formula

∀y (∃zφ(x, z, y) → y = t(x)) (5)
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is T -valid.
For future use, we notice that, by trivial logical manipulations, the formulae (4) and (5)

are logically equivalent to

∀y∀z∀y′∀z′(φ(x, z, y) ∧ φ(x, z′, y′) → y = y′) . (6)

and to

∀y∀z(φ(x, z, y) → y = t(x)) (7)

respectively (we shall use such equivalences without explicit mention).
We say that a theory T has the Beth definability property for primitive formulae iff when-

ever a primitive formula ∃z φ(x, z, y) implicitly defines the variable y then it also explicitly
defines it.

Proposition 1 [2] A convex equality interpolating theory T
has the Beth definability property for primitive formulae.

Proof Suppose that T is equality interpolating and that

T � φ(x, z, y) ∧ φ(x, z′, y′) → y = y′ ;
then there is a term t(x) such that

T � φ(x, z, y) ∧ φ(x, z′, y′) → y = t(x) ∧ y′ = t(x) .

Replacing z′, y′ by z, y via a substitution, we get precisely (7). ��
We remark that the above Proposition can be inverted (see [2]).

5 Convex Theories

Wenow collect some useful facts concerning convex theories.We fix for this section a convex,
stably infinite, equality interpolating universal theory T admitting a model completion T ∗.
We let Σ be the signature of T . We fix also a Σ-constraint φ(x, y), where we assume
that y = y1, . . . , yn (recall that the tuple x is disjoint from the tuple y according to our
conventions from Sect. 2).

For i = 1, . . . , n, we let the formula ImplDefT
φ,yi

(x) be the quantifier-free formula
equivalent in T ∗ to the formula

∀y ∀y′(φ(x, y) ∧ φ(x, y′) → yi = y′
i ) (8)

where the y′ are renamed copies of the y. Notice that the variables occurring free in φ are

x, y, whereas only the x occur free in ImplDefT
φ,yi

(x) (the variable yi is among the y and

does not occur free in ImplDefT
φ,yi

(x)): these facts coming from our notational conventions
are crucial and should be kept in mind when reading this and next section. We need a first
semantic technical lemma.

Lemma 3 Suppose that we are given a modelM of T and elements a from the support ofM
such that M �|	 ImplDefT

φ,yi
(a) for all i = 1, . . . , n. Then there exists an extension N of

M such that
for some b ∈ |N | \ |M| we have N |	 φ(a, b).
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Proof Since T has a model completion, it has uniform quantifier-free interpolants by Theo-
rem 1, hence it has also (ordinary) quantifier-free interpolants. By Theorem 2 it is strongly
amalgamable because it is equality interpolating. In conclusion, we are allowed to use strong
amalgamation in our proof. By strong amalgamability, we can freely assume thatM is gen-
erated, as a Σ-structure, by the a: in fact, if we prove the statement for the substructure
generated by the a, then strong amalgamability will provide the model we want.

By using the Robinson Diagram Lemma, what we need is to prove the consistency of
T ∪ Δ(M) with the set of ground sentences

{φ(a, b)} ∪ {bi �= t(a)}t,bi
where t(x) varies over Σ(x)-terms, the b = b1, . . . , bn are fresh constants and i vary over
1, . . . , n. By convexity,1 this set is inconsistent iff there exist a term t(x) and i = 1, . . . , n
such that

T ∪ Δ(M) � φ(a, y) → yi = t(a).

This however implies that T ∪ Δ(M) has the formula

∀y ∀y′(φ(a, y) ∧ φ(a, y′) → yi = y′
i )

as a logical consequence. If we now embed M into a model N of T ∗, we have that
N |	 ImplDefT

φ,yi
(a), which is in contrast to M �|	 ImplDefT

φ,yi
(a) (because M is

a substructure of N and ImplDefT
φ,yi

(a) is quantifier-free). ��
The following lemma supplies terms which will be used as ingredients in our combined

covers algorithm:

Lemma 4 Let Li1(x)∨· · ·∨Liki (x)be thedisjunctive normal form (DNF)ofImplDefT
φ,yi

(x).
Then, for every j = 1, . . . , ki , there is a Σ(x)-term ti j (x) such that

T � Li j (x) ∧ φ(x, y) → yi = ti j . (9)

As a consequence, a formula of the kind ImplDefT
φ,yi

(x) ∧ ∃y (φ(x, y) ∧ ψ) is equivalent
(modulo T ) to the formula

ki∨

j=1

∃y (yi = ti j ∧ Li j (x) ∧ φ(x, y) ∧ ψ). (10)

Proof We have that (
∨

j Li j ) ↔ ImplDefT
φ,yi

(x) is a tautology, hence from the definition

of ImplDefT
φ,yi

(x), we have that

T ∗ � Li j (x) → ∀y ∀y′(φ(x, y) ∧ φ(x, y′) → yi = y′
i );

however this formula is trivially equivalent to a universal formula (Li j does not depend on
y, y′), hence since T and T ∗ prove the same universal formulae, we get

T � Li j (x) ∧ φ(x, y) ∧ φ(x, y′) → yi = y′
i .

UsingBeth definability property (Proposition 1),we get (9), as required, for some terms ti j (x).
Finally, the second claim of the lemma follows from (9) by trivial logical manipulations. ��
1 As already noticed in Sect. 2, convexity implies that if, for a set of literals φ and for a non empty disjunction
of terms

∨n
i=1 ti = ui , we have T |	 φ → ∨n

i=1 ti = ui , then we have also T |	 φ → ti = ui for some
i = 1, . . . , n.
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In all our concrete examples, the theory T has a decidable quantifier-free fragment (namely
it is decidable whether a quantifier-free formula is a logical consequence of T or not), thus
the terms ti j mentioned in Lemma 4 can be computed just by enumerating all possibleΣ(x)-
terms: the computation terminates, because the above proof shows that the appropriate terms
always exist. However, this is terribly inefficient and, from a practical point of view, one needs
to have at disposal dedicated algorithms to find the required equality interpolating terms. For
some common theories (EUF , Lisp-structures, linear real arithmetic), such algorithms are
designed in [47]; in [2] [Lemma 4.3 and Theorem 4.4], the algorithms for computing equality
interpolating terms are connected to quantifier elimination algorithms in the case of universal
theories admitting quantifier elimination.

The following lemma will be useful in the next section:

Lemma 5 Let T have a model completion T ∗ and let the constraint φ(x, y) be of the
kind α(x) ∧ φ′(x, y), where y = y1, . . . , yn. Then for every i = 1, . . . , n, the formula

ImplDefT
φ,yi

(x) is T -equivalent to α(x) → ImplDefT
φ′,yi (x).

Proof According to (8), the formula ImplDefT
φ,yi

(x) is obtained by eliminating quantifiers
in T ∗ from

∀y ∀y′(α(x) ∧ φ′(x, y) ∧ α(x) ∧ φ′(x, y′) → yi = y′
i ) (11)

The latter is equivalent, modulo logical manipulations, to

α(x) → ∀y ∀y′(φ′(x, y) ∧ φ′(x, y′) → yi = y′
i ) (12)

whence the claim (eliminating quantifiers in T ∗ from (11) and (12) gives quantifiers-free T ∗-
equivalent formulae, hence also T -equivalent formulae because T and T ∗ prove the same
quantifier-free formulae). ��

6 The Convex Combined Cover Algorithm

Let us now fix two theories T1, T2 over disjoint signatures Σ1,Σ2.
We assume that both of them satisfy the assumptions from the previous section, mean-

ing that they are convex, stably infinite, equality interpolating, universal and admit model
completions T ∗

1 , T ∗
2 respectively. We will prove in this section (Theorem 5) that T1 ∪ T2

admits a model completion too. We achieve this by supplying a combined algorithm, called
ConvexCombCover, for computing T1∪T2-covers: in order to construct the T1∪T2-cover, this
combined algorithm exploits the cover algorithms of the component theories Ti (i = 1, 2).

We need to compute a cover for ∃e φ(x, e), where φ is a conjunction of Σ1 ∪ Σ2-literals.
By applying rewriting purification steps like

φ 	⇒ ∃d (d = t ∧ φ(d/t))

(where d is a fresh variable and t is a pure term, i.e. it is either a Σ1- or a Σ2-term), we
can assume that our formula φ is of the kind φ1 ∧ φ2, where φ1 is a Σ1-formula and φ2 is a
Σ2-formula. Thus we need to compute a cover for a formula of the kind

∃e (φ1(x, e) ∧ φ2(x, e)), (13)

where φi is a conjunction of Σi -literals (i = 1, 2). By guessing a partition of the e and by
replacing each variable e in e with the representative element of its equivalence class, we
also assume that both φ1 and φ2 contain the literals ei �= e j (for i �= j) as a conjunct.
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Remark 1 It is not clear whether this preliminary guessing step can be avoided. In fact,
Nelson-Oppen [38] combined satisfiability for convex theories does not need it; however,
combining covers algorithms is a more complicated problem than combining mere satisfia-
bility algorithms and for technical reasons related to the correctness and completeness proofs
below, we were forced to introduce guessing at this step.

To manipulate formulae, our algorithm employs acyclic explicit definitions as follows.
When we write ExplDef(z, x) (where z, x are tuples of distinct variables), we mean any
formula of the kind (let z := z1 . . . , zm)

m∧

i=1

zi = ti (z1, . . . , zi−1, x)

where the term ti is pure (i.e. it is a Σi -term) and only the variables z1, . . . , zi−1, x can
occur in it. We notice that an existential formula like ∃z (ExplDef(z, x) ∧ ψ(z, x)) can be
equivalently converted into a quantifier-free formula: indeed, since the ’explicit definitions’
zi = ti are in fact arranged acyclically, the existentially quantified variables z can be recur-
sively eliminated by substituting them with terms containing eventually only the parameters
x .

A working formula is a formula of the kind

∃z (ExplDef(z, x) ∧ ∃e (ψ1(x, z, e) ∧ ψ2(x, z, e))) , (14)

whereψ1 is a conjunction ofΣ1-literals andψ2 is a conjunction ofΣ2-literals. The variables
x are called parameters, the variables z are called defined variables and the variables e (truly)
existential variables. The parameters do not change during the execution of the algorithm.
We assume that ψ1, ψ2 in a working formula (14) always contain the literals ei �= e j (for
distinct ei , e j from e) as a conjunct.

In our starting formula (13), there are no defined variables. However, if via some syntactic
check it happens that some of the existential variables can be recognized as defined, then it
is useful to display them as such (this observation may avoid redundant cases - leading to
inconsistent disjuncts - in the computations below).

A working formula like (14) is said to be terminal iff for every existential variable ei ∈ e
we have that

T1 � ψ1 → ¬ImplDefT1
ψ1,ei

(x, z) and T2 � ψ2 → ¬ImplDefT2
ψ2,ei

(x, z) . (15)

Roughly speaking, we can say that in a terminal working formula, all variables which are not
parameters are either explicitly definable or recognized as not implicitly definable by both
theories; of course, a working formula with no existential variables is terminal.

Lemma 6 Every working formula is equivalent (modulo T1 ∪T2) to a disjunction of terminal
working formulae.

Proof To compute the required terminal working formulae, it is sufficient to apply the fol-
lowing non-deterministic procedure (the output is the disjunction of all possible outcomes).
The non-deterministic procedure applies one of the following alternatives.

(1) Update ψ1 by adding to it a disjunct from the DNF of
∧

ei∈e ¬ImplDefT1
ψ1,ei

(x, z) and

ψ2 by adding to it a disjunct from the DNF of
∧

ei∈e ¬ImplDefT2
ψ2,ei

(x, z);
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(2.i) Select ei ∈ e and h ∈ {1, 2}; then update ψh by adding to it a disjunct Li j from the

DNF of ImplDefTh
ψh ,ei

(x, z); the equality ei = ti j (where ti j is the term mentioned in

Lemma 4)2 is added to ExplDef(z, x); the variable ei becomes in this way part of the
defined variables.

Notice that in alternative (2.i), the index i in the label (2.i) refers to the variable ei chosen
from e.

If alternative (1) is chosen, the procedure stops, otherwise it is recursively applied again
and again: we have one truly existential variable less after applying alternative (2.i), so
the procedure terminates, since eventually either no truly existential variable remains or
alternative (1) is applied. The correctness of the procedure is due to the fact that the following
formula is trivially a tautology:

(∧
ei∈e ¬ImplDefT1

ψ1,ei
(x, z) ∧ ∧

ei∈e ¬ImplDefT2
ψ2,ei

(x, z)
)

∨
∨ ∨

ei∈e ImplDef
T1
ψ1,ei

(x, z) ∨ ∨
ei∈e ImplDef

T2
ψ2,ei

(x, z)

The first disjunct is used in alternative (1), the other disjuncts in alternative (2.i). At the
end of the procedure, we get a terminal working formula. Indeed, if no truly existential
variable remains, then the working formula is trivially terminal. It remains to prove that
the working formula obtained after applying alternative (1) is indeed terminal. Let ψ ′

k (for
k = 1, 2) be the formula obtained from ψk after applying alternative (1). We have that ψ ′

k is

α(x, z) ∧ ψk(x, z, e), where α is a disjunct of the DNF of
∧

ei∈e ¬ImplDefTk
ψk ,ei

(x, z). We

need to show that Tk � ψ ′
k → ¬ImplDefTk

ψ ′
k ,e j

(x, z) for every j . Fix such a j ; according to

Lemma 5, we must show that

Tk � α(x, z) ∧ ψk(x, z, e) → ¬(α(x, z) → ImplDefTk
ψk ,e j

(x, z))

which is indeed the case because α(x, z) logically implies ¬ImplDefTk
ψ ′
k ,e j

(x, z), since

α(x, z) is a disjunct of the DNF of
∧

ei∈e ¬ImplDefTk
ψk ,ei

(x, z). ��
Thus we are left to the problem of computing a cover of a terminal working formula; this

problem is solved in the following proposition:

Proposition 2 A cover of a terminal working formula (14) can be obtained just by unravelling
the explicit definitions of the variables z from the formula

∃z (ExplDef(z, x) ∧ θ1(x, z) ∧ θ2(x, z)) (16)

where θ1(x, z) is the T1-cover of ∃eψ1(x, z, e) and θ2(x, z) is the T2-cover of ∃eψ2(x, z, e).

Proof In order to show that Formula (16) is the T1 ∪ T2-cover of a terminal working for-
mula (14), we apply Lemma1. The first condition of that lemma is easily fulfilled. Concerning
the second condition, we prove

that, for every T1 ∪T2-modelM, for every tuple a, c from |M| such thatM |	 θ1(a, c)∧
θ2(a, c) there is an extension N of M such that N is still a model of T1 ∪ T2 and N |	
∃e(ψ1(a, c, e) ∧ ψ2(a, c, e)).

By a Löwenheim–Skolem argument, since our languages are countable, we can suppose
that M is at most countable and actually that it is countable by stable infiniteness of our

2 Lemma 4 is used taking as y the tuple e, as x the tuple x, z, as φ(x, y) the formula ψh(x, z, e) and as ψ the
formula ψ3−h .
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theories, see Lemma 2 (the fact that T1 ∪ T2 is stably infinite in case both T1, T2 are such,
comes from the proof of Nelson-Oppen combination result, see [17, 38, 44]).

According to the conditions (15) and the definition of a cover (notice that the formulae
¬ImplDefTh

ψh ,ei
(x, z) do not contain the e and are quantifier-free) we have that

T1 � θ1 → ¬ImplDefT1
ψ1,ei

(x, z) and T2 � θ2 → ¬ImplDefT2
ψ2,ei

(x, z)

(for every ei ∈ e). Thus, since M �|	 ImplDefT1
ψ1,ei

(a, c) and M �|	 ImplDefT2
ψ2,ei

(a, c)
hold for every ei ∈ e, we can apply Lemma 3 and conclude that there exist a T1-model N1

and a T2-modelN2 such thatN1 |	 ψ1(a, c, b1) andN2 |	 ψ2(a, c, b2) for tuples b1 ∈ |N1|
and b2 ∈ |N2|, both disjoint from |M|. By a Löwenheim-Skolem argument, we can suppose
that N1,N2 are countable and by Lemma 2 even that they are both countable extensions of
M.

The tuples b1 and b2 have equal length because the ψ1, ψ2 from our working formulae
entail ei �= e j , where ei , e j are different existential variables. Thus there is a bijection
ι : |N1| → |N2| fixing all elements in M and mapping component-wise the b1 onto the b2.
But this means that, exactly as it happens in the proof of the completeness of the Nelson-
Oppen combination procedure, the Σ2-structure on N2 can be moved back via ι−1 to |N1|
in such a way that the Σ2-substructure from M is fixed and in such a way that the tuple b2
is mapped to the tuple b1. In this way,N1 becomes a Σ1 ∪ Σ2-structure which is a model of
T1 ∪ T2 and which is such that N1 |	 ψ1(a, c, b1) ∧ ψ2(a, c, b1), as required. ��

From Lemma 6, Proposition 2 and Theorem 1, we immediately get

Theorem 5 Let T1, T2 be convex, stably infinite, equality interpolating, universal theories
over disjoint signatures admitting a model completion. Then T1 ∪ T2 admits a model com-
pletion too. Covers in T1 ∪ T2 can be effectively computed as shown above.

We recall fromTheorem 3 that the equality interpolating property transfers to combination
of theories too, when it holds in the component theories.

We now summarize the steps of the combined cover algorithm ConvexCombCover that
takes as input the primitive formula ∃e φ(x, e), where φ is a conjunction of Σ1 ∪Σ2-literals:
1: Apply rewriting purification steps, like φ 	⇒ ∃d (d = t ∧ φ(d/t)) (where d is a fresh

variable and t is a pure term), until φ = φ1 ∧ φ2, where φi is a Σi -formula (i = 1, 2).
2: Guess a partition of the e and replace each ek with the representative element of its

equivalence class.
3: Apply the non-deterministic procedure of Lemma 6 to φ so as to get a disjunction of

terminal working formulae TWj , where each disjunct TWj is ∃z (ExplDefj(z, x) ∧
∃e (ψ j,1(x, z, e) ∧ ψ j,2(x, z, e)))

4: For every disjunct TWj , compute the T1-cover of ∃eψ j,1(x, z, e), say θ j,1(x, z), and the
T2-cover of ∃eψ j,2(x, z, e), say θ j,2(x, z).

5: Return as output the disjunction
∨

j ∃z (ExplDefj(z, x) ∧ θ j,1(x, z) ∧ θ j,2(x, z)).
Notice that the input cover algorithms in the above combined cover computation algorithm
are used not only in the final step described in Proposition 2, but also every time we need to
compute a formula ImplDefTh

ψh ,ei
(x, z): according to its definition, this formula is obtained

by eliminating quantifiers in T ∗
i from (8) (this is done via a cover computation, reading ∀ as

¬∃¬). In practice, implicit definability is not very frequent, so that in many concrete cases
ImplDefTh

ψh ,ei
(x, z) is trivially equivalent to⊥ (in such cases, Step (2.i) above can obviously

be disregarded).
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6.1 The Necessity of the Equality Interpolating Condition

The following result shows that equality interpolating is a necessary condition for a transfer
result, in the sense that it is already required for minimal combinations with signatures adding
uninterpreted symbols:

Theorem 6 Let T be a convex, stably infinite, universal theory admitting a model completion
and letΣ be a signature disjoint from the signature of T containing at least a unary predicate
symbol. Then T ∪ EUF(Σ) admits a model completion iff T is equality interpolating.

Proof The necessity can be shown by using the following argument. By Theorem 1,
T ∪ EUF(Σ) has uniform quantifier-free interpolation, hence also ordinary quantifier-free
interpolation. We can now apply Theorem 4 and get that T must be equality interpolating.
Conversely, the sufficiency comes from Theorem 5 together with the fact that

EUF(Σ) is trivially universal, convex, stably infinite, has a model completion [6] and is
equality interpolating [2, 47].

��

6.2 An Example of Combined Covers for the Convex Case

We now analyze an example in detail. Our results apply for instance to the case where T1
is EUF(Σ) and T2 is linear real arithmetic. By ‘linear real arithmetic’ we mean the set of
sentences which are true in the reals under the natural interpretation of the symbols, in the
language containing +,−, 0, 1,<,= and also infinitely many unary division operations by
positive integer coefficients. This theory can be axiomatized as the theory of totally ordered
abelian groups with the divisibility axiom n · (x/n) = x and with 0 �= 1 (last axiom excludes
degeneracy); this axiomatization is universal and ensures quantifier elimination (hence also
the equality interpolating property, see [2] [Theorem4.4]). This theory is also convex: actually
convexity comes from the geometric fact that if a convex set is included in a finite nonempty
union of hyperplanes, then it is contained in one of them.

We recall that covers are computed in linear real arithmetic by quantifier elimination,
whereas for EUF(Σ) one can apply the superposition-based algorithm from [6]. Let us show
that the cover of3

∃e1 · · · ∃e4

⎛

⎜
⎝

e1 = f (x1) ∧ e2 = f (x2) ∧
∧ f (e3) = e3 ∧ f (e4) = x1 ∧
∧ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ e4 = x2 + e3

⎞

⎟
⎠ (17)

is the following formula

[x2 = 0 ∧ f (x1) = x1 ∧ x1 ≤ 0 ∧ x1 ≤ f (0)] ∨
∨ [x1 + f (x1) < x2 + f (x2) ∧ x2 �= 0] ∨
∨

[
x2 �= 0 ∧ x1 + f (x1) = x2 + f (x2) ∧ f (2x2 + f (x2)) = x1 ∧

∧ f (x1 + f (x1)) = x1 + f (x1)

] (18)

Formula (17) is already purified. Notice also that the variables e1, e2 are in fact already
explicitly defined (only e3, e4 are truly existential variables).

3 When running examples, we often apply some simplifications which are not needed to run our algorithms,
but which might be useful to clean up the final result (when we apply such simplifications, we nevertheless
explicitly notify the reader).
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We first make the partition guessing. There is no need to involve defined variables into
the partition guessing, hence we need to consider only two partitions; they are described by
the following formulae:

P1(e3, e4) ≡ e3 �= e4

P2(e3, e4) ≡ e3 = e4

We first analyze the case of P1. The formulae ψ1 and ψ2 to which we need to apply exhaus-
tively Step (1) and Step (2.i) of our algorithm are:

ψ1 ≡ f (e3) = e3 ∧ f (e4) = x1 ∧ e3 �= e4

ψ2 ≡ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ e4 = x2 + e3 ∧ e3 �= e4

We first compute the implicit definability formulae for the truly existential variables with
respect to both T1 and T2.

– We first consider ImplDefT1
ψ1,e3

(x, z). Here we show that the cover of the negation of

formula (8) is equivalent to �
(so that ImplDefT1

ψ1,e3
(x, z) is equivalent to ⊥). We must quantify over truly existential

variables and their duplications, thus we need to compute the cover of

f (e′
3) = e′

3 ∧ f (e3) = e3 ∧ f (e′
4) = x1 ∧ f (e4) = x1 ∧ e3 �= e4 ∧ e′

3 �= e′
4 ∧ e′

3 �= e3

This is a saturated set according to the superposition based procedure of [6], hence the
result is �, as claimed.

– The formulaImplDefT1
ψ1,e4

(x, z) is also equivalent to⊥, by the same argument as above.

– To compute ImplDefT2
ψ2,e3

(x, z) we use Fourier-Motzkin quantifier elimination. We
need to eliminate the variables e3, e′

3, e4, e
′
4 (intended as existentially quantified vari-

ables) from

x1 + e1 ≤ e′
3 ≤ x2 + e2 ∧ x1 + e1 ≤ e3 ≤ x2 + e2 ∧ e′

4 = x2 + e′
3∧

∧ e4 = x2 + e3 ∧ e3 �= e4 ∧ e′
3 �= e′

4 ∧ e′
3 �= e3 .

This gives x1 + e1 �= x2 + e2 ∧ x2 �= 0, so that ImplDefT2
ψ2,e3

(x, z) is x1 + e1 =
x2 + e2 ∧ x2 �= 0. The corresponding equality interpolating term for e3 is x1 + e1.

– The formula ImplDefT2
ψ2,e4

(x, z) is also equivalent to x1 + e1 = x2 + e2 ∧ x2 �= 0 and
the equality interpolating term for e4 is x1 + e1 + x2.

So, if we apply Step 1 we get

∃e1 · · · ∃e4

⎛

⎜
⎝

e1 = f (x1) ∧ e2 = f (x2) ∧
∧ f (e3) = e3 ∧ f (e4) = x1 ∧ e3 �= e4 ∧
∧ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ e4 = x2 + e3 ∧ x1 + e1 �= x2 + e2

⎞

⎟
⎠ (19)

(notice that the literal x2 �= 0 is entailed by ψ2, so we can simplify it to � in
ImplDefT2

ψ2,e3
(x, z) and ImplDefT2

ψ2,e4
(x, z)). If we apply Step (2.i) (for i=3), we get (after

removing implied equalities)

∃e1 · · · ∃e4

⎛

⎜
⎝

e1 = f (x1) ∧ e2 = f (x2) ∧ e3 = x1 + e1 ∧
∧ f (e3) = e3 ∧ f (e4) = x1 ∧ e3 �= e4 ∧
∧ e4 = x2 + e3 ∧ x1 + e1 = x2 + e2

⎞

⎟
⎠ (20)

123



D. Calvanese et al.

Step (2.i) (for i=4) gives a formula logically equivalent to (20). Notice that (20) is terminal
too, because all existential variables are now explicitly defined (this is a lucky side-effect of
the fact that e3 has been moved to the defined variables). Thus the exhaustive application of
Steps (1) and (2.i) is concluded.

Applying the final step of Proposition 2 to (20) is quite easy: it is sufficient to unravel the
acyclic definitions. The result, after little simplification, is

x2 �= 0 ∧ x1 + f (x1) = x2 + f (x2)∧
∧ f (x2 + f (x1 + f (x1))) = x1 ∧ f (x1 + f (x1)) = x1 + f (x1);

this can be further simplified to

x2 �= 0 ∧ x1 + f (x1) = x2 + f (x2)∧
∧ f (2x2 + f (x2)) = x1 ∧ f (x1 + f (x1)) = x1 + f (x1); (21)

As to formula (19), we need to apply the final cover computations mentioned in Proposi-
tion 2. The formulae ψ1 and ψ2 are now

ψ ′
1 ≡ f (e3) = e3 ∧ f (e4) = x1 ∧ e3 �= e4

ψ ′
2 ≡ x1 + e1 ≤ e3 ≤ x2 + e2 ∧ e4 = x2 + e3 ∧ x1 + e1 �= x2 + e2 ∧ e3 �= e4

The T1-cover of ψ ′
1 is �. For the T2-cover of ψ ′

2, eliminating with Fourier-Motzkin the
variables e4 and e3, we get

x1 + e1 < x2 + e2 ∧ x2 �= 0

which becomes

x1 + f (x1) < x2 + f (x2) ∧ x2 �= 0 (22)

after unravelling the explicit definitions of e1, e2. Thus, the analysis of the case of the partition
P1 gives, as a result, the disjunction of (21) and (22).

We now analyze the case of P2. Before proceeding, we replace e4 with e3 (since P2
precisely asserts that these two variables coincide); our formulae ψ1 and ψ2 become

ψ ′′
1 ≡ f (e3) = e3 ∧ f (e3) = x1

ψ ′′
2 ≡ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ 0 = x2

From ψ ′′
1 we deduce e3 = x1, thus we can move e3 to the explicitly defined variables (this

avoids useless calculations: the implicit definability condition for variables having an entailed
explicit definition is obviously �, so making case split on it produces either tautological
consequences or inconsistencies). In this way we get the terminal working formula

∃e1 · · · ∃e3

⎛

⎜
⎝

e1 = f (x1) ∧ e2 = f (x2) ∧ e3 = x1

∧ f (e3) = e3 ∧ f (e3) = x1 ∧
∧ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ 0 = x2

⎞

⎟
⎠ (23)

Unravelling the explicit definitions, we get (after exhaustive simplifications)

x2 = 0 ∧ f (x1) = x1 ∧ x1 ≤ 0 ∧ x1 ≤ f (0) (24)

Now, the disjunction of (21), (22) and (24) is precisely the final result (18) claimed above.
This concludes our detailed analysis of our example.

Notice that the example shows that combined cover computations may introduce terms
with arbitrary alternations of symbols from both theories (like f (x2+ f (x1+ f (x1))) above).
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The point is that when a variable becomes explicitly definable via a term in one of the
theories, then using such additional variablemay in turn cause some other variables to become
explicitly definable via terms from the other theory, and so on and so forth; when ultimately
the explicit definitions are unraveled, highly nested terms arisewithmany symbol alternations
from both theories.

7 The Non-convex Case: A Counterexample

In this section, we show by giving a suitable counterexample that the convexity hypothesis
cannot be dropped from Theorems 5, 6. We make use of basic facts about ultrapowers (see
[11] for the essential information we need). We take as T1 integer difference logic IDL, i.e.
the theory of integer numbers under the unary operations of successor and predecessor, the
constant 0 and the strict order relation <. This is stably infinite, universal and has quantifier
elimination (thus it coincides with its own model completion). It is not convex, but it satisfies
the equality interpolating condition, once the latter is suitably adjusted to non-convex theories,
see [2] for the related definition and all the above mentioned facts.

As T2, we take EUF(Σ f ), where Σ f has just one unary free function symbol f (this f
is supposed not to belong to the signature of T1).

Proposition 3 Let T1, T2 be as above; the formula

∃e (0 < e ∧ e < x ∧ f (e) = 0) (25)

does not have a cover in T1 ∪ T2.

Proof Suppose that (25) has a cover φ(x). This means (according to Cover-by-Extensions
Lemma 1) that for every model M of T1 ∪ T2 and for every element a ∈ |M| such that
M |	 φ(a), there is an extension N of M such that N |	 ∃e (0 < e ∧ e < a ∧ f (e) = 0).

Consider themodelM, so specified: the support ofM is the set of the integers, the symbols
from the signature of T1 are interpreted in the standard way and the symbol f is interpreted
so that 0 is not in the image of f . Let ak be the number k > 0 (it is an element from the
support ofM). Clearly it is not possible to extendM so that ∃e (0 < e∧e < ak ∧ f (e) = 0)
becomes true: indeed, we know that all the elements in the interval (0, k) are definable as
iterated successors of 0 and, by using the axioms of IDL, no element can be added between
a number and its successor, hence this interval cannot be enlarged in a superstructure. We
conclude that M |	 ¬φ(ak) for every k.

Consider now an ultrapower
∏

D M ofMmodulo a non-principal ultrafilter D and let a be
the equivalence class of the tuple 〈ak〉k∈N; by the fundamental Los theorem [11],

∏
D M |	

¬φ(a). We claim that it is possible to extend
∏

D M to a superstructure N such that N |	
∃e (0 < e∧e < a∧ f (e) = 0): this would entail, by definition of cover, that

∏
D M |	 φ(a),

contradiction. We now show why the claim is true. Indeed, since 〈ak〉k∈N has arbitrarily big
numbers as its components, we have that, in

∏
D M, a is bigger than all standard numbers.

Thus, if we take a further non-principal ultrapower N of
∏

D M, it becomes possible to
change in it the evaluation of f (b) for some b < a and set it to 0 (in fact, as it can be easily
seen,

there are elements b ∈ |N | less than a but not in the support of
∏

D M). ��

The counterexample still applieswhen replacing integer difference logicwith linear integer
arithmetics (the proof is literally the same).

123



D. Calvanese et al.

8 Tame Combinations

So far, we only analyzed the mono-sorted case. However, many interesting examples arising
in model-checking verification are multi-sorted: this is the case of array-based systems [20]
and in particular of the array-based system used in data-aware processes verification [5, 9].
The above examples suggest restrictions on the theories to be combined other than convexity,
in particular they suggest restrictions that make sense in a multi-sorted context.

Most definitions we gave in Sect. 2 have straightforward natural extensions to the multi-
sorted case (we leave the reader to formulate them). A little care is needed however for the
disjoint signatures requirement. Let T1, T2 be multisorted theories in the signatures Σ1,Σ2;
the disjointness requirement for Σ1 and Σ2 can be formulated in this context by saying that
the only function or relation symbols inΣ1∩Σ2 are the equality predicates over the common
sorts inΣ1∩Σ2.Wewant to strengthen this requirement: we say that the combination T1∪T2
is tame iff the sorts in Σ1 ∩ Σ2 cannot be a domain sort of a symbol from Σ1 other than an
equality predicate. In other words, if a relation or a function symbol has as among its domain
sorts a sort from Σ1 ∩ Σ2, then this symbol is from Σ2 (and not from Σ1, unless it is the
equality predicate).

Tame combinations arise in infinite-state model-checking (in fact, the definition is sug-
gested by this application domain), where signatures can be split into a signature Σ2 used to
represent ‘datatypes’ like integers and a signature Σ1 for representing elements contained in
a database: this is customary in the literature on data-aware processes verification [5, 9].

Notice that the notion of a tame combination is not symmetric in T1 and T2: to see this,
notice that if the sorts of Σ1 are included in the sorts of Σ2, then T1 must be a pure equality
theory (but this is not the case if we swap T1 with T2). The combination of IDL and EUF(Σ)

used in the counterexample of Sect. 7 is not tame: even if we formulate EUF(Σ) as a two-
sorted theory, the unique sort of IDL must be a sort of EUF(Σ) too, as witnessed by the
impure atom f (e) = 0 in the formula (25). Because of this, for the combination to be tame,
IDL should play the role of T2 (the arithmetic operation symbols are defined on a shared
sort); however, the unary function symbol f ∈ Σ has a shared sort as domain sort, so the
combination is not tame anyway.

In a tame combination, an atomic formula A can only be of two kinds: (1) we say that A
is of the first kind iff the sorts of its root predicate are from Σ1 \ Σ2; (2) we say that A is
of the second kind iff the sorts of its root predicate are from Σ2. We use the roman letters
e, x, . . . for variables ranging over sorts inΣ1\Σ2 and the greek letters η, ξ, . . . for variables
ranging over sorts in Σ2. Thus, if we want to display free variables, atoms of the first kind
can be represented as A(e, x, . . . ), whereas atoms of the second kind can be represented as
A(η, ξ, . . . , t(e, x, . . . ), . . . ), where the t areΣ1-terms. In the following, given two tuples of
Σi -terms α := 〈α1, . . . , αn〉 and β := 〈β1, . . . , βn〉 (for some i = 1, 2), we use the notation
α = β for denoting the conjunction of equalities

∧
j α j = β j .

Remark 2 We remark that if a formula ψ(η) is a Σ1-formula and η are variables of Σ2-sorts,
according to the definition of a tame combination, ψ(η) must be a conjunction of equalities
and disequalities between variables: indeed, in this case η need to range over the interpretation
of a common sort S, and ψ cannot contain non-variable terms built out of η, because there
cannot be a Σ1-function symbol having S as domain.

Suppose that T1∪T2 is a tame combination and that T1, T2 are universal theories admitting
model completions T ∗

1 , T ∗
2 . We propose the following algorithm, called TameCombCover,
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to compute the cover of a primitive formula; this formula must be of the kind

∃e ∃η(φ(e, x) ∧ ψ(η, ξ, t(e, x))) (26)

where φ is a Σ1-conjunction of literals, ψ is a conjunction of Σ2-literals and the t are
Σ1-terms.

The TameCombCover algorithm has three steps:

(i) First Step. We flatten (26) and get

∃e ∃η ∃η′ (φ(e, x) ∧ η′ = t(e, x) ∧ ψ(η, ξ, η′))) (27)

where the η′ are fresh variables abstracting out the t and η′ = t(e, x) is a component-wise
conjunction of equalities.

(ii) Second Step. We apply the cover algorithm of T1 to the formula

∃e (φ(e, x) ∧ η′ = t(e, x)) ; (28)

this gives as a result a formula φ̃(x, η′) that we put in DNF. A disjunct of φ̃ will have the
form φ1(x) ∧ φ2(η

′, t ′(x)) after separation of the literals of the first and of the second

kind. We pick such a disjunct φ1(x) ∧ φ2(η
′, t ′(x)) of the DNF of φ̃(x, η′) and update

our current primitive formula to

∃ξ ′ (ξ ′ = t ′(x) ∧ (∃η ∃η′ (φ1(x) ∧ φ2(η
′, ξ ′) ∧ ψ(η, ξ, η′)))) (29)

(this step is nondeterministic: in the end we shall output the disjunction of all possible
outcomes). Here again the ξ ′ are fresh variables abstracting out the terms t ′.4

(iii) Third Step. We apply the cover algorithm of T2 to the formula

∃η ∃η′ (φ2(η
′, ξ ′) ∧ ψ(η, ξ, η′)) (30)

this gives as a result a formula ψ ′(ξ , ξ ′). We update our current formula to

∃ξ ′ (ξ ′ = t ′(x) ∧ φ1(x) ∧ ψ ′(ξ, ξ ′))

and finally to the equivalent quantifier-free formula

φ1(x) ∧ ψ ′(ξ , t ′(x)). (31)

We now show that the above algorithm is correct under very mild hypotheses. We need
some technical facts about stably infinite theories in a multi-sorted context. We say that a
multi-sorted theory T is stably infinite with respect to a set of sorts S from its signature iff
every T -satisfiable constraint is satisfiable in a model M where, for every S ∈ S, the set
SM (namely the interpretation of the sort S in M) is infinite. The next Lemma is a light
generalization of Lemma 2 and is proved in the same way:

Lemma 7 Let T be stably infinite with respect to a subset S of the set of sorts of the signature
of T . Let M be a model of T and let, for every S ∈ S, XS be an at most countable superset
of SM. Then there is an extension N of M such that for all S ∈ S we have SN ⊇ XS.

4 As noticed in Remark 2, φ2(η′, ξ ′) must be a conjunction of equalities and disequalities between variables,
because it is a Σ1-formula (it comes from a T1-cover computation) and η′, ξ ′ are variables of Σ2-sorts.
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Proof Let us expand the signature of T with the setC of fresh constants (we take one constant
for every c ∈ XS \ SM). We need to prove the T -consistency of Δ(M) with a the set D of
disequalities asserting that all c ∈ C are different from each other and from the names of the
elements of the support ofM. By compactness, it is sufficient to ensure the T -consistency of
Δ0 ∪ D0, where Δ0 and D0 are finite subsets of Δ(M) and D, respectively. SinceM |	 Δ0,
this set is T -consistent and hence it is satisfied in a T -model M′ where all the sorts in S
are interpreted as infinite sets; in such M′, it is trivially seen that we can interpret also the
constants occurring in D0 so as to make D0 true too. ��
Lemma 8 Let T1, T2 be universal signature disjoint theories which are stably infinite with
respect to the set of shared sorts (we let Σ1 be the signature of T1 and Σ2 be the signature
of T2). Let the index i be 1 or 2: we let M0 be a model of T1 ∪ T2 and M1 be a model of Ti
extending the Σi -reduct ofM0. Then there exists a model N of T1 ∪ T2, extendingM0 as a
Σ1 ∪ Σ2-structure and whose Σi -reduct extends M1.

Proof Using Lemma 7, we build infinitely many models M0,M1,M2, . . . such that: (i)
M2 j is a Σ3−i -structure which is a model of T3−i ; (ii) M2 j+1 is a Σi -structure which is
a model of Ti ; (iii) M2 j+2 is a Σ3−i -extension of M2 j ; (iv) M2 j+3 is a Σi -extension of
M2 j+1; (v) the supports of the Mk , once restricted to the Σ1 ∩ Σ2-sorts (call |Mk | such
restrictions), form an increasing chain |M0| ⊆ |M1| ⊆ |M2| ⊆ · · · .

The union over this chain of models will be the desired N . ��
We are now ready for the main result of this section:

Theorem 7 Let T1 ∪ T2 be a tame combination of two universal theories admitting a model
completion. If T1, T2 are also stably infinite with respect to their shared sorts, then T1 ∪ T2
has amodel completion. Covers in T1∪T2 can be computed as shown in the above three-steps
algorithm TameCombCover.

Proof Since condition (i) of Lemma 1 is trivially true, we need only to check condition
(ii), namely that given a T1 ∪ T2-model M and elements a, b from its support such that
M |	 φ1(a) ∧ ψ ′(b, t ′(a)) as in (31), then there is an extension N of M such that (26) is
true in N when evaluating x over a and ξ over b.

If we let b′ be the tuple such that M |	 b′ = t ′(a), then we have M |	 b′ = t ′(a) ∧
φ′(a) ∧ ψ ′(b, b′). Since ψ ′(ξ , ξ ′) is the T2-cover of (30), the Σ2-reduct ofM embeds into a
T2-model where (30) is true under the evaluation of the ξ as the b. By Lemma 8, this model
can be embedded into a T1 ∪ T2-model M′ in such a way that M′ is an extension of M
and that M′ |	 b′ = t ′(a) ∧ φ1(a) ∧ φ2(c′, b′) ∧ ψ(c, b, c′) holds for some c, c′. Since
φ1(x) ∧ φ2(η

′, t ′(x)) implies the T1-cover of (28) and M′ |	 φ1(a) ∧ φ2(c′, t(a)), then the
Σ1-reduct ofM′ can be extended to a T1-model where (28) is true when evaluating the x, η′
to the a, c′. Again by Lemma 8, this model can be extended to a T1∪T2-modelN such thatN
is an extension ofM′ (hence also ofM) andN |	 φ(a′, a)∧c′ = t(a′, a)∧ψ(c, b, c′), that
isN |	 φ(a′, a)∧ψ(c, b, t(a′, a)). This means thatN |	 ∃e ∃η(φ(e, a)∧ψ(η, b, t(e, a))),
as desired. ��

We conclude this subsection discussing the applications that inspired tame combinations.
In the context of data-aware processes verification [4, 5, 9], where relational databases can
be extended with arithmetical values such as integers and reals, tame combinations become
particularly interesting. Consider the combination TDB ∪ Tint , where:

1. TDB is a multi-sorted version of EUF(Σ) in a signature Σ comprising three sorts
S1,S2,S3, and two function symbols fR,1 : S1 → S2 and fR,2 : S1 → S3;
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2. Tint is some theory for linear arithmetics, e.g., LIA or LRA, such that the unique sort
of Tint coincides with S3.

It can be trivially seen that this combination is tame.
As explained in [9], (Σ, TDB) can be thought of as a DB schema, i.e. as the formalization

of a classical relational databasewith primary and foreign keys: for instance, fromunary func-
tions fR,1 and fR,2, one can reconstruct the corresponding database relation R(A1, A2, A3),
where each attribute Ai has type Si (for i = 1, . . . , 3) and A1 is the primary key of R. The
interested reader is referred to [9, 31] for details on this. In addition, S3, which is interpreted
into a model of Tint , can be used to formalize a value domain (using again the nomenclature
of [9]), i.e., an infinite arithmetic domain whose elements are constrained by Tint : in this
sense, these elements can be thought of as (possibly infinitely many and fresh) values that
can be injected into the database, e.g., by an external user (they are essential for applications
in data-aware process verification). For details on this and its use in formal verification, see
[31].

8.1 An Example of Combined Covers for the Tame Combination

Let T1 be EUF(Σ1), where Σ1 is a multi-sorted signature with three sorts S1, S2 and S3
and with a function symbol f : S1 × S2 → S3. Let T2 be LIA (which is not convex, see
[2,Sect. 4] for a precise description of this theory), where its (unique) sort is S3, which is in
common with Σ1. We notice that T1 ∪T2 is a tame combination, since the common sort S3 is
the codomain sort (and not the domain sort) of the unique symbol f from Σ1 different from
equality. We show a simple example on how to compute a T1 ∪ T2-cover using the above
algorithm.

Let

∃e
(

f (e, x1) ≤ f (e, x2) ∧ 2ξ2 ≤ f (e, x1) + ξ1

∧ f (e, x2) + ξ3 < 4ξ4 ∧ ξ3 ≤ ξ1

)

(32)

be the formula forwhichwewould like to compute a T1∪T2-cover: the only truly existentially
quantified variable here is e.

We first apply the First Step, and we abstract out f (e, x1) and f (e, x2) by introducing
two fresh variables η′

1 and η′
2:

∃e, η′
1, η

′
2

(
η′
1 = f (e, x1) ∧ η′

2 = f (e, x2) ∧ 2ξ2 ≤ η′
1 + ξ1

∧ η′
2 + ξ3 < 4ξ4 ∧ ξ3 ≤ ξ1 ∧ η′

1 ≤ η′
2

)

(33)

Then, in order to apply the Second Step, we need to compute the T1-cover of the following
formula:

∃e (η′
1 = f (e, x1) ∧ η′

2 = f (e, x2)) (34)

and we obtain:

x1 = x2 → η′
1 = η′

2

which, in turn, is equivalent to the following formula in DNF form:

x1 �= x2 ∨ η′
1 = η′

2

Now, we analyze the two different cases create by each disjunct in the previous formula.
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First Case If we pick up the disjunct x1 �= x2, after updating Formula (33), we get the
following equivalent formula:

∃η′
1, η

′
2

(
x1 �= x2 ∧ 2ξ2 ≤ η′

1 + ξ1 ∧ η′
2 + ξ3 ≤ 1 + 4ξ4

∧ ξ3 ≤ ξ1 ∧ η′
1 ≤ η′

2

)

(35)

We now apply the Third Step, by computing the T2-cover of the formula:

∃η′
1, η

′
2

(
2ξ2 ≤ η′

1 + ξ1 ∧ η′
2 + ξ3 ≤ 1 + 4ξ4

∧ ξ3 ≤ ξ1 ∧ η′
1 ≤ η′

2.

)

(36)

This is in general achieved by applying theCooper’s algorithm [12]. In this case, it is sufficient
to notice that Formula (36) implies:

2ξ2 − ξ1 ≤ η′
1 ∧ η′

1 ≤ η′
2 ∧ η′

2 ≤ 1 + 4ξ4 − ξ3

which provide lower and upper bounds for both η′
1 and η′

2, as wanted. Hence, the T2-cover
of Formula (36) is:

2ξ2 − ξ1 ≤ 1 + 4ξ4 − ξ3 ∧ ξ3 ≤ ξ1 (37)

We then update our Formula (35) and we get the first disjunct of our T1 ∪ T2-cover:

x1 �= x2 ∧ 2ξ2 − ξ1 ≤ 1 + 4ξ4 − ξ3 ∧ ξ3 ≤ ξ1 (38)

Second Case If we pick up the disjunct η′
1 = η′

2, after updating Formula (33), we get the
following equivalent formula:

∃η′
1, η

′
2

(
η′
1 = η′

2 ∧ 2ξ2 ≤ η′
1 + ξ1 ∧ η′

2 + ξ3 ≤ 1 + 4ξ4
∧ ξ3 ≤ ξ1 ∧ η′

1 ≤ η′
2

)

(39)

We now apply the Third Step, by computing the T2-cover of the previous formula. In this
case, it is sufficient to notice that Formula (39) implies:

2ξ2 − ξ1 ≤ η′
1 ∧ η′

1 = η′
2 ∧ η′

2 ≤ 1 + 4ξ4 − ξ3

which provide lower and upper bounds for both η′
1 and η′

2, as wanted. Hence, the T2-cover
of Formula (39) is:

2ξ2 − ξ1 ≤ 1 + 4ξ4 − ξ3 ∧ ξ3 ≤ ξ1 (40)

We then update our Formula (39) and we get the second disjunct of our T1 ∪ T2-cover:

2ξ2 − ξ1 ≤ 1 + 4ξ4 − ξ3 ∧ ξ3 ≤ ξ1 (41)

Hence, by taking the disjunction of Formulae (38) and (41) it is straightforward to see that
the T1 ∪ T2-cover of Formula (32) is equivalent to:

2ξ2 − ξ1 ≤ 1 + 4ξ4 − ξ3 ∧ ξ3 ≤ ξ1 (42)
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9 Conclusions and FutureWork

In this paper we showed that covers (aka uniform interpolants) exist in the combination of
two convex universal theories over disjoint signatures in case they exist in the component
theories and in case the component theories also satisfy the equality interpolating condition.
Notice that the last condition is needed to transfer to combinations the existence of (ordinary)
quantifier-free interpolants. In order to prove our result on combined covers, Beth definability
property for primitive fragments turned out to be the crucial ingredient to extensively employ.
In case convexity fails, we showed by a counterexample that covers might not exist in the
combined theory. The last result raises the following research problem: even if in general
covers do not exist for the combination of non-convex theories, under which conditions can
one decide whether covers exist and, if so, how can one compute them?

Another interesting research question concerns complexity of the convex combined algo-
rithm. It generates a tree whose depth is linear, hence the number of created nodes are in
the worst case exponential. In order to generate new nodes, the algorithm makes use of the
cover algorithms for the component theories and of the algorithms for generating the equality
interpolating terms: these algorithms are given as input to our algorithm. Taking into consid-
eration also the fact that these algorithms are used recursively, it is not immediate to give a
significant upper bound to the overall complexity in the general case: instead, notice that this
problem strongly depends on the component theories considered, hence it should be tackled
separately for each involved theory and in view of the specific, concrete applications that the
users have in mind. For these reasons, we leave an exhaustive investigation of this to future
work, since it would require genuinely novel research and a thorough analysis of different
examples of theories.

Applications suggested a different line of investigations, which led us to consider so-called
‘tame combinations’. In data-aware processes verification [4, 5, 9] one uses tame combina-
tions T1 ∪ T2, where T1 is a multi-sorted version of EUF(Σ) in a signature Σ containing
only unary function symbols and relation symbols of any arity, and where T2 is typically
some fragment of linear arithmetics (T2-sorts are called value sorts in the terminology of [4,
5, 9]). In this context, quantifier elimination in T ∗

1 for primitive formulae is quadratic in com-
plexity. Model-checkers likeMCMT represent sets of reachable states by using conjunctions
of literals and during preimage computations quantifier elimination needs to be applied to
primitive formulae. Now, if all relation symbols are at most binary, such a quantifier elim-
ination in T ∗

1 produces conjunctions of literals out of primitive formulae. Thus, step (ii) in
the algorithm from Sect. 8 becomes deterministic and the only reason why such an algorithm
may become expensive (i.e., non polynomial) lies in the final quantifier elimination step for
T ∗
2 . This step might be extremely expensive if substantial arithmetic is involved, but it might

still be efficiently handled in practical cases where only very limited arithmetic is used (e.g.,
difference bound constraints like x − y ≤ n or x ≤ n, where n is a constant). Our algorithm
for covers in tame combinations has been implemented in version 3.0 of MCMT.

We also feel that this algorithm can be really useful in various model-checking applica-
tions. More specifically, such a model checking framework can be applied along the recent
line of research concerning analysis of data-aware processes, in which data representation
and manipulation capabilities can be extended with arithmetic. Like that, one could adapt
the results of this paper to the existing formalism for data-aware extensions of the de-facto
standard for business process modeling [4] or to data-aware classes of Petri nets [14, 15, 28,
29]. We leave it for future work.
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A final future research line could consider cover transfer properties to non-disjoint sig-
natures combinations, analogously to similar results obtained in [18, 19] for the transfer of
quantifier-free interpolation.
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