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Abstract
Uniform interpolants have been largely studied in non-classical propositional logics since the
nineties; a successive research line within the automated reasoning community investigated
uniformquantifier-free interpolants (sometimes referred to as “covers”) in first-order theories.
This further research line is motivated by the fact that uniform interpolants offer an effective
solution to tackle quantifier elimination and symbol elimination problems, which are central
in model checking infinite state systems. This was first pointed out in ESOP 2008 by Gulwani
and Musuvathi, and then by the authors of the present contribution in the context of recent
applications to the verification of data-aware processes. In this paper, we show how covers are
strictly related tomodel completions, a well-known topic inmodel theory.We also investigate
the computation of covers within the Superposition Calculus, by adopting a constrained
version of the calculus and by defining appropriate settings and reduction strategies. In
addition, we show that computing covers is computationally tractable for the fragment of
the language used when tackling the verification of data-aware processes. This observation
is confirmed by analyzing the preliminary results obtained using the mcmt tool to verify
relevant examples of data-aware processes. These examples can be found in the last version
of the tool distribution.
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1 Introduction

Uniform interpolants were originally studied in the context of non-classical logics, starting
from the pioneering work by Pitts [55]. We briefly recall what uniform interpolants are. We
fix a logic or a theory T and a suitable fragment L (propositional, first-order quantifier-free,
etc.) of its language. Given an L-formula φ(x, y) (where x, y are the variables occurring
free in φ), a uniform interpolant of φ (w.r.t. y) is an L-formula φ′(x) where only variables
x occur free, and that satisfies the following two properties: (i) φ(x, y) �T φ′(x); (ii) for
any further L-formula ψ(x, z) such that φ(x, y) �T ψ(x, z), we have φ′(x) �T ψ(x, z).
Whenever uniform interpolants exist, one can compute an interpolant for an entailment like
φ(x, y) �T ψ(x, z) in such a way that this interpolant is independent of ψ .

The existence of uniform interpolants is an exceptional phenomenon, which is however
not so infrequent; it has been extensively studied in non-classical logics starting from the
nineties, as witnessed by a large literature, including for instance [7,22,33–35,43,58,62,63]).
The main results from the above papers are that uniform interpolants exist for intuitionistic
logic and for some modal systems (like the Gödel-Lob system and the S4.Grz system); they
do not exist for instance in S4 and K4, whereas for the basic modal system K they exist for
the local consequence relation but not for the global consequence relation.

In the last decade, also the automated reasoning community developed an increasing
interest in uniform interpolants, with particular focus on quantifier-free fragments of first-
order theories. This is witnessed by various talks and drafts by Kapur presented in many
conferences and workshops (FloC 2010, ISCAS 2013-14, SCS 2017 [41]), as well as by
the paper presented in ESOP 2008 authored by Gulwani and Musuvathi [37]. In this last
paper uniform interpolants were renamed as covers, a terminology we shall adopt in this
paper too. In these contributions, examples of cover computations were supplied and also
some algorithms were sketched. The first formal proof about the existence of covers in EUF
was however published only in [14] by the present authors; such a proof was equipped with
powerful semantic tools (see the Cover-by-Extensions Lemma 3.1 below) obtained thanks
to interesting connections with model completeness [56], and came with an algorithm for
computing covers that is based on a constrained variant of the Superposition Calculus [54].
Both themodel-theoretic tools and the algorithm are detailed in the present paper. Two simple
additional algorithms, which exploit DAG representations of terms, are studied in [26,27].

The usefulness of covers in model checking was already stressed in [37] and further moti-
vated by our recent line of research on the verification of data-aware processes (also called
‘database driven applications’ in this paper) [12,13,15,17]. Notably, this is also operationally
mirrored in the MCMT model checker [32] starting from version 2.8 (database driven mod-
ule). The need for incorporating this algorithm withinMCMT is due to the following reason.
Declarative approaches to infinite state model checking [57] need to manipulate logical for-
mulae in order to represent sets of reachable states. To prevent divergence, various abstraction
strategies have been adopted, ranging from interpolation-based [47] to sophisticated search
via counterexample elimination [38]. Precise computations of the set of reachable states
require some form of quantifier elimination and hence are subject to two problems, namely
that quantifier elimination might not be available at all and that, when available, it is com-
putationally very expensive. To cope with the first problem, Gulwani and Musuvathi [37]
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introduced the notion of cover and showed that covers can be used as an alternative to quan-
tifier elimination and yield a precise computation of reachable states. Concerning the second
problem, again in [37] it was observed (as a side remark) that computing the cover of a
conjunction of literals becomes tractable when only free unary function symbols occur in
the signature. We show here (see Sect. 6 below) that the same observation applies when also
free relational symbols occur.

In [11,13] we propose a new formalism for representing read-only database schemas
towards the verification of integrated models of processes and data [10] (called data-aware
processes henceforth), in particular so-called artifact systems [8,20,44,61]; this formalism
(briefly recalled in Sect. 4.1 below) precisely uses signatures comprising unary function
symbols and free n-ary relations. In [11,13,17] we apply model completeness techniques
for verifying transition systems based on read-only databases, in a framework where such
systems employ both individual and higher order variables.

In this paper we show (see Sect. 3 below) that covers (alias uniform interpolants) are
strictly related to model completions, thus creating a bridge that links different research
areas. In particular, we prove that computing covers for a theory is equivalent to eliminating
quantifiers in its model completion. This connection reproduces, in a first-order setting, an
analogous well-known connection for propositional logics: the connection between propo-
sitional uniform interpolants and model completions of equational theories axiomatizing the
varieties corresponding to propositional logics, which was first stated in [36] and further
developed in [33,43,62]. Interestingly, model completeness has other well-known applica-
tions in computer science. It has been applied: (i) to reveal interesting connections between
temporal logic andmonadic second-order logic [29,30]; (ii) in automated reasoning to design
complete algorithms for constraint satisfiability in combined theories over non-disjoint sig-
natures [1,23,31,49–51]; (iii) again in automated reasoning in relationship with interpolation
and symbol elimination [59,60]; (iv) in modal logic and in software verification theories
[24,25], to obtain combined interpolation results.

This paper is organized as follows. After some preliminaries in Sect. 2, we first state the
formal connection between uniform quantifier-free interpolation and model completions in
Sect. 3. Then, in Sect. 4 we report our applications (mostly taken from [17]) concerning ver-
ification of data-aware processes. We begin the second part of the paper by proving (Sect. 5
below) that covers for EUF can be computed through a constrained version of the Superpo-
sition Calculus [54] equipped with appropriate settings and reduction strategies; the related
completeness proof requires a careful analysis of the constrained literals generated during
the saturation process. Complexity bounds for the fragment used in data-aware processes
verification are investigated in Sect. 6; an extension of our constrained Superposition Calcu-
lus that handles a schema of additional constraints (useful for our applications) is provided
in Sect. 7; in Sect. 8 we give some details about our first implementation in our tool mcmt.
This paper is the extended version of [14]: apart from containing more basic preliminary
material, a thorough account of model-checking applications, full proofs and detailed exam-
ples, in Sects. 6 and 7 this paper covers additional new results on complexity analysis and
extensions.

2 Preliminaries

We adopt the usual first-order syntactic notions of signature, term, atom, (ground) formula,
and so on; our signatures are multi-sorted and include equality for every sort. This implies
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that variables are sorted as well. For simplicity, most basic definitions in this section will be
supplied for single-sorted languages only. However, the adaptation to multi-sorted languages
is straightforward: for example, a multi-sorted signature Σ must contain not only constant,
function and relation symbols, but also sorts. We compactly represent a tuple 〈x1, . . . , xn〉 of
variables as x . The notation t(x), φ(x)means that the term t , the formula φ has free variables
included in the tuple x . Our tuples are assumed to be formed by distinct variables, thus we
underline that, writing e.g.φ(x, y), wemean that the tuples x, y aremade of distinct variables
that are also disjoint from each other.

We assume that a function arity can be deduced from the context. Whenever we build
terms and formulae, we always assume that they are well-typed, in the sense that the sorts
of variables, constants, and function sources/targets match. A formula is said to be universal
(resp., existential) if it has the form ∀x(φ(x)) (resp., ∃x(φ(x))), where φ is a quantifier-free
formula. Formulae with no free variables are called sentences.

From the semantic side, we use the standard notion of a Σ-structure M and of truth of a
formula in a Σ-structure under a free variables assignment. The support of a structureM is
the disjoint union of the interpretations of the Σ-sorts in M and is indicated with |M|.

AΣ-theory T is a set ofΣ-sentences; amodel of T is aΣ-structureMwhere all sentences
in T are true. We use the standard notation T |� φ to say that φ is true in all the models of
T for every assignment to the variables occurring free in φ. We say that φ is T -satisfiable iff
there is a model M of T and an assignment to the variables occurring free in φ making φ

true in M.
A Σ-formula φ is a Σ-constraint (or just a constraint) iff it is a conjunction of literals,

i.e. of atomic formulae and their negations.
The constraint satisfiability problem for T is the following: we are given a constraint

(equivalently, a quantifier-free formula) φ(x)
and we are asked whether there exist a model M of T and an assignment I to the free

variables x such that M, I |� φ(x).
A theory T has quantifier elimination iff for every formula φ(x) in the signature of T

there is a quantifier-free formula φ′(x) such that T |� φ(x) ↔ φ′(x). It is well-known
(and easily seen) that quantifier elimination holds in case we can eliminate quantifiers from
primitive formulae, i.e. from formulae of the kind ∃y φ(x, y), where φ is a constraint. Since
we are interested in effective computability, we assume that when we talk about quantifier
elimination, an effective procedure for eliminating quantifiers is given.

We recall also some basic definitions and notions from model theory.
Let Σ be a first-order signature. The signature obtained from Σ by adding to it a set a

of new constants (i.e., 0-ary function symbols) is denoted by Σa . Analogously, given a Σ-
structureM, the signatureΣ can be expanded to a new signatureΣ |M| := Σ∪{ā | a ∈ |M|}
by adding a set of new constants ā (the name for a), one for each element a in M, with the
convention that two distinct elements are denoted by different “name” constants. M can be
expanded to aΣ |M|-structure just interpreting the additional constants over the corresponding
elements. From now on, we confuseM and this expanded structure andwe do not distinguish
from an element of |M| and its name. Thus we employ notations like M |� φ(a) to mean
that the sentence φ(a) (obtained by replacing the free variables x of φ(x) by the names of
some tuple a from |M|) is true inM, onceM is canonically expanded to a Σ |M|-structure
as explained above. Notice that this is the same as saying that φ(x) is true in M under the
assignment mapping the x to the a.

A Σ-embedding [18] (or, simply, an embedding) between two Σ-structures M and N
is a map μ : |M| −→ |N | among the support sets |M| of M and |N | of N satisfying
the condition (M |� ϕ ⇒ N |� ϕ) for all Σ |M|-literals ϕ (M is regarded as a Σ |M|-
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structure, by interpreting each additional constant a ∈ |M| into itself and N is regarded
as a Σ |M|-structure by interpreting each additional constant a ∈ |M| into μ(a)). If μ :
M −→ N is an embedding that is just the identity inclusion |M| ⊆ |N |, we say that M is
a substructure of N or that N is an extension of M. We recall that a substructure preserves
and reflects validity of ground formulae, in the following sense: given a Σ-substructureM1

of a Σ-structure M2, a ground Σ |M1|-sentence θ is true in M1 iff θ is true in M2.
Let M be a Σ-structure. The diagram of M, written ΔΣ(M) (or just Δ(M)), is the set

of ground Σ |M|-literals that are true in M. An easy but important result, called Robinson
Diagram Lemma [18], says that, given any Σ-structure N , the embeddings μ : M −→ N
are in bijective correspondencewith expansions ofN toΣ |M|-structureswhich aremodels of
ΔΣ(M). The expansions and the embeddings are related in the obvious way: ā is interpreted
asμ(a). The typical use of the Robinson Diagram Lemma is the following: suppose we want
to show that some structureM can be embedded into a structureN in such a way that some
set of sentences Δ are true. Then, by the Lemma, this turns out to be equivalent to the fact
that the set of sentences Δ(M) ∪ Δ is consistent: thus, the Diagram Lemma can be used
to transform an embeddability problem into a consistency problem (the latter is a problem
of a logical nature, to be solved for instance by appealing to the compactness theorem for
first-order logic).

Amalgamation is a classical algebraic concept. We give the formal definition:

Definition 2.1 (Amalgamation) A theory T has the amalgamation property if for every
couple of embeddings μ1 : M0 −→ M1, μ2 : M0 −→ M2 among models of T , there
exists a model M of T endowed with embeddings ν1 : M1 −→ M and ν2 : M2 −→ M
such that ν1 ◦ μ1 = ν2 ◦ μ2. �

3 Covers, Uniform Interpolation andModel Completions

We report the notion of cover taken from [37]. Fix a theory T and an existential formula
∃e φ(e, y); call a residue of ∃e φ(e, y) any quantifier-free formula belonging to the set of
quantifier-free formulae

Res(∃e φ) = {θ(y, z) | T |� ∃e φ(e, y) → θ(y, z)} = {θ(y, z) | T |� φ(e, y) → θ(y, z)}.
A quantifier-free formula ψ(y) is said to be a T -cover (or, simply, a cover) of ∃e φ(e, y)
iff ψ(y) ∈ Res(∃e φ) and ψ(y) implies (modulo T ) all the other formulae in Res(∃e φ).
Notice that the cover is unique, modulo T -equivalence. Alternatively, ψ(y) is also said to
be a T -uniform (quantifier-free) interpolant of φ(e, y). The following Lemma (to be widely
used throughout the paper) supplies a semantic counterpart to the notion of a cover:

Lemma 3.1 (Cover-by-Extensions) A formula ψ(y) is a T -cover of ∃e φ(e, y) iff it satisfies
the following two conditions: (i) T |� ∀y (∃e φ(e, y) → ψ(y)); (ii) for every model M of
T , for every tuple of elements a from the support of M such that M |� ψ(a) it is possible
to find another model N of T such that M embeds into N and N |� ∃e φ(e, a). �

Proof Suppose thatψ(y) satisfies conditions (i) and (ii) above. Condition (i) says thatψ(y) ∈
Res(∃e φ), so ψ is a residue. In order to show that ψ is also a cover, we have to prove that
T |� ∀y, z(ψ(y) → θ(y, z)), for every θ(y, z) that is a residue for ∃e φ(e, y). Given a model
M of T , take a pair of tuples a, b of elements from |M| and suppose that M |� ψ(a). By
condition (ii), there is a model N of T such that M embeds into N and N |� ∃e φ(e, a).
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Using the definition of Res(∃e φ), we have N |� θ(a, b), since θ(y, z) ∈ Res(∃x φ). Since
M is a substructure of N and θ is quantifier-free, M |� θ(a, b) as well, as required.

Suppose that ψ(y) is a cover. The definition of residue implies condition (i). To show
condition (ii) we have to prove that, given a model M of T , for every tuple a of elements
from |M|, if M |� ψ(a), then there exists a model N of T such that M embeds into
N and N |� ∃x φ(x, a). Using Robinson Diagram Lemma, we can reformulate the latter
embeddability statement into a consistency statement: so what we need to prove is that
Δ(M) ∪ {∃x φ(x, a)} is a T -consistent Σ |M|-set of sentences (Σ is the signature of T ).
By reduction to absurdity, suppose that this is not the case: by compactness, there is a finite
number of literals 	1(a, b), ..., 	m(a, b) (for some tuple b of elements from |M|) such that
M |� 	i (a, b) (for all i = 1, . . . ,m) and

(∗) T |� ∃e φ(e, a) → ¬(	1(a, b) ∧ · · · ∧ 	m(a, b)) .

Now, the constants a, b do not occur in the axioms of T and do not belong to Σ , hence we
can replace them by variables y, z in the T -proof witnessing (∗): indeed, since they do not
occur in the axioms of T , they are generic from the point of view of T . As a consequence,
we then get

T |� ∃e φ(e, y) → (¬	1(y, z) ∨ · · · ∨ ¬	m(y, z)).

By definition of residue, clearly (¬	1(y, z) ∨ · · · ∨ ¬	m(y, z)) ∈ Res(∃x φ); then, since
ψ(y) is a cover, T |� ψ(y) → (¬	1(y, z) ∨ · · · ∨ ¬	m(y, z)). Replacing back the variables
y, z by the constants a, b and recalling that M |� ψ(a), this implies that M |� ¬	 j (a, b)
for some j = 1, . . . ,m, which is a contradiction. Thus, ψ(y) satisfies conditions (ii) too. ��

We say that a theory T has uniform quantifier-free interpolation iff every existential
formula ∃e φ(e, y) (equivalently, every primitive formula ∃e φ(e, y)) has a T -cover. It is
clear that if T has uniform quantifier-free interpolation, then it has ordinary quantifier-free
interpolation [9], in the sense that if we have T |� φ(e, y) → φ′(y, z) (for quantifier-free
formulae φ, φ′), then there is a quantifier-free formula θ(y) such that T |� φ(e, y) → θ(y)
and T |� θ(y) → φ′(y, z). In fact, if T has uniform quantifier-free interpolation, then the
interpolant θ is independent on φ′: indeed, the same θ(y) can be used as interpolant for all
entailments T |� φ(e, y) → φ′(y, z), varying φ′.

We say that a universal theory T has a model completion iff there is a stronger theory
T ∗ ⊇ T (still within the same signature Σ of T ) such that (i) every Σ-constraint that is
satisfiable in a model of T is satisfiable in a model of T ∗; (ii) T ∗ eliminates quantifiers. Other
equivalent definitions are possible [18]: for instance, (i) is equivalent to the fact that T and
T ∗ prove the same quantifier-free formulae or again to the fact that every model of T can be
embedded into a model of T ∗. We recall that the model completion, if it exists, is unique and
that its existence implies the amalgamation property for T [18]. The relationship between
uniform interpolation in a propositional logic and the model completion

of the equational theory of the variety algebraizing it was extensively studied in [33]. In
the context of first-order theories, we prove an even more direct connection:

Theorem 3.2 Suppose that T is a universal theory. Then T has a model completion T ∗ iff T
has uniform quantifier-free interpolation. If this happens, T ∗ is axiomatized by the infinitely
many sentences

∀y (ψ(y) → ∃e φ(e, y)) (1)

where ∃e φ(e, y) is a primitive formula and ψ is a cover of it. �
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Proof Suppose first that there is a model completion T ∗ of T and let ∃e φ(e, y) be a primitive
formula. Since T ∗ eliminates quantifiers, we have T ∗ |� ∃e φ(e, y) ↔ ψ(y) for some
quantifier-free formula ψ(y). Since T and T ∗ prove the same quantifier-free formulae, from
the left-to-right side T ∗ |� φ(e, y) → ψ(y) we have that ψ(y) ∈ Res(∃e φ). If θ(y, z) ∈
Res(∃e φ), then we have T |� φ(e, y) → θ(y, z); the same entailment holds in T ∗ too,
where we have T ∗ |� ψ(y) → θ(y, z). Since ψ(y) → θ(y, z) is quantifier-free, we have
also T |� ψ(y) → θ(y, z), showing that ψ is a cover of ∃e φ(e, y). Thus T has uniform
interpolation, because we found a cover for every primitive formula.

Suppose vice versa that T has uniform interpolation. Let T ∗ be the theory axiomatized
by all the formulae (1) above.

From (i) of Lemma 3.1 and (1) above, we clearly get that T 
 admits quantifier elimination:
in fact, in order to prove that a theory enjoys quantifier elimination, it is sufficient to eliminate
quantifiers from primitive formulae (then the quantifier elimination for all formulae can be
easily shown by an induction over their complexity). This is exactly what is guaranteed by
(i) of Lemma 3.1 and (1).

Let M be a model of T . By using a chain argument [17] (see [18], Lemma 3.5.7 for an
almost identical construction), we show that there exists a model M′ of T 
 such that M
embeds into M′.

Consider the set of all pairs (a, ∃e φ(e, a)) where a is a tuple from |M|, ∃e φ(e, y) is
a primitive formula and M |� ψ(a) (here ψ is a cover of φ). By Zermelo’s Theorem, the
set of such pairs (a, ∃e φ(e, a)) can be well-ordered: let {(ai , ∃ei φi (ei , ai ))}i∈I be such a
well-ordered set of pairs, where I is some ordinal.1 By transfinite induction on this well-
order, we define M0 := M and, for each i ∈ I , Mi as an extension of

⋃
j<i M j such

that Mi |� ∃ei φi (ei , ai ), which exists for (ii) of Lemma 3.1 since
⋃

j<i M j |� ψi (ai )
(remember that validity of ground formulae is preserved passing through substructures and
superstructures, and M0 |� ψi (ai )).

Nowwe take the chain unionM1 := ⋃
i∈I Mi : since T is universal,M1 is again a model

of T . Thanks to this construction, we added, for every pair (ai , ∃ei φi (ei , ai )) (with ai ∈ M
and M |� ψi (ai )), a corresponding tuple bi such that M1 |� φi (bi , ai ); however, this only
guarantees that such a tuple bi exists for every pair (ai , ∃ei φi (ei , ai )) such that the tuple ai
is from |M|, whereas nothing is said for the pairs where the tuple a is in |M1| \ |M|. Then,
we iteratively repeat the chain construction above for these new a. Indeed, it is possible to
construct, by an analogous chain argument, a model M2 as done above, starting from M1

instead of M. Clearly, we get M0 := M ⊆ M1 ⊆ M2 by construction.
At this point, we iterate the same argument countably many times, so as to define a new

chain of models of T :

M0 := M ⊆ M1 ⊆ ... ⊆ Mn ⊆ ...

Defining M′ := ⋃
n Mn , we trivially get that M′ is a model of T such that M ⊆ M′

and satisfies all the sentences of type (1): the last fact is immediate, recalling that truth of
ground formulae (in expanded languages with names from support sets) is preserved by
substructures and extensions. After ω steps we are done, because every tuple a ∈ |M′|
occurs after finitely many steps, and its corresponding b in the construction are added at the
immediately subsequent step. ��

To sum up, Theorem 3.2 states that, thanks to Formulae (1), the T -uniform interpolant (or
cover) ψ of the formula ∃e φ(e, y) is exactly the T ∗-equivalent quantifier-free formula that

1 I is possibly different from ω (there can be uncountably many tuples ai ).
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eliminates the quantified variables e from ∃e φ(e, y): this means that computing covers in T
is equivalent to eliminating quantifiers in its model completion T ∗.

4 Model-Checking Applications

In this section we supply old and new motivations for investigating covers and model com-
pletions in view of model-checking applications. We first report the considerations from
[11,13,17,37] on symbolic model-checking via model completions (or, equivalently, via cov-
ers) in the basic case where system variables are represented as individual variables; for more
advanced applications where system variables are both individual and higher order variables,
see [11,13,17]. Similar ideas (i.e., ‘to use quantifier elimination in themodel completion even
if T does not allow quantifier elimination’) were used in [59] for interpolation and symbol
elimination.

Definition 4.1 A (quantifier-free) transition system is a tuple

S = 〈Σ, T , x, ι(x), τ (x, x ′)〉
where: (i) Σ is a signature and T is a Σ-theory; (ii) x = x1, . . . , xn are individual variables;
(iii) ι(x) is a quantifier-free formula; (iv) τ(x, x ′) is a quantifier-free formula (here the x ′ are
renamed copies of the x). �
A safety formula for a transition system S is a further quantifier-free formula υ(x) describing
undesired states of S. We say that S is safe with respect to υ if the system has no finite run
leading from ι to υ, i.e. (formally) if there is no model M of T and no k ≥ 0 such that the
formula

ι(x0) ∧ τ(x0, x1) ∧ · · · ∧ τ(xk−1, xk) ∧ υ(xk) (2)

is satisfiable in M (here xi ’s are renamed copies of x). The safety problem for S is the
following: given υ, decide whether S is safe with respect to υ.

Suppose now that the theory T mentioned in Definition 4.1 (i) is universal, has decidable
constraint satisfability problem and admits amodel completion T ∗. Algorithm 1 describes the
backward reachability algorithm for handling the safety problem for S (the dual algorithm
working via forward search is described in equivalent terms in [37]). An integral part of the
algorithm is to compute preimages. For that purpose, for any ϕ1(x, x ′) and ϕ2(x) (where x ′
are renamed copies of x), we define Pre(ϕ1, ϕ2) to be the formula ∃x ′(ϕ1(x, x ′) ∧ ϕ2(x ′)).

Algorithm 1: Backward reachability algorithm

Function BReach(υ)

1 φ ←− υ; B ←− ⊥;
2 while φ ∧ ¬B is T -satisfiable do
3 if ι ∧ φ is T -satisfiable. then

return unsafe
4 B ←− φ ∨ B;
5 φ ←− Pre(τ, φ);
6 φ ←− QE(T ∗, φ);

return (safe, B);

The preimage of the set of states described by a state formula φ(x) is the set of states
described byPre(τ, φ). The subprocedureQE(T ∗, φ) in Line 6 applies the quantifier elimina-
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tion algorithmof T ∗ to the existential formulaφ.Without the application of this subprocedure,
the existential prefix generated by the computation of preimages would grow in an unlimited
way and some decidability results (see, e.g., the locally finite case mentioned below) would
be compromized. Algorithm 1 computes iterated preimages of υ (storing their disjunction
into the variable B) and applies to them quantifier elimination, until a fixpoint is reached
or until a set intersecting the initial states (i.e., satisfying ι) is found. Inclusion (Line 2) and
disjointness (Line 3) tests produce proof obligations that can be discharged because T has
decidable constraint satisfiability problem.

The proof of Proposition 4.2 (which is a slight variant of a similar result for SimpleArtifact
Systems (SASs) in [17]) consists just in the observation that the formulae (2) are quantifier-
free and that a quantifier-free formula is satisfiable in a model of T iff so is it in a model of
T ∗: thus, if an unsafe trace exists at all, it arises in a model of T ∗, so that the subprocedure
QE(T ∗, φ) in Line 6 does not introduce overapproximations and consequently no spurious
trace can be produced during the search performed by our algorithm.

Proposition 4.2 Suppose that the universalΣ-theory T has decidable constraint satisfiability
problem and admits a model completion T ∗. For every transition system S = 〈Σ, T , x, ι, τ 〉,
the backward search algorithm is effective and partially correct for solving safety problems
for S.2 �

Despite its simplicity, Proposition 4.2 is a crucial fact. Notice that it implies decidability
of the safety problems in some interesting cases: this happens, for instance, when in T there
are only finitely many quantifier-free formulae in which x occur, as in case T has a purely
relational signature or, more generally, T is locally finite3. Since a theory is universal iff
it is closed under substructures [18] and since a universal locally finite theory has a model
completion iff it has the amalgamation property [45,64], it follows that Proposition 4.2 can be
used to cover the decidability result stated in Theorem 5 of [8] (once restricted to transition
systems over a first-order definable class of Σ-structures).

4.1 Database Schemas

In this subsection, we provide a new application for the above explained model-checking
techniques [13,17]. The application relates to the verification of integrated models of busi-
ness processes and data [10], referred to as artifact systems [61], where the behavior of the
process is influenced by data stored in a relational database (DB) with constraints. The data
contained therein are read-only: they can be queried by the process and stored in a working
memory, which in the context of this paper is constituted by a set of system variables. In this
context, safety amounts to checking whether the system never reaches an undesired property,
irrespectively of what is contained in the read-only DB.

We define next the two key notions of (read-only) DB schema and instance, by relying on
an algebraic, functional characterization.

Definition 4.3 A DB schema is a pair 〈Σ, T 〉, where: (i) Σ is a DB signature, that is, a finite
multi-sorted signature whose function symbols are all unary; (ii) T is a DB theory, that is, a
set of universal Σ-sentences. �

2 Partial correctnessmeans that, when the algorithm terminates, it gives a correct answer.Effectivenessmeans
that all subprocedures in the algorithm can be effectively executed.
3 For our purposes, it is convenient to define a theory T to be locally finite iff for every finite tuple of variables
x there are only finitely many T -equivalence classes of atoms A(x) involving only the variables x .
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Given a DB signature Σ , we denote by Σsrt the set of sorts, by Σfun the set of functions in
Σ and by Σrel the set of relations in Σ . We associate to a DB signature Σ a characteristic
(directed) graph G(Σ) capturing the dependencies induced by functions over sorts. Specif-
ically, G(Σ) is an edge-labeled graph whose set of nodes is Σsrt , and with a labeled edge

S
f−→ S′ for each f : S −→ S′ in Σfun. We say that Σ is acyclic if G(Σ) is so. The leaves

of Σ are the nodes of G(Σ) without outgoing edges. These terminal sorts are divided in
two subsets, respectively representing unary relations and value sorts. Non-value sorts (i.e.,
unary relations and non-leaf sorts) are called id sorts, and are conceptually used to represent
(identifiers of) different kinds of objects. Value sorts, instead, represent datatypes such as
strings, numbers, clock values, etc. We denote the set of id sorts in Σ by Σids, and that of
value sorts by Σval , hence Σsrt = Σids � Σval.

Before giving the formal definition of DB instance, we show an interesting example of
DB signature inspired by concrete business processes.

Example 4.1 ([17]) The human resource (HR) branch of a company stores the following
information inside a relational database: (i) users registered to the company website, who
are potentially interested in job positions offered by the company; (ii) the different, available
job categories; (iii) employees belonging to HR, together with the job categories they are
competent in (in turn indicating which job applicants they could interview).

To formalize these different aspects, we make use of a DB signature Σhr consisting of:
(i) four id sorts, used to respectively identify users, employees, job categories, and the com-
petence relationship connecting employees to job categories; (ii) one value sort containing
strings used to name users and employees, and describe job categories. In addition, Σhr

contains five function symbols mapping: (i) user identifiers to their corresponding names;
(ii) employee identifiers to their corresponding names; (iii) job category identifiers to their
corresponding descriptions; (iv) competence identifiers to their corresponding employees
and job categories.

The characteristic graph of Σhr is shown in Fig. 1 (left part). �

We now focus on extensional data conforming to a given DB schema.

Definition 4.4 A DB instance of DB schema 〈Σ, T 〉 is a Σ-structure M such that M is a
model of T .4 �

We respectively denote by SM, fM, and cM the interpretation in M of the sort S (this
is a set), of the function symbol f (this is a set-theoretic function), and of the constant c (this
is an element of the interpretation of the corresponding sort). Obviously, fM and cM must
match the sorts declared inΣ . For instance, if the source and the target of f are, respectively,
S and U , then the function fM has domain SM and range UM.

One might be surprised by the fact that signatures in our DB schemas contain unary
function symbols, beside relational symbols.As shown in [11,13,17], the algebraic, functional
characterization of DB schema and instance can be actually reinterpreted in the classical,
relational model so as to reconstruct the requirements posed in [44]. In this last work, the
schema of the read-only database must satisfy the following conditions: (i) each relation
schema has a single-attribute primary key; (ii) attributes are typed; (iii) attributes may be
foreign keys referencing other relation schemas; (iv) the primary keys of different relation
schemas are pairwise disjoint.

4 Onemay restrict tomodels interpreting sorts as finite sets, as customary in database theory. Since the theories
we are dealing with usually have finite model property for constraint satisfiability, assuming such restriction
turns out to be irrelevant, as far as safety problems are concerned (see [11,13] for an accurate discussion).
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UserId userName

EmpId empName

CompInId who
what

JobCatId jobCatDescr

String

id : UserId userName : StringUser

id : EmpId empName : StringEmployee

id : CompInId who : EmpId what : JobCatIdCompetentIn

id : JobCatId jobCatDescr : StringJobCategory

Fig. 1 On the left: characteristic graph of the human resources DB signature from Example 4.1. On the right:
relational view of the DB signature; each cell denotes an attribute with its type, underlined attributes denote
primary keys, and directed edges capture foreign keys

We now discuss why these requirements are matched by DB schemas.
Definition 4.3 naturally corresponds to the definition of relational database schema with

single-attribute primary and foreign keys. To see this, we adopt the named perspective, where
each relation schema is defined by a signature containing a relation name and a set of typed
attribute names. Let 〈Σ, T 〉 be a DB schema. Each sort S fromΣ corresponds to a dedicated
relation RS with the following attributes: (i) one identifier attribute idS with type S; (ii)
one dedicated attribute a f with type S′ for every function symbol f from Σ of the form
f : S −→ S′.
The fact that RS is constructed starting from functions inΣ naturally induces correspond-

ing functional dependencies within RS , and inclusion dependencies from RS to other relation
schemas. In particular, for each non-id attribute a f of RS , we get a functional dependency
from idS to a f . Altogether, such dependencies witness that idS is the primary key of RS .
In addition, for each non-id attribute a f of RS whose corresponding function symbol f has
id sort S′ as image, we get an inclusion dependency from a f to the id attribute idS′ of RS′ .
This captures that a f is a foreign key referencing RS′ . This view is shown in the following
example.

Example 4.2 The diagram on the right in Fig. 1 graphically depicts the relational view cor-
responding to the DB signature of Example 4.1. �

Given a DB instance M of 〈Σ, T 〉, its corresponding relational instance R[M] is the
minimal set satisfying the following property: for every id sort S from Σ , let f1, . . . , fn be
all functions in Σ with domain SM; then, for every identifier o ∈ SM, R[M] contains a
labeled fact of the form RS(idS :oM, a f1 : f1(o)M, . . . , a fn : fn(o)M), where attr :cM
means that the element cM corresponds to the attribute attr of the relation RS . In addition,
R[M] contains the tuples from rM, for every relational symbol r from Σ (these relational
symbols represent plain relations, i.e. those not possessing a key).

We close our discussion by focusing on DB theories. Notice that EUF suffices to handle
the sophisticated setting of artifact systems from [13,17] (e.g., key dependencies). The role of
a non-emptyDB theory is to encode background axioms to express additional constraints.We
illustrate a typical background axiom, required to handle the possible presence of undefined
identifiers/values in the different sorts. This, in turn, is essential to capture artifact systems
whose working memory is initially undefined, in the style of [21,44]. To accommodate this,
we add to every sort S of Σ a constant undefS (written by abuse of notation just undef
from now on), used to specify an undefined value. Then, for each function symbol f of Σ ,
we can impose additional constraints involving undef, for example by adding the following
axioms to the DB theory:
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∀x (x = undef ↔ f (x) = undef) (3)

This axiom states that the application of f to the undefined value produces an undefined
value, and it is the only situation for which f is undefined.

A slightly different approach may handle many undefined values for each sort; the reader
is referred to [11,13,17] for examples of concrete database instances formalized in our frame-
work.We just point out that in most cases the kind of axioms that we need for our DB theories
T are just one-variable universal axioms (like Axioms 3), so that they fit the hypotheses of
Proposition 4.5 below.

We are interested in applying the algorithm of Proposition 4.2 to a (non-deterministic)
version of Simple Artifact Systems (SASs) [17], i.e. transition systems S = 〈Σ, T , x, ι(x),
τ (x, x ′)〉, where 〈Σ, T 〉 is a DB schema in the sense of Definition 4.3. To this aim, it is
sufficient to identify a suitable class of DB theories having a model completion and whose
constraint satisfiability problem is decidable. A first result in this sense is given below. Given
the characteristic graph G(Σ) of a DB signature Σ , we recall that Σ is said to be acyclic if
G(Σ) is so.

Proposition 4.5 [17] A DB theory T has decidable constraint satisfiability problem and
admits a model completion in case it is axiomatized by finitely many universal one-variable
formulae and Σ is acyclic. �

We omit the proof of the above proposition, because the proposition does not play a role
in the following: the proof can be easily obtained by well-known facts from the literature
and is nevertheless reported in full detail in [17]. We only report here the algorithm for
quantifier elimination in T ∗ suggested by that proof: given a primitive formula ∃e φ(e, y),
the output ψ(y) of the algorithm is simply the conjunction of the set of all quantifier-free
χ(y)-formulae such that φ(e, y) → χ(y) is a logical consequences of T (they are finitely
many - up to T -equivalence - becauseΣ is acyclic). We also notice that, since acyclicity ofΣ
yields local finiteness, we immediately get as a Corollary the decidability of safety problems
for transitions systems based on DB schemas satisfying the hypotheses of the above theorem.

5 Covers via Constrained Superposition

Of course, a model completion may not exist at all. Proposition 4.5 shows that it exists in
case T is a DB theory axiomatized by universal one-variable formulae and Σ is acyclic. The
second hypothesis is unnecessarily restrictive and the algorithm for quantifier elimination
suggested by the proof of Proposition 4.5 is highly impractical: for this reason we are trying
a different approach. In this section, we drop the acyclicity hypothesis and examine the case
where the theory T is empty and the signature Σ may contain function symbols of any arity.
Covers in this context were shown to exist already in [37], using an algorithm that, very
roughly speaking, determines all the conditional equations that can be derived concerning
the nodes of the congruence closure graph. An algorithm for the generation of interpolants,
still relying on congruence closure [40], is sketched in [41].

We follow a different plan and we want to produce covers (and show that they exist) using
saturation-based theorem proving. The natural idea to proceed in this sense is to take the
matrix φ(e, y) of the primitive formula ∃e φ(e, y) we want to compute the cover of: this
is a conjunction of literals, so we consider each variable as a free constant, we saturate the
corresponding set of ground literals and finally we output the literals involving only the y. For
saturation, one can use any version of the superposition calculus [54].However, this procedure
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for our problem is not sufficient. As a trivial counterexample consider the primitive formula
∃e (R(e, y1) ∧ ¬R(e, y2)): the set of literals {R(e, y1),¬R(e, y2)} is saturated (recall that
we view e, y1, y2 as constants), however the formula has a non-trivial cover y1 �= y2 which
is not produced by saturation. If we move to signatures with function symbols, the situation
is even worse: the set of literals { f (e, y1) = y′

1, f (e, y2) = y′
2} is saturated but the formula

∃e ( f (e, y1) = y′
1∧ f (e, y2) = y′

2)has the conditional equality y1 = y2 → y′
1 = y′

2 as cover.
Disjunctions of disequations might also arise: the cover of ∃e h(e, y1, y2) �= h(e, y′

1, y
′
2)

(as well as the cover of ∃e f ( f (e, y1), y2) �= f ( f (e, y′
1), y

′
2), see Example 5.5 below) is

y1 �= y′
1 ∨ y2 �= y′

2.
5

Notice that our problem is different from the problemof producing ordinary quantifier-free
interpolants via saturation-based theorem proving [42]: for ordinary Craig interpolants, we
have as input two quantifier-free formulae φ(e, y), φ′(y, z) such that φ(e, y) → φ′(y, z) is
valid; here we have a single formula φ(e, y) as input and we are asked to find an interpolant
which is good for all possible φ′(y, z) such that φ(e, y) → φ′(y, z) is valid. Ordinary
interpolants can be extracted from a refutation of φ(e, y) ∧ ¬φ′(y, z), whereas here we are
not given any refutation at all (and we are not even supposed to find one).

What we are going to show is that, nevertheless, saturation via superposition can be used
to produce covers, if suitably adjusted. In this section we consider signatures with n-ary
function symbols (for all n ≥ 1). For simplicity, we omit n-ary relation symbols (they can
be easily handled by rewriting R(t1, . . . , tn) as R(t1, . . . , tn) = true, as customary in the
paramodulation literature [54]).

We are going to compute the cover of a primitive formula ∃e φ(e, y) to be fixed for
the remainder of this section. We call variables e existential and variables y parameters. By
applying abstraction steps, we can assume that φ is primitive flat, i.e. that it is a conjunction of
e-flat literals, defined below. [By an abstraction stepwemean replacing ∃e φ with ∃e ∃e′ (e′ =
u∧φ′), where e′ is a fresh variable and φ′ is obtained from φ by replacing some occurrences
of a term u(e, y) by e′].

A term or a formula are said to be e-free iff the existential variables do not occur in it. An
e-flat term is an e-free term t(y) or a variable from e or again it is of the kind f (u1, . . . , un),
where f is a function symbol and u1, . . . , un are e-free terms or variables from e. An e-flat
literal is a literal of the form

t = a, a �= b

where t is an e-flat term and a, b are either e-free terms or variables from e.
We assume the reader is familiarwith standard conventions used in rewriting and paramod-

ulation literature: in particular s|p denotes the subterm of s in position p and s[u]p denotes the
term obtained from s by replacing s|p with u. We use ≡ to indicate coincidence of syntactic
expressions (as strings) to avoid confusion with equality symbol; when we write equalities
like s = t below, we may mean both s = t or t = s (an equality is seen as a multiset of two
terms). For information on reduction orderings, see for instance [2].

We first replace variables e = e1, . . . , en and y = y1, . . . , ym by free constants - we keep
the names e1, . . . , en, y1, . . . , ym for these constants. Let > be a reduction ordering that is
total for ground terms such that e-flat literals t = a are always oriented from left to right in
the following two cases: (i) t is not e-free and a is e-free; (ii) t is not e-free, it is not equal to
any of the e and a is a variable from e. To obtain such properties, one may for instance choose
a suitable Knuth-Bendix ordering taking weights in some transfinite ordinal (see, e.g., [46]).

5 This example points out a problem that needs to be fixed in the algorithm presented in [37]: that algorithm
in fact outputs only equalities, conditional equalities and single disequalities, so it cannot correctly handle this
example.
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Given two e-flat terms t, u, we indicate with E(t, u) the following procedure, which
intuitively is a unification algorithm for the terms t and u where the e variables are treated as
constants; as shown by Lemma 5.1 below, E(t, u) collects ‘the equalities that are needed in
order to force t = u’, whenever the e are assumed to be free (i.e. not to satisfy any specific
equational constraint):

• E(t, u) fails if t is e-free and u is not e-free (or vice versa);
• E(t, u) fails if t ≡ ei and (either u ≡ f (t1, . . . , tk) or u ≡ e j for i �= j);
• E(t, u) = ∅ if t ≡ u;
• E(t, u) = {t = u} if t and u are different but both e-free;
• E(t, u) fails if none of t, u is e-free, t ≡ f (t1, . . . , tk) and u ≡ g(u1, . . . , ul) for f �≡ g;
• E(t, u) = E(t1, u1) ∪ · · · ∪ E(tk, uk) if none of t, u is e-free, t ≡ f (t1, . . . , tk), u ≡

f (u1, . . . , uk) and none of the E(ti , ui ) fails.

Notice that, whenever E(t, u) succeeds, the formula
∧

E(t, u) → t = u is universally valid.
The definition of E(t, u) is motivated by the next lemma.

Lemma 5.1 Let R be a convergent (i.e. terminating and confluent) ground rewriting system,
whose rules consist of e-free terms. Suppose that t and u are e-flat terms with the same R-
normal form. Then E(t, u) does not fail and all pairs from E(t, u) have the same R-normal
form as well. �

Proof This is due to the fact that if t is not e-free, no R-rewriting is possible at root position
because rules from R are e-free. ��

In the following, we handle constrained ground flat literals of the form L ‖C where L
is a ground flat literal and C is a conjunction of ground equalities among e-free terms. The
logical meaning of L ‖C is the Horn clause

∧
C → L .

In the literature, various calculi with constrained clauses were considered, starting, e.g.,
from the non-ground constrained versions of the Superposition Calculus of [4,53]. The calcu-
lus we propose here is inspired by such versions and it has close similarities with a subcase of
hierarchic superposition calculus [5], or rather to its “weak abstraction” variant from [6] (we
thank an anonymous referee of our CADE 2019 submission for pointing out this connection).

The rules of our Constrained Superposition Calculus follow; each rule applies provided
the E subprocedure called by it does not fail. The symbol ⊥ indicates the empty clause.
Further explanations and restrictions to the calculus are given in the Remarks below.

Superposition Right
(Constrained)

l = r ‖ C s = t ‖ D
s[r ]p = t ‖ C ∪ D ∪ E(s|p, l)

if l > r and s > t

Superposition Left
(Constrained)

l = r ‖ C s �= t ‖ D
s[r ]p �= t ‖ C ∪ D ∪ E(s|p, l)

if l > r and s > t

Reflection
(Constrained)

t �= u ‖ C
⊥ ‖ C ∪ E(t, u)

Demodulation
(Constrained)

L ‖ C, l = r ‖D
L[r ]p ‖ C

if l > r , L |p ≡ l
and C ⊇ D

Remark 5.1 The first three rules are inference rules: they are non-deterministically selected
for application, until no rule applies anymore. The selection strategy for the rule to be applied
is not relevant for the correctness and completeness of the algorithm (some variant of a ‘given
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clause algorithm’ can be applied). An inference rule is not applied in case one premise is
e-free (we have no reason to apply inferences to e-free premises, since we are not looking
for a refutation). �

Remark 5.2 The Demodulation rule is a simplification rule: its application not only adds the
conclusion to the current set of constrained literals, but it also removes the first premise. It is
easy to see (e.g., representing literals as multisets of terms and extending the total reduction
ordering to multisets), that one cannot have an infinite sequence of consecutive applications
of Demodulation rules. �

Remark 5.3 The calculus takes {L‖∅ | L is a flat literal from thematrix of φ} as the initial set
of constrained literals. It terminates when a saturated set of constrained literals is reached.
We say that S is saturated iff every constrained literal that can be produced by an inference
rule, after being exhaustively simplified via Demodulation, is already in S (there are more
sophisticated notions of ‘saturation up to redundancy’ in the literature, but we do not need
them). When it reaches a saturated set S, the algorithm outputs the conjunction of the clauses∧

C → L , varying L ‖C among the e-free constrained literals from S. �

We need some rule application policy to ensure termination: without any such policy, a set
like

{e = y ‖ ∅, f (e) = e‖ ∅} (4)

may produce by Right Superposition the infinitely many literals (all oriented from right to
left) f (y) = e ‖ ∅, f ( f (y)) = e ‖ ∅, f ( f ( f (y))) = e ‖ ∅, etc.

The next remark explains the policy we follow.

Remark 5.4 [Policy Remark]We apply Demodulation only in case the second premise is of
the kind e j = t(y) ‖D, where t is e-free.

Demodulation rule is applied with higher priority with respect to the inference rules.6

Inside all possible applications of Demodulation rule, we give priority to the applications
where both premises have the form e j = t(y) ‖D (for the same e j but with possibly different
D’s - the D from the second premise being included in the D of the first). In case we have
two constrained literals of the kind e j = t1(y) ‖D, e j = t2(y) ‖D inside our current set
of constrained literals (notice that the e j ’s and the D’s here are the same), among the two
possible applications of the Demodulation rule, we apply the rule that keeps the smallest ti .
Notice that in this way two different constrained literals cannot simplify each other. �

We say that a constrained literal L ‖C belonging to a set of constrained literals S is
simplifiable in S iff it is possible to apply (according to the above policy) a Demodulation
rule removing it. A first effect of our policy is:

Lemma 5.2 If a constrained literal L ‖C is simplifiable in S, then after applying to S any
sequence of rules, it remains simplifiable until it gets removed. After being removed, if it is
regenerated, it is still simplifiable and so it is eventually removed again. �

Proof Suppose that L ‖C can be simplified by e = t ‖ D and suppose that a rule is applied
to the current set of constrained literals. Since there are simplifiable constrained literals, that
rule cannot be an inference rule by the priority stated in Remark 5.4. For simplification rules,

6 Thus we cannot apply Superposition to {e = y ‖ ∅, f (e) = e‖ ∅} until Demodulation is exhaustively applied
(the latter causes the deletion of f (e) = e‖ ∅ and its replacement with f (y) = y‖ ∅, thus blocking the above
generation of infinitely many clauses).

123



956 D. Calvanese et al.

keep in mind again Remark 5.4. If L ‖C is simplified, it is removed; if none of L ‖C and
e = t ‖ D get simplified, the situation does not change; if e = t ‖ D gets simplified, this can
be done by some e = t ′‖ D′, but then L ‖C is still simplifiable - although in a different way
- using e = t ′‖ D′ (we have that D′ is included in D, which is in turn included in C). Similar
observations apply if L ‖C is removed and re-generated. ��

Due to Lemma 5.2, if we show that a derivation (i.e., a sequence of applications of rules)
can produce terms only from a finite set, it is clear that when no new constrained literal is
produced, saturation is reached. First notice that:

Lemma 5.3 Every constrained literal L ‖C produced during the run of the algorithm is e-flat.
�

Proof The constrained literals from initialization are e-flat. The Demodulation rule, applied
according to Remark 5.4, produces an e-flat literal out of an e-flat literal. The same happens
for the Superposition rules: in fact, since both the terms s and l from these rules are e-flat,
a Superposition may take place at root position or may rewrite some l ≡ e j with r ≡ ei or
with r ≡ t(y).7 ��

There are in principle infinitely many e-flat terms that can be generated out of the e-flat
terms occurring in φ (see the above counterexample (4)). We show however that only finitely
many e-flat terms can in fact occur during saturation and that one can determine in advance
the finite set they are taken from.

To formalize this idea, let us introduce a hierarchy of e-flat terms (this hierarchy concerns
terms, not clauses or constraints - although it will be used to delimit the kind of clauses or
constraints that might occur in a saturation process). Let D0 be the e-flat terms occurring in
φ and let Dk+1 be the set of e-flat terms obtained by simultaneous rewriting of an e-flat term
from

⋃
i≤k Di via rewriting rules of the kind e j → t j (y) where the t j are e-free terms from⋃

i≤k Di . The degree of an e-flat term is the minimum k such that it belongs to set Dk (it
is necessary to take the minimum because the same term can be obtained at different stages
and via different rewritings).

Lemma 5.4 Let the e-flat term t ′ be obtained by a rewriting e j → u(y) from the e-flat term
t; then, if t has degree k > 1 and u has degree at most k − 1, we have that t ′ has degree at
most k. �

Proof This is clear, because at the k-stage one can directly produce t ′ instead of just t : in
fact, all rewriting producing directly t ′ replace an occurrence of some ei by an e-free term,
so they are all done in parallel positions.

[We illustrate the phenomenon via an example: suppose that t is f (e1, g(g(c))) and that
t ′ is obtained from t by rewriting e1 to g(c). Now it might well be that t has degree 2, being
obtained from f (e1, e2) via e2 �→ g(g(c))) (the latter having been previously obtained from
g(e3) via e3 �→ g(c)). Now t ′ still has degree 2 because it can be directly obtained from
f (e1, e2) via the parallel rewritings e1 �→ g(c), e2 �→ g(g(c))).] ��
7 Notice that Superposition Left is considerably restricted in our calculus: recall in fact that e-flat negative
literals must be of the kind s �= t where s, t are either variables from e or e-free terms. Since rules do not
apply to e-free literals, the only possibility is that the term s from the literal s �= t of the right premise
of Superposition Left is a variable from e and that the term l from the left premise coincides with it. Thus
Superposition Left looks like a Demodulation, however it is not a Demodulation because the constraint of its
left premise may not be included into the constraint of its right premise. It would be harmless to allow a more
liberal version of Superposition Left, but we do not need it.
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Proposition 5.5 The saturation of the initial set of e-flat constrained literals always termi-
nates after finitely many steps. �
Proof We show that all e-flat terms that may occur during saturation have at most degree n
(where n is the cardinality of e). This shows that the saturation must terminate, because only
finitely many terms may occur in a derivation (see the above observations).

Let the algorithm during saturation reach the state S; we say that a constraint C allows
the explicit definition of e j in S iff S contains a constrained literal of the kind e j = t(y) ‖D
with D ⊆ C . Now we show by mutual induction two facts concerning a constrained literal
L ‖C ∈ S:

(1) if an e-flat term u of degree k occurs in L , then C allows the explicit definition of k
different e j in S;

(2) if L is of the kind ei = t(y), for an e-free term t of degree k, then either ei = t ‖C can
be simplified in S or C allows the explicit definition of k + 1 different e j in S (ei itself
is of course included among these e j ).

Notice that (1) is sufficient to exclude that any e-flat term of degree bigger than n can occur
in a constrained literal arising during the saturation process.

We prove (1) and (2) by induction on the length of the derivation leading to L ‖C ∈ S.
Notice that it is sufficient to check that (1) and (2) hold for the first time where L ‖C ∈ S
because if C allows the explicit definition of a certain variable in S, it will continue to do so
in any S′ obtained from S by continuing the derivation (the definition may be changed by the
Demodulation rule, but the fact that ei is explicitly defined is forever). Also, by Lemma 5.2,
a literal cannot become non simplifiable if it is simplifiable.

(1) and (2) are evident if S is the initial status. To show (1), suppose that u occurs for the
first time in L ‖C as the effect of the application of a certain rule: we can freely assume that
u does not occur in the literals from the premisses of the rule (otherwise induction trivially
applies) and that u of degree k

is obtained by rewriting in a non-root position some u′ occurring in a constrained literal
L ′ ‖ D′ via some e j → t ‖ D. This might be the effect of a Demodulation or Superposition
in a non-root position (Superpositions in root position do not produce new terms).

If u′ has degree k, then by induction D′ contains the required k explicit definitions, and we
are done because D′ is included in C . If u′ has lower degree, then t must have degree at least
k − 1 (otherwise u does not reach degree k by Lemma 5.4). Then by induction on (2), the
constraint D (also included in C) has (k − 1) + 1 = k explicit definitions (when a constraint
e j → t ‖D is selected for Superposition or for making Demodulations in a non-root position,
it is itself not simplifiable according to the procedure explained in Remark 5.4).

To show (2), we analyze the reasons why the non simplifiable constrained literal ei =
t(y) ‖C is produced (let k be the degree of t).

Suppose it is produced from ei = u′ ‖C via Demodulation with e j = u(y) ‖ D (with
D ⊆ C) in a non-root position; if u′ has degree at least k,

we apply induction for (1) to ei = u′ ‖C : by such induction hypotheses, we get k explicit
definitions in C and we can add to them the further explicit definition ei = t(y) (the explicit
definitions from C cannot concern ei because ei = t(y) ‖C is not simplifiable). Otherwise,
u′ has degree less than k and u has degree at least k − 1 by Lemma 5.4

(recall that t has degree k):
by induction, e j = u ‖ D is not simplifiable (it is used as the active part of a Demodulation

in a non-root position, see Remark 5.4) and supplies k explicit definitions, inherited by
C ⊇ D. Note that ei cannot have a definition in D, otherwise ei = t(y) ‖C would be
simplifiable, so with ei = t(y) ‖C we get the required k + 1 definitions.
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The remaining case is when ei = t(y) ‖C is produced via Superposition Right. Such a
Superposition might be at root or at a non-root position. We first analyse the case of a root
position. This might be via e j = ei ‖C1 and e j = t(y) ‖C2 (with e j > ei and C = C1 ∪C2

because E(e j , e j ) = ∅), but in such a case one can easily apply induction.Otherwise, we have
a different kind of Superposition at root position: ei = t(y) ‖C is obtained from s = ei ‖C1

and s′ = t(y) ‖C2, with C = C1 ∪ C2 ∪ E(s, s′). In this case, by induction for (1), C2

supplies k explicit definitions, to be inherited by C . Among such definitions, there cannot be
an explicit definition of ei otherwise ei = t(y) ‖C would be simplifiable, so again we get
the required k + 1 definitions.

In case of a Superposition at a non root-position, we have that ei = t(y) ‖C is obtained
from u′ = ei ‖C1 and e j = u(y) ‖C2, with C = C1 ∪ C2; here t is obtained from u′ by
rewriting e j to u. This case is handled similarly to the case where ei = t(y) ‖C is obtained
via Demodulation rule. ��

Having established termination, we now prove that our calculus computes covers. To this
aim, we rely on refutational completeness of unconstrained Superposition Calculus: thus, our
technique resembles the technique used [5,6] in order to prove refutational completeness of
hierarchic superposition, although it is not clear whether Theorem 5.6 below can be derived
from the results concerning hierarchic superposition8.

We state the following theorem:

Theorem 5.6 Let T be the theory EUF . Suppose that the above algorithm, taking as input the
primitive e-flat formula ∃e φ(e, y), gives as output the quantifier-free formula ψ(y). Then
the latter is a T -cover of ∃e φ(e, y). �

Proof Let S be the saturated set of constrained literals produced upon termination of the
algorithm; let S = S1 ∪ S2, where S1 contains the constrained literals in which the e do not
occur and S2 is its complement. Clearly ∃e φ(e, y) turns out to be logically equivalent to

∧

L ‖C∈S1
(
∧

C → L) ∧ ∃e
∧

L ‖C∈S2
(
∧

C → L)

so, as a consequence, in view of Lemma 3.1 it is sufficient to show that every model M
satisfying

∧
L ‖C∈S1(

∧
C → L) via an assignment I to the variables y can be embedded

into a model M′ such that for a suitable extension I ′ of I to the variables e we have that
(M′, I ′) satisfies also

∧
L ‖C∈S2(

∧
C → L).

Fix M, I as above. The diagram Δ(M) of M is obtained as follows. We take one free
constant for each element of the support of M (by Löwenheim-Skolem theorem one can
keep M at most countable, if you like) and we put in Δ(M) all the literals of the kind
f (c1, . . . , ck) = ck+1 and c1 �= c2 which are true in M (here the ci are names for the
elements of the support of M). Let R be the set of ground equalities of the form yi = ci ,
where ci is the name of I(yi ). Extend our reduction ordering in the natural way (so that
yi = ci and f (c1, . . . , ck) = ck+1 are oriented from left to right). Consider now the set of
clauses

Δ(M) ∪ R ∪ {
∧

C → L | (L ‖C) ∈ S} (5)

(below, we distinguish the positive and the negative literals of Δ(M) so that Δ(M) =
Δ+(M)∪Δ−(M)).Wewant to saturate the above set in the standard SuperpositionCalculus.

8 An important difference between our proof and the proof of completeness for hierarchic superposition is that
we must build an expansion of a superstructure of the model M below (expanding M to a larger signature
without enlarging its domain might not be possible in principle).
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Clearly the rewriting rules in R, used as reduction rules, replace everywhere yi by ci inside
the clauses of the kind

∧
C → L . At this point, the negative literals from the equality

constraints all disappear: if they are true in M, they Δ+(M)-normalize to trivial equalities
ci = ci (to be eliminated by standard reduction rules) and if they are false inM they become
part of clauses subsumed by true inequalities from Δ−(M). Similarly all the e-free literals
not coming from Δ(M) ∪ R get removed. Let S̃ be the set of survived literals involving the
e (they are not constrained anymore and they are Δ+(M) ∪ R-normalized): we show that
they cannot produce new clauses. Let in fact (π) be an inference from the Superposition
Calculus [54] applying to them. Since no superposition with Δ(M) ∪ R is possible, this
inference must involve only literals from S̃; suppose it produces a literal L̃ from the literals
L̃1, L̃2 (coming via Δ+(M) ∪ R-normalization from L1 ‖C1 ∈ S and L2 ‖C2 ∈ S) as
parent clauses. Then, by Lemma 5.1, our constrained inferences produce a constrained literal
L ‖C such that the clause

∧
C → L normalizes to L̃ via Δ+(M) ∪ R. Since S is saturated,

the constrained literal L ‖C , after simplification, belongs to S. Now simplifications via our
Constrained Demodulation and Δ(M)+ ∪ R-normalization commute (they work at parallel
positions, see Remark 5.4), so the inference (π) is redundant because L̃ simplifies to a literal
already in S̃ ∪ Δ(M).

Thus the set of clauses (5) saturates without producing the empty clause. By the com-
pleteness theorem of the Superposition Calculus [3,39,54] it has a model M′. This M′ by
construction fits our requests by Robinson Diagram Lemma. ��

Theorem 5.6, thanks to the relationship between model completions and covers stated in
Theorem 3.2, proves also the existence of the model completion of EUF .

Example 5.5 Wecompute the cover of the primitive formula∃e f ( f (e, y1), y2) �= f ( f (e, y′
1),

y′
2). Flattening gives the set of literals

{ f (e, y1) = e1, f (e1, y2) = e′
1, f (e, y′

1) = e2, f (e2, y
′
2) = e′

2, e′
1 �= e′

2 } .

Superposition Right produces the constrained literal e1 = e2 ‖ {y1 = y′
1}; supposing that

we have e1 > e2, Superposition Right gives first f (e2, y2) = e′
1 ‖ {y1 = y′

1} and then also
e′
1 = e′

2 ‖ {y1 = y′
1, y2 = y′

2}. Superposition Left and Reflection now produce ⊥‖ {y1 =
y′
1, y2 = y′

2}. Thus the clause y1 = y′
1 ∧ y2 = y′

2 → ⊥ will be part of the output (actually,
this will be the only clause in the output). �

We apply our algorithm to an additional example, taken from [37].

Example 5.6 We compute the cover of the primitive formula ∃e (s1 = f (y3, e) ∧ s2 =
f (y4, e) ∧ t = f ( f (y1, e), f (y2, e))), where s1, s2, t are terms in y. Flattening gives the set
of literals

{ f (y3, e) = s1, f (y4, e) = s2, f (y1, e) = e1, f (y2, e) = e2, f (e1, e2) = t } .

Suppose that we have e > e1 > e2 > t > s1 > s2 > y1 > y2 > y3 > y4. Superposition
Right between the 3rd and the 4th clauses produces the constrained 6th clause e1 = e2 ‖ {y1 =
y2}. Fromnowon,wedenote the application of a SuperpositionRight to the i th and j th clauses
with R(i, j). We list a derivation performed by our calculus:

R(3, 4) �⇒ e1 = e2 ‖ {y1 = y2} (6th clause)

R(1, 2) �⇒ s1 = s2 ‖ {y3 = y4} (7th clause)

R(5, 6) �⇒ f (e2, e2) = t ‖ {y1 = y2} (8th clause)
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R(1, 3) �⇒ e1 = s1 ‖ {y1 = y3} (9th clause)

R(1, 4) �⇒ e2 = s1 ‖ {y2 = y3} (10th clause)

R(2, 3) �⇒ e1 = s2 ‖ {y1 = y4} (11th clause)

R(2, 4) �⇒ e2 = s2 ‖ {y2 = y4} (12th clause)

R(5, 9) �⇒ f (s1, e2) = t ‖ {y1 = y3} (13th clause)

R(5, 11) �⇒ f (s2, e2) = t ‖ {y1 = y4} (14th clause)

R(6, 9) �⇒ e2 = s1 ‖ {y1 = y3, y1 = y2} (15th clause)

R(6, 11) �⇒ e2 = s2 ‖ {y1 = y2, y1 = y4} (16th clause)

R(8, 10) �⇒ f (s1, s1) = t ‖ {y1 = y3, y2 = y3} (17th clause)

R(8, 12) �⇒ f (s2, s2) = t ‖ {y1 = y4, y2 = y4} (18th clause)

R(13, 12) �⇒ f (s1, s2) = t ‖ {y1 = y3, y2 = y4} (19th clause)

R(14, 10) �⇒ f (s2, s1) = t ‖ {y1 = y4, y2 = y3} (20th clause)

R(9, 11) �⇒ s1 = s2 ‖ {y1 = y3, y1 = y4} (21th clause)

The set of clauses above is saturated. The 7th, 17th, 18th, 19th and 20th clauses are exactly
the output clauses of [37]. The non-simplified clauses that do not appear as output in [37] are
redundant and they could be simplified by introducing a Subsumption rule as an additional
simplification rule of our calculus. �

6 Complexity Analysis of the Fragment for Database Driven
Applications

The saturation procedure of Theorem 5.6 can in principle produce double exponentially
many clauses, because there are exponentially many terms of degree n (if n is the cardinality
of the variables to be eliminated); it is not clear whether we can improve this bound to a
simple exponential one, by limiting the kind of terms that can be produced. An estimation of
the complexity costs of computing uniform interpolants in EUF is better performed within
approaches making use of compressed DAG-representations of terms [26]. In this paper,
however, we are especially interested (for our applications to verification of data-aware
processes) to the special casewhere the signatureΣ contains only unary function symbols and
relations of arbitrary arity (cf. Sect. 4.1). In this special case, important remarks apply. In fact,
we shall see below that if the signature Σ contains only unary function symbols, only empty
constraints can be generated; in caseΣ contains also relation symbols of arity n > 1, the only
constrained clauses that can be generated have the form⊥‖{t1 = t ′1, . . . , tn−1 = t ′n−1}. Also,
it is not difficult to see that in a derivation at most one explicit definition ei = t(y)||∅ can
occur for every ei : as soon as this definition is produced, all occurrences of ei are rewritten to
t . This implies that Constrained Superposition computes covers in polynomial time for the
empty theory, whenever the signature Σ matches the restrictions of Definition 4.3 for DB
schemas. We give here a finer complexity analysis, in order to obtain a quadratic bound.

In this section, we assume that our signature Σ contains only unary function and m-ary
relation symbols. In order to attain the optimized quadratic complexity bound, we need to
follow a different strategy in applying the rules of our constrained superposition calculus
(this different strategy would not be correct for the general case). Thanks to this different
strategy, we can make our procedure close to the algorithm of [37]: in fact, such algorithm is
correct for the case of unary functions and requires only a minor adjustment for the case of
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unary functions andm-ary relations. Since relations play a special role in the present restricted
context, we prefer to treat them as such, i.e. not to rewrite R(t1, . . . , tn) as R(t1, . . . , tn) =
true; the consequence is that we need an additional Constrained Resolution Rule9. We
preliminarily notice that when function symbols are all unary, the constraints remain all
empty during the run of the saturation procedure, except for the case of the newly introduced
Resolution Rule below. This fact follows from the observation that given two terms u1 and
u2, procedure E(u1, u2) does not fail iff:

(1) either u1 and u2 are both terms containing only variables from y, or
(2) u1 and u2 are terms that syntactically coincide.

In case (1), E(u1, u2) is {u1 = u2} and in case (2), E(u1, u2) is ∅. In case (1), Superposition
Rules are not applicable. To show this, suppose that u1 ≡ s|p and u2 ≡ l; then, terms l
and r use only variables from y, and consequently cannot be fed into Superposition Rules,
since Superposition Rules are only applied when variables from e occur in both premises.
Reflection Rule does not apply too in case (1), because this rule (like any other rule) cannot
be applied to an e-free literal.

Thus, in the particular case ofm-ary relations and unary functions, the rules of the calculus
are the following:

Superposition
l = r L

L[r ]p if (i) l > r ;
(ii) if L ≡ s = t or

L ≡ s �= t , then
s > t and p ∈ Pos(s);

(iii) E(s|p, l) does not fail.

Resolution
R(t1, . . . , tn) ¬R(s1, . . . , sn)

⊥ ‖ ⋃
i E(si , ti )

if E(si , ti ) does not fail
for all i = 1, . . . , n

Reflection
t �= u

⊥ if E(t, u) does not fail

Demodulation
L l = r

L[r ]p if l > r and L |p ≡ l

We still restrict the use of our rules to the case where all premises are not e-free literals;
again Demodulation is applied only in the case where l = r is of the kind ei = t(y). For
the order of applications of the Rules, Lemma 6.1 below show that we can apply (restricted)
Superpositions, Demodulations, Reflections and Resolutions in this order and then stop.

An important preliminary observation to obtain such a result is that we do not need to
apply Superposition Rules whose left premise l = r is of the kind ei = t(y): this is because
constraints are always empty (unless the constrained clause is the empty clause), so that
a Superposition Rule with the left premise ei = t(y) can be replaced by a Demodulation

Rule. 10 If the left premise of Superposition is not of the kind ei = t(y), then since our
literals are e-flat, it can be either of the kind ei = e j (with ei > e j ) or of the kind f (ei ) = t .
In the latter case t is either ek ∈ e or it is an e-free term; for Superposition Left (i.e. for
Superposition applied to a negative literal), the left premise can only be ei = e j , because our
literals are e-flat and so negative literals L cannot have a position p such that L |p ≡ f (ei ).

9 We extend the definition of an e-flat literal so as to include also the literals of the kind R(t1, .., tn) and
¬R(t1, .., tn) where the terms ti are either e-free terms or variables from e.
10 This is not true in the general case where constraints are not empty, because the Demodulation Rule does
not merge incomparable constraints.
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Let S be a set of e-flat literals with empty constraints; we say that S is RS-closed iff
it is closed under Restricted Superposition Rules, i.e under Superposition Rules whose left
premise is not of the kind ei = t(y). In equivalent terms, as a consequence of the above
discussion, S is RS-closed iff it satisfies the following two conditions:

– if { f (ei ) = t, f (ei ) = v} ⊆ S, then t = v ∈ S;
– if {ei = e j , L} ⊆ S and ei > e j and L |p ≡ ei , then L[e j ]p ∈ S.

Since Restricted Superpositions do not introduce essentially new terms (newly introduced
terms are just rewritings of variables with variables), it is clear that we can make a finite set S
of e-free literals RS-closed in finitely many steps. This can be naively done in time quadratic
in the size of the formula. As an alternative, we can apply a congruence closure algorithm
to S and produce a set of e-free constraints S′ which is RS-closed and logically equivalent
to S: the latter can be done in O(n · log(n))-time, as it is well-known from the literature
[40,48,52].

Lemma 6.1 Let S be a RS-closed set of empty-constrained e-flat literals. Then, to saturate
S it is sufficient to first exhaustively apply the Demodulation Rule, and then Reflection and
Resolution Rules. �

Proof Let S̃ be the set obtained from S after having exhaustively applied Demodulation.
Notice that the final effect of the reiterated application of Demodulation can be synthetically
described by saying that literals in S are rewritten by using some explicit definitions

ei1 = t1(y), . . . , eik = tk(y) . (6)

These definitions are either in S, or are generated through the Demodulations themselves (we
can freely assume that Demodulations are done in appropriate order: first all occurrences of
ei1 are rewritten to t1, then all occurrences of ei2 are rewritten to t2, etc.).11

Suppose now that a pair L, l = r ∈ S̃ can generate a new literal L[r ]p by Superposition.
We know from above that we can limit ourselves to Restricted Superposition, so l is either
of the form e j or of the form f (e j ), where moreover e j is not among the set {ei1 , . . . , eik }
from (6). The literals L and l = r ∈ S̃ happen to have been obtained from literals L ′ and
l = r ′ belonging to S by applying the rewriting rules (6) (notice that l cannot have been
rewritten). Since such rewritings must have occurred in positions parallel to p and since S
was closed under Restricted Superposition, we must have that S contained the literal L ′[r ′]p
that rewrites to L[r ]p by the rewriting rules (6). This shows that L[r ]p is already in S̃

(thus, in particular, Demodulation does not destroy RS-closedness) and proves the lemma,
because Reflection and Resolution can only produce the empty clause and no rule applies to
the empty clause. ��
Thus the strategy of applying (in this order)

Restricted Superposition+Demodulation+Reflection+Resolution
always saturates.

To produce an output in optimized format, it is convenient to get it in aDAG-like form. This
can be simulated via explicit acyclic definitions as follows. When we writeDef (e, y) (where
e, y are tuples of distinct variables), we mean any flat formula of the kind (let e := e1 . . . , en)

11 In addition, if we happen to have, say, two different explicit definitions of ei1 as ei1 = t1, ei1 = t ′1,
we decide to use just one of them (and always the same one, until the other one is eventually removed by
Demodulation).
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∧n
i=1 ei = ti ,where in the term ti only the variables e1, . . . , ei−1, y canoccur.We shall supply

the output in the form
∃e′ (Def (e′, y) ∧ ψ(e′, y)) (7)

where the e′ is a subset of the e andψ is quantifier-free. TheDAG-format (7) is not quantifier-
free but can be converted to a quantifier-free formula by unravelling the acyclic definitions
of the e′.

Thus our procedure for computing a cover inDAG-format of a primitive formula∃e φ(e, y)
(in case the function symbols of the signature Σ are all unary) runs by performing the
following steps, one after the other. Let OUT be a quantifier-free formula (initially OUT is
!).

(1) Wepreprocessφ in order to produce aRS-closed set S of empty-constrained e-flat literals.
(2) We mark the variables e in the following way (initially, all variables are unmarked): we

scan S and, as soon as we find an equality of the kind ei = t where all variables from e
occurring in t are marked, we mark ei . This loop is repeated until no more variable gets
marked.

(3) If Reflection is applicable, we output ⊥ and exit.
(4) We conjoin OUT with all literals where, besides the y, only marked variables occur.
(5) For every literal R(t1, . . . , e, . . . , tm) that contains at least an unmarked e, we scan S until

a literal of the type ¬R(t1, . . . , e, . . . , tm) is found: then, we try to apply Resolution and
if we succeed getting ⊥‖ {u1 = u′

1, . . . , um = u′
m}, we conjoin ∨

j u j �= u′
j to OUT .

(6) We prefix to OUT a string of existential quantifiers binding all marked variables and
output the result.

One remark is in order: when running the subprocedures E(si , ti ) required by the Resolution
Rule in (5) above, all marked variables must be considered as part of the y (thus, e.g.
R(e, t),¬R(e, v) produces ⊥‖ {t = u} if both t and u contain, besides the y, only marked
variables).

Proposition 6.2 Let T be the theory EUF in a signature with unary functions and m-ary
relation symbols. Consider a primitive formula ∃e φ(e, y); then, the above algorithm returns

a T -cover of ∃e φ(e, y) in DAG-format in time O(n2), where n is the size of ∃e φ(e, y). �

Proof The preprocessing step (1) requires an abstraction phase for producing e-flat literals
and a second phase in order to get a RS-closed set: the first phase requires linear time, whereas
the second one requires O(n · log(n)) time

(via congruence closure). All the remaining steps require linear time, except steps (2)
and (5) that requires quadratic time. This is the dominating cost, thus the entire procedure
requires O(n2) time. ��

Although we do not deeply investigate the problem here, we conjecture that it might be
possible to further lower down the above complexity to O(n · log(n)).

7 An Extension of the Constrained Superposition Calculus

We consider an extension of our Constrained Superposition Calculus which is useful for our
applications to verification of data-aware processes. Let us assume that we have a theory
whose axioms are (3), namely, for every function symbol f :

∀x (x = undef ↔ f (x) = undef) .
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One direction of the above equivalence is equivalent to the ground literal f (undef) =
undef and as such it does not interfere with the completion process (we just add it to our
constraints from the very beginning).

To handle the other direction, we need to modify our Calculus. First, we add to the
Constrained Superposition Calculus of Sect. 5 the following extra Rule

Inference Rule Ext(undef)

(Constrained)
f (e j ) = u(y) ‖ D

e j = undef ‖ D ∪ {u(y) = undef}
The Rule is sound because u(y) = undef ∧ f (e j ) = u(y) → e j = undef follows from
the axioms (3). For cover computation with our new axioms, we need a restricted version of
Paramodulation Rule:

Paramodulation
(Constrained)

e j = r ‖C L ‖ D
L[r ]p ‖C ∪ D

(if e j > r & L |p ≡ e j )

Notice that we can have e j > r only in case r is either some existential variable ei or it is
an e-free term u(y). Paramodulation Rule (if it is not a Superposition) can only apply to a
right member of an equality and such a right member must be e j itself (because our literals
are flat). Thus the rule cannot introduce new terms and consequently it does not compromize
the termination argument of Proposition 5.5.

Theorem 7.1 Let T be the theory
⋃

f ∈Σ {∀x (x = undef ↔ f (x) = undef)}. Suppose
that the algorithm from Sect. 5, taking as input the primitive e-flat formula ∃e φ(e, y), gives
as output the quantifier-free formula ψ(y). Then the latter is a T -cover of ∃e φ(e, y). �
Proof The proof of Theorem 5.6 can be easily adjusted as follows. We proceed as in the
proof of Theorem 5.6, so as to obtain the set Δ(M) ∪ R ∪ S̃ which is saturated in the
standard (unconstrained) Superposition Calculus. Below, we refer to the general refutational
completeness proof of the Superposition Calculus given in [54]. Since we only have unit
literals here, in order to produce amodel ofΔ(M)∪R∪ S̃, we can just consider the convergent
ground rewriting system → consisting of the oriented equalities in Δ+(M) ∪ R ∪ S̃: the
support of suchmodel is formed by the→-normal forms of our ground termswith the obvious
interpretation for the function and constant symbols. For simplicity, we assume that undef
is in normal form. 12 We need to check that whenever we have13 f (t) →∗ undef then
we have also t →∗ undef: we prove this by induction on the reduction ordering for our
ground terms. Let t be a term such that f (t) →∗ undef: if t is e-free then the claim is trivial
(because the axioms (3) are supposed to hold inM). Suppose also that induction hypothesis
applies to all terms smaller than t . If t is not in normal form, then let t̃ be its normal form;
then we have f (t) →+ f (t̃) →∗ undef, by the fact that → is convergent. By induction
hypothesis, t̃ → undef, hence t →+ t̃ →∗ undef, as desired.

Finally, let us consider the case in which t is in normal form; since f (t) is reducible in root
position by some rule l → r , our rules l → r are e-flat and t is not e-free, we have that t ≡ e j
for some existential variable e j . Then, we must have that S contains an equality of the kind
f (e j ) = u(y) ‖ D or of the kind f (e j ) = ei ‖ D (the constraint D being true inM under the

12 To be pedantic, according to the definition ofΔ+(M), there should be an equalityundef = c0 inΔ+(M)

so that c0 is the normal form of undef.
13 We use →∗ for the reflexive-transitive closure of → and →+ for the transitive closure of →.
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given assignment to the y). The latter case is reduced to the former, since ei →∗ undef (by
the convergence of →∗) and since S is closed under Paramodulation. In the former case, by
the rule Ext(undef), we must have that S contains e j = undef ‖ D ∪ {u(y) = undef}.
Now, since f (e j ) = u(y) ‖ D belongs to S and D is true in M, we have that the normal
forms of f (e j ) and of u(y) are the same; since the normal form of f (e j ) is undef, the
normal form of u(y) is undef too, which means that u(y) = undef is true in M. But

e j = undef ‖ D ∪ {u(y) = undef} belongs to S, hence e j = undef belongs to S̃, which
implies e j →∗ undef, as desired. ��

8 Remarks onMCMT Implementation

As evident from Sect. 4.1, our main motivation for investigating covers originated from the
verification of data-aware processes. Such applications require database (DB) signatures to
contain only unary function symbols (besides relations of every arity). We observed that
computing covers of primitive formulae in such signatures requires only polynomial time.
In addition, if relation symbols are at most binary, the cover of a primitive formula is a
conjunction of literals (this is due to the fact that the constrained literals produced during
saturation either have empty constraints or are of the kind ⊥‖ t1 = t2): this is crucial in
applications, because model checkers like mcmt [32] and cubicle [19] represent sets of
reachable states as primitive formulae. This makes cover computations a quite attractive
technique in verification of data-aware processes.

Our cover algorithm for DB signatures has been implemented in themodel checkermcmt.
The implementation is however still partial, nevertheless the tool is able to compute covers
for the EUF-fragment with unary function symbols, unary relations and binary relations. The
optimized procedure of Sect. 6 has not yet been implemented, insteadmcmt uses a customary
Knuth-Bendix completion (in fact, for the above mentioned fragments the constraints are
always trivial and our constrained Superposition Calculus essentially boils down to Knuth-
Bendix completion for ground literals in EUF).

Axioms (3) are also covered in the following way. We assume that constraints of which
we want to compute the cover always contain either the literal e j = undef or the literal
e j �= undef for every existential variable e j . Whenever a constraint contains the literal
e j �= undef, the completion procedure adds the literal u(yi ) �= undef whenever it had
produced a literal of the kind f (e j ) = u(yi ).14

We wonder whether we are justified in assuming that all constraints of which we want to
compute the cover always contain either the literal e j = undef or the literal e j �= undef
for every existential variable e j . The answer is affirmative: according to the backward search
algorithm

implemented in array-based systems tools, the variable e j to be eliminated always comes
from the guard of a transition and we can assume that such a guard contains the literal
e j �= undef (if we need a transition with e j = undef - for an existentially quantified
variable e j - it is possible to write trivially this condition without using a quantified variable).
The mcmt User Manual (available from the distribution) contains precise instructions on
how to write specifications following the above prescriptions.

A first experimental evaluation (based on the existing benchmark provided in [44], which
samples 32 real-world BPMNworkflows taken from the BPMN official website http://www.

14 This is sound because e �= undef implies f (e) �= undef according to (3), so u(yi ) �= undef follows
from f (e j ) = u(yi ) and e �= undef.
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bpmn.org/) is described in [11,17]. The benchmark set is available as part of the last dis-
tribution 3.0 of mcmt http://users.mat.unimi.it/users/ghilardi/mcmt/ (see the subdirectory
/examples/dbdriven of the distribution). The User Manual, also included in the distri-
bution, contains a dedicated section giving essential information on how to encode relational
artifact systems (comprising both first-order and second-order variables) in mcmt specifi-
cations and how to produce user-defined examples in the database driven framework. The
first experiments were very encouraging: the tool was able to solve in few seconds all the
proposed benchmarks and the cover computations generated automatically during themodel-
checking search were discharged instantaneously: see [11,17] for more information about
our experiments.

9 Conclusions and FutureWork

The above experimental setup motivates new research to extend Proposition 4.5 to further
theories axiomatizing integrity constraints used in DB applications.

Practical algorithms for the computation of covers in the theories falling under the hypothe-
ses of Proposition 4.5 need to be designed: as a little first example, in Sect. 7 abovewe showed
how to handle Axiom (3) by light modifications to our techniques. Symbol elimination of
function and predicate variables should also be combined with cover computations. Com-
bined cover algorithms (along the perspectives in [37]) could be crucial also in this setting:
a first attempt to attack this problem, regarding the disjoint signatures combination, can be
found in [16].

We consider the present work, together with [12,13,17,28], as the starting point for a
full line of research dedicated to SMT-based techniques for the effective verification of
data-aware processes [15], addressing richer forms of verification beyond safety (such as
liveness, fairness, or full LTL-FO) and richer classes of artifact systems, (e.g., with concrete
data types and arithmetics), while identifying novel decidable classes (e.g., by restricting
the structure of the DB and of transition and state formulae) beyond the ones presented in
[13,17]. Concerning implementation, we plan to further develop our tool to incorporate in
it the plethora of optimizations and sophisticated search strategies available in infinite-state
SMT-based model checking. Finally, in [12] we tackle more conventional process modeling
notations, concerning data-aware extensions of the de-facto standard BPMN15: we plan to
provide a full-automated translator from the data-aware BPMN model presented in [12] to
the artifact systems setting of [13,17].

Funding Open access funding provided by Libera Università di Bolzano within the CRUI-CARE Agreement.
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