
Information Systems 78 (2018) 112–125

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Semantics, Analysis and Simplification of DMN Decision Tables

Diego Calvanese

a , Marlon Dumas b , ∗, Ülari Laurson

b , Fabrizio M. Maggi b , Marco Montali a ,
Irene Teinemaa

b

a Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
b University of Tartu, J. Liivi 2, 50409 Tartu, Estonia

a r t i c l e i n f o

Article history:

Received 21 December 2016

Revised 28 November 2017

Accepted 25 January 2018

Available online 27 March 2018

Keywords:

Decision Table

Decision Model

Notation

Sweep-Line

a b s t r a c t

The Decision Model and Notation (DMN) is a standard notation to capture decision logic in business ap-

plications. A central construct in DMN is that of a decision table. The increasing use of DMN decision

tables to capture critical business knowledge raises the need to support analysis and refactoring tasks on

these tables. This article puts forward a formal semantics for DMN decision tables and a formal defini-

tion of analysis tasks on such tables. The article then proposes a general approach to analyze and refactor

decision tables based on a geometric interpretation thereof. This general approach is used to design ef-

ficient algorithms for two analysis tasks (detection of overlapping rules and of missing rules) and one

refactoring task (simplification of tables via rule merging). The algorithms have been implemented in an

open-source DMN editor and tested on large decision tables derived from a credit lending dataset.

© 2018 Elsevier Ltd. All rights reserved.

(

t

s

a

o

c

g

s

a

b

h

o

d

s

i

i

s

p

a

j

h

i
1. Introduction

Business process models often incorporate decision logic of

varying complexity, typically via conditional expressions attached

either to outgoing flows of decision gateways or to conditional

events. The need to separate this decision logic from the control-

flow logic [1] and to capture it at a higher level of abstraction

has motivated the emergence of the Decision Model and Notation

(DMN) [16] . A central construct of DMN is that of a decision ta-

ble, which stems from the concept of decision table proposed in

the context of program decision logic specification in the 1960s

[19] . A DMN decision table consists of columns representing the

inputs and outputs of a decision, and rows denoting rules. Each

rule is a conjunction of basic expressions captured in an expression

language known as S-FEEL (Simplified Friendly Enough Expression

Language).

The use of DMN decision tables to capture complex and criti-

cal business decisions raises the need to support the analysis and

refactoring of these tables. In this respect, two common correct-

ness criteria imposed on decision tables are that their rules should

be disjoint and complete, meaning that every possible input should

match exactly one rule. A table violates these criteria if it has over-

lapping rules (multiple rules match a given input) or missing rules
∗ Corresponding author.

E-mail addresses: calvanese@inf.unibz.it (D. Calvanese), marlon.dumas@ut.ee

(M. Dumas), laurson17@gmail.com (Ü. Laurson), f.m.maggi@ut.ee (F.M. Maggi),

montali@inf.unibz.it (M. Montali), irene.teinemaa@ut.ee (I. Teinemaa).

a

c

m

t

https://doi.org/10.1016/j.is.2018.01.010

0306-4379/© 2018 Elsevier Ltd. All rights reserved.
no rule matches a given input). Meanwhile, a common refactoring

ask is to simplify a decision table by merging pairs of rules into a

ingle more general rule.

Given the above setting, this article provides a foundation for

nalyzing and refactoring DMN decision tables. The contributions

f the article are: (i) a formal semantics and a formalization of

orrectness criteria for DMN decision tables; and (ii) efficient al-

orithms for detecting overlapping rules and missing rules and for

implifying decision tables via rule merging. The latter algorithms

re based on a novel geometric interpretation of DMN decision ta-

les, wherein each rule in a table is mapped to an iso-oriented

yper-rectangle in an N-dimensional space (where N is the number

f columns). Under this geometric interpretation, the problem of

etecting overlapping rules is mapped to that of detecting maximal

ets of overlapping hyper-rectangles; the problem of finding miss-

ng rules is mapped to that of determining if the union of the rules

n the table (viewed as hyper-rectangles) covers the N-dimensional

pace identified by the cartesian product of the domains of the in-

ut columns of the table; and finally, the problem of simplifying

 decision table is mapped to that of finding maximal sets of ad-

acent hyper-rectangles and merging them into a minimal set of

yper-rectangles covering the same space. Based on this geometric

nterpretation, the article presents scalable algorithms for the two

nalysis tasks and for the refactoring task.

The article is an extended and revised version of a previous

onference article [5] . With respect to the conference version, the

ain additional contributions are: (i) the technique for decision

able simplification and an empirical comparison against an ap-

https://doi.org/10.1016/j.is.2018.01.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2018.01.010&domain=pdf
mailto:calvanese@inf.unibz.it
mailto:marlon.dumas@ut.ee
mailto:laurson17@gmail.com
mailto:f.m.maggi@ut.ee
mailto:montali@inf.unibz.it
mailto:irene.teinemaa@ut.ee
https://doi.org/10.1016/j.is.2018.01.010

D. Calvanese et al. / Information Systems 78 (2018) 112–125 113

Table 1

Sample decision table with its constitutive elements.

p

s

l

p

p

t

t

S

a

t

w

S

d

2

c

2

p

u

a

f

u

p

a

a

e

v

u

t

fi

h

t

m

n

T

p

1

s

i

t

m

i

t

l

2

c

a

r

t

q

c

t

m

w

t

o

b

(

i

e

b

t

v

F

i

i

w

i

t

n

s

k

i

i
roach to this problem proposed in the context of classical deci-

ion tables [18] ; and (ii) an improved technique for detecting over-

apping rules that achieves lower execution times than the one

roposed in the conference article. The techniques have been im-

lemented atop the dmn-js editor and evaluated using decision

ables of varying sizes derived from a credit lending dataset.

The rest of the article is structured as follows. Section 2 in-

roduces DMN decision tables and discusses related work.

ection 3 presents the formalization of the decision tables

nd their associated correctness criteria. Section 4 presents

he algorithms for correctness checking and simplification

hile Section 5 discusses their empirical evaluation. Finally,

ection 6 summarizes the contributions and outlines future work

irections.

. Background and Related Work

Below, we provide an overview of DMN decision tables and dis-

uss previous work related to their analysis.

.1. Overview of DMN Decision Tables

A DMN decision table consists of columns corresponding to in-

ut or output attributes, and rows corresponding to rules. Each col-

mn has a type (e.g., a string, a number, or a date), and optionally

 more specific domain of possible values, which we hereby call a

acet . Each row has an identifier, one expression for each input col-

mn (a.k.a. the input entries), and one specific value for each out-

ut column (a.k.a. the output entries). For example, Table 1 shows

 DMN decision table with two input columns, one output column

nd four rules.

Given a vector of input values (one entry per column), if ev-

ry input entry of a row holds true for this input vector, then the

ector matches the row and the output entries of the row are eval-

ated. For example, vector 〈 500 , 1400 〉 matches rule B in Table 1 ,

hus yielding G in the output column. To specify how output con-

gurations are computed from input ones, a DMN decision table

as a hit indicator and a completeness indicator . 1 The hit indica-

or specifies whether only one or multiple rows of the table may

atch a given input and, if multiple rules match an input, how
1 In the new version of DMN released in 2016 (DMN 1.1), the notion of complete-

ess indicator was eliminated. However, this is purely a standardization decision.

he problem of identifying missing rules remains a relevant problem from a tooling

erspective. In this article, we refer to the completeness and hit indicators of DMN

.0.

b

r

r

c

i
hould the output be computed. The completeness indicator spec-

fies whether every input must match at least one rule or poten-

ially none. If an input configuration matches multiple rules, this

ay contradict the hit indicator. Similarly, if no rule matches an

nput configuration, this may contradict the completeness indica-

or. The former contradiction leads to overlapping rules while the

atter leads to missing rules .

.2. Analysis of DMN Decision Tables

The need to analyze decision tables from the perspective of

ompleteness (i.e., detecting missing rules) as well as consistency

nd non-redundancy (i.e., detecting overlapping rules) is widely

ecognized [6] . Several algorithms addressing these two analysis

asks have been proposed [12,17,24] . However, these algorithms re-

uire the domain of each input attribute to be either boolean or

ategorical. If an attribute has a numerical domain, meaning that

he input entries of this attribute are intervals, then these intervals

ust be disjoint.

Concretely, the above approaches cannot handle situations

here multiple overlapping intervals appear as input entries of

he same attribute (e.g., attribute A has input entry [151 .. 300] in

ne rule and [200 .. 250] in another rule). If this happens, the ta-

le needs to be expanded so that these intervals do not overlap

e.g., intervals [151 .. 300] and [200 .. 250] need to be broken down

nto [151 .. 200) , [200 .. 250) and [250 .. 300]). In the worst case, this

xpansion increases the size of the table exponentially in the num-

er of numerical attributes. Alternatively, instead of breaking down

he entries under a numerical attribute into non-overlapping inter-

als, we can instead define one boolean variable for each interval.

or example, if a numerical attribute A has input entries [151 .. 300]

n one rule and [200 .. 250] in another rule, we can rewrite the table

nto an equivalent table with two boolean attributes, A1 and A2,

here A1 is true iff the value of the original attribute A is in the

nterval [151 .. 300] , and A2 is true iff the value of the original at-

ribute A is in the interval [200 .. 250] . This rewriting approach does

ot increase the number of rules in the table, but instead it may

ignificantly increase the number of columns. To the best of our

nowledge, the approach for analyzing decision tables we propose

s the first one that deals with numerical attributes without requir-

ng the input entries of each numerical attribute to be previously

roken down into disjoint intervals.

Similarly, several algorithms for simplifying decision tables via

ule merging have been proposed [14,18,20,22] . The Pollack’s algo-

ithm [18] selects two rules that have the same output and coin-

ide on all inputs but one. Every time that such a pair of rules is

dentified, they are merged into a single rule by doing the union

114 D. Calvanese et al. / Information Systems 78 (2018) 112–125

3

b

i

W

a

o

a

i

D

w

p

o

p

c

c

3

t

t

〈

a

�

R

R

t

t

i

n

i

p

n

t

T

c

w

F

w

f

of the sets of values in the two cells where the difference occurs

(all other cells remain the same in the merged rule). Shwayder

[20] proposes an optimization of the Pollack’s algorithm applica-

ble in the case where certain rules do not depend on all attributes,

but only on a subset of them. Maes [14] proposes further opti-

mizations in cases where there are logical relations between the

attributes (e.g., if two attributes are true, then a third attribute is

also true). The latter approach specifically optimizes the order in

which the attributes are scanned (to identify possible rules to be

merged) so as to obtain a minimum set of rules after simplifica-

tion. In this approach, only one pair of rules is merged at a time.

Vanthienen et al. [22] extend the latter approach by considering

situations where groups of more than two rules can be merged to-

gether into a smaller set of rules.

All these algorithms suffer from the same limitations men-

tioned above in the context of algorithms for finding missing and

overlapping rules. In other words, these algorithms operate over

attributes with boolean domains (and by extension they can be ap-

plied to categorical domains). If the table has numerical domains,

the intervals under each attribute must be made disjoint as ex-

plained above.

From these observations, we can conclude that, while the ver-

ification and simplification of decision tables with discrete or dis-

cretized domains has received much attention, the case where

columns have both discrete domains and numerical domains with

arbitrary interval expressions has not been considered in the liter-

ature. In this article, we propose a geometric approach to diagnose

and simplify decision tables that overcome the above limitations.

Geometric approaches to analyze equivalence or overlap of expres-

sions have been studied in the context of arithmetic expressions

[10] , but they have never been applied to decision tables before.

Another related body of research deals with using decision ta-

bles as output of classification algorithms (as an alternative to de-

cision trees) [13] . Such techniques have been applied to extract

DMN decision tables from business process event logs [2] . This

body of research however is not concerned with the analysis of

decision tables, but rather with their discovery.

To conclude our analysis of the literature, we report that several

tools are available for modeling executing, and analyzing classical

decision tables. Prologa [21,23] supports the construction of deci-

sion tables in a way that prevents overlapping or missing rules. It

also supports the simplification of decision tables via rule merging.

However, the underlying techniques implemented in Prologa are

designed for boolean and categorical attributes. When attributes

are numerical, their input entries need to be decomposed as ex-

plained above.

Signavio’s DMN editor 2 detects overlapping and missing rules

without requiring the entries of numerical attributes to be broken

down. However, the employed techniques are undisclosed and no

empirical evaluation thereof has been reported. Also, the diagnosis

of overlapping and missing rules produced by Signavio is unneces-

sarily large: it often reports the same rule overlap multiple times.

This behavior will be further explained in Section 5 .

OpenRules 3 uses constraint satisfaction techniques to analyze

business rules, in particular rules encoded in decision tables. While

using a general solver to analyze decision tables is an option (e.g.,

an SMT solver such as Z3 [15]), this approach leads to a boolean

output (is the set of rules satisfiable?), and cannot natively high-

light specific sets of rules that need to be added to a table (missing

rules), nor specific overlaps between pairs of rules that need to be

resolved.
2 http://www.signavio.com

3 http://openrules.com/

d

m

. Formal Semantics

In this section, we provide a formalization of DMN decision ta-

les, defining their input/output semantics, and, at the same time,

ntroducing several analysis tasks focused on correctness checking.

e do not consider forms of aggregation for output values here,

s they are orthogonal to correctness checking. Hence, we focus

n decision tables returning the output of one rule only. These

re called single hit tables. As a concrete specification language for

nput entries, we consider the S-FEEL language introduced in the

MN standard itself.

Our formalization is based on classical predicate logic extended

ith data types, which are needed to capture conditions that em-

loy domain-specific predicates such as comparisons interpreted

ver the total order of natural numbers. This formalization is im-

ortant per se, as it defines a clear, unambiguous semantics of de-

ision tables, and also it represents an interlingua supporting the

omparison of different analysis techniques.

.1. Data Types and S-FEEL Conditions

We first introduce the building blocks of decision tables, i.e.,

he types of the modeled attributes, and the conditions over such

ypes expressed using the S-FEEL language. A data type T is a pair

 �T , �T 〉 , where �T is an object domain , and �T = �P
T � �F

T is

 signature , consisting of a set �P
T of predicate symbols , and a set

F
T of function symbols (disjoint from �P

T). Each predicate symbol

 ∈ �P
T comes with its own arity n , and with an n -ary predicate

T ⊆ �n
T that rigidly defines its semantics. Similarly, each func-

ion symbol f ∈ �F
T comes with its own arity m , and with a func-

ion �m

T → �T that rigidly defines its semantics. To make the ar-

ty explicit in predicate and function symbols, we use the standard

otation R / n and f / m . As usual, we assume that every data type

s equipped with equality as a predefined, binary predicate inter-

reted as the identity on the underlying domain. Hence, we will

ot explicitly mention equality in the signatures of data types. In

he following, we show some of the S-FEEL data types 4 :

• T S = 〈 S , ∅ , ∅〉 – strings.
• T B

= 〈{ true , false } , ∅ , ∅〉 – boolean attributes.
• T Z

= 〈 Z , { < / 2 , > / 2 } , { + / 2 , −/ 2 , ·/ 2 , ÷/ 2 }〉 – integer numbers

equipped with the usual comparison predicates and binary op-

erations.
• T R

= 〈 R , { < / 2 , > / 2 } , { + / 2 , −/ 2 , ·/ 2 , ÷/ 2 }〉 – real numbers

equipped with the usual comparison predicates and binary

operations.

he set of all such types is denoted by T .

S-FEEL allows one to formulate conditions over types. These

onditions constitute the basic building blocks for facets and rules,

hich in turn are the core of decision tables. The syntax of an (S-

EEL) condition Q over type T is:

Q ::= “ - ” | T erm | “ not (”T erm “) ” |
Comparison | Interval | Q 1 , Q 2

Comparison ::= COp T erm

Interval ::= (“ (” | “ [”) T erm 1 “ .. ”T erm 2 (“) ” | “] ”)
T erm ::= v | f (T erm 1 , . . . , T erm m

)

here (i) COp is a binary predicate symbol in �T , (ii) v is an object

rom �T , and (iii) f is an m -ary function in �T .
Concretely, S-FEEL supports the following conditions on a given

ata type T :

• “- ” indicates any value , i.e., it holds for every object in �T .
4 Date/time data types are also supported, but can be considered as simple nu-

erical attributes.

http://www.signavio.com
http://openrules.com/

D. Calvanese et al. / Information Systems 78 (2018) 112–125 115

E

o

“

y

t

3

a

〈

i

s

w

o

i

o

t

t

o

u

t

p

S

i

w

o

a

t

r

a

E

fi

g

p

t

fi

m

l

3

m

t

t

f

t

f

�⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
• “= T erm ” indicates a matching expression , which holds for the ob-

ject in �T that corresponds to the result denoted by term Term .

A term, in turn, corresponds either to a specific object in �T ,
or to the recursive application of an m -ary function in �T to

m terms. It is worth noting that, in the actual S-FEEL standard,

the symbol “ = ” is usually omitted, that is, when resolving the

scope symbol Q , Term is interpreted as a shortcut notation for

“ = T erm ”.
• Comparison is only applicable when T is a numerical data type,

and indicates a comparison condition , which holds for all objects

that are related via the comparison predicate to the object re-

sulting from expression Term .
• Interval is only applicable when T is numerical, and allows the

modeler to capture membership conditions testing whether an

input object belongs to the given interval.
• “ Q 1 , Q 2 ” indicates an alternative condition , which holds when-

ever one of the two conditions Q 1 or Q 2 holds.

xample 1. The fact that a risk category is either high, medium

r low can be expressed by the following condition over T S :
 high , medium , low ”. By using T Z

to denote the age of persons (in

ears), the group of people that are underage or elder (i.e., older

han 70 years) is captured by condition “ [0 .. 18) , ≥ 70 ”.

.2. DMN Decision Tables

We can now define DMN decision tables. See Table 1 for

 reference example. A decision table D is a tuple

 T , I, O, Type , Facet , R, Priority ,C, H〉 , where:

• T is the table name .
• I and O are disjoint finite sets of input and output attributes ,

respectively. 5

• Type : I � O → T is a typing function that associates each in-

put/output attribute to its corresponding data type.
• Facet is a facet function that associates each input/output at-

tribute a ∈ I � O to a condition over Type (a) , defining the accept-

able objects for that attribute. Facet functions are also referred

to as “optional lists of values”.
• R is a finite set { r 1 , . . . , r p } of rules . Each rule r is a pair

〈 If , Then 〉 , where If is an input entry function that associates

each input attribute a in ∈ I to a condition over Type (a in) , and

Then is an output entry function that associates each output at-

tribute a out ∈ O to an object in Type (a out) .
• Priority : R → { 1 , . . . , | R |} is a priority function injectively map-

ping rules in R to a corresponding rule number defining its pri-

ority.
• C ∈ { c , i } is the completeness indicator , where c is the default

value and stands for complete table, while i stands for incom-

plete table.
• H ∈ { u , a , p , f } is the (single) hit policy indicator defining the pol-

icy for the rule application, where: (i) u is the default value and

stands for unique hit policy , (ii) H = a stands for any hit policy ,

(iii) H = p stands for priority hit policy , and it (iv) H = f stands

for first hit policy .

The notion of priority deserves a dedicated discussion. Accord-

ng to the DMN standard, two different notions of priority are re-

pectively induced by a set of rules. The first notion of priority,

hich we call rule priority , is simply determined by the ordering

f rules. The second notion of priority, which we call output prior-

ty , is induced by ordering the rules according to the lexicographic

rdering of the output values (e.g., alphabetical order for strings or
5 Attributes are called “expressions” in the DMN standard because the entries in

he table are expressions over attributes.

⎩
A

t

he usual total ordering for numbers). Since rule and output pri-

rities never interact (either none or only one of them is actually

sed), we employ the abstract Priority function introduced before

o accommodate both types of priority.

Next, we informally review the semantics of rules and of com-

leteness/hit indicators in DMN, moving to the formalization in

ection 3.3 .

Rule semantics. Intuitively, rules follow the standard “if-then”

nterpretation. Rules are matched against input configurations ,

hich map the input attributes to objects in such a way that each

bject (i) belongs to the type of the corresponding input attribute,

nd (ii) satisfies the corresponding facet. If, for every input at-

ribute, the assigned object satisfies the condition imposed by the

ule on that attribute, then the rule triggers , and bounds the output

ttributes to the corresponding objects mentioned by the rule.

xample 2. Consider the decision table in Table 1 . The input con-

guration where annual income is 500 and loan size is 1230 trig-

ers rule B .

Completeness indicator. When the table is declared to be com-

lete, the intention is that every possible input configuration must

rigger at least one rule. Incomplete tables, instead, have input con-

gurations with no matching rule.

Hit policies. Hit policies specify how to handle the case where

ultiple rules are triggered by an input configuration. In particu-

ar:

• “Unique hit” indicates that at most one rule can be triggered by

a given input configuration, thus avoiding the need of deciding

which output is selected when multiple rules trigger simulta-

neously.
• “Any hit” indicates that when multiple rules trigger, they must

agree on the output objects, thus guaranteeing that the output

is always unambiguously computed.
• “Priority hit” indicates that whenever multiple rules trigger,

then the output is unambiguously computed by only consid-

ering the contribution of the triggered rule that has the highest

output priority.
• “First hit” (or “Rule order”) indicates that whenever multiple

rules trigger, then the output is unambiguously computed by

only considering the contribution of the triggered rule that has

the highest rule priority.

.3. Formalization of Rule Semantics and Analysis Tasks

We first define how conditions map to the corresponding for-

ulae. Since each condition is applied to a single input attribute,

he corresponding formula has a single free variable corresponding

o that attribute. Given a condition Q over type T , the condition

ormula for Q , written �Q , is a formula that captures the seman-

ics of Q by suitably using predicates/functions in �T and objects

rom �T , as well as (possibly) a single free variable. Specifically,

Q =

true if Q = “ - ”
¬ �Term

if Q = “ not (T erm) ”
x = T erm if Q = T erm

x COp T erm if Q = “ COp T erm ” and COp ∈

{ <, >, ≤, ≥}
x > �Term 1

∧ x < �Term 2
if Q = “ (T erm 1 .. T erm 2) ”

x > �Term 1
∧ x ≤ �Term 2

if Q = “ (T erm 1 .. T erm 2] ”
x ≥ �Term 1

∧ x < �Term 2
if Q = “ [T erm 1 .. T erm 2) ”

x ≥ �Term 1
∧ x ≤ �Term 2

if Q = “ [T erm 1 .. T erm 2] ”
�Q 1 ∨ �Q 2 if Q = “ Q 1 , Q 2 ”

s usual, we sometimes use notation �Q (x) to explicitly mention

he free variable of the condition formula.

116 D. Calvanese et al. / Information Systems 78 (2018) 112–125

C

C .

i

i

o

i

s

m

c

r

t

p

a

B

i

t

f

i

i

h

T

r

S

o

o

i

o

I

I

t

h

p

f

w

t

r

C

o

b

f

o

Example 3. Consider the S-FEEL conditions in Example 1 .

The condition formula for risk category is Risk = high ∨ Risk =
medium ∨ Risk = low . The condition formula for person ages is:

(Age ≥ 0 ∧ Age < 18) ∨ Age ≥ 70.

With condition formulae, we now formalize the key notions of:

(i) correctness of rule specifications, (ii) semantics of rules, (iii) se-

mantics of completeness, and (iv) semantics of hit indicators. These

notions are, in turn, basic building blocks for a global notion of ta-

ble correctness .

Let D = 〈 T , I, O, Type , Facet , R, Priority ,C, H〉 be a decision table

with m input attributes I = { a 1 , . . . , a m

} , n output attributes O =
{ b 1 , . . . , b n } , and p rules R = { r 1 , . . . , r p } . Throughout the formaliza-

tion, we use notation

�
 x = x 1 , . . . , x m

for object variables filling the

m input attributes, and

�
 y = y 1 , . . . , y n for object variables filling the

n output attributes.

Facet correctness. We first consider the facet correctness of D,

which intuitively amounts to check whether all mentioned input

conditions and output objects agree with the facets associated to

their corresponding attributes. First, we say that object x is legal

for attribute a ∈ I ∪ O , written Legal a (x), if x belongs to the set of

objects defined by the facet associated to a :

Legal a (x) � �Facet (a) (x) .

Consider now a condition Q over a . We say that object x matches

Q , written Matches
Q
a (x) , if x agrees with the facet associated to a ,

and at the same time x satisfies Q :

Matches
Q
a (x) � Legal a (x) ∧ �Q (x) .

Note that for an output attribute with associated object o , �Q (x)

corresponds to an atomic, equality formula testing whether x = o .

Starting from this notion of matching, we formalize that condition

Q is compatible with attribute a , written Compatible
Q
a , if it is pos-

sible to find at least one object that matches Q (i.e., it is not the

case that the facet attached to a is completely disjoint to the set

of objects satisfying Q). Formally:

ompatible
Q
a � ∃ x. Matches

Q
a (x) .

Rule semantics. A rule r = 〈 If , Then 〉 ∈ R is triggered by a con-

figuration

�
 x of input objects, written T riggeredBy r (� x) , whenever

each such object matches the corresponding input condition:

T riggeredBy r (� x) �

∧

i ∈{ 1 , ... ,m }
Matches

If (a i)
a i

(x i) .

Two configurations � x and

�
 y of input and output objects respec-

tively are input-output related by a rule r = 〈 If , Then 〉 ∈ R, written

IORel r (� x , � y) , if r is triggered by the input configuration

�
 x , and the

output configuration

�
 y agrees with the output specified by r :

IORel r (� x , � y) � T riggeredBy r (� x) ∧

∧

j∈{ 1 , ... ,n }
Matches

Then (b j)

b j
(y j) .

Completeness. When declaring that a table is (in)complete,

there is no guarantee that the rules contained in the table indeed

behave as declared. Checking whether the rules of the table im-

ply completeness amounts to checking that the input conditions

“cover” the domains of the attributes, as specified by their facets.

Formally, we say that decision table D is complete if for every input

configuration constituted by objects that agree, position-wise, with

the facets of their corresponding attributes, there exists at least

one rule in D that is triggered by that configuration:

omplete D � ∀

�
 x .

(∧

i ∈{ 1 , ... ,m }
Legal a i (x i)

)
→

∨

k ∈{ 1 , ... ,p}
T riggeredBy r k (� x)

Hit policies. Like for the completeness indicator, when declar-

ing that a table works under a given (single) hit policy, there is no

guarantee that the rules in the table actually behave in a way that
s compatible with the policy itself. We then review each policy

ndicator, and introduce the corresponding formulae over the rules

f the table so as to capture this notion of compatibility.

We start with the unique hit policy, which prescribes that each

nput configuration triggers at most one rule. To properly mirror

uch an indication, table D must be unique , written Unique D , i.e., D
ust guarantee that whenever a rule is triggered by a given input

onfiguration, that input configuration does not trigger any other

ule:

Unique D �

∧

i ∈{ 1 , ... ,p}
∀

�
 x .

(
T riggeredBy r i (� x)

→

∧

j∈{ 1 , ... ,p}\{ i }
¬ T riggeredBy r j (� x)

)
.

We then continue with the any hit policy. To behave consis-

ently with such a policy, D must be such that whenever multi-

le rules are triggered by the same input configuration, they must

gree on the output. This is formalized as follows:

AgreesOnOut put D �

∧

i, j∈{ 1 , ... ,p} ,i � = j
∀

�
 x , � y .

((

T riggeredBy r i (� x)

∧ T riggeredBy r j (� x)
)

∧ IORel r i (� x , � y)

)

→

(
IORel r j (� x , � y)

))

.

We now consider the case of priority and first hit policies.

oth policies depend on (respectively, the output and rule) prior-

ty. Hence, in the presence of such hit policies, the rule seman-

ics needs to be properly reformulated, by considering the Priority

unction. In particular, we say that rule r ∈ R is triggered with prior-

ty by input configuration

�
 x , written T riggeredW ithP riorityBy r (� x) , if

t is triggered by � x in the normal sense, and in addition no rule of

igher priority is triggered by the same input � x :

T riggeredW ithP riorityBy r (� x) � T riggeredBy r (� x) ∧ ∧

r h ∈{ r ′ | r ′ ∈ R and Priority (r ′) > Priority (r) }
¬ T riggeredBy r h (� x) .

his new formula, in turn, can be used to define the input-output

elation induced by the entire table D in the presence of priority.

pecifically, we say that two configurations � x and

�
 y of input and

utput objects are input-output related by D in the presence of pri-

rity , written IORelP D (� x , � y) , if there exists a rule r in D such that r

s the highest-priority rule triggered by � x , and

�
 x and

�
 y are input-

utput related by r (in the sense defined before):

ORelP D (� x , � y) �

∨

r∈ R
T riggeredW ithP riorityBy r (� x) ∧ IORel r (� x , � y) .

n addition, we observe that the presence of priority may lead to

he wrong situation where some rules are never triggered. This

appens when other rules of higher priority have more general in-

ut conditions, thus subsuming the one having lower priority. We

ormalize this notion as follows: rule r 1 ∈ R is masked by rule r 2 ∈ R ,

ritten MaskedBy
r 2
r 1

, if for every input configuration, whenever r 1 is

riggered by that input configuration, then this is also the case for

 2 :

MaskedBy
r 2
r 1
� Priority (r 2) > Priority (r 1)

∧∀

�
 x . T riggeredBy r 1 (� x) → T riggeredBy r 2 (� x) .

learly, checking redundancies and subsumption between rules is

f general interest, not just in the presence of priorities. This will

e in fact extensively discussed in Section 4 .

Correctness formula. We now combine the previously defined

ormulae into a single formula that captures the overall correctness

f a decision table.

D. Calvanese et al. / Information Systems 78 (2018) 112–125 117

d

i

C

b

r

S

c

i

T

I

4

a

p

i

d

c

i

i

a

h

p

p

w

g

e

a

t

F

c

o

4

D

h

o

s

a

l

m

c

j

“

d

t

j

o

v

T

t

c

t

n

A

A

1

a

4

a

fi

a

h

g

o

a

e

l

a

o

a

m

b

r

l

i

i

o

p

s

(
We say that D is correct , written Correct D , if the following con-

itions hold:

1. Every table cell, i.e., every input condition or output object, is

legal for the corresponding attribute (considering the attribute

type and facet).

2. The completeness indicator corresponds to c iff the table is in-

deed complete.

3. The rules are compatible with the hit policy indicator:

(a) if the hit policy is u , each input configuration triggers at

most one rule;

(b) if the hit policy is a , all overlapping rules (i.e., rules that

could simultaneously trigger) have the same output;

(c) if the hit policy is p or f , all rules are “relevant”, i.e., no rule

is masked by a rule with higher priority.

Based on the previously introduced formulae, we then formal-

ze correctness as:

orrect D �

∧

〈 If , Then 〉∈ R

(∧

a ∈ I
Compatible

If (a)
a ∧

∧

b ∈ O
Compatible

Then (b)
b

)

∧

(
(C = c) ↔ Complete D

)
∧

(
(H = u) → Unique D

)
∧

(
(H = a) → AgreesOnOut put D

)
∧

(
(H = p ∨ H = f) →

∧

r 1 ,r 2 ∈ R
¬ MaskedBy

r 2
r 1

)
.

Global input-output formula. We conclude our formalization

y defining a single formula that captures the overall input-output

elation induced by D, considering its rules as well as its hit policy.

pecifically, we say that an input configuration

�
 x and an output

onfiguration

�
 y are input-output related by D, written IORel D (� x , � y) ,

f:

1. The hit policy is either u or a , and there exists a rule that re-

lates � x to � y . 6

2. The hit policy is either p or f , there exists a rule r that relates

�
 x to � y , and there is no other rule with higher priority that is

triggered by � x .

his is formalized as follows:

ORel D (� x , � y) �

(
(H = u ∨ H = a) →

∨

r∈ R
IORel r (� x , � y)

)
∧

(
(H = p ∨ H = f) → IORelP D (� x , � y)

)
.

. Analysis and Simplification Algorithms

In this section, we introduce a general approach to represent

 DMN decision table in terms of geometric objects and we ap-

ly this approach to design algorithms for analyzing and refactor-

ng DMN decision tables. First, we apply this general approach to

esign an algorithm for detecting overlapping rules in a DMN de-

ision table. The detection of overlapping rules allows us to check

f a given table fulfills a unique hit policy. It also allows us to check

f a table with an any hit policy is correct. Indeed, a table with

ny hit should be such that any group of overlapping rules should

ave the same output. Finally, in the case of priority hit and first hit

olicies, this operation allows us to detect situations where a rule

artially or totally masks a set of other rules, because it overlaps

ith these rules while having a higher priority. Next, we apply the

eneral approach for representing DMN tables in order to design
6 In the case of any hit policy, several matching rules may exist, but since they

stablish the same input-output relation, it is sufficient to pick one of them. a
n algorithm for detecting missing rules. This operation allows us

o verify the correctness of a table with a completeness indicator .

inally, we show how the approach can be used to simplify a de-

ision table by merging multiple “adjacent” rules with the same

utput.

.1. General approach

The proposed algorithms rely on a geometric interpretation of a

MN decision table. Every rule in a table is seen as an iso-oriented

yper-rectangle in an N-dimensional space (where N is the number

f columns). Indeed, an input entry in a rule can be seen as a con-

traint over one of the columns. In the case of a numerical column,

n input entry is an interval (potentially with an infinite upper or

ower bound) and thus it defines a segment or line over the di-

ension corresponding to that column. In the case of a categorical

olumn, we can map each value of the column’s domain to a dis-

oint interval – e.g., “Refinancing” to [0..1), “Card payoff” to [1..2),

Car leasing” to [2..3), etc. – and we can see an input entry un-

er this column as defining a segment (or a set of segments) over

he dimension corresponding to the column in question. The con-

unction of the entries of a row hence defines a hyper-rectangle,

r potentially multiple hyper-rectangles in the case of a multi-

alued categorical input entry (e.g., {“Refinancing”, “Car leasing”}).

he hyper-rectangles are iso-oriented, because only constraints of

he form “attribute operator literal” are allowed in S-FEEL and such

onstraints define iso-oriented lines or segments.

The geometric interpretation of Table 1 is shown in Fig. 1 . 7 The

wo dimensions, x and y , represent the two input columns (An-

ual Income and Loan Size), respectively. The table contains 4 rules:

 , B , C , and D . Some of them are overlapping. For example, rule

 overlaps with rule C . Their intersection is the rectangle [500,

0 0 0] × [250, 750]. The table also contains missing values. For ex-

mple, vector 〈 20 0, 10 0 0 〉 does not match any rule in Table 1 .

.2. Finding Overlapping Rules

Given the geometric interpretation of a decision table discussed

bove, the problem of detecting overlapping rules becomes that of

nding intersections in a set of hyper-rectangles. A straightforward

pproach to this problem is to scan through all possible pairs of

yper-rectangles and to check each pair for intersection. This al-

orithm has a complexity of O (N · | R | 2), where | R | is the number

f rules in the table and N is the number of columns (which is

lso the number of dimensions in the hyper-space under consid-

ration). A more sophisticated approach [8] combines a sweep-

ine algorithm with data structures for range queries in order to

chieve a lower complexity: O (| R | · log N | R |).

The above approaches produce as output the set of all pairs of

verlapping rules in a table. This output is arguably not useful from

n end-user perspective as this set of pairs can be too large for

anual inspection. Also, if the goal is ultimately to repair the ta-

le so as to obtain a non-overlapping one, it is not convenient to

eason at the level of pairs of overlapping rules, but rather at the

evel of larger groups of rules that overlap with each other.

Inspired by this observation, we formulate the problem of find-

ng overlapping rules in a DMN decision table as that of comput-

ng maximal subsets of rules such that every two rules in a subset

verlap with each other. We approach this problem by first com-

uting all intersecting pairs of hyper-rectangles in order to con-

truct an overlap graph . In this graph, each vertex represents a rule

i.e., a hyper-rectangle). There is an edge between two vertices if
7 For simplicity, the figure is purely schematic and does not preserve the scale

long the axes.

118 D. Calvanese et al. / Information Systems 78 (2018) 112–125

Fig. 1. Geometric representation of the DMN decision table shown in Table 1 . The

x-axis is the annual income while the y-axis is the loan size. The colored rectan-

gles A-D represent the four rules in the table. The white rectangles 1-8 represent a

set of rectangles such that the union of rectangles A-D and 1-8 cover all possible

combinations of annual income and loan size.

t

a

i

p

t

j

c

b

a

l

t

b

l

S

f

l

l

fi

i

i

l

their corresponding rules overlap. For example, consider the set of

overlapping rectangles shown on the left-hand side of Fig. 2 , which

includes the four rectangles in Fig. 1 and two additional ones (E

and F). The corresponding overlap graph and its maximal cliques

are shown on the right-hand side of the figure. Note that rectan-

gles B and D do not appear in the overlap graph since they do not

overlap with any other rectangle.

The subsets of rules that we are looking for are maximal cliques

in the overlap graph (e.g., the two cliques shown in Fig. 2). Since

we aim at minimizing the number of such subsets, the problem is

then that of listing the maximal cliques in the overlap graph. Find-

ing maximal cliques is an NP-hard problem [9] . However, existing

algorithms such as the Bron-Kerbosch [4] algorithm perform well

in practical scenarios, particularly when the input graph is sparse,

which is likely to be the case in our setting, as we expect that rule

overlaps will be an exception rather than a norm.

In summary, the proposed procedure to identify overlapping

rules from a decision table is as follows:

1. Map the rules into hyper-rectangles in an N-dimensional space

(where N is the number of columns in the table).

2. Build the overlap graph by computing all the pairs of inter-

secting hyper-rectangles (this can be done either by scanning

through all possible pairs of hyper-rectangles and checking each

pair for intersection or by using the algorithm in [8]) and elim-

inate rules that do not overlap with any other rule.

3. Generate the maximal cliques of the overlap graph using the

Bron-Kerbosch algorithm.

4. Output each maximal clique as a set of overlapping rules.

4.3. Finding Missing Rules

The proposed geometric interpretation of decision tables can

also be applied to the problem of detecting missing rules. Below,

we outline an approach to this problem based on the sweep-line

algorithmic paradigm [3] . The idea of sweep-line algorithms is to

pick one dimension (e.g., x-axis), project all geometric objects (in

this case hyper-rectangles) on this dimension, and then sweep an

imaginary line orthogonal to this axis (i.e., parallel to the y-axis).

The line stops at every point in the x-axis where either a hyper-

rectangle starts or ends. In Fig. 1 , the stop points are depicted as

vertical lines. When the line makes a “stop”, we gather all (hyper-

)rectangles that intersect the line. This set of hyper-rectangles is

called the active list and they are such that they overlap along their

x-axis projection. The idea of sweep-line is to analyze the hyper-

rectangles in the active set, then move the line to the next posi-
ion, and so on until the last hyper-rectangle has been processed

long the x-axis.

The specific procedure we propose for missing rules detection

s described in Algorithm 1 . This algorithm takes as inputs five

Algorithm 1: Procedure findMissingRules.

Input : r uleList; missingInter v als ; i ; N; missingRuleList .

1 if i < N then
2 L x i = [] ; // initializes the current list of bounds

3 sortedListAl l Bounds = ruleList .sort(i);
4 lastBound = 0;
5 foreach currentBound ∈ sortedListAl l Bounds do
6 if !areAdjacent(lastBound, currentBound) then
7 missingInterv als [i] = constructInterval(lastBound,

currentBound);
8 if missingRuleList.canBeMerged(missingInterv als); then
9 missingRuleList .merge(missingInterv als);

10 else
11 missingRuleList .add(missingInterv als);

12 if ! L x i .isEmpty() then

13 missingInterv als [i] =
constructInterval(last Bound, current Bound);

14 findMissingRules(L x i , missingInterv als, i +1, N,

missingRuleList); /* recursive invocation */

15 if currentBound.isLower() then
16 L x i .put(currentBound);

17 else
18 L x i .delete(currentBound);

19 last Bound = current Bound;

20 return missingRuleList;

arameters:

1. ruleList – the set of rules of the input DMN decision table;

2. missingIntervals – the current set of missing intervals;

3. i – the index of the dimension (column) that is being swept

through;

4. N – the total number of columns;

5. MissingRuleList – the set of missing rules.

The algorithm starts by sweeping through the first column of

he table (axis x). To illustrate this first pass, we consider the pro-

ection of the table in Fig. 1 on the x axis:

A

B
C

D

The upper and lower bounds of each interval are sorted in as-

ending order (line 3). The algorithm iterates over the list of sorted

ounds (line 5). Considering the rules above, the algorithm first an-

lyzes the lower bound of I x
A

. Therefore, I x
A

is added to the active

ist of intervals for the first column x , L x . An interval is added to

he active list if its lower bound is processed (line 16). If the upper

ound of an interval is processed, the interval is removed from the

ist (line 18). Next, the algorithm processes the lower bound of I x
B
.

ince L x is not empty, I x
B

is not added to L x yet (line 12). Starting

rom the interval I A , B (line 13) having the lower bound of I x
A

as

ower bound and the lower bound of I x
B

as upper bound, the fol-

owing column of the table is analyzed (in this case y) by invoking

ndMissingRules recursively (line 14).

All the interval projections on y of the rules corresponding to

ntervals contained in L x (in our example only A) are represented

n terms of upper and lower bounds, obtaining in this case the fol-

owing simple situation:

A

D. Calvanese et al. / Information Systems 78 (2018) 112–125 119

Fig. 2. Extended version of the example in Fig. 1 (left) and corresponding overlap graph with maximal cliques thereof (right).

a

s

L

s

m

t

b

i

i

m

p

c

c

i

t

c

t

i

c

e

t

b

L
i

I

b

a

t

t

a

t

a

c

v

s

l

c

o

m

n

r

v

m

i

v

r

4

p

d

t

b

p

i

a

j

a

s

a

d

s

t

s

W

n

i

l

a

w

a

i

s

–

c

j

o

p

f

F

T

t

g

l

n

t

c

c

p
The bounds are sorted in ascending order. The algorithm iter-

tes over the list of sorted bounds. The first bound taken into con-

ideration is the lower bound of I
y
A

so that I
y
A

is added to L y (since

 y is empty). Since this bound corresponds to the minimum pos-

ible value for y , there are no missing values between the mini-

um possible value for y and the lower bound of I
y
A

(line 6). Next,

he algorithm processes the second bound in L y that is the upper

ound of I
y
A

. Considering that the upper bound of I
y
A

is the last one

n L y , the algorithm checks if this value corresponds to the max-

mum possible value for y (line 6). Since this is not the case, this

eans that there are missing values in the area between the up-

er bound of I
y
A

and the next bound over the same column (in this

ase area 1). The algorithm checks if the identified area is adja-

ent to an area of missing values previously found (line 8). If this

s the case the two areas are merged (line 9). If this is not the case,

he area is added to a list of missing value areas (line 11). In our

ase, area 1 is added to the list of missing value areas. Note that

he algorithm merges two areas of missing values only when the

ntervals corresponding to one column are adjacent and the ones

orresponding to all the other columns are exactly the same. In the

xample in Fig. 1 , areas 4 and 6 are merged.

At this point, the recursion ends and the algorithm goes back

o analyze the intervals in the projection along the x axis. The last

ound processed was the lower bound of I x
B
, so that I x

B
is added to

 x . Next, the algorithm processes the lower bound of I x
C

(since L x

s not empty, I x
C

is not added to L x yet). Starting from the interval

 B, C having the lower bound of I x
B

as lower bound and the lower

ound of I x
C

as upper bound, the following column of the table is

nalyzed (in this case y) again through recursion.

All intervals projections on y of the rules corresponding to in-

ervals contained in L x (in this case A and B) are represented in

erms of upper and lower bounds:

A B

The bounds are sorted in ascending order. The algorithm iter-

tes over the list of sorted bounds. Considering the rules above,

he algorithm first processes the lower bound of I
y
A

so that I
y
A

is

dded to L y (L y is empty). Then, the upper bound of I
y
A

is pro-

essed. When the algorithm reaches the upper bound of an inter-

al in a certain column the interval is removed from the corre-

ponding active list. Therefore, I
y
A

is removed from L y . Next, the

ower bound of I
y
B

is processed. Since L y is empty, the algorithm

hecks if the previously processed bound is adjacent to the current

ne (line 6). Since this is not the case, this means that there are

issing values in the area between the upper bound of I
y
A

and the

ext bound over the same column (in this case area 2). The algo-

ithm checks if the identified area is adjacent to an area of missing

alues previously found and, if this is the case, the two areas are

erged. If this is not the case, the area is added to the list of miss-

ng value areas (in our case area 2 is added to the list of missing

r

(
alue areas). The list of missing areas (stored in missingRuleList) is

eturned by the algorithm (line 20).

.4. Decision Table Simplification

The proposed approach to table simplification proceeds in three

hases as sketched in Fig. 3 . In the first phase, the set of rules are

ivided into groups on the basis of their output (i.e., all rules with

he same output are put into one group). This grouping is needed,

ecause two rules can be merged only if they have the same out-

ut. The second and third phases are applied to each group result-

ng from this first phase.

In the second phase, each rule is mapped to a hyper-rectangle

s previously explained. Using this viewpoint, we construct an ad-

acency graph . In this graph, each rule in the table is represented

s a vertex. Two vertices are connected by an edge if their corre-

ponding hyper-rectangles are adjacent , meaning that they overlap

cross all dimensions but one, and they are contiguous along the

imension where they do not overlap (i.e., they share a common

ide). We observe that two adjacent hyper-rectangles can poten-

ially be merged either into a single hyper-rectangle (if they fully

hare a side), or into multiple ones if they partially share a side.

e also observe that, if two hyper-rectangles are in different con-

ected components of the adjacency graph, they cannot be merged

nto a single rule (neither fully nor partially). This observation al-

ows us to apply a divide-and-conquer approach: instead of testing

rbitrary pairs of rules to find potential rule merging opportunities,

e consider one connected component of the adjacency graph at

 time, and merge rules only within that connected component.

The computation of the adjacency graph can be done in a sim-

lar way as that of the overlap graph, either by testing every pos-

ible pair of hyper-rectangles to check if they have a common side

O (N · | R | 2) – or by using the algorithm in [8] – O (| R | · log N | R |). The

omputation of the connected components is done using the Tar-

an’s algorithm, which has a linear-time complexity in the number

f edges.

The output of the second phase is thus a set of connected com-

onents in the adjacency graph. The third phase will be applied

or each connected component containing more than one rule.

or example, Fig. 4 shows a decision table (similar to the one in

able 1 but without overlaps) and its corresponding geometric in-

erpretation. As depicted in the figure, the corresponding adjacency

raph has three connected components called G 1, G 2, and G 3. The

atter two connected components contain only one rule each, so

o simplification is possible. The rule merging will thus be applied

o component G 1 only.

To this aim, we split the hyper-rectangles in the connected

omponent in such a way that, if two hyper-rectangles are adja-

ent, they fully share one of their sides (as opposed to sharing only

art of a side), and we then re-merge the resulting set of hyper-

ectangles as much as possible. The first step in this third phase

splitting) is performed by running a sweep-line along each dimen-

120 D. Calvanese et al. / Information Systems 78 (2018) 112–125

Fig. 3. Decision table simplification phases.

Fig. 4. Decision table and its corresponding geometric interpretation.

Fig. 5. Decision table simplification example.

Algorithm 2: Procedure simplifyRules.

Input : ruleList; N; i

1 if i < N then
2 B = {} ;
3 F = {} ;
4 sortedListAl l Bounds = ruleList .sort(i);
5 foreach currentBound in sortedListAl l Bounds do
6 if cur rentBound.isIn(r uleList) then
7 if (currentBound.isUpper() && F .isEmpty()) then
8 B.put(currentBound);
9 else if (currentBound.isLower() && ! B.isEmpty() &&

(areAdjacent(last Bound, current Bound) ‖ (lastBound.value ==
currentBound.value)) then

10 F .put(currentBound);
11 else if (! B.isEmpty() && ! F .isEmpty()) then
12 r uleList = mergeRules(r uleList , B, F , i);
13 B = {};
14 F = {};
15 B.put(currentBound);

16 last Bound = current Bound;

17 r uleList = simplifyRules(r uleList , N, i+1);

18 return ruleList;

c

r

i

b

a
sion in turn. Every time that the line crosses the projection of a

hyper-rectangle over the axis along with the sweep is being per-

formed, we break down the hyper-rectangle into two parts (left-

side and right-side) with respect to the current position of the line.

As an example, if we apply this procedure to the rectangles shown

in Fig. 4 , and assuming that all the rules have the same output

(and thus can potentially be merged), we obtain the set of rectan-

gles in Fig. 5 .

The procedure for re-merging the resulting set of rules is given

in Algorithm 2 , and is again performed by running a sweep-line

along each dimension. This procedure (simplifyRules) takes as in-

puts two parameters:

1. ruleList – the set of rules to be merged;

2. N – the total number of columns;

3. i – the index of the dimension (column) that is being swept
through. t
The algorithm starts analyzing the first column (axis x) of the

onsidered connected component (G 1). In the case of Fig. 5 , the

ules of component G 1 are projected on x as:

2

6

1

3

4
5

7

Upper and lower bounds of each interval are sorted in ascend-

ng order (line 4) and the algorithm iterates over the list of sorted

ounds (line 5). Considering the rules above, the algorithm first

nalyzes the lower bound of I x
1

and the lower bound of I x
3
. Then,

he algorithm processes the upper bound of I x . I x is added to list

1 1

D. Calvanese et al. / Information Systems 78 (2018) 112–125 121

Fig. 6. Rules after the first merge.

B
i

o

I

p

c

t

i

b

T

t

r

a

i

n

h

r

t

s

s

I

r

w

p

a

I

F

1

i

b

r

n

u

g

1

c

o

p

m

i

I

r

T

t

r

r

1

i

b

c

Fig. 7. Rules after the second merge.

o

a

n

t

u

i

b

t

g

e

c

A

n

n

b

f

o

p

A

p

m

r

w

h

t

r

o

c

m

a

d

d

i

s

f

s

p

t

s

A

a

f

i

w

o

O
(line 8), because the bound processed is an upper bound and F
s empty (line 7). Next, the algorithm processes the upper bound

f I x
3
, which is also added to B (line 8). Then, the lower bound of

x
2

is processed and I x
2

is added to F (line 10), because the bound

rocessed is a lower bound, it is adjacent to the last bound pro-

essed and B is not empty (line 9). Next, the algorithm processes

he lower bound of I x
4
, which is added to F (line 10), because this

s a lower bound with the same value as the previously processed

ound and B is not empty (line 9). Similarly, I x
6

is also added to F .

hen, the algorithm processes the upper bound of I x
2
. At this point,

he procedure mergeRules (line 12) is invoked to merge rules cor-

esponding to intervals in B and F (since all intervals in B and F
re adjacent).

Procedure mergeRules compares rules corresponding to intervals

n B and rules corresponding to intervals in F in a pairwise man-

er. The comparison of two rules is needed to understand if they

ave the same inputs in all the input columns except for the cur-

ent one (in which they are adjacent). If the inputs are the same,

hen the two rules are merged into one. In the example in Fig. 5 ,

ince B contains { I x
1
, I x

3
} and F contains { I x

2
, I x

4
, I x

6
}, rules corre-

ponding to intervals I x
1

and I x
2
, and rules corresponding to I x

3
and

x
4

are merged into one rule (we call the new intervals I x
2

and I x
4
,

espectively).

Procedure mergeRules also tries to merge these resulting rules

ith each other. Two rules are merged if they have the same in-

uts in all the input columns except for the current one. In our ex-

mple, rules corresponding to intervals I x
2

and I x
4

are merged (into

x
2
). mergeRules returns ruleList , which contains I x

2
, I x

6
, I x

5
, and I x

7
(see

ig. 6).

At this point, the algorithm makes B and F empty (lines 13,

4). The last processed bound was the upper bound of I x
2
, which

s added to B (line 15). Next, the algorithm processes the upper

ound of I x
4
. Since the rule corresponding to this interval has al-

eady been merged with the rule corresponding to I x
2

(the rule is

ot in ruleList anymore), the algorithm ignores it (line 6). Then, the

pper bound of I x
6

is processed and is added to B (line 8). The al-

orithm processes the lower bound of I x
5

and adds it to F (line

0), because the bound processed is a lower bound and is adja-

ent to the last bound processed (line 9). Next, the lower bound

f I x
7

is processed and this interval is added to F (line 10). At this

oint, the algorithm processes the upper bound of I x
5

and invokes

ergeRules again (line 12).

Again, procedure mergeRules compares rules corresponding to

ntervals in B and F to check if there are rules that can be merged.

n our example, B contains { I x
2
, I x

6
} and F contains { I x

5
, I x

7
}. Then,

ules corresponding to I x
6

and I x
7

are merged into one rule (I x
7
).

herefore, ruleList contains { I x
2
, I x

5
, I x

7
}. In this case, it is not possible

o further merge these rules with each other. Therefore, mergeRules

eturns ruleList , which contains rules { I x
2
, I x

5
, I x

7
}. The resulting set of

ules is shown in Fig. 7 .

At this point, the algorithm makes B and F empty (lines 13,

4). The last processed bound was the upper bound of I x
5
, which

s added to B (line 15). Next, the algorithm processes the upper

ound of I x
7
, which is added to B (line 8). At this stage, no rules

an be merged along the current dimension. Since there are no
ther bounds to be processed along the current dimension, the

lgorithm starts sweeping the following dimension (line 17). The

ext dimension in our example is the y axis. All interval projec-

ions on y corresponding to rules in Fig. 7 are shown in terms of

pper and lower bounds below:

2

7
5

Lower and upper bounds of each interval are sorted in ascend-

ng order (line 4). The algorithm iterates over the list of sorted

ounds (line 5) and processes the bounds as for dimension x . In

his case, there are no rules that can be merged. Therefore, the al-

orithm finishes and returns ruleList (line 18), which in the running

xample consists of the rules depicted in Fig. 7 .

We observe that the end-to-end procedure for table simplifi-

ation is dominated by the complexity of the third phase, i.e., of

lgorithm 2 , which has a complexity of O (N · | R | 2), where N is the

umber of dimensions and | R | is the number of rules in the con-

ected component (which in the worst case is equal to the num-

er of rules in the entire table). This complexity comes from the

act that for each dimension, the algorithm computes the subsets

f rules B and F and then compares the rules in these sets in a

airwise manner.

In computational geometry, the problem addressed by

lgorithm 2 is known as the optimal rectangulation of a hyper-

olygon , which means decomposing a hyper-polygon into a

inimal set of hyper-rectangles. Indeed, if we merge all the hyper-

ectangles in a connected component of the adjacency graph,

e obtain an iso-oriented hyper-polygon (a.k.a. an orthogonal

yper-polygon). The goal of the simplification procedure is then

o decompose this hyper-polygon into a minimal set of hyper-

ectangles. As shown in [7] , the problem of optimal rectangulation

f an orthogonal hyper-polygon is, in general, NP-complete in the

ase of 3 or more dimensions. Algorithm 2 is hence a polyno-

ial heuristic that attempts to find the best decomposition in

 best-first approach based on one single “sweep” across each

imension.

In Algorithm 2 , the dimensions are considered in one fixed or-

er. We hereby call this approach one-permutation approach since

t only considers one possible permutation of the set of dimen-

ions. A more exhaustive approach is to apply Algorithm 2 once

or each possible permutation of the dimensions (e.g., we first

weep along the x-axis followed by the y-axis, and then we re-

eat the procedure the other way around). Each permutation leads

o a simplified set of rules. We can then pick the set with the

mallest number of rules. In the running example, if we apply

lgorithm 2 starting from the y-axis, we would obtain three rect-

ngles vertically aligned with each other. These rectangles are dif-

erent from those shown in Fig. 7 , but the number of rectangles

s still the same. In more complex examples however, the order in

hich dimensions are visited may affect the number of rectangles

btained after the simplification procedure.

The above all-permutations approach has a complexity of

 (N ! · | R | 2), meaning that it is combinatorial in the number of di-

122 D. Calvanese et al. / Information Systems 78 (2018) 112–125

m

c

g

w

b

s

F

w

o

t

e

r

t

b

a

o

o

r

a

o

t

b

r

c

i

b

l

o

s

w

p

o

o

c

A

p

i

h

1

r

5

D

s

c

W

f

t

t

p

(

c

m

e

n

(

t
mensions, but is still polynomial in the number of rules. Below,

we empirically evaluate the performance of these one-permutation

and all-permutation variants, in terms of their execution times and

sizes of the simplified tables they produce.

5. Evaluation

We implemented the algorithms on top of dmn-js : an open-

source rendering and editing toolkit for DMN decision tables. 8 Our

dmn-js extension with verification and simplification features can

be found at https://github.com/ulaurson/dmn-js and a deployed

version is available at http://dmn.cs.ut.ee .

Based on this implementation, we experimentally evaluated the

scalability of the proposed algorithms and the conciseness of their

output relative to existing baselines. We first discuss the evalua-

tion of the algorithms for overlapping and missing rules detection,

followed by that of the table simplification algorithm.

5.1. Evaluation of Overlapping and Missing Rules Detection

Dataset. For this evaluation, we created decision tables from a

loan dataset of LendingClub – a peer-to-peer lending marketplace. 9

This dataset contains data about all loans issued in 2014 (235 629

loans). For each loan, there are attributes of the loan itself (e.g.,

amount, purpose), of the lender (e.g., income, family status, prop-

erty ownership), and a credit grade (A, B, C, D, E, F, G).

Using Weka [11] , we trained decision trees to classify the grade

of each loan from a subset of the loan attributes. We then trans-

lated each trained decision tree into a DMN decision table by map-

ping each path from the root to a leaf of the tree into a rule. Us-

ing different attributes and pruning parameters in the decision tree

discovery, we generated DMN decision tables containing approx.

50 0, 10 0 0 and 150 0 rules and 3, 5, 7, 9, 11, 13, and 15 columns (21

tables in total). The 3-dimensional (i.e., 3-column) tables have one

categorical and two numerical input columns; the 5-dimensional

tables have two categorical and three numerical input columns;

the 7-dimensional tables have two categorical and five numerical

input columns; the 9-dimensional tables have three categorical and

six numerical input columns; the 11-dimensional tables have three

categorical and eight numerical input columns; the 13-dimensional

tables have four categorical and nine numerical input columns; and

the 15-dimensional tables have five categorical and ten numerical

input columns.

By construction, the generated tables do not contain overlap-

ping or missing rules. To introduce overlapping rules in a table,

we selected 10% of the rules. For each of them, we randomly se-

lected one column, and we injected noise into the input entry of

the selected column by decreasing its lower bound and increasing

its upper bound in the case of a numerical domain (e.g., interval

[3..6] becomes [2..7]) and by adding one value in the case of a cat-

egorical domain (e.g., {Refinancing, CreditCardPayoff} becomes {Re-

financing, CreditCardPayoff, Leasing}). These modifications make it

that the rule will overlap others. Conversely, to introduce missing

rule errors, we selected 10% of the rules, picked a random column

for each row and “shrank” the corresponding input entry.

Execution times. We ran the missing rule and the overlapping rule

detection methods on each generated table and measured the ex-

ecution times averaged over 5 runs on a single core of a 64-bit

2.2 Ghz Intel Core i5-5200U processor with 16GB of RAM. The re-

sults are shown in Tables 2 and 3 . The execution times for overlap-

ping rules are under 2 minutes, except for the 13-columns and 15-

columns tables with 1500 rules. Similarly, the execution times for
8 https://github.com/bpmn-io/dmn-js
9 https://www.lendingclub.com/info/download-data.action

t

i

e

c
issing rule detection are 1 minute and below, except for the 13-

olumns and 15-columns tables with 1500 rules. These results sug-

est that the theoretical exponential complexity of the algorithms

e employ does not prevent the analysis of tables with large num-

ers of rules, provided that the number of columns is relatively

mall (less than a dozen in the reported experiments).

eedback conciseness. In addition to implementing our algorithms,

e implemented the algorithms designed to produce the same

utput as Signavio. In Signavio, if multiple rules have a joint in-

ersection (e.g., rules {r1, r2, r3}) the output contains an overlap

ntry for the triplet {r1, r2, r3}, but also for the pairs {r1, r2}, {r2,

3} and {r1, r3} (i.e., subsets of the overlapping set). Furthermore,

he overlap of pair {r1, r2} may be reported multiple times if r3

reaks r 1 ∩ r 2 into multiple hyper-rectangles (and same for {r2, r3}

nd {r1, r3}). Meanwhile, our approach produces only maximal sets

f overlapping rules with a non-empty intersection. In the case

f missing rules, Signavio may report multiple missing rules sepa-

ately even when these missing rules can be merged together. Our

pproach, instead, merges missing rules that are adjacent to each

ther into a smaller number of missing rules.

Tables 4–6 show the number of sets of overlapping rules and

he number of missing rules identified by our approach vs. the

aseline (i.e., the style of output implemented in Signavio). In all

uns, both the number of overlapping and missing rules is drasti-

ally lower in our approach. Also, the results show a linear growth

n the number of sets of overlapping and missing rules produced

y our approach, compared to sharp jumps in the case of the base-

ine (e.g., from 1.2K for the 3 × 500 table to 10.9K for the 3 × 10 0 0

ne).

We decided to inject noise in 10% of the rules in each table

ince our goal was to stress test the techniques by running them

ith very large numbers of rules and high numbers of overlap-

ing/missing rules. Indeed, as shown in Tables 4 - 6 , the amount of

verlapping/missing rules with this level of noise is already in the

rder of hundreds in the case of the table with 1500 rules and 15

olumns (after merging the overlapping rules into maximal sets).

t this level, the execution times reach several minutes. We re-

eated the same experiments by injecting noise in 15% of the rules

n each table. As expected, the execution times were significantly

igher (over an hour in the case of tables with 1500 rows and ≥
1 columns) due to the large number of overlapping and missing

ules.

.2. Evaluation of Table Simplification

ataset. To evaluate the table simplification approach, we con-

tructed decision tables from the LendingClub dataset using a pro-

edure similar to the one previously outlined. Specifically, we used

eka [11] to train decision trees to classify the grade of each loan

rom a subset of the loan attributes, and translated each decision

ree into a DMN decision table. We tuned the pruning parameters

o generate tables containing approximately 100 rules, with 3 in-

ut columns (one categorical and two numerical), 5 input columns

two categorical and three numerical), and 7 input columns (two

ategorical and five numerical).

Given the way decision trees are constructed, there are no rule

erging opportunities in the resulting decision tables. Indeed, ev-

ry time the decision tree learning algorithm splits an internal

ode into two leaves, it ensures that the class label of one leaf

which will become one rule) is different from the class label of

he other leaf (which will become a rule with which it could po-

entially be merged). To introduce rule merging opportunities, we

nject noise as follows. We randomly select 10% of the rules. For

ach such rule r , we “enlarge” the range of a randomly selected

olumn as described Section 5.1 . As a result of this enlargement,

http://dmn.cs.ut.ee
https://www.lendingclub.com/info/download-data.action

D. Calvanese et al. / Information Systems 78 (2018) 112–125 123

Table 2

Execution times (in milliseconds) for tables with 3, 5, 7, and 9 columns and noise 10%.

3 columns 5 columns 7 columns 9 columns

#rules 499 998 1492 505 10 0 0 1506 502 1019 1496 507 1012 1524

overlapping rules 117 503 1263 160 600 1370 1374 2069 13 405 1100 4935 30 554

missing rules 160 611 1672 163 820 1942 2173 7029 18 263 529 6557 17 649

Table 3

Execution times (in milliseconds) for tables with 11, 13, and 15 columns and noise 10%.

11 columns 13 columns 15 columns

#rules 489 1026 1484 515 987 1527 731 1038 1514

overlapping time 767 20 934 93 175 1023 19 641 320 105 11 175 34 387 195 868

missing time 1083 15 809 65 450 3116 50 574 316 138 15 598 41 448 704 510

Table 4

Number of reported errors of type “overlapping rules” & “missing rules” for tables with 3, 5, and 7 columns and noise 10%.

3 columns 5 columns 7 columns

#rules 499 998 1492 505 10 0 0 1506 502 1019 1496

#overlapping rule sets Our approach 131 447 812 110 225 378 139 227 371

Baseline 1226 10 920 23 115 679 3692 8921 23 175 22 002 62 217

#missing rules Our approach 117 330 726 136 254 462 134 322 518

Baseline 668 2655 5386 563 2022 4832 5201 18 076 43 552

Table 5

Number of reported errors of type “overlapping rules” & “missing rules” for tables with 9 and 11 columns and noise 10%.

9 columns 11 columns

#rules 507 1012 1524 489 1026 1484

#overlapping rule sets Our approach 93 198 341 102 293 364

Baseline 16 634 71 263 291 978 13 584 238 704 1011 268

#missing rules Our approach 126 195 176 106 211 374

Baseline 3359 36 398 101 905 5667 150 256 361 861

Table 6

Number of reported errors of type “overlapping rules” & “missing rules” for tables with 13 and 15 columns and noise 10%.

13 columns 15 columns

#rules 515 987 1527 731 1038 1514

#overlapping rule sets Our approach 95 212 589 129 211 371

Baseline 14 683 252 083 1 652 964 121 813 361 389 1 152 632

#missing rules Our approach 159 290 267 196 192 211

Baseline 13 360 161 878 551 604 40 245 70 756 254 675

r

r

r

o

n

t

s

p

c

t

p

r

c

p

a

c

t

t

(

d

T

d

w

a

o

r

n

o

t

fi

E

a

o

R

t

r

w

o

t

t

a

T
ule r overlaps with other rules. Whenever the enlarged version of

ule r overlaps with other rules, we break down these overlapping

ules in such a way that the resulting rules do not overlap each

ther.

This procedure ensures that the rules in the resulting table do

ot overlap, while at the same time altering the geometric rela-

ions between the set of hyper-rectangles induced by the table in

uch a way that some pairs of hyper-rectangles with the same out-

ut are adjacent and hence can potentially be merged. In order to

reate a higher number of rule merging opportunities, we applied

he same procedure as above, but instead of enlarging one column

er selected rule, we enlarged two columns and three columns,

espectively. As a result, we obtained nine tables: three with 3

olumns, three with 5 columns, and three with 7 columns.

As a baseline, we took the decision table simplification ap-

roach proposed for classical decision tables by Pollack [18] . This

pproach simply selects two rules that have the same output and

oincide in all inputs but one. When such a pair of rules is iden-

ified, they are merged into a single rule by doing the union of

he sets of values in the two cells where the difference occurs

all other cells remain the same in the merged rule). The proce-

ure is repeated until there is no pair of rules that can be merged.

his approach was originally designed for tables over categorical

p
omains. To make it applicable to tables with numerical domains,

e further require that whenever two cells with numerical values

re merged, they should have contiguous ranges. For example, if in

ne rule the range of the loan size is [20 0..30 0), while in the other

ule, the range of the loan size is [50 0..10 0 0), then these rules are

ot merged because the result would not be a single range. On the

ther hand, if these ranges are [20 0..30 0) and [30 0..10 0 0), then the

wo rules are merged and the range of this column in the simpli-

ed decision table is [20 0..10 0 0).

xecution times. We simplified each of the nine tables mentioned

bove and measured the execution times averaged over five runs

n a 64-bit 2.6 GHz Intel Core i5-3230M processor with 4GB of

AM. The executions were timed-out after three hours for prac-

ical reasons. The results are shown in Table 7 . The last three

ows in the table show the execution times of: (i) our approach

hen performing the sweep-line following one single permutation

f the set of columns; (ii) our approach when all possible permu-

ations are explored; and (iii) the Pollack’s approach. We observe

hat in all cases, the execution times of our approach (in both vari-

nts) are considerably lower than those of the Pollack’s approach.

his speed-up can be attributed to the fact that we first com-

ute the connected components in the graph of adjacent rules and

124 D. Calvanese et al. / Information Systems 78 (2018) 112–125

Table 7

Execution times (in seconds) for table simplification.

3 columns 5 columns 7 columns

#Columns enlarged: 1 2 3 1 2 3 1 2 3

Our approach (one-permutation) 0.52 1.1 5.7 3.5 5.5 30.1 5.6 61.5 774

Our approach (all-permutations) 1.2 2.1 10.3 8.5 13.5 660 6480 - -

Pollack 840 720 900 3480 3060 - - - -

Table 8

Number of rules after table simplification.

3 columns 5 columns 7 columns

#Columns modified 1 2 3 1 2 3 1 2 3

Our approach (one-permutation) 104 107 96 105 104 119 123 124 158

Our approach (all-permutations) 97 101 90 102 100 110 107 - -

Pollack 178 178 158 165 163 - - -

d

b

g

a

t

g

r

h

o

a

a

T

t

a

q

c

s

t

d

t

p

D

(

o

p

p

A

(

v

t

R

then merge along each connected component separately, rather

than globally as in the Pollack’s approach. As expected, the exe-

cution times of the all-permutations variant of our approach are

higher than those of the one-permutation variant. For the tables

with 7 columns produced by enlarging two and three columns per

row, the all-permutations variant reaches the three hours time-out.

The Pollack’s approach reaches the time-out for the table with 5

columns produced by enlarging three columns per row and for all

the tables with 7 columns.

The results suggest that the proposed rule simplification algo-

rithm is applicable to tables with large number of rules, provided

that the number of columns is small (less than 6). However, the

algorithm does not scale up well for tables with larger number

of columns. Further research is required to design algorithms that

would address this latter limitation.

Size of simplified tables. Table 8 shows the number of rules ob-

tained after simplification using both variants of our approach

(one-permutation and all-permutations) and using the Pollack’s

approach [18] . The results show that both variants of our approach

produce considerably fewer rules than the Pollack’s approach. This

is attributable to the fact that our approach tries to merge entire

sets of adjacent rules, whereas the Pollack’s approach performs lo-

cal (pairwise) merging. When selecting a given pair of rules for

merging, the Pollack’s approach disables other possible rule merg-

ing opportunities that could lead to rules with larger ranges and

hence to a lower overall number of rules. We also observe from the

results that the all-permutations variant manages in all cases to re-

duce the number of rules with respect to the one-permutation, but

the difference is relatively marginal. These results suggest that the

one-permutation variant (which is more scalable) is sufficient for

practical applications.

6. Conclusion and Future Work

This article presented a formal semantics of DMN decision ta-

bles, a definition of decision table correctness based on this se-

mantics, and a framework for analysis and refactoring of decision

tables based on a geometric interpretation of the rules compos-

ing them. Specifically, the article showed how the rules of a de-

cision table can be seen as iso-oriented hyper-rectangles in an N-

dimensional space (where N is the number of input columns).

Given this geometric interpretation, the article outlined algo-

rithms that operationalize two primitive operations for checking

the correctness of decision tables, namely detection of overlap-

ping rules and detection of missing rules. We also showed that

this interpretation can be used to simplify decision tables by merg-

ing rules when they have the same output and the corresponding

hyper-rectangles are adjacent (i.e., they share a common side).
The proposed algorithms have been implemented atop the

mn-js toolkit. An experimental evaluation on large decision ta-

les has shown the potential for scalability of the proposed al-

orithms, their ability to generate concise feedback of overlapping

nd missing rules, and their ability to produce smaller tables rela-

ive to traditional approaches to decision table simplification [18] .

The experimental evaluation also showed that the proposed al-

orithms scale well in practice to tables with a large number of

ules. The overlapping and missing rule detection algorithms can

andle tables with over a thousand rules and a large proportion

f overlapping and missing rules. Similarly, the rule simplification

lgorithm can handle tables with hundreds of rules. However, the

lgorithms do not scale well as the number of columns increases.

his lack of scalability is particularly visible for the rule simplifica-

ion algorithm, which does not scale well to tables with over half

 dozen columns and a few hundred rules. Further research is re-

uired to design algorithms that can handle this latter limitation.

The proposed geometric interpretation of DMN decision tables

an be applied to design algorithms for other refactoring tasks be-

ides those discussed in this article. For example, we foresee that

he proposed geometric interpretation can be applied to transform

ecision tables with first hit or priority hit policies into equivalent

ables with unique hit policy. Exploring further applications of the

roposed general approach is a possible direction for future work.

Finally, the algorithms proposed in this article are limited to

MN decision tables where the expressions are written in S-FEEL

i.e., expressions of the form attribute-operator-literal). Hence, an-

ther direction for future work is to extend them in order to sup-

ort more complex types of expressions supported in the more ex-

ressive FEEL version of the DMN standard.

cknowledgement

This research was supported by the Estonian Research Council

grant IUT20-55) and by the Research Committee of the Free Uni-

ersity of Bozen-Bolzano (project Knowledge-driven ENterprise Dis-

ributed cOmputing – KENDO).

eferences

[1] K. Batoulis , A. Meyer , E. Bazhenova , G. Decker , M. Weske , Extracting decision
logic from process models, in: Proc. of CAiSE, Springer, 2015 .

[2] E. Bazhenova , S. Bülow , M. Weske , Discovering decision models from event
logs, in: Proc. of BIS, in: Lecture Notes in Business Information Processing, 255,

Springer, 2016, pp. 237–251 .

[3] J.L. Bentley, T. Ottmann, Algorithms for reporting and counting geometric in-
tersections, IEEE Trans. Computers 28 (9) (1979) 643–647, doi: 10.1109/TC.1979.

1675432 .
[4] C. Bron , J. Kerbosch , Algorithm 457: finding all cliques of an undirected graph,

Communications of the ACM 16 (9) (1973) 575?577 .

http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0001
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0001
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0001
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0001
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0001
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0001
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0002
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0002
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0002
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0002
https://doi.org/10.1109/TC.1979.1675432
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0004
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0004
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0004

D. Calvanese et al. / Information Systems 78 (2018) 112–125 125

[

[

[

[
[5] D. Calvanese , M. Dumas , Ü. Laurson , F.M. Maggi , M. Montali , I. Teinemaa , Se-
mantics and analysis of DMN decision tables, in: Proc. of BPM, Springer, 2016,

pp. 217–233 .
[6] CODASYL Decision Table Task Group , A Modern appraisal of decision tables : a

CODASYL report, ACM, 1982 .
[7] V.J. Dielissen, A. Kaldewaij, Rectangular partition is polynomial in two di-

mensions but np-complete in three, Inf. Process. Lett. 38 (1) (1991) 1–6,
doi: 10.1016/0020-0190(91)90207-X .

[8] H. Edelsbrunner , A new approach to rectangle intersections part II, Interna-

tional Journal of Computer Mathematics 13 (3-4) (1983) 221–229 .
[9] M. Garey , D. Johnson , Computers and Intractability: A Guide to the Theory of

NP-completeness, W. H. Freeman and Co, 1979 .
[10] M.A. Ghodrat , T. Givargis , A. Nicolau , Expression equivalence checking using

interval analysis, IEEE Trans. VLSI Syst. 14 (8) (2006) 830–842 .
[11] M.A. Hall , E. Frank , G. Holmes , B. Pfahringer , P. Reutemann , I.H. Witten , The

WEKA data mining software: an update, SIGKDD Explorations 11 (1) (2009)

10–18 .
[12] D.N. Hoover , Z. Chen , Tablewise, a decision table tool, in: Proc. of COMPASS,

1995, pp. 97–108 .
[13] R. Kohavi , D. Sommerfield , Targeting business users with decision table classi-

fiers, in: Proc. of KDD, 1998, pp. 249–253 .
[14] R. Maes , An algorithmic approach to the conversion of decision grid charts into

compressed decision tables, Commun. ACM 23 (5) (1980) 286–293 .
[15] L.M. de Moura , N. Bjørner , Z3: an efficient SMT solver, in: Proc. of TACAS,
Springer, 2008, pp. 337–340 .

[16] Object Management Group, Decision Model and Notation (DMN) 1.0, 2015.
[17] Z. Pawlak , Decision tables – a rough set approach, Bulletin of the EATCS 33

(1987) 85–95 .
[18] S.L. Pollack , Conversion of limited-entry decision tables to computer programs,

Commun. ACM 8 (11) (1965) 677–682 .
[19] U.W. Pooch , Translation of decision tables, Comp. Surv. 6 (2) (1974) 125–151 .

20] K. Shwayder , Combining decision rules in a decision table, Commun. ACM 18

(8) (1975) 476–480 .
[21] J. Vanthienen , E. Dries , Illustration of a decision table tool for specifying and

implementing knowledge based systems, International Journal on Artificial In-
telligence Tools 3 (2) (1994) 267–288 .

22] J. Vanthienen , E. Dries , A branch and bound algorithm to optimize the rep-
resentation of tabular decision processes, Technical Report, Katholieke Univer-

siteit Leuven, 1996 .

23] J. Vanthienen , C. Mues , A. Aerts , An illustration of verification and validation
in the modelling phase of KBS development, Data Knowl. Eng. 27 (3) (1998)

337–352 .
24] A .K. Zaidi , A .H. Levis , Validation and verification of decision making rules, Au-

tomatica 33 (2) (1997) 155–169 .

http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0005
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0005
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0005
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0005
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0005
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0005
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0005
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0006
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0006
https://doi.org/10.1016/0020-0190(91)90207-X
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0008
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0008
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0009
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0009
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0009
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0010
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0010
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0010
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0010
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0011
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0011
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0011
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0011
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0011
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0011
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0011
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0012
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0012
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0012
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0013
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0013
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0013
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0014
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0014
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0015
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0015
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0015
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0016
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0016
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0017
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0017
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0018
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0018
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0019
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0019
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0020
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0020
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0020
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0021
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0021
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0021
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0022
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0022
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0022
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0022
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0023
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0023
http://refhub.elsevier.com/S0306-4379(16)30633-0/sbref0023

	Semantics, Analysis and Simplification of DMN Decision Tables
	1 Introduction
	2 Background and Related Work
	2.1 Overview of DMN Decision Tables
	2.2 Analysis of DMN Decision Tables

	3 Formal Semantics
	3.1 Data Types and S-FEEL Conditions
	3.2 DMN Decision Tables
	3.3 Formalization of Rule Semantics and Analysis Tasks

	4 Analysis and Simplification Algorithms
	4.1 General approach
	4.2 Finding Overlapping Rules
	4.3 Finding Missing Rules
	4.4 Decision Table Simplification

	5 Evaluation
	5.1 Evaluation of Overlapping and Missing Rules Detection
	5.2 Evaluation of Table Simplification

	6 Conclusion and Future Work
	 Acknowledgement
	 References

