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Abstract
Ontology-based data access (OBDA) is a popular
paradigm for querying heterogeneous data sources
by connecting them through mappings to an ontol-
ogy. In OBDA, it is often difficult to reconstruct
why a tuple occurs in the answer of a query. We ad-
dress this challenge by enriching OBDA with prove-
nance semirings, taking inspiration from database
theory. In particular, we investigate the problems of
(i) deciding whether a provenance annotated OBDA
instance entails a provenance annotated conjunctive
query, and (ii) computing a polynomial representing
the provenance of a query entailed by a provenance
annotated OBDA instance. Differently from pure
databases, in our case these polynomials may be in-
finite. To regain finiteness, we consider idempotent
semirings, and study the complexity in the case of
DL-LiteR ontologies. We implement Task (ii) in a
state-of-the-art OBDA system and show the practi-
cal feasibility of the approach through an extensive
evaluation against two popular benchmarks.

1 Introduction
Ontology-based data access (OBDA) [Xiao et al., 2018] is by
now a popular paradigm which has been developed in recent
years to overcome the difficulties in accessing and integrating
legacy data sources. In OBDA, users are provided with a high-
level conceptual view of the data in the form of an ontology
that encodes relevant domain knowledge. The concepts and
roles of the ontology are associated via declarative mappings
to SQL queries over the underlying relational data sources.
Hence, user queries formulated over the ontology can be auto-
matically rewritten, taking into account both ontology axioms
and mappings, into SQL queries over the sources.

When issuing a query, in many settings it is crucial to
know not only its result but also how it was produced,
how many different ways there are to derive it, or how de-
pendent it is on certain parts of the data [Senellart, 2017;
Zimmermann et al., 2012; Buneman and Kostylev, 2010].
To address these issues, which are of importance already for
plain relational database management systems (RDBMSs),
provenance semirings [Green et al., 2007; Green and Tannen,
2017] were introduced as an abstract tool to record and track

provenance information; that is, to keep track of the specific
database tuples that are responsible for deriving an answer
tuple, and of additional information associated to them. In
OBDA, determining provenance is made even more challeng-
ing by the fact that answers are affected by implicit conse-
quences derived through ontology axioms, and by the use
of mappings. Such elements come indirectly into play in
query rewriting, hence provenance information must be re-
constructed from the rewritten queries used in the answering
process [Borgida et al., 2008].

In this work, we start from the semiring approach introduced
for RDBMSs, and extend it to the full-fledged OBDA setting.
To do so, we assume that not only database tuples are anno-
tated with a label representing provenance information (e.g.,
the data source or the relation in which the tuple is stored), but
also mappings and ontology axioms. Then, our task is to de-
rive which combinations of these labels lead to the answer of
a query. Such information is expressed through a provenance
polynomial, as illustrated in the following example.
Example 1. Let Mayors[Person,City] be a database rela-
tion with the tuples (Renier,Venice) and (Brugnaro,Venice),
annotated with (sources) p and q, respectively. As-
sume two mappings City(Y ) ← Mayors(X,Y ) and
headGov(X,Y ) ← Mayors(X,Y ), annotated with m and n,
respectively. The mappings and the database induce
(i) two times the DL assertion City(Venice), one annotated
with p × m and one with q × m, (ii) the DL assertion
headGov(Renier,Venice), annotated with p× n, and (iii) the
assertion headGov(Brugnaro,Venice), annotated with q × n.

Now consider the inclusion ∃headGov v Mayor annotated
with s. The answer true to the Boolean conjunctive query
∃x.(Mayor(x)) can be derived using this inclusion and any of
the last two DL assertions. This information can be expressed
through the provenance polynomial ((p×n) + (q×n))× s./
In our OBDA setting, concept and role inclusions of the on-
tology affect query results, as illustrated in Example 1. By
annotating the inclusions and the mappings, in addition to
the tuples, we can distinguish which inclusions and mappings
were involved in the derivation of a query result. This differs
from the approach proposed for attributed DL-LiteR [Bour-
gaux and Ozaki, 2019], where the inclusions are used to ex-
press constraints on the provenance information.

We investigate the problems of (i) deciding whether a prove-
nance annotated OBDA instance entails a provenance anno-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1616



tated conjunctive query (CQ), and (ii) computing a prove-
nance polynomial of a CQ entailed by a provenance annotated
OBDA instance. Differently from plain databases, in our case
these polynomials may be infinite. To regain finiteness, we
consider idempotent semirings, and study the complexity for
DL-LiteR ontologies [Calvanese et al., 2007]. We implement
task (ii) in the state-of-the-art OBDA system Ontop [Calvanese
et al., 2017], and show the practical feasibility of our approach
through a detailed evaluation against two popular benchmarks.

An extended version of this work is available as a technical
report [Calvanese et al., 2019].

2 Basic Definitions
We represent the provenance information via a positive algebra
provenance semiring (or provenance semiring for short), orig-
inally introduced for databases [Green et al., 2007]. Given a
countably infinite set NV of variables, the provenance semiring
is the algebra K = (N[NV],+,×, 0, 1), where N[NV] denotes
the space of polynomials with coefficients in N and variables
in NV, the product × and the addition + are two commu-
tative and associative binary operators over N[NV], and ×
distributes over +. A monomial from K is a finite product
of variables in NV. NM and NP denote the sets of all mono-
mials from K, and of all finite sums of monomials in NM,
respectively; i.e., NP contains only polynomials of the form∑

1≤i≤n
∏

1≤ji≤mi
ai,ji , with ai,ji ∈ NV, and n,mi > 0.

Since all coefficients are in N, they disappear in this expanded
form; e.g., 2a is a + a. A polynomial in expanded form is a
finite sum of monomials, each formed by a finite product of
variables. By distributivity, every polynomial can be equiv-
alently rewritten in expanded form; however, the expanded
form of a polynomial may become exponentially larger. By
our definitions, NV ⊆ NM ⊆ NP.

2.1 Annotated OBDA
The provenance information of each axiom in an ontology,
each mapping, and each tuple in a data source, is stored as an
annotation. For this paper, we consider the standard OBDA
setting with ontologies written in DL-LiteR [Calvanese et al.,
2007], standard relational databases as data sources, and map-
pings given by GAV rules. Consider three mutually disjoint
countable sets of concept names NC, role names NR, and indi-
vidual names NI. Assume that these sets are also disjoint from
NV. DL-LiteR role and concept inclusions are expressions of
the form S v T and B v C, respectively, where S, T are role
expressions and B, C are concept expressions built through
the grammar rules

S ::= R | R−, T ::= S | ¬S, B ::= A | ∃S, C ::= B | ¬B,

with R ∈ NR and A ∈ NC. A DL-LiteR axiom is a DL-LiteR
role or concept inclusion. An annotated DL-LiteR ontology
is a finite set of annotated axioms of the form (α, p), where α
is a DL-LiteR axiom and p ∈ NM.

A schema S is a finite set of predicate symbols disjoint
from NC ∪ NR with ar(P ) the arity of P ∈ S . An annotated
data instance D over S maps every P ∈ S to a finite subset
PD of NI

ar(P ) × NV. An annotated mapping is a finite set of
annotated rules (ρ, p), where ρ is a (GAV) rule and p ∈ NV.

A rule ρ is of the form E(~x)← ϕ(~x, ~y, ~z), with E ∈ NC∪NR

and ϕ(~x, ~y, ~z) a conjunction of atoms P (~t, t), with P ∈ S, ~t
an ar(P )-tuple of terms in ~x ∪ ~y, and t ∈ ~z. We restrict ϕ to a
conjunction of atoms for simplicity of our theoretical devel-
opment, also in line with the idea that semirings capture the
provenance of positive queries [Green et al., 2007]. See Sec. 5
for handling arbitrary OBDA mappings in our implementation.

An annotated OBDA specification P is a triple (O,M,S),
where O is an ontology with annotated axioms, S is a data
source schema whose signature is disjoint from the signature
of O, andM is a set of annotated mappings, connecting S
to O [Xiao et al., 2018]. The pair (P,D) of an annotated
OBDA specification P and an annotated data instance D is
an annotated OBDA instance. In OBDA, data sources and
mappings induce virtual assertions. In annotated OBDA, vir-
tual assertions are annotated with the provenance information
of the mapping and of matching tuples in the data instance.
Formally, an annotated assertion (E(~a), p) is an expression
of the form (A(a), p) or (R(a, b), p), with A ∈ NC, R ∈ NR,
a, b ∈ NI, and p ∈ NM. We write ϕ(µ(~x, ~y, ~z)) ⊆ D if µ is a
function mapping ~x, ~y to NI, ~z to NV, and (µ(~t, t)) ∈ PD, for
every atom P (~t, t) in ϕ(~x, ~y, ~z). Given an annotated mapping
M and data instance D, the setM(D) of annotated assertions

(E(µ(~x)), p×
∏
z∈~z µ(z)), satisfying

(E(~x) ← ϕ(~x, ~y, ~z), p) ∈ M and ϕ(µ(~x, ~y, ~z)) ⊆ D is the
set of virtual annotated assertions forM over D.

The semantics of annotated OBDA instances is based on in-
terpretations over the signature of the ontology, extending clas-
sical DL-LiteR interpretations to track provenance, when rele-
vant. An annotated interpretation is a triple I = (∆I ,∆Im, ·I)
where ∆I and ∆Im are non-empty disjoint sets (called the do-
main of I and the domain of monomials of I, respectively),
and ·I is the annotated interpretation function mapping
• every a ∈ NI to some aI ∈ ∆I ;
• every p, q ∈ NM to some pI , qI ∈ ∆Im s.t. pI = qI iff

the monomials p and q are mathematically equal (modulo
associativity and commutativity, e.g., (p×q)I = (q×p)I
by commutativity);
• every A ∈ NC to some AI ⊆ ∆I ×∆Im; and
• every R ∈ NR to some RI ⊆ ∆I ×∆I ×∆Im.

We extend ·I to further DL-LiteR expressions as natural:

(R−)I = {(e, d, pI) | (d, e, pI) ∈ RI} ,
(¬S)I = (∆I ×∆I ×∆Im) \ SI ,
(∃S)I = {(d, pI) | ∃e ∈ ∆I : (d, e, pI) ∈ SI} , and
(¬B)I = (∆I ×∆Im) \BI .

The annotated interpretation I satisfies:

(A(a), p), if (aI , pI) ∈ AI ;
(R(a, b), p), if (aI , bI , pI) ∈ RI ;
(B v C, p), if, for all q ∈ NM, (d, q

I) ∈ BI
implies that (d, (q × p)I) ∈ CI ; and

(S v T , p), if, for all q ∈ NM, (d, e, q
I) ∈ SI

implies that (d, e, (q × p)I) ∈ T I .
I satisfies an annotated ontology O, in symbols I |= O, if it
satisfies all annotated axioms in O. I satisfies an annotated
OBDA instance ((O,M,S),D) if I |= O and I |=M(D).
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Example 2. Consider the OBDA instance of Ex-
ample 1 and an annotated interpretation I with
∆I = {Renier,Venice,Brugnaro}, ∆Im containing p× n,
q × n, p×m, q ×m, p× n× s, q × n× s, with such
individuals and monomials interpreted by themselves, and

headGovI = {(R,V, p× n), (B,V, q × n)},
MayorI = {(R, p× n× s), (B, q × n× s)},
CityI = {(V, p×m), (V, q ×m)}.

I is a model of such OBDA instance, where R, V, and B stand
for Renier, Venice, and Brugnaro, respectively. /

Following the database approach [Green et al., 2007; Green
and Tannen, 2017], we annotate facts in interpretations with
provenance information. However, in Green et al.’s setting,
the database “is” the (only) interpretation, while in our case
we adopt the open world assumption (as in OBDA), so the
semantics is based on multiple interpretations. Our semantics
ensures that, if we have a tuple (d, pI) ∈ CI and (C v D) is
annotated with n, then (d, (p×n)I) ∈ DI . So derivations are
also represented in interpretations, and thus can be entailed.
Each derivation is independent of the others.

Regarding the semantics of negation, we point out that, at
the level of an interpretation, the lack of provenance infor-
mation is a support for the negation of a fact. This apparent
counterintuitive behaviour does not hold in all interpretations,
hence it does not manifest in the entailments. In fact, our focus
in this paper is query entailment (defined next), negations are
only defined to comply with the usual syntax and semantics of
DL-LiteR. They do not affect query results, as in DL-LiteR.

2.2 Annotated Queries
We extend the notion of conjunctive queries in DLs by allow-
ing binary and ternary predicates, where the last term of a
tuple may contain provenance information represented as a
monomial (by definition of the semantics of annotated OBDA
instances, the last element of a tuple can only contain monomi-
als, not sums). More specifically, a Boolean conjunctive query
(BCQ) q is a sentence ∃~x.ϕ(~x,~a, ~p), where ϕ is a conjunction
of (non-repeating) atoms of the formA(t1, t), R(t1, t2, t), and
ti is either an individual name from ~a, or a variable from ~x,
and t (the last term of each tuple) is either an element of NM

in the list ~p or a variable from ~x. We often write P (~t, t) to
refer to an atom which can be either A(t1, t) or R(t1, t2, t)
and P (~t, t) ∈ q if P (~t, t) is an atom occurring in q.

A match of the BCQ q = ∃~x.ϕ(~x,~a, ~p) in the annotated
interpretation I is a function π : ~x∪~a∪ ~p→ ∆I ∪∆Im, such
that π(b) = bI , for all b ∈ ~a ∪ ~p, and π(~t, t) ∈ P I , for every
P (~t, t) ∈ q. I satisfies the BCQ q, written I |= q, if there is a
match of q in I. A BCQ is entailed by an annotated OBDA
instance if it is satisfied by every model of it. For a BCQ q
and an interpretation I, νI(q) denotes the set of all matches
of q in I . The provenance of q on I , denoted provI(q), is the
(potentially infinite) expression:∑

π∈νI(q)
∏
P (~t,t)∈q π

−(t)

where π(t) is the last element of the tuple π(~t, t) ∈ P I ; and
π−(t) is any v ∈ NM s.t. vI = π(t). For p ∈ NP, we write

p ⊆ provI(q) if p is a sum of monomials and for each oc-
currence of a monomial in p we find an occurrence of it in
provI(q). I satisfies q with provenance p ∈ NP, written
I |= (q, p), if I |= q and p ⊆ provI(q). The annotated
OBDA instance (P,D) entails q, (P,D) |= q, if for all an-
notated interpretations I, if I |= (P,D) then I |= q; and
(P,D) |= (q, p), if (P,D) |= q and p ⊆ provI(q), for all I
satisfying (P,D).

In our syntax, the atoms of the queries contain an additional
parameter which may either be a variable or a monomial.
As a result, one can filter query results based on provenance
information by specifying constraints in the last parameter of
the atoms, which was not possible in the original approach by
Green et al. [Green et al., 2007; Green and Tannen, 2017]. For
example, ∃xy.A(x, p)∧B(x, y) can be used to specify that we
are only interested in matches of the query where the first atom
is associated with a particular provenance. Variables can also
be repeated, e.g. ∃xy.A(x, y) ∧ B(x, y). One can fall back
to the original setting from databases, where no constraints
are imposed, by simply associating the last term of each atom
with a fresh variable (see standard queries in Section 4).

The size |X| of an annotated OBDA instance, a polynomial
or a BCQ X is the length of the string that represents X .
We assume a binary encoding of elements of NC,NR,NI and
NP occurring in X . We may omit ‘annotated’ in front of
terms such as ‘OBDA,’ ‘queries,’ ‘inclusions,’ ‘assertions,’
and others, whenever this is clear from the context.

2.3 Reasoning Problems
Annotating OBDA instances with provenance information
does not impact consistency checking. That is, an annotated
OBDA instance is satisfiable precisely when the OBDA in-
stance that results from removing the annotations is satiafi-
able. We thus focus on the problem of query entailment w.r.t.
a provenance polynomial: given an (annotated) OBDA in-
stance (P,D), a query q and a polynomial p ∈ NP decide if
(P,D) |= (q, p). Another important and related problem is to
compute the provenance of a query: given an OBDA instance
(P,D) and a query q, compute the set of all p ∈ NP such that
(P,D) |= (q, p). In our formalism, the latter problem depends
on whether there is a finite set of polynomials which we can
compute. As shown next, in DL-LiteR the set of provenance
polynomials may be infinite.
Example 3. Consider an OBDA instance (P,D) as in Ex. 1,
but where now O of P contains also (Mayor v ∃headGov, t).
For all i ∈ N, (P,D) |= (Mayor(Renier), p× n× si+1 × ti).
Indeed, for any model I of (P,D), (Renier, (p× n× s)I) ∈
MayorI implies (a, (p×n× s× t)I) ∈ (∃headGov)I , which
implies (Renier, (p× n× s2 × t)I) ∈ MayorI , and so on. /

In Section 3 we consider the problem of query entailment
w.r.t. a provenance polynomial. Note that in Example 3, if the
semiring is multiplicatively idempotent (i.e., s× s = s), the
set of provenance polynomials is finite: the only polynomial is
p× n× s× t. This is not a coincidence; under multiplicative-
idempotency, the set of provenance polynomials is always
finite. The following proposition states that multiplicative-
idempotency is indeed sufficient to guarantee a finite set of
polynomials.
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Proposition 1. Under multiplicative idempotency, for any sat-
isfiable OBDA instance (P,D) and BCQ q, the set of polyno-
mials p ∈ NP such that (P,D) |= (q, p) is finite.

In Section 4 we study idempotent semirings and consider
the problem of computing the provenance of a query.

3 Provenance Annotated Query Entailment
We establish complexity results for the problem of decid-
ing whether an OBDA instance entails a (provenance anno-
tated) query. For clarity of presentation, we split our proof in
two parts. We first show that for an OBDA instance (P,D)
and a query (q, p), there is an OBDA instance (Pm,Dm)
and a set Tr(qm, pm) of (non-annotated) queries such that
(P,D) |= (q, p) iff (Pm,Dm) entails some q′ ∈ Tr(qm, pm).
Moreover, the sizes of (Pm,Dm) and q′ are polynomial in the
sizes of (P,D) and (q, p). Then, we adapt the query rewrit-
ing algorithm PerfectRef [Calvanese et al., 2007] to decide
whether (Pm,Dm) |= q′.

3.1 Characterization
Lemma 1 states that, given an OBDA instance (P,D) and a
query (q, p), there is an OBDA instance (Pm,Dm) and a query
(qm, pm) that can be used to decide (P,D) |= (q, p) and,
moreover, all monomials in pm are mathematically distinct
(modulo associativity, commutativity, and distributivity).

Lemma 1. Given a satisfiable OBDA instance (P,D) and a
query (q, p), there are (Pm,Dm) and (qm, pm) such that

• any two monomials p1, p2 appearing in pm are mathe-
matically distinct;
• (P,D) |= (q, p) iff (Pm,Dm) |= (qm, pm); and
• |(Pm,Dm)| + |(qm, pm)| is polynomially bounded by
|(P,D)|+ |(q, p)|.

We show that, given (Pm,Dm) and (qm, pm) as in
Lemma 1, (qm, pm) can be translated into a set of queries
such that (Pm,Dm) entails (qm, pm) iff it entails at least one
of these queries. We first define the translation of a BCQ where
all terms are variables (no individual names and no polynomi-
als), and then adapt the translation for the general case. Given
the BCQ qm = ∃~x. ϕ(~x) with k atoms and pm ∈ NP with n
monomials, define Tr(qm, pm) as the set of all BCQs:

∃~y.
∧

1≤i≤n ϕi(~xi), (1)

where ~y = ~x1, . . . , ~xn and each qi = ∃~xi. ϕi(~xi) is a ‘copy’
of q in which we replace each variable x ∈ ~x by a fresh vari-
able xi ∈ ~xi. We check whether we can find the monomials
of the polynomial in these matches by replacing the last vari-
able in each j-th atom of qi by a monomial pi,j ∈ NM built
from symbols occurring in pm such that

∏
1≤j≤k pi,j = pi for

some pi ∈ NP, with 1 ≤ i ≤ n; and
∑

1≤i≤n pi = p.
The translation of a BCQ with individual names is similar,

except that we must add such individual names in each copy of
the query; that is, we would replace the corresponding variable
in the translation with the individual name occurring in the
query. Theorem 1 formalises the correctness of our translation,
where we write (P,D) |= Tr(q, p) to express that there is
q′ ∈ Tr(q, p) such that (P,D) |= q′.

Example 4. Consider the query

q = ∃xyzw.(headGov(x, y, z) ∧ City(y, w))

and the polynomial p = (s× t) + (s× r). Then,

∃x1y1x2y2.(headGov(x1, y1, s) ∧ City(y1, t) ∧
headGov(x2, y2, s) ∧ City(y2, r))

is in Tr(q, p). /

Theorem 1. Let (P,D) be an OBDA instance, q a BCQ and
p ∈ NP a polynomial formed of mathematically distinct mono-
mials. (P,D) |= (q, p) iff (P,D) |= Tr(q, p).

Without assuming that p ∈ NP is formed of mathematically
distinct monomials, we would need to add inequalities to the
queries in Tr(q, p) (there is no way to distinguish Tr(q, p+ p)
from Tr(q, p)). By Lemma 1, given the OBDA instance (P,D)
and query (q, p), there are (Pm,Dm) and (qm, pm), satisfying
the assumption of Theorem 1, which we can use to decide
whether (P,D) |= (q, p). This is crucial for query entailment
since entailment of conjunctive queries with inequalities in
DL-LiteR is undecidable [Gutiérrez-Basulto et al., 2015].

3.2 Query Rewriting
We adapt the classical query rewriting algorithm
PerfectRef [Calvanese et al., 2007] to decide whether
(P,D) |= q′, for q′ ∈ Tr(q, p), where (P,D) and (q, p) are
as in Theorem 1. When possible, we use the definitions and
terminology from [Calvanese et al., 2007, Sec. 5.1], adapting
some of them to our setting if needed.

For simplicity, for each role R− occurring in an OBDA
instance ((O,M,S),D), we add to O the annotated role in-
clusions (R− v R, pR) and (R v R−, p′R), where R is a
fresh role name and pR, p′R are fresh variables of a provenance
semiring. We assume w.l.o.g. that inverse roles only occur in
such role inclusions by replacing other occurrences ofR− with
R. The symbol “−” denotes non-distinguished non-shared
variables. A positive inclusion I is a provenance annotated
role or concept inclusion without negations. I is applicable
to A(x, p) if I is annotated with v occurring in p and it has A
in its right-hand side. A positive inclusion I is applicable to
R(x, y, p) if (i) x =−, I is annotated with v occurring in p,
and the right-hand side of I is ∃R, or (ii) I is a role inclusion
annotated with v occurring in p and its right-hand side is R
or R−. Given p ∈ NM and v ∈ NV occurring in p, we denote
by p|v the result of removing one occurrence of v from p.

Definition 1. Let g be an atom and I a positive inclusion
applicable to g. The atom obtained from g by applying I ,
denoted by gr(g, I), is defined as follows:

• gr(A(x, p), (A1 v A, v)) = A1(x, p|v);
• gr(A(x, p), (∃R v A, v)) = R(x,− , p|v);
• gr(R(x,− , p), (A v ∃R, v)) = A(x, p|v);
• gr(R(x,− , p), (∃R1 v ∃R, v)) = R1(x,− , p|v);
• gr(R(x, y, p), (R1 v R, v)) = R1(x, y, p|v);
• gr(g, I) = R1(y, x, p|v), if g = R(x, y, p) and either
I = (R1 v R−, v) or I = (R−1 v R, v). /
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Algorithm 1 PerfectRef

Input: a BCQ q, a set of positive inclusions OT
Output: a set of BCQs PR

1: PR := {q}
2: repeat
3: PR′ := PR
4: for all q ∈ PR′, all g, g1, g2 ∈ q and all I ∈ OT do
5: if {q[g/gr(g, I)]} /∈ PR and I ∈ OT is applicable

to g ∈ q then
6: PR := PR ∪ {q[g/gr(g, I)]}
7: if there are g1, g2 ∈ q such that g1 and g2 unify then
8: PR := PR ∪ {τ(reduce(q, g1, g2))}
9: until PR′ = PR

10: return PR

We use PerfectRef (Algorithm 1) originally presented in
[Calvanese et al., 2007], except that the applicability of a pos-
itive inclusion I to an atom g is as previously described and
gr(g, I) follows Definition 1. Let q[g/g′] denote the BCQ ob-
tained from q by replacing the atom g with a new atom g′; let τ
be a function that takes as input a BCQ q and returns a new
BCQ obtained by replacing each occurrence of an unbound
variable in q with the symbol ‘−’; and let reduce be a function
that takes as input a BCQ q and two atoms g1, g2 and returns
the result of applying to q the most general unifier of g1 and g2
(unifying mathematically equal terms). PerfectRef(q,OT ) is
the output of the algorithm PerfectRef over q (with a mono-
mial in NM in the last parameter of each atom) and a set OT
of positive inclusions of an OBDA instance ((O,M,S),D).

Example 5. Consider an OBDA instance ((O,M,S),D) as
in Ex. 1. We call Algorithm 1 with OT and the query q =
∃x.Mayor(x, p×n× s) as input. Since I is applicable to g =
Mayor(x, p×n×s), in Line 6, Alg. 1 adds to PR the result of
replacing g by gr(g, I) = headGov(x,− , p× n) in q. Hence,
q‡ = ∃x, y. headGov(x, y, p × n) ∈ PerfectRef(q,OT ). In-
deed q‡ is a rewriting of q. /

Our next theorem states the correctness of Algorithm 1.

Theorem 2. Let q be a BCQ and OT the set of positive in-
clusions of an OBDA specification P = (O,M,S). Given
q and OT as input, Algorithm 1 terminates and outputs a
set of BCQs PR such that, for all data instances D where
(P,D) is satisfiable, (P,D) |= q iff there is q‡ ∈ PR such
that ((∅,M,S),D) |= q‡.

Termination of our modified version of PerfectRef is analo-
gous to [Calvanese et al., 2007, Lemma 34], except that now
the number of terms is exponential in the size of monomials
occurring in the query, and thus in the size of the query. This
is due to Definition 1, where we ‘break’ the monomial into
a smaller one. Our modification does not change the upper
bounds obtained with the algorithm, since for data complexity
the query is not part of the input and the upper bound for
combined complexity, which we establish in Theorem 3, is
obtained by a non-deterministic version of the algorithm.

Theorem 3. Answering provenance annotated queries w.r.t.
OBDA instances is NP-complete (combined complexity).

4 Computing the Provenance of a Query
We now consider the problem of computing the provenance
of a query. To avoid the case of an infinite provenance, we
focus on the special case where the provenance semiring is
fully idempotent, which is a sufficient condition for finite
provenance (Proposition 1). The semiring is fully idempotent
if for every polynomial p ∈ NP, p×p = p and p+p = p. This
is the case, e.g., if the provenance refers to the name of the
source of the knowledge; having several times the same name
does not affect the result. Alternatively, one can model access
rights and observe whether certain pieces of knowledge are
needed for the entailment of a query w.r.t. an OBDA instance.

For fully idempotent semirings, the task corresponds to
computing relevant monomials. More precisely, in this spe-
cial case we want to compute all monomials p such that
(P,D) |= (q, p). The provenance of the query w.r.t. the OBDA
instance is the addition of all these monomials. This definition
is equivalent to the general one since the semiring is idempo-
tent: repetitions of a monomial do not affect the result, and
repetitions of a variable within a monomial can be removed. If
the semiring is only multiplicatively idempotent, then comput-
ing monomials does not suffice, as some of them may appear
several times. However, the problem is still simplified to find
the (finite) number of repeated monomials to be observed. In
general, the query polynomial may be composed of exponen-
tially many monomials, even if the query is a simple one of
the form ∃x.A(a, x), with A ∈ NC.
Proposition 2. There exists an OBDA instance (P,D) and a
simple query q such that the provenance polynomial of q w.r.t.
(P,D) is formed of exponentially many monomials.

For some queries, provenance cannot be expressed by a
provenance polynomial of polynomial length in the size of
the ontology, even if an expanded form is not required. This
follows from known results in monotone complexity [Karch-
mer and Wigderson, 1990]: there is no monotone Boolean
formula (i.e., propositional formula using only the connec-
tives ∧ and ∨) of polynomial length expressing all the simple
paths between two nodes in a graph. This holds already for
complete graphs. Graphs can be described in DL-LiteR (and
simpler logics) using basic inclusion axioms, and monotone
Boolean formulas are provenance polynomials over an idempo-
tent semiring, where the ∧ and ∨ serve as product and addition.
Hence we have the following result [Peñaloza, 2009].
Proposition 3. There exist an OBDA instance (P,D) and a
query q such that the provenance of q w.r.t. (P,D) cannot be
represented in polynomial space. This holds even for idempo-
tent semirings, and if every axiom has a unique label.

On the other hand, if every axiom is labeled with a unique
variable, then the provenance polynomial for instance queries
can be computed efficiently, whenever its length does not
increase greatly; that is, it can be computed in polynomial
time in the size of the input and the output. The proof of this
claim follows the same ideas from [Peñaloza and Sertkaya,
2017], based on the fact that all the relevant monomials from
the provenance are enumerable with polynomial delay.
Lemma 2. The provenance p of an instance query w.r.t. an
OBDA instance (P,D) can be computed in polynomial time
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Algorithm 2 ComputeProv

Input: a BCQ q0, an OBDA instance ((O,M,S),D)
Output: the provenance p of q w.r.t. ((O,M,S),D)

1: PR := PerfectRef?(q?0 ,OT ),
2: for all q ∈ PR do
3: for all matches π of q~y in IM(D) do
4: PR := PR ∪ {q−?~y,π}
5: PR := PR \ {q}
6: return p :=

∑
q∈PR

∏
P (~t,t)∈q t

in the size of (P,D) and of the polynomial p.

We give an algorithm for computing the provenance of a
BCQ w.r.t. an OBDA instance. We focus on BCQs that do
not have monomials in the last term of the atom. A BCQ
q = ∃~x.ϕ(~x,~a) is standard if, for all P (~t, t) ∈ q, t is a
fresh variable in ~x. Algorithm 2 computes the provenance
of a standard BCQ w.r.t. an OBDA instance. We adopt the
same notation used for describing PerfectRef [Calvanese et
al., 2007] (also used in Section 3). PerfectRef? is a variant of
PerfectRef (Algorithm 1), where the notions of applicability
of an inclusion I w.r.t. an atom g and the definition of gr(g, I)
are as follows. I is applicable to an atom A(x, p) if I has A
in its right-hand side. A positive inclusion I is applicable to
an atom R(x, y, p) if (i) x =−, and the right-hand side of I is
∃R, or (ii) the right-hand side of I is either R or R−. Given
p ∈ NM and v ∈ NV, we define pv as p× v if v does not occur
in p, and we define pv as p, otherwise. E.g., vwv = vw.
Definition 2. Let g be an atom and I a positive inclusion
applicable to g. The atom obtained from g by applying I ,
denoted by gr(g, I), is defined as follows:
• gr(A(x, p), (A1 v A, v)) = A1(x, pv);
• gr(A(x, p), (∃R v A, v)) = R(x,− , p

v);
• gr(R(x,− , p), (A v ∃R, v)) = A(x, pv);
• gr(R(x,− , p), (∃R1 v ∃R, v)) = R1(x,− , p

v);
• gr(R(x, y, p), (R1 v R, v)) = R1(x, y, pv);
• gr(g, I) = R1(y, x, pv), if g = R(x, y, p) and either
I = (R1 v R−, v) or I = (R−1 v R, v). /

For standard BCQs, Algorithm 2 is sound and complete.
Termination of Algorithm 2 is an easy consequence of termina-
tion of PerfectRef . The main difference between Algorithm 2
and Algorithm 1 (Section 3) is that here we assume that a
standard BCQ is given (without any provenance information)
and we aim at computing its provenance. Instead of removing
variables of the semiring while applying positive inclusions
(Definition 1), we add the variables of the semiring whenever
the associated positive inclusion is applied (Definition 2). In
Line 1, we write q? to denote the result of replacing each t in
P (~t, t) ∈ q by ?, where ? is a fresh symbol from NV. This
transformation ensures that in Definition 2 the last term is
always an element of NM. In Line 3, we denote by q~y the
result of replacing, for each P (~t, t) ∈ q, the last term t by a
fresh variable from ~y (i.e., q~y is a standard BCQ). We perform
another transformation in Line 4, denoted by q−?~y,π, which is
the result of replacing, for each P (~t, t) ∈ q, the symbol ?
in t by u ∈ NM such that uI = π(y) (if there are multiple

mathematically equal such u, we simply choose u arbitrarily),
where y is the last term of the corresponding atom in q~y (that
is, P (~t, y) ∈ q~y). Observe that π is a match of q~y in IM(D).
Example 6. Assume Algorithm 2 receives as input the stan-
dard query q0 = ∃xz.Mayor(x, z) and an OBDA instance
((O,M,S),D) with O = {(∃headGov v Mayor, s)} and

M(D) = {(headGov(Renier,Venice), u),
(headGov(Brugnaro,Venice), v)}.

In Line 1, Algorithm 2 calls PerfectRef?, defined as a variant
of PerfectRef (Algorithm 1), where the notions of applica-
bility of an inclusion I w.r.t. an atom g and the definition
of gr(g, I) are as in Section 4. The return of PerfectRef? is
PR = {∃x.Mayor(x, ?), ∃xz.headGov(x, z, ? × s)}. Then,
for all q ∈ PR and all matches π of q~y in IM(D) (if
they exist) the algorithm adds q−?~y,π to PR. In this exam-
ple, assume q = ∃xz.headGov(x, z, ? × s). We have two
matches of q~y = ∃xzy.headGov(x, z, y) inM(D), one map-
ping y to u (call this match π) and the other mapping y to
v (call it π′). So, q−?~y,π = ∃xz.headGov(x, z, u × s) and
q−?~y,π′ = ∃xz.headGov(x, z, v × s). In Line 5, Algorithm 2
removes q?0 from PR. Finally, in Line 6, it returns the polyno-
mial u× s+ v × s. /

Theorem 4. Let q be a standard BCQ and (P,D) an OBDA
instance. Given q and (P,D) as input to Algorithm 2, it
outputs the provenance of q w.r.t. (P,D).

The upper bounds from the previous section for the general
case obviously apply in the restricted idempotent case as well.

5 Evaluation
To evaluate the feasibility of our approach, we implemented a
prototype system (OntoProv) that extends the state-of-the-art
OBDA system Ontop [Calvanese et al., 2017] with the support
for provenance. Ontop supports SPARQL query answering
over ontologies in OWL 2 QL, the W3C standard correspond-
ing to DL-LiteR [Motik et al., 2012]. The algorithm of Ontop
has two stages, an offline stage, which classifies the ontol-
ogy and saturates the input set of mappings, and an online
stage, which rewrites the input queries according to the sat-
urated set of mappings. OntoProv enriches these steps by
taking into account provenance information, and relies on
ProvSQL [Senellart et al., 2018] to handle provenance from
the database and queries in the mappings that go beyond the
CQ fragment. We compare Ontop v3.0.0-beta-3 and Onto-
Prov over the BSBM [Bizer and Schultz, 2009] and the NPD
[Lanti et al., 2015] benchmarks. Experiments were run on a
server with 2 Intel Xeon X5690 Processors (24 logical cores
at 3.47 GHz), 106 GB of RAM and five 1 TB 15K RPM HDs.
As RDBMS we have used PostgreSQL 11.2.

5.1 Evaluation with the BSBM Benchmark
The BSBM benchmark is designed to test the different features
of SPARQL. It provides a baseline for our tests, since it comes
with an empty ontology and therefore it does not require on-
tological reasoning. In this experiment we restrict to a set of
parametric queries (called here query mix) in the benchmark
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Dataset mixTime Ontop mixTime OntoProv

bsbm10k 2.0s 3.2s
bsbm1M 326s 364s

Table 1: BSBM Experiment

Ontop OntoProv
Q #unf t t10 #unf #uinst tinst tinst10 #prov #prov10

1 0 29.5 172.4 16 16 5.2 1.7 1524 49
2 0 .5 3.1 32 32 .3 .4 28 60
3 24 5.0 51.1 16 16 248.0 296.5 84 153
4 0 3.2 24.3 16 16 437.6 297.3 90 53
5 0 .1 .2 0 0 .1 1.5 1 1
6 13 107.5 804.3 369 369 1439.3 tout 426 tout
7 0 .4 .2 0 0 .1 .3 1 1
9 15 6.8 53.4 64 55 .3 .9 5 5
10 1 .4 25.4 4 4 .8 11.3 1 7
11 6 53.6 760.8 184 184 1342.6 tout 474 tout
12 8 69.1 1215.5 185 185 1248.1 tout 476 tout
31 21 60.3 633.0 248 239 1.9 5.3 120 60

Table 2: NPD Experiment (times in seconds)

(9 in total) that are supported by our theoretical framework.
Table 1 compares the average time (over three test runs) to
evaluate the query mix with both Ontop and OntoProv, on two
datasets containing 10k and 1M products (resp., bsbm10k and
bsbm1M ). Evaluation times for both systems are very close.
Hence, without a complex ontology or complex mappings, the
overhead for computing provenance is rather small.

5.2 Evaluation with the NPD Benchmark
As opposed to BSBM, the NPD Benchmark is specifically
tailored to OBDA systems; it comes with a complex ontology,
complex mappings, and queries of various kinds. We restrict
to 12 user queries that are supported by our framework. We
use the dataset NPD, containing real-world data about the oil
extraction domain, and the dataset NPD10, which is 10 times
the size of NPD and is generated by a data scaler [Lanti et al.,
2019]. Differently from the BSBM benchmark, in NPD we
observed many timeouts (set to 40 minutes) when running the
benchmark queries with OntoProv. This is due to the fact that,
in NPD, the optimizations performed by Ontop over the query
unfoldings are crucial for getting reasonably compact SQL
queries. Such optimizations, however, need to be disabled in
OntoProv to guarantee completeness. In fact, we are interested
in all the possible ways to derive a result, and cannot identify
and discard redundant derivations. For a broader discussion
about these aspects, please refer to the additional material.

We assume that a user of OntoProv is more interested in
understanding the reason for a specific answer tuple, rather
than getting in bulk all possible explanations for all possible
answer tuples. To simulate such user interaction, in our tests
we have instantiated the NPD queries with answer tuples, and
have run the obtained instantiated queries (which are, in fact,
BCQs) over OntoProv. Table 2 contains the aggregate results
of our runs. For each of our tests, we performed 5 test runs.

The columns #unf and #uinst denote the number of times
a UNION operator appears in the unfolding of an NPD query
and an instantiated query, respectively. This measure gives an

idea on the complexity of the unfolding, and we can observe
that the unfoldings produced by OntoProv are much more
complex than those produced by Ontop. As argued above, this
is because OntoProv disallows some optimizations. Columns t
and t10 denote the average execution times of the queries over
the datasets NPD and NPD10, respectively, and for instanti-
ated queries these values are respectively denoted by tinst and
tinst10. The execution times for OntoProv are generally much
higher than for Ontop. We attribute this to the increased com-
plexity of the unfoldings. Columns #prov and #prov10 denote
the number of results for the instantiated queries, respectively
over NPD and NPD10. These numbers can be interpreted as
the number of possible ways an answer tuple can be derived,
and give an indication on the complexity of the benchmark
itself. For instance, for query 1 over the NPD dataset there
are on average 1524 explanations for a single answer tuple.

This test shows that the approach is feasible even with
complex ontologies and mappings, but also that more work is
needed in order to devise optimization techniques dedicated
to a setting with provenance.

6 Conclusions and Discussion
We investigated the problem of dealing with provenance within
OBDA, based on the provenance semiring approach intro-
duced for databases. In our case, every element of an OBDA in-
stance is annotated with provenance information. We showed
that query rewriting techniques can be applied to deal with
provenance as well. An evaluation based on a prototypical im-
plementation shows that our methods are feasible in practice.

A key difference between the problem of provenance com-
putation (or its decision version) and that of axiom pinpoint-
ing [Schlobach and Cornet, 2003; Kalyanpur et al., 2007;
Baader et al., 2007] and query explanation [Calvanese et al.,
2013; Croce and Lenzerini, 2018; Bienvenu et al., 2019] is
that axiom pinpointing and query explanation focus on tracing
the minimal causes of a consequence (or the lack of it). In
contrast, all possible derivations are relevant for provenance,
independently of whether a cause is minimal or not.

As future work, we plan to investigate provenance with
the monus operator. We will also study the provenance of
SPARQL query answering [Geerts et al., 2013] in OBDA. Our
implementation computes the provenance of a query assuming
that the semiring is multiplicatively idempotent. While this
assumption is useful to identify which parts of the knowledge
base contribute to the query result, it restricts the applicability
of our approach to other settings, in particular, to the numerical
ones. For capturing probabilities, it is important to distinguish
repetitions, so (multiplicative) idempotency is not suitable. In
our setting, dropping the idempotency condition leads to cases
where the polynomial can be infinite. It would be interesting to
investigate whether the polynomial can be finitely represented,
so that its computation could be applied in a numerical setting.
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Yazmı́n Ibáñez-Garcı́a, Roman Kontchakov, and Egor V.
Kostylev. Queries with negation and inequalities over
lightweight ontologies. Journal of Web Semantics,
35(P4):184–202, 2015.

[Kalyanpur et al., 2007] Aditya Kalyanpur, Bijan Parsia,
Matthew Horridge, and Evren Sirin. Finding all justifi-
cations of OWL DL entailments. In ISWC, volume 4825 of
LNCS, pages 267–280. Springer, 2007.

[Karchmer and Wigderson, 1990] M. Karchmer and
A. Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. SIAM Journal on Discrete
Mathematics, 3(2):255–265, 1990.

[Lanti et al., 2015] Davide Lanti, Martin Rezk, Guohui Xiao,
and Diego Calvanese. The NPD benchmark: Reality check
for OBDA systems. In EDBT, pages 617–628. OpenPro-
ceedings.org, 2015.

[Lanti et al., 2019] Davide Lanti, Guohui Xiao, and Diego
Calvanese. VIG: Data scaling for OBDA benchmarks. Se-
mantic Web Journal, 10(2):413–433, 2019.

[Motik et al., 2012] Boris Motik, Bernardo Cuenca Grau, Ian
Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz.
OWL 2 Web Ontology Language profiles. W3C Recom-
mendation, World Wide Web Consortium, December 2012.
Available at http://www.w3.org/TR/owl2-profiles/.
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