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Abstract. We study (unions of) conjunctive metaqueries over ontolo-
gies expressed in the Description Logics counterpart of RDFS equipped
with metamodeling capabilities. This generalization to metaquerying
goes beyond the extensively investigated query answering problem over
ontologies, as now queries may also contain metavariables and TBox
atoms, aligning with the classical “Ask-and-Tell” paradigm in knowledge
representation. For the semantics of queries, we adopt the SPARQL Meta-
modeling Semantics Entailment Regime, a recently introduced regime
that generalizes the commonly used SPARQL Direct Semantics Entailment
Regime by relaxing the typing constraints. This new regime supports a
more flexible querying mechanism over ontologies involving metaclasses
and metaproperties, as query variables can appear in positions of differ-
ent types (i.e. as individual, class, or property). As a result, it enables
the formulation of meaningful metaqueries related to metamodeling. We
show that this query answering task can be reduced to the evaluation of
a linear Datalog program. This Datalog encoding allows us to establish
tight complexity bounds for the associated decision problem, in combined
complexity, ontology complexity and data complexity.

Keywords: Metamodeling · Metaquerying · RDFS · SPARQL Entail-
ment Regime · Datalog · Computational Complexity.

1 INTRODUCTION

Description Logic (DL) ontologies enable the structured and symbolic represen-
tation of knowledge pertaining to a specific domain of interest. A DL ontology
(or simply ontology in what follows) typically consists of two complementary
components: an intensional part and an extensional part. The first one, called
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TBox, is a set of axioms expressed in some formal language that define the in-
tensional knowledge of the modeled domain. The latter, called ABox, is a set of
logical ground atoms that provides the extensional knowledge of the domain.

Query answering is arguably one of the most studied tasks for extracting
information from ontologies, where a query is a declarative expression defining
the information an end user wants to retrieve. But with very few exceptions (see
related work in Section 2), this vast body of literature on ontology-mediated
query answering [6] and ontology-based data access [35] does not consider meta-
modeling and metaquerying.

As pointed out in [24], metamodeling (also known as multi-level modeling [4])
allows to model domain knowledge by using metaclasses and metaproperties in
the ontology, which are, respectively, classes and properties that can predicate
over classes and properties (in addition to individuals).

Example 1. According to scientific classification, living beings are catego-
rized in progressively more specific taxonomic ranks, namely domains (the
most generic), kingdoms, phyla, classes, orders, families, genera, and finally,
species (the most specific). Every species (and the same holds for the other
ranks) can be thought of as a set of individuals. Therefore, it is natural
to treat a concept like “species”, “genus”, etc. as a metaclass (in this ex-
ample, a class whose instances are in turn classes). In the following, we
partially model the above domain of interest through the ontology O =
⟨T ,A⟩, with TBox T = {Warthog ⊑c Animal, Lion ⊑c Animal, predatorOf ⊑p

preyOf−}, where ⊑c and ⊑p refer to inclusions between classes and proper-
ties, respectively, and ABox A = {predatorOf(Scar,Pumbaa),Warthog(Pumbaa),
Lion(Scar),Kingdom(Animal),Species(Warthog), Species(Lion)}. Note that Lion
and Warthog are not only used as predicates (e.g. in Lion ⊑c Animal or
Lion(Scar)), but are also predicated over (e.g. in Species(Lion)). Note also that
the statements that predicate over classes (e.g. Species(Lion)) are part of the
ABox.

The current W3C Recommendation for representing ontologies on the Se-
mantic Web is OWL 2, and the de-facto query language for expressing queries
over OWL 2 ontologies is SPARQL 1.1 [20] (in what follows, simply SPARQL). The
core construct of SPARQL queries is the basic graph pattern (BGP), which can be
seen as a conjunction of atoms. Each atom in a BGP corresponds to an axiom
expressible in the language of the queried ontology, but its terms may include
variables other than IRIs. This is coherent with the classical knowledge represen-
tation Ask-and-Tell framework [25], whose guiding principle is to “ask anything
that can be told to a knowledge base”. As previously noted, this differs from the
majority of works in the query answering literature, where queries can typically
contain only ABox axioms and variables are restricted to individual positions.

Example 2. In the scenario modeled in Example 1, one might ask which taxa
Scar’s prey belongs to, limited to the animal kingdom (and sub-taxa thereof):

q1(X) = ∃Y.preyOf(Y,Scar) ∧X(Y ) ∧X ⊑c Animal
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Interestingly, the syntax of the OWL 2 profiles [28], such as OWL 2 QL, provide
support for metamodeling through OWL 2 punning, which is the capability of an
IRI (Internationalized Resource Identifier) to play simultaneously the role of an
individual, class, or property. Although such languages allow for metamodeling
at least from a syntactic point of view, the official semantics, called Direct Se-
mantics [29], imposes that occurrences of the same IRI in different positions are
treated as if they were occurrences of different IRIs.

As a result of this choice, the SPARQL Direct Semantics Entailment Regime
(DSER) [17] (the most typical SPARQL Entailment Regime for OWL 2 QL ontolo-
gies) enforces the so-called typing constraints, which forbid a variable in a SPARQL
query to appear both in an individual position (i.e. as an argument of a predi-
cate atom) and in predicate position (i.e. as a class or a property). This means
that, under DSER, we cannot join variables denoting classes with those denoting
individuals, thus preventing the specification of interesting metaqueries related
to metamodeling.

Example 3. According to DSER, the set of answers to q1(X) of Example 2 over
the ontology O of Example 1 is {Warthog,Animal}. To filter out taxa that may
be too generic (like Animal), one can restrict the assignments for X to species:

q2(X) = ∃Y.preyOf(Y,Scar) ∧X(Y ) ∧X ⊑c Animal ∧ Species(X)

Unfortunately, such a query is not allowed in DSER, because the typing con-
straints prohibit X from appearing both in class and in individual position.

To remedy this limitation, [23] introduced a novel semantics, called Meta-
modeling Semantics (MS ) in [24], which relies on the notion of interpretation
structures with a second-order flavor, and is a conservative extension of the Di-
rect Semantics. Building on this new semantics, [11] proposed the SPARQL Meta-
modeling Semantics Entailment Regime (MSER), a novel SPARQL Entailment
Regime that generalizes DSER by (i) adopting the MS for OWL 2 QL ontologies
and (ii) relaxing the typing constraints.

Example 4. According to MSER, the set of answers to the query q2(X) of Ex-
ample 3 over the ontology O of Example 1 is {Warthog}.

In this paper, we focus on the fragment of OWL 2 QL corresponding to the DL
DL-LiteRDFS [34] extended with OWL 2 punning, which we call MDL-LiteRDFS. As
an example, the ontology illustrated in Example 1 is a MDL-LiteRDFS ontology.
We recall that DL-LiteRDFS corresponds to the DL counterpart of RDFS, and, as
already pointed out in [34], it is very similar to the DL RDFS(DL) [14]. This
popular DL has been the subject of several recent studies, including tasks related
to abstraction [10,13], as well as query answering over ontologies formulated in
this language [34] and slight extensions of it [12,9].

To the best of our knowledge, however, the topic of metaqueries over ontolo-
gies expressed in this language equipped with metamodeling capabilities (i.e. over
MDL-LiteRDFS ontologies) is still unexplored. In this paper, we focus on unions of
conjunctive metaqueries (UCMQs), which correspond to unions of SPARQL Basic
Graph Patterns. Both queries in Example 2 and Example 3 are UCMQs.
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Contributions. Our main contributions are twofold. First, we show that the
problem of answering UCMQs over MDL-LiteRDFS ontologies under MSER can
be reduced to the evaluation of a Datalog program. In particular, we provide
a fixed set of Datalog rules that simulates inference under MSER and, for an
MDL-LiteRDFS ontology O and UCMQ q, we show how to encode O as a set
Datalog facts and q as another set of rules, such that the evaluation of the
resulting program returns exactly the answers to q over O.

Second, we exploit this program to provide tight complexity bounds for the
decision problem associated to answering a UCMQ over an MDL-LiteRDFS ontol-
ogy. Specifically, we show that this problem is NP-complete in combined and
query complexity (which is already the complexity of conjunctive query answer-
ing [1]), NLogSpace-complete in ontology and TBox complexity, and in AC0

in ABox (a.k.a. data) complexity.
We conclude this section by mentioning that a Datalog reduction from the

problem of answering UCMQs over OWL 2 QL ontologies under MSER was already
provided in [11]. So, in principle, since MDL-LiteRDFS is a fragment of OWL 2 QL,
we could use that encoding. However, two observations are in order: (i) to the
best of our knowledge, there is no proof of completeness for the Datalog program
defined in [11]; and (ii) tight complexity bounds were not provided in this work.

2 RELATED WORK

Metamodeling techniques have been applied in various domains, including
model-driven development [5] and conceptual modeling [7]. In the Knowledge
Representation and Reasoning research area, several works [27,30,26,22] investi-
gate the satisfiability problem (and, in some cases, also the subsumption prob-
lem) of ontologies expressed in languages that support a higher-order syntax.
Notably, inspired by HiLog [8], [27] proposes a metamodeling semantics for OWL
2 DL enriched with the metamodeling features of OWL 2. However, these works
do not consider query answering.

The problem of answering SPARQL queries over ontologies expressed in (frag-
ments of) OWL 2 has been an active research topic in recent years [21,18,19,2,31,3].
However, although these works address the case of metaqueries thanks to
SPARQL’s native support for them, the ontology languages adopted in these pa-
pers lack metamodeling capabilities.

Closer to the present paper are the investigations on answering metaqueries
over OWL 2 QL ontologies in [16,11,24]. Similarly to [27], the semantics for ontolo-
gies considered in [16] is inspired by HiLog and thus differs from the MS [24]
adopted in this paper. On the other hand, [11] uses the same semantics for on-
tologies (MS) and for queries (MSER) adopted in this paper. As already said
in the introduction, this work provides a Datalog encoding for answering meta-
queries over OWL 2 QL ontologies under MSER. Very recently, this encoding has
been implemented in various Datalog tools and its practical effectiveness has
been evaluated over the LUBM and MODEUS ontologies [33,32]. However, we
remind the reader that the exact complexity of the associated query answering
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problem remains open, as [11] only establishes upper bounds derived from the
complexity of the evaluation of Datalog queries.

Finally, we mention that [24] also addresses the problem of answering UCMQs
over OWL 2 QL ontologies. However, the semantics adopted for queries is a variant
of MSER that is more closely aligned with classical logic. In particular, under
the semantics for queries adopted in [24], a Boolean UCMQ q is true over an
OWL 2 QL ontology O if, for every model I of O, there exists an assignment for the
existential variables of q that makes the resulting quantifier-free sentence true in
I. However, this assignment may differ from one model to another. In contrast,
under MSER, q is true over O if a same assignment satisfies this condition in
every model of O. In other words, the semantics for queries adopted in [24]
assigns to the union (∨) and the existential quantification (∃) operators the
classical logical meaning, while MSER is closer in spirit to DSER (the official
W3C semantics for interpreting queries over OWL 2 ontologies). Indeed, we recall
that MSER extends DSER to properly handle both metamodeling (by adopting
the MS) and metaquerying (by removing the typing constraints) with SPARQL.

3 PRELIMINARIES

We assume basic knowledge about first-order logic, databases and Description
Logics. In what follows, we refer to countably infinite and disjoint sets V and I
of symbols, used for variables and Internationalized Resource Identifiers (IRIs),
respectively. We also use t̄ to denote a tuple of symbols and, when clear from the
context, we may use the same notation to refer to the set of symbols occurring
in this tuple.

An MDL-LiteRDFS ontology is a set of axioms, expressed in MDL-LiteRDFS, i.e.,
the language that extends DL-LiteRDFS [34] by allowing the same expression to
denote an individual, a class, or a property. As usual in DLs, an ontology O can
be seen as a pair O = ⟨T ,A⟩, where T and A, respectively called TBox and
ABox, are sets of intensional and extensional assertions called axioms, expressing
knowledge about elements of the domain of interest.

Syntactically, the set of well-formed expressions over I Exp(I) is the union
of the set of role expressions Expp(I) = I ∪ {e− | e ∈ I}, and the set of concept
expressions Expc(I) = I ∪ {∃e | e ∈ Expp(I)}. An MDL-LiteRDFS TBox T is a
finite set of axioms of the following form:

b ⊑c a (concept inclusion) p1 ⊑p p2 (role inclusion)

where a ∈ I is an IRI, b ∈ Expc(I) is a concept expression, and p1, p2 ∈ Expp(I)
are role expressions. An MDL-LiteRDFS ABox A is a finite set of axioms of the
form a(e) or r(e1, e2), with e, e1, e2, a, r ∈ I. We use Σ(O) ⊂ I to denote the set
of IRIs occurring in and ontology O (also called the signature of O).

The semantics of MDL-LiteRDFS ontologies is based on the so-called Meta-
modeling Semantics (MS ) [24], which we tailor here for this language. An MS-
interpretation (or simply interpretation) I is a tuple I = ⟨∆, ·C , ·P , ·I⟩, where:
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– ∆ is a non-empty set of objects, called the domain of I;
– ·C : ∆ → P(∆) is a partial function mapping an object o to a set oC of

objects;
– ·P : ∆ → P(∆ × ∆) is another partial function mapping an object o to a

binary relation oP over ∆;
– ·I : Exp(I) → ∆ is a total function, called interpretation function, mapping

each expression in Exp(I) to an object oI ∈ ∆ such that (i) for every p ∈ I, if
·P is defined for pI , then ((p−)I)

P
= {(o′, o) | (o, o′) ∈ (pI)

P }; (ii) for every
p ∈ Expp(I), if ·P is defined for pI , then ((∃p)I)C = {o | ∃o′.(o, o′) ∈ (pI)

P }.

In the above definition, ·C (resp. ·P ) applied to a concept o forms the extension of
o as a concept (resp. role). If the function is undefined for o, then o is intuitively
not a concept (resp. role) in the world represented by I.

We now provide the notion of satisfaction of an MDL-LiteRDFS axiom ϕ with
respect to an MS-interpretation I = ⟨∆, ·C , ·P , ·I⟩ (denoted by I |= ϕ):

– if ϕ = b ⊑c a, then I |= ϕ if ·C is defined for bI and aI , and (bI)
C ⊆ (aI)

C ;
– if ϕ = p ⊑p r, then I |= ϕ if ·P is defined for pI and rI , and (pI)

P ⊆ (rI)
P ;

– if ϕ = a(e), then I |= ϕ if ·C is defined for aI , and eI ∈ (aI)
C ;

– if ϕ = r(e1, e2), then I |= ϕ if ·P is defined for rI , and (eI1 , e
I
2 ) ∈ (rI)

P .

We use I |= T (resp. I |= A) to denote the fact that I satisfies all the ax-
ioms occurring in a TBox T (resp. ABox A). We say that I is a model of an
MDL-LiteRDFS ontology O = ⟨T ,A⟩ (denoted by I |= O) if I |= T and I |= A.
We may also write O |= ϕ to indicate that I |= ϕ holds for every model I of O.

A query atom is an expression having the form of an MDL-LiteRDFS axiom,
with the difference that variables may also occur among its terms. A Conjunctive
MetaQuery (CMQ) q(X̄; Ȳ ) over an ontology O is an expression of the form
∃Ȳ .φ, where X̄ and Ȳ are tuples of variables in V, and φ is a conjunction of
atoms with variables in X̄ ∪ Ȳ . When convenient, we simply write q(X̄) or q,
and we call arity of q(X̄) the arity of X̄. A Union of CMQs (UCMQ) over O
is a finite disjunction of CMQs over O with the same arity, called its disjuncts.
We say that a query is Boolean if it has arity 0.

For the semantics of (U)CMQs, we adopt the SPARQL Metamodeling Seman-
tics Entailment Regime (MSER) [11], which defines the answers to a query sim-
ilarly to the SPARQL Direct Semantics Entailment Regime (DSER) [17], except
that it uses MS for logical entailment.

Let q(X̄) = ∃Ȳ .α1 ∧ · · · ∧ αn be a CMQ, and let d̄ and ē be two tuples of
IRIs of the same arity as X̄ and Ȳ , respectively. We denote by q(X̄/d̄; Ȳ /ē)
the conjunction of ground atoms ϕ1, . . . , ϕn, where each ϕi is obtained from αi

by replacing each variable X ∈ X̄ and Y ∈ Ȳ with the corresponding IRI in
d̄ and ē, respectively. Note that, by construction, every ϕi in q(X̄/d̄; Ȳ /ē) is
an MDL-LiteRDFS axiom. Then, we say that a tuple d̄a of IRIs is an answer to
q(X̄) over O if there is a tuple ēa of IRIs such that O |= ϕi holds for every
ϕi ∈ q(X̄/d̄a; Ȳ /ēa). If q is a UCMQ, then d̄a is an answer to q over O if it is an
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answer to any disjunct of q. For a Boolean UCMQ q(), we say that q is entailed
by O, written O |= q, if the empty tuple is an answer to q over O.

Hereafter, we will use the terms class and property in place of the DL notions
of “concept” and “role”, respectively, as these best align with the knowledge graph
terminology.

Throughout this paper, we will also use Datalog. A Datalog atom may have
constants and/or variables as arguments. For instance, the atom subClass(a,X)
contains a constant a and a variable X. A Datalog fact is an atom without
variables, while a Datalog rule is an expression of the form α0 ← α1, . . . , αm,
where m ≥ 1, each αi is an atom and all variables in α0 appear in some αj , for
j ≥ 1. The head of the rule is α0 and α1, . . . , αm is its body. A Datalog program
is a finite set of facts and rules. In a Datalog program, a predicate is called
intensional if it appears in the head of some rule(s), and extensional otherwise.
A Datalog program is called linear if the body of each rule contains at most one
intensional predicate. We use a standard characterization of the evaluation of a
Datalog program Π (see, e.g., [1]), based on the notion of least model Π∗ of Π,
i.e. the least (w.r.t. set inclusion) set of facts that contains all facts in Π and
satisfies all its rules.

4 DATALOG ENCODING

In this section, we introduce a linear Datalog program Π that encodes an on-
tology O and has linear size. We show that the least model Π∗ of Π coincides
(modulo some simple encoding of DL axioms as Datalog facts) with the set of
formulas that are logically implied by O. This will allow us to derive results
about the complexity of query answering, in Section 5.

Encoding axioms. Before defining the program Π, we need to clarify how we
encode DL axioms as Datalog facts (i.e. grounded atoms). First, to each expres-
sion η ∈ Exp(I) \ I (meaning that η is a composite role or concept), we associate
a Datalog fact expr(η) that specifies how η is constructed. Precisely, we define
expr(r−) and expr(∃r) as the Datalog facts inverse(r−, r) and domain(∃r, r),
respectively. Then, a MDL-LiteRDFS axiom α is encoded as the set

enc(α) = {atom(α)} ∪ {expr(η) | η appears in α}

of Datalog facts, where atom(α) is defined as follows:

MDL-LiteRDFS axiom α Datalog fact atom(α)

a(e) classInst(e, a)
r(e1, e2) propInst(e1, e2, r)
a ⊑c b subClass(a, b)
r ⊑p s subProp(r, s)
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Soundness and completeness. With this encoding, we can clarify what it means
for our program Π to be correct, namely

O |= α iff enc(α) ⊆ Π∗,

for any MDL-LiteRDFS axiom α over Σ(O), where Π∗ is the least model of Π.
The rules of our program Π (which we will introduce below) all have an

intuitive meaning. For instance, the first rule of Figure 1 states that if a is a
subclass of b and e is an instance a, then e is also an instance of b. In other words,
these rules only derive (atoms representing) axioms that are indeed implied by
O. As a consequence, correctness (as we just defined it) trivially holds in one
direction (soundness), namely

enc(α) ⊆ Π∗ implies O |= α

The proof of the converse property (completeness) is more involved:

O |= α implies enc(α) ⊆ Π∗

This property means that every MDL-LiteRDFS axiom (semantically) implied by
O can be derived via the Datalog program Π. So throughout this section, while
introducing Π, we will also prove that it is complete.

ABox axioms. We start by introducing a sub-program ΠABox of Π, in charge of
inferring all ABox axioms implied by O. In order to ensure that Π is linear, we
use two predicates subClassExt and subPropExt to encode the TBox axioms
that are (syntactically) present in T . Precisely, for an axiom α, we use encExt(α)
for the set of atoms identical to enc(α), but where the predicate subClass

(resp. subProp), if present, is replaced with subClassExt (resp. subPropExt).
Our subprogram ΠABox includes the set DO of Datalog facts that encode

the axioms of O, i.e.:

DO =
⋃
α∈O

encExt(α) ⊆ ΠABox

In addition to DO, the program ΠABox contains the 7 rules listed in Figure 1.
Next, we observe that enc(α) = {atom(α)} for any ABox axiom α, so that

completeness for this fragment can be reformulated as

O |= α implies atom(α) ∈ (ΠABox )∗ (1)

To show that this property holds, we focus on the set (ΠABox )∗facts of Datalog
atoms that represent ABox axioms (a.k.a. “facts”) in the least model of this
program, i.e.:

(ΠABox )∗facts ={α | atom(α) ∈ (ΠABox )∗ and α is an ABox axiom}
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classInst(E,B) ← classInst(E,A), subClassExt(A,B)
classInst(E1, A) ← propInst(E1, E2, R), domain(W,R), subClassExt(W,A)
classInst(E2, A) ← propInst(E1, E2, R), inverse(S,R), domain(W,S), subClassExt(W,A)

propInst(E1, E2, S) ← propInst(E1, E2, R), subPropExt(R,S)
propInst(E2, E1, S) ← propInst(E1, E2, R), inverse(R′, R), subPropExt(R′, S)
propInst(E2, E1, S) ← propInst(E1, E2, R), inverse(S′, S), subPropExt(R,S′)
propInst(E1, E2, S) ← propInst(E1, E2, R), inverse(R′, R), inverse(S′, S), subPropExt(R′, S′)

Fig. 1. Rules of the program ΠABox , in charge of inferring ABox axioms

This set (ΠABox )∗facts can intuitively be viewed as a first-order structure. Or more
formally, under the MS, as any interpretation I = ⟨∆, ·C , ·P , ·I⟩ for Σ(O) such
that (i) ·I is injective, (ii) o ∈ (aI)C iff a(e) ∈ (Π)∗facts and eI = o, and (iii)
(o1, o2) ∈ (rI)P iff r(e1, r2) ∈ (Π)∗facts, e

I
1 = o1 and eI2 = o2.

By construction, for an ABox axiom α,

I |= α implies atom(α) ∈ (ΠABox )∗ (2)

In addition, we will show below that I is a model of O. These two properties are
sufficient to prove completeness (a.k.a. Property (1)) for our fragment. Indeed,
if O |= α, then I |= α (since I is a model of O). Together with (2), this implies
that atom(α) ∈ (ΠABox )∗.

So to complete the proof, we only need to show that I is a model ofO, i.e. that
it satisfies every axiom β ∈ O. Due to space limitations, we focus on one type
of axiom as an illustration, namely the case where β is of the form ∃r ⊑c a with
a, r ∈ I (the proof for the other types of axioms is either simpler or analogous).
By construction, subClassExt(∃r, a) ∈ DO, and expr(∃r) = {domain(∃r, r)} ⊆
DO. So from the second rule of Figure 1, propInst(e1, e2, r) ∈ (ΠABox )∗facts
implies classInst(e1, a) ∈ (ΠABox )∗facts for any e1, e2. Viewing (ΠABox )∗facts as
the interpretation I, this implication translates to (∃rI)C ⊆ (aI)C , i.e. I |= β.

TBox Axioms. Next, we extend the program ΠABox to a program Π that also
derives TBox axioms, which gives us a complete system for MDL-LiteRDFS. We
use a technique that reduces the inference of such axioms to the inference of
some ABox atoms, thus relying on the results of the previous section.

For each IRI e ∈ Σ(T ), we introduce three fresh constants (not in I) that
we call witnesses for e, denoted with we, ws

e and wo
e (for “subject” and “ob-

ject”). Then we extend our program with the Datalog facts classWit(we, e)
and classInst(we, e), which indicate that we is the class witness for e
and an instance of e. We proceed similarly with the other two witnesses,
adding to Π the atoms subjWit(ws

e, e), objWit(wo
e , e), propWit(ws

e, w
o
e , e) and

propInst(ws
e, w

o
e , e). We also add to Π the set of inference rules listed in Fig-

ure 2, which rely on witnesses to infer TBox axioms.
We can now extend our proof of completeness to MDL-LiteRDFS. We saw in the

previous section that ΠABox is complete for ABox axioms. Since ΠABox ⊆ Π,
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subClass(A,B)← classWit(E,A), classInst(E,B)
subClass(W,A)← domain(W,R), subjWit(E,R), classInst(E,A)
subClass(W,A)← inverse(R,S), domain(W,S), objWit(E,R), classInst(E,A)
subProp(R,S)← subjWit(E1, R), objWit(E2, R), propInst(E1, E2, S)
subProp(R,S′)← subjWit(E1, R), objWit(E2, R), inverse(S′, S), propInst(E2, E1, S)
subProp(R′, S)← subjWit(E1, R), objWit(E2, R), inverse(R′, R), propInst(E2, E1, S)
subProp(R′, S′)← subjWit(E1, R), objWit(E2, R), inverse(R′, R), inverse(S′, S),

propInst(E1, E2, S)

Fig. 2. Rules in charge of inferring TBox axioms

this property trivially extends to Π. So we can focus on proving that Π is
complete for TBox axioms.

First, we note that for any TBox axiom α over Σ(O), DO ⊆ Π contains the
set {expr(η) | η appears in α}. So, again, completeness can be reformulated as

O |= α implies atom(α) ∈ Π∗ (3)

As above, we use (Π)∗facts to refer to the set of Datalog facts that encode ABox
axioms and belong to the least model Π∗ of Π, and we leverage the fact that
(Π)∗facts can be viewed as an interpretation I. We will also write (DO)facts for the
set of ABox atoms in DO, i.e. all atom(β) ∈ DO s.t. β is an ABox axiom.

As we saw in the previous section, in order to prove (3), it is sufficient to
show that I is a model of O, and that for any TBox axiom α,

(Π)∗facts |= α implies atom(α) ∈ Π∗ (4)

The proof that I is a model of O is identical to the one above, due to the
fact that ΠABox ⊆ Π. As for Property (4), for space limitations, we once again
focus on one syntactic type of TBox axioms as an illustration, namely the case
where α is of the form ∃r ⊑c a for r, a ∈ I (the proof for the other cases is either
simpler or analogous).

Since O |= α (by assumption) and I is a model of O, we know that I |= α,
or in other words, that every (s, o) ∈ (rI)P satisfies s ∈ (aI)C . In Datalog
terms (leveraging the correspondence between I and (Π)∗facts), this means that
propInst(s, o, r) ∈ (Π)∗facts implies classInst(s, a) ∈ (Π)∗facts. In particular,
since propInst(ws

r, w
o
r , r) ∈ (DO)facts ⊆ (Π)∗facts, this implies

classInst(ws
r, a) ∈ (Π)∗facts ⊆ Π∗ (5)

Besides, by construction, the atoms subjWit(ws
r, a) and domain(∃r, r) are both

in Π ⊆ Π∗. Together with (5) and the second rule of Figure 2, this implies

subClass(∃r, a) = atom(α) ∈ Π∗,

which is what we wanted to prove.
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This result, together with the structure of the program Π, allows us to derive
an important (albeit unsurprising) property of our logic. For a TBox axiom α,
the atom atom(α) belongs to Π∗ iff atom(α) has been derived by means of
one of the rules of Figure 2. Then, a simple syntactic analysis of our program
shows that the ABox A cannot play any role in the derivation of such atoms (in
particular, in Figure 2, atoms with predicate classInst or propInst can only
be instantiated with witnesses). As a consequence, all TBox axioms implied by
O follow from the TBox T alone, i.e.:

Lemma 1. For a MDL-LiteRDFS ontology O = ⟨T ,A⟩ and TBox axiom α,

O |= α implies T |= α

Filtering out Auxiliary Constants. The Datalog programΠ that we introduced is
complete (in the sense defined above), but not sound, because Π∗ may contain
atoms of the form classInst(we1 , e2) and propInst(ws

e1 , w
o
e1 , e2), which are

technically not implied by O, since witnesses are fresh. We made this choice to
simplify our presentation and proof of completeness. However, soundness can
easily be recovered by eliminating such atoms from Π∗.

To do this, we first modify the definition of atom(α), in such a way that it
now uses a fresh predicate classInst′ (resp. propInst′, subClass′, subProp′)
in place of classInst (resp. propInst, subClass, subProp). For instance the
definition of atom(a(e)) becomes classInst′(e, a), instead of classInst(e, a).

Then we introduce a predicate IRI, in charge of collecting the signature of O,
and we use DΣ for the set {IRI(e) | e ∈ Σ(O)}. To complete the construction,
we add to Π this set of atoms DΣ , as well as four additional rules, one for each
of the fresh predicates, which retains only constants from Σ(O), thanks to the
predicate IRI. For instance, for classInst′, the rule is

classInst′(E,A)← classInst(E,A), IRI(E), IRI(A)

5 QUERY ANSWERING

In this section, we show how answering an UCMQ q(X̄) over an MDL-LiteRDFS
ontology O under MSER amounts to evaluating a Datalog query over the pro-
gram defined in Section 4. Then we study the complexity of this problem.

Query answering. We first generalize the definition of atom(α) to atoms that
may contain variables (the definition is identical otherwise). For instance, if
α = a ⊑ X, then atom(α) = subClass(a,X). Next, to each disjunct q′(X̄) =
∃Ȳ .α1 ∧ · · · ∧ αn of q, we associate the Datalog rule with head q′(X̄) and body⋃

i∈[1..n] enc(αi). We extend Π with each of these rules, as well as one rule for
q, with head q(X̄) and body {q′(X̄) | q′ is a disjunct of q}. Let ΠO,q be the
resulting program. Because Π is complete, a valuation d̄ for X̄ is an answer to
q over O iff the atom q(d̄) is in (ΠO,q)

∗.
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Decision problem. As is conventional in the database literature, in order to
study the complexity of query answering, we focus on Boolean queries, i.e. we
investigate the following decision problem:

QueryAnswering (q,O)
Input: Boolean UCMQ q, MDL-LiteRDFS ontology O
Decide: O |= q

Ontology Complexity, Membership. Let n denote the size of (the encoding of) O.
Because our programΠ is sound and complete (in the sense of Section 4), one can
use the following procedure to decide O |= q. First, compute Π out of O, in O(n).
Then for each disjunct q′(X̄; Ȳ ) of q, and for each valuation (d̄, ē) for (X̄, Ȳ ),
decide whether enc(ϕ) ⊆ Π∗ holds for every ground atom ϕ ∈ q(X̄/d̄; Ȳ /ē).

The amount of extra space needed to iterate over all such valuations does
not depend on O (but only on X̄ and Ȳ ). Then we observe that the size of the
set enc(ϕ) is fixed (it contains up to three atoms). Deciding whether a fact is
in the least model of a linear Datalog program is known to be in NLogSpace
(see [15], Theorem 6.8). Since Π is linear (and has size in O(n)), this allows us
to conclude that QueryAnswering is in NLogSpace in the size of O.

ABox (a.k.a. Data) Complexity, Membership. We now use n to denote the size
of (the encoding of) A, and rely on the same procedure as in the previous section
to provide an upper bound on the cost of QueryAnswering in terms of n.

The amount of time needed to iterate over all valuations for (X̄, Ȳ ) is in
O(n), and the amount of time needed to iterate over each disjunct q′ of q,
each atom ϕ ∈ q(X̄/d̄; Ȳ /ē) and each atom α ∈ enc(ϕ) is in O(1). If α is an
extensional atom, then α ∈ Π∗ can be decided in O(n), by iterating over Π.
If α is intensional with predicate subClass′ or subProp′, then from Lemma 1,
α ∈ Π∗ can be decided in O(1). The last possible case is if α has predicate
classInst′ or propInst′. We show that in this case, α ∈ Π∗ can be decided by
answering a Boolean First-Order (FO) query over the encoding DO of O, and
that this query can be computed in O(1) (and therefore also has size in O(1)).
This implies that QueryAnswering is in AC0 in ABox complexity.

Let β be the atom identical to α, but where classInst′ (resp. propInst′) is
replaced with classInst (resp. propInst). Then by construction, α ∈ Π∗ iff β ∈
Π∗. And from (1), we know that β ∈ Π∗ iff β ∈ (ΠABox )∗. So we can focus on
the subprogram ΠABox , whose rules are in Figure 1. These rules can be partially
grounded (with constants) for all variables but E, E1, and E2, by inspecting only
atoms of DO with predicate inverse, domain, subClassExt or subPropExt. The
number of such atoms is independent of A (it only depends on T ), so this partial
grounding can be performed in O(1). For instance, a partial grounding of the
first rule may be classInst(E, b)← classInst(E, a), subClassExt(a, b), where
a and b are constants.

Next, each rule in the resulting set Ψ of partially grounded rules can be
finitely "unfolded", meaning that recursively replacing each intensional atom
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ABox complexity in AC0

TBox complexity NLogSpace-complete
ontology complexity NLogSpace-complete

query complexity NP-complete
combined complexity NP-complete

Fig. 3. Complexity of QueryAnswering

by its definitions in Ψ (and renaming variables accordingly) yields a finite set
of non-recursive rules. This can be easily seen by observing that (i) the only
rules in Ψ whose body introduces variables (i.e. not present in the head) are
instantiations of the second and third rules of Figure 1, (ii) the only intensional
predicate in these rules is propInst and (iii) the rules of Ψ with propInst as
predicate do not introduce variables (their bodies only use E1 and E2).

For ψ ∈ Ψ , let unfold(ψ) denote the unfolding of ψ. If β is of the form
classInst(e, a), then β ∈ (ΠABox )∗ iff β ∈ (DO ∪ Ψβ)

∗, where Ψβ =⋃
{unfold(ψ) | ψ ∈ Ψ and ψ has head predicate classInst(E, a)}, and similarly

for β = propInst(e1, e2, r) (with head predicate propInst(E1, E2, r)). Because
Ψβ is non-recursive, deciding β ∈ (DO∪Ψβ)

∗ is equivalent to answering a Boolean
FO query (precisely, a union of conjunctive queries) over DO, and this query only
depends Ψ and β, which are independent of A.

TBox Complexity, Hardness. We provide a reduction from the graph reachability
problem, which is known to be NLogSpace-complete, to QueryAnswering.
Given a directed graph G with nodes V and edges E, and a pair (s, t) of nodes
in V , graph reachability consists in deciding whether there exists a path from s
to t in G. Viewing E as a binary relation over V , this is equivalent to deciding
whether (s, t) is in the transitive closure E∗ of E. W.l.o.g., we can assume that
E is a superset of the identity relation over V .

We represent each node v ∈ V as a distinct atomic concept cv, and leverage
the fact that the relation ⊑c is (semantically) transitive. Precisely, given G =
⟨V,E⟩ and s, t ∈ V as input, we define the UCMQ q() = cs ⊑c ct and the
ontology OG = ⟨T G, ∅⟩, where T G = {cv1 ⊑c cv2 | (v1, v2) ∈ E}.

Now let R = {(cv1 , cv2) | cv1 ⊑c cv2 ∈ T G}, and let R∗ denote the transitive
closure of R. Immediately from the semantics of MDL-LiteRDFS, O |= cv1

⊑c cv2
iff (cv1 , cv2) ∈ R∗, for any v1, v2 ∈ V . And by construction, (cv1 , cv2) ∈ R∗ iff
(v1, v2) ∈ E∗. Therefore O |= q iff (s, t) ∈ E∗.

This reduction requires a constant amount of extra space, and the sizes of q
and A are fixed (i.e. independent of the size of G). This allows us to conclude
that QueryAnswering is NLogSpace-hard in the size of T .

Query and Combined Complexity. Finally, we show that QueryAnswering is
NP-complete in both query and combined complexity. NP-hardness for query
(and hence combined) complexity is inherited from the well-known complexity
of Boolean CQ entailment over an ABox. Membership in combined (and hence
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query) complexity in NP is also straightforward: we can use a non-deterministic
version of the algorithm used above for NLogSpace membership (in the size of
O): guess a disjunct q′(X̄; Ȳ ) of q, and a valuation (d̄, ē) for (X̄, Ȳ ) such that
enc(ϕ) ⊆ Π∗ holds for every ground atom ϕ ∈ q(X̄/d̄; Ȳ /ē). Then check that
this holds for each such ϕ. The number of such checks is linear in the size of q′.
and the cost of each of them is independent on the size of q, and, as we have
seen above, (less than) polynomial in the size of T and A.

6 CONCLUSION

In this paper, we addressed metaquerying on MDL-LiteRDFS (the metamodeling
counterpart of DL-LiteRDFS) ontologies under MSER semantics. Specifically, we
focused on unions of conjunctive metaqueries, and we provided a reduction from
the metaquery answering problem to the evaluation of a Datalog query over
a (positive) Datalog program that encodes in a sound and complete way the
knowledge represented by the ontology. Besides, the rules of this program are
independent of the input ontology. The fact that this program is linear allowed
us to established a tight NLogSpace bound for TBox and ontology complex-
ity, while showing that data complexity remains in AC0, and that query and
combined complexity are NP-complete. Our approach also allows immediate
implementations using off-the-shelf Datalog engines.

We plan to extend our work in several directions, possibly simultaneously.
First, an interesting extension would be to consider the first-order logic semantics
(rather than the SPARQL semantics) for query answering. Second, both the ontol-
ogy and the query language could be enriched by allowing, e.g., concept and role
disjointnesses, inequalities, negated atoms, and concept (resp. role) expressions
in the right-hand side of concept (resp. role) inclusions.
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