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Abstract

Querying Description Logic knowledge bases has
received great attention in the last years. In such a
problem, the need of coping with incomplete infor-
mation is the distinguishing feature with respect to
querying databases. Due to this feature, we have to
deal with two conflicting needs: on the one hand,
we would like to query the knowledge base with
sophisticated mechanisms provided by full first-
order logic (FOL); on the other hand, the presence
of incomplete information makes query answer-
ing a much more difficult task than in databases.
In this paper we advocate the use of a nonmono-
tonic epistemic FOL query language as a means
for expressing sophisticated queries over Descrip-
tion Logic knowledge bases. We show that through
a controlled use of the epistemic operator, result-
ing in the language calledEQL-Lite, we are able
to formulate full FOL queries over Description
Logic knowledge bases, while keeping computa-
tional complexity of query answering under con-
trol. In particular, we show thatEQL-Lite queries
over DL-Lite knowledge bases are FOL reducible
(i.e., compilable into SQL) and hence can be an-
swered in LOGSPACE through standard database
technologies.

1 Introduction
Querying Description Logic (DL) knowledge bases has re-
ceived great attention in the last years. Indeed, the defini-
tion of suitable query languages, and the design of query an-
swering algorithms is arguably one of the crucial issues in
applying DLs to ontology management and to the Semantic
Web[9].

Answering queries in DLs must take into account the open-
world semantics of such logics, and is therefore much more
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difficult than in databases. For example, while first-order
logic (FOL) is the basis of any query language (e.g., rela-
tional algebra and SQL) for relational databases[1], it is well-
known that answering FOL queries posed to DL knowledge
bases is undecidable1. More precisely, to the best of our
knowledge, the most expressive class of queries that go be-
yond instance checking, and for which decidability of query
answering has been proved in DLs, is the class of union
of conjunctive queries (UCQ)[7; 16]. This restriction on
the query language may constitute a serious limitation to
the adoption of DLs technology in information management
tasks, such as those required in Semantic Web applications.

The open-world semantics of DLs, while being essential
for representing incomplete information, may complicate the
task of interpreting the answers by the users, or may call for
the need of reasoning about the incompleteness of the knowl-
edge base. For example, knowing that there are no parents
with only female children, one might become interested in
asking for all parents whose known children are all female.
Note that querying mechanisms such as the one mentioned in
the example go beyond FOL.

To summarize, due to the need of coping with incomplete
information in DL knowledge bases, two conflicting require-
ments arise in querying: on the one hand, we would like to
query the knowledge base with powerful mechanisms that are
able to reason about incompleteness, and on the other hand
we aim at query languages that are both close in expressive
power to FOL, and decidable (and, possibly, tractable).

This paper presents the following contributions. We define
a query language for DL knowledge bases, calledEQL (see
Section 2), based on a variant of the well-known first-order
modal logic of knowledge/belief[14; 17; 15]. The language
incorporates a minimal knowledge operatorK, which is used
to formalize the epistemic state of the knowledge base. Infor-
mally, the formulaKφ is read as “φ is known to hold (by the
knowledge base)”. Using this operator, we are able to pose
queries that reason about the incompleteness of information
represented by the knowledge base. For instance, a user can
express queries that are able to incorporate closed-world rea-
soning on demand.

We show (see Section 3) that through a controlled use
of the operatorK, resulting in the language calledEQL-

1Indeed, query answering can be reduced to validity in FOL.



Lite(Q), we are able to formulate queries that are interest-
ing both from the expressive power point of view, and from
the computational complexity perspective. Queries inEQL-
Lite(Q) have atoms that are expressed using a specific query
languageQ, calledembedded query language, and enjoy the
property that they can be evaluated essentially with the same
data complexity (i.e., measured wrt the size of the ABox only)
as queries expressed inQ.

We investigate the properties ofEQL-Lite(Q) for several
interesting cases, characterizing the data complexity of query
answering (see Section 4). In particular, we consider the
following cases:SHIQ with simple concept and role ex-
pressions as embedded queries,DLR with embedded unions
of conjunctive queries, PTIME-complete DLs such asHorn-
SHIQ or EL, with simple concept and role expressions as
embedded queries, basic DLs such asALC with epistemic
concepts as embedded queries, and highly tractable DLs, such
as those of theDL-Lite family, with embedded unions of con-
junctive queries. For the latter case, we show that answering
EQL-Lite(UCQ) is in LOGSPACE, and, notably, can be re-
duced to evaluating FOL queries over the ABox, when con-
sidered as a database. It follows that query processing in this
setting can be done through standard database technologies.

Finally, we briefly discuss (see Section 5) the use ofEQL-
Lite(Q) for introducing the notion of integrity constraints in
DL KBs.

2 Epistemic query language
In this paper we consider queries over a Description Logic
(DL) knowledge base[4]. We don’t focus on any particu-
lar DL. We simply assume that, through the DL, we are able
to express our knowledge in terms ofatomic concepts, i.e.,
unary predicates, andatomic roles/relations, i.e., binary/n-
ary predicates. General concepts and roles/relations are built
through the constructs allowed in the DL, and we assume
that such constructs are expressible in FOL. As usual, a DL
knowledge base (KB)is formed by a set ofassertions, typi-
cally divided into aTBox, expressing intensional knowledge,
and anABox, expressing extensional knowledge. We assume
again that such assertions can be expressed as FOL sentences
(i.e., closed FOL formulas). In other words, DL KBs can be
seen as FOL theories (of specific forms). Observe that most
DLs fulfill such assumptions: the only notable exceptions are
those that include some form of second-order constructs such
as transitive closure or fixpoints[4].

As usual, when talking about query answering, w.l.o.g.,
we interpret DL KBs on interpretations sharing thesame
infinite countable domain∆, and we assume that our lan-
guage includes an infinitely countable set of disjoint con-
stants corresponding to elements of∆, also known asstan-
dard names[15]. This allows us to blur the distinction be-
tween such constants (which are syntactic objects) and the el-
ements of∆ that they denote (which are semantical objects).

As a query language, we make use of a variant of the well-
known first-order modal logic of knowledge/belief[14; 17;
15; 12], here calledEQL . The languageEQL is a first-order
modal language with equality and with a single modal op-
eratorK, constructed from concepts (i.e., unary predicates)

and roles/relations (i.e., binary/n-ary predicates) and the con-
stants introduced above (i.e., the standard names correspond-
ing to ∆). In EQL , the modal operator is used to formalize
the epistemic state of the DL KB, according to the minimal
knowledge semantics (see later). Informally, the formulaKφ
should be read as “φ is known to hold (by the KB)”.

In the following, we usec to denote a constant,~c to denote
a tuple of constants,x to denote a variable,~x to denote a tuple
of variables, andφ, ψ to denote arbitrary formulas, andψx

c to
denote a formula where eachx is replaced byc.

A world is a FOL interpretation over∆. An epistemic in-
terpretation is a pairE,w, whereE is a (possibly infinite)
set of worlds, andw is a world inE. We inductively define
when a sentence (i.e., a closed formula)φ is true in an inter-
pretationE,w (or, is true inw andE), writtenE,w |= φ, as
follows:

E,w |= c1 = c2 iff c1 = c2
E,w |= P (~c) iff w |= P (~c)
E,w |= φ1 ∧ φ2 iff E,w |= φ1 andE,w |= φ2

E,w |= ¬φ iff E,w 6|= φ
E,w |= ∃x.ψ iff E,w |= ψx

c for some constantc
E,w |= Kψ iff E,w′ |= ψ for everyw′ ∈ E

Formulas without occurrences ofK are said to beobjec-
tive, since they talk about what is true. Observe that to check
whetherE,w |= φ, whereφ is an objective formula, we have
to look atw but not atE: we only need the FOL interpre-
tationw. All assertions in the DL KB are indeed objective
sentences. Instead, formulas where each occurrence of pred-
icates and of the equality is in the scope of theK operator
are said to besubjective, since they talk about what is known
to be true. Observe that, for a subjective sentenceφ, in or-
der to establish whetherE,w |= φ we do not have to look
at w but only atE. We use such formulas to query what
the KB knows. In other words, through subjective sentences
we do not query information about the world represented by
the KB; instead, we query the epistemic state of the KB it-
self. Obviously there are formulas that are neither objective
nor subjective. For example∃x.P (x) is an objective sen-
tence,K(∃x.P (x)∧¬KP (x)) is a subjective sentence, while
∃x.P (x) ∧ ¬KP (x) is neither objective nor subjective.

In our setting, among the various epistemic interpretations,
we are interested in specific ones that represent themini-
mal epistemic stateof the DL KB, i.e., the state in which
the KB has minimal knowledge. Namely: letΣ be a DL
KB (TBox and ABox), and letMod(Σ) be the set of all
FOL-interpretations that are models ofΣ. Then aΣ-EQL-
interpretation is an epistemic interpretationE,w for which
E = Mod(Σ). A sentenceφ is EQL-logically impliedby Σ,
writtenΣ |=EQL φ, if for everyΣ-EQL-interpretationE,w we
haveE,w |= φ. Observe that for objective formulas such a
definition becomes the standard one, namelyw |= φ for all
w ∈ Mod(Σ), denoted byΣ |= φ.

It is worth mentioning some of the most characterizing
properties ofEQL .

Proposition 1 For every DL KBΣ and everyEQL-sentence
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φ we have:
Σ |=EQL Kφ ⊃ φ
Σ |=EQL Kφ ⊃ KKφ
Σ |=EQL ¬Kφ ⊃ K¬Kφ

These are the standard S5 axioms of modal logic. The first
one expresses that “what is known is true” (knowledge is ac-
curate), and the latter two express that the KB has “complete
knowledge on what is known and not known”.

Proposition 2 For every DL KBΣ and everyEQL-sentence
φ we have that:

Σ |=EQL Kφ or Σ |=EQL ¬Kφ

The above proposition tells us that for any sentenceφ the KB
logically implies either that the sentence is known or that the
sentence is not known, i.e., we have complete information on
what the KB knows. Notably, this is a consequence of the
minimal knowledge semantics that we are adopting.

Proposition 3 For every DL KBΣ and every objectiveEQL-
sentenceφ we have:

Σ |= φ iff Σ |=EQL Kφ
Σ 6|= φ iff Σ |=EQL ¬Kφ

The above proposition relates knowledge to FOL logi-
cal implication, and is again a consequence of the minimal
knowledge semantics. It allows us to give a very concrete in-
terpretation to knowledge for objective sentences:φ is known
iff it is logically implied, otherwise it is not known.

We are now ready to defineEQL -queries: AnEQL-query
is simply anEQL -formula, possibly an open one.

Let q be anEQL -query with free variables~x, where the
arity of ~x isn ≥ 0, and is called the arity ofq. We sometimes
use the notationq[~x] to make the free variables~x explicit.
Also we use the notationq[~c] to denoteq~x

~c (i.e., the formula
obtained fromq by substituting each free occurrence of the
variablexi in ~x with the constantci in ~c, where obviously~x
and~cmust have the same arity). Since we are dealing with all
the models of the KB, as usual, query answering should return
those tuples of constants that make the query true in every
model of the KB: the so-called certain answers. Formally, the
certain answersto a queryq[~x] over a KBΣ are the set

ans(q,Σ) = {~c ∈ ∆× · · · ×∆ | Σ |=EQL q[~c]}
Example 4 Consider the DL KBΣ constituted by the fol-
lowing TBoxT and ABoxA:

T = { Male v ¬Female }
A = { Female(mary),Female(ann),Female(jane),

Male(bob),Male(john),Male(paul),
PARENT(bob,mary),PARENT(bob, ann),
PARENT(john, paul),PARENT(mary, jane) }

Suppose we want to know the set of males that do not have fe-
male children. This corresponds to the following FOL query
q1:

q1[x] = Male(x) ∧ ¬∃y.PARENT(x, y) ∧ Female(y)

It is easy to verify that the set of certain answers toq1 overΣ
is empty. In particular, neitherjohn nor paul are certain an-
swers to the above query, since (due to the open-world seman-
tics of DLs) there are models ofΣ in which the interpretation

of PARENT contains pairs of elements of the form(john, x)
or (paul, x) and the interpretation ofFemale contains the ele-
mentx.

Suppose now that we want to know who are theknown
males that are notknownto be parents of a female. This can
be expressed by the followingEQL -queryq2:

q2[x] = KMale(x) ∧ ¬K(∃y.PARENT(x, y) ∧ Female(y))

It is immediate to verify that the certain answers toq2 over
Σ are john and paul, since they are the only known males
that are not in the answer to the query∃y.PARENT(x, y) ∧
Female(y).

Suppose now that we want to know who are the single chil-
dren according to what is known, i.e., the known children who
have no known sibling. This can be expressed by the follow-
ing EQL -queryq3:

q3[x] = ∃y.(KPARENT(y, x)) ∧
∀z.(KPARENT(y, z)) → z = x

It is immediate to verify that the certain answers toq3 overΣ
arepaul andjane.

Notice that, in anEQL -query, we can apply a form of
closed world reasoning: for example, in queryq2 above,
the evaluation of¬K(∃y.PARENT(x, y)∧Female(y)) corre-
sponds to the evaluation of¬∃y.PARENT(x, y)∧ Female(y)
under the closed world assumption.

3 EQL-Lite(Q)
We introduce now the query languageEQL-Lite(Q). Such
a language is a particularly well-behaved fragment ofEQL ,
and is parameterized with respect to anembedded query
languageQ, which again is a subset ofEQL. Informally,
EQL-Lite(Q) is the FOL query language with equality whose
atoms are epistemic formulas of the formK% where% is a
query ofQ. Formally,an EQL-Lite(Q) query is a possibly
openEQL -formula built according to the following syntax:

ψ ::= K% | x1 = x2 | ψ1 ∧ ψ2 | ¬ψ | ∃x.ψ,

where% is a query in the embedded query languageQ. We
call epistemic atomsthe formulasK% occurring in anEQL-
Lite(Q) query.

Observe that inEQL-Lite(Q) we do not allow theK op-
erator to occur outside of the epistemic atomsK%. Indeed,
allowing for occurrences of theK outside such atoms does
not actually increase the expressive power ofEQL-Lite(Q),
as the following proposition shows.

Proposition 5 Let EQL-Lite(Q)+ be the extension ofEQL-
Lite(Q) obtained by adding to the abstract syntax forEQL-
Lite(Q) formulas the ruleψ ::= Kψ. Then, for each query
q ∈ EQL-Lite(Q)+, there exists a queryq′ ∈ EQL-Lite(Q)
such thatE,w |= ∀~x.q[~x] ≡ q′[~x], for every epistemic inter-
pretationE,w.

In fact, anEQL-Lite(Q)+ queryq can be reduced to an equiv-
alentEQL-Lite(Q) queryq′ in linear time by simply push-
ing inward theK operator, stopping in front of the epistemic
atoms, and simplifyingKKψ to Kψ andK¬Kψ to ¬Kψ
whenever possible.
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EQL-Lite(Q) queries enjoy a very interesting computa-
tional property: one can decouple the reasoning needed for
answering the epistemic atoms from the reasoning needed for
answering the whole query. Formally, letΣ be a DL KB,
andq[~x] be anEQL-Lite(Q) query overΣ, whose epistemic
atoms areK%1, . . . ,K%m. We denote byq

FOL
[~x] the FOL

query obtained fromq by replacing each epistemic atomK%i

by a new predicateRK%i
whose arity is the number of free

variables in%i. Also we denote byIq,Σ the FOL interpre-
tation for the predicatesRK%i

defined as follows: (i) the in-
terpretation domain is∆Iq,Σ = ∆; (ii ) the extension of the
predicatesRK%i

is RIq,Σ
K%i

= ans(%i,Σ). Finally, we denote
by eval(q

FOL
[~x], Iq,Σ) = {~c ∈ ∆×· · ·×∆ | Iq,Σ |= q

FOL
[~c]}

the result of evaluatingq
FOL

overIq,Σ.

Theorem 6 LetΣ be a DL KB,q anEQL-Lite(Q) query over
Σ, andq

FOL
andIq,Σ the FOL query and the FOL interpreta-

tion defined above. Thenans(q,Σ) = eval(q
FOL
, Iq,Σ).

The theorem above tells us that, in order to compute the cer-
tain answers of anEQL-Lite(Q) queryq, we can compute the
certain answers of queries%i of the embedded query language
Q occurring in the epistemic atoms ofq, and then evaluate the
queryq as a FOL query, where we consider such certain an-
swers as the extensions of the epistemic atoms.

The theorem above suggests a procedure to compute cer-
tain answers inEQL-Lite(Q). However, for such a procedure
to be effective, we need to address two issues: (i) the exten-
sion of the predicatesRK%i in the FOL interpretationIq,Σ

needs to be finite, otherwiseIq,Σ would be infinite and the
evaluation ofq

FOL
impossible in practice; (ii ) since∆ itself is

infinite, the evaluation ofq
FOL

must not directly deal with∆.
We start by looking at the second issue first. Such an is-

sue has a long tradition in relational databases where indeed
one allows only for FOL queries that are “domain indepen-
dent” [1]. In our context, a FOL queryq is domain inde-
pendentif for each pair of FOL interpretationsI1 andI2,
respectively over domains∆I1 ⊆ ∆ and ∆I2 ⊆ ∆, for
whichRI1

K%i
= RI2

K%i
for all atomic relationsRK%i

, we have
thateval(q, I1) = eval(q, I2). We say that anEQL-Lite(Q)
queryq is domain independentif its corresponding queryq

FOL

is so. Domain independent FOL queries correspond to rela-
tional algebra queries (i.e., SQL queries) and several syntactic
sufficient conditions have been devised in order to guarantee
domain independence, see e.g.,[1]. Such syntactic conditions
can be directly translated into syntactic conditions onEQL-
Lite(Q) queries.

As for the other issue, letΣ be a DL KB and% a query
of the embedded query languageQ. We say that% is Σ-
range-restrictedif ans(%,Σ) is afinite set of tuples. By ex-
tension, anEQL-Lite(Q) query isΣ-range-restricted if each
of its epistemic atoms involves aΣ-range-restricted query. In
fact, the following proposition holds.

Proposition 7 LetΣ be a DL KB and% a Σ-range-restricted
query in the embedded query languageQ. Thenans(%,Σ) ⊆
adom(Σ)× · · · × adom(Σ). whereadom(Σ) is the set of all
constants explicitly appearing inΣ.

Indeed, if a constant not appearing inΣ occurs inans(%,Σ),
then one can substitute such a constant with any other con-

stant not appearing inΣ, still getting a tuple inans(%,Σ).
Thus,ans(%,Σ) would be infinite.

Obviously it is of interest finding simple syntactic condi-
tions that guarantee range-restrictedness. Here we give just a
trivial one, which is however quite practical in several cases.
Assume that we can introduce a new conceptAdom in the
DL KB Σ and assert for each constantc occurring inΣ the
ABox assertionAdom(c). Moreover, let’s require that all
queries inQmust be of the formAdom(~x)∧%[~x], where~x =
(x1, . . . , xn) andAdom(~x) = Adom(x1)∧ · · · ∧Adom(xn).
Then trivially all queries inQ areΣ-range-restricted.

Now, if we considerEQL-Lite(Q) queries that are both do-
main independent andΣ-range-restricted, then we can effec-
tively use the theorem above to compute the certain answers.
Moreover we can give a computational complexity character-
ization of query answering forEQL-Lite(Q) queries.

Let Q be an embedded query language,DL a DL, and
CQ,DL the data complexity (i.e., the complexity measured in
the size of the ABox only) of query answering forΣ-range-
restricted queries ofQ over KBsΣ expressed inDL.2 We
know that evaluating a domain independent FOL query over
a given FOL interpretation is LOGSPACE in data complex-
ity [1], and, by our assumptions, computing whether a tuple
of constants is in the relation corresponding to the extension
of an epistemic atom, can be done inCQ,DL in data com-
plexity. Hence, we immediately derive the following result on
the data complexity of answering domain independent andΣ-
range-restrictedEQL-Lite(Q) queries, where we denote with
CC2

1 the class of languages recognized by aC1-Turing Ma-
chine that uses an oracle inC2.

Theorem 8 Let Σ be a KB expressed in the DLDL,
and q a domain independent andΣ-range-restrictedEQL-
Lite(Q) query overΣ. Then, answeringq over Σ is in
LOGSPACECQ,DL with respect to data complexity, where
CQ,DL is the data complexity of answeringΣ-range-
restricted queries ofQ over KBsΣ expressed inDL.

Example 9 Queries q2 and q3 in Example 4 are
EQL-Lite(Q) queries, whereQ is the language of con-
junctive queries (in fact, forq3, Q is the language of atomic
queries). It is easy to verify that both such queries are
domain independent, and that both areΣ-range-restricted
for the KB Σ given in Example 4. In factq2 and q3 are
Σ-range-restricted for KBsΣ expressed (in practice) in any
standard DL (indeed, the setans(PARENT(x, y),Σ) may
never be infinite).

4 Case studies
We discuss now several notable applications of the above re-
sults onEQL-Lite(Q) for specific combinations of the DL
used to express the KB and of the embedded query language
Q. Below, we implicitly refer to domain independentEQL-
Lite(Q) queries only.

2As usual, when we speak about complexity of query answering,
we actually mean the complexity of the associatedrecognition prob-
lem: i.e., checking whether a tuple of constants is in the answer to a
query[1].
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SHIQ KBs and queries with embedded concept and
role expressions. We consider the case in which KBs are
specified in the expressive DLSHIQ [11] (or equivalently,
DLR [7]), and the embedded query languageQ is that ofΣ-
range restrictedSHIQ concept and role expressions. Note
that this case is very significant in practice since it captures
in particular the form of queries supported by the Racer and
Pellet systems[10; 18]. Indeed, such queries are conjunc-
tive queries overSHIQ concept and role expressions, in
which, however, the existential quantification ranges over the
named individuals in the ABox only. Now it turns out that
such queries correspond to conjunctions ofΣ-range-restricted
SHIQ concept and role expressions prefixed by theK oper-
ator. Since instance checking inSHIQ is coNP-complete
with respect to data complexity[13], by Theorem 8 we get
that in this case answering such queries, as well as every
EQL-Lite(Q) query, is in LOGSPACENP with respect to data
complexity.

DLR KBs and queries with embedded unions of conjunc-
tive queries. We consider the case in which KBs are again
specified in an expressive DL likeDLR orALCQI, and the
embedded query language is that ofΣ-range-restrictedunions
of conjunctive queries(UCQs), i.e., we consider queries
expressed inEQL-Lite(UCQ). Notice that the language of
UCQs is currently the most expressive subset of FOL for
which query answering over KBs in an expressive DL, such
asDLR, is known to be decidable[7], and in fact coNP-
complete with respect to data complexity[16]3. From this
characterization, and by applying again Theorem 8, we get
that answeringΣ-range-restrictedEQL-Lite(UCQ) queries
overDLR KBs is again in LOGSPACENP with respect to
data complexity.

PTIME -complete DLs for KBs and queries. Next we
consider the case in which KBs are specified in a PTIME-
complete DL, such as Horn-SHIQ [13] or EL [3], and the
embedded query languageQ is that of Σ-range-restricted
Horn-SHIQ (resp.,EL) concepts and role expressions. In
this case, from Theorem 8, we get that answeringΣ-range-
restrictedEQL-Lite(Q) queries is in PTIME (and, in fact
PTIME-complete) with respect to data complexity.

Epistemic embedded query languages. In all the cases
above the embedded query language consists of objective for-
mulas. However, this does not need to be the case in general.
Let us, for example, consider KBs consisting of ABoxes ex-
pressed in the basic DLALC and embedded queries consist-
ing of concepts and roles expressed inALCK [8], i.e.,ALC
extended with theK operator. Then, since instance checking
in ALCK concept and roles inALC ABoxes can be done in
PSPACE [8], by Theorem 8 we get that, in this case, answer-
ing EQL-Lite(Q) queries is in PSPACE as well.

3We have considered hereDLR and ALCQI rather than
SHIQ, since the data complexity for answering UCQs containing
transitive roles is still open.

DL-Lite KBs and queries with embedded unions of con-
junctive queries. Finally, we study the case in which KBs
are specified using DLs of theDL-Lite family [5; 6] and
the embedded query languageQ for EQL-Lite(Q) queries is
again that of UCQs.

The DL-Lite family [5; 6] is a family of DLs specifically
tailored to deal with large amounts of data (i.e., ABoxes).
While the expressive power of the DLs in theDL-Lite fam-
ily is carefully controlled to admit tractable query answering,
such DLs are expressive enough to capture the main notions
(though not all, obviously) of both ontologies, and of con-
ceptual modeling formalisms used in databases and software
engineering (i.e., ER and UML class diagrams). Below, for
simplicity, we denote byDL-Lite any DL that is a member of
theDL-Lite family.

Answering UCQs inDL-Lite is in LOGSPACEwith respect
to data complexity4. Moreover, as a result of the tightly con-
trolled expressive capabilities, we get the following.

Proposition 10 LetΣ be aDL-Lite KB, and let% be a UCQ
overΣ. Then,% is Σ-range-restricted.

As a consequence of Theorem 8 and of membership in
LOGSPACE of the problem of answering UCQs overDL-
Lite KBs, we get that moving from UCQs toEQL-Lite(UCQ)
does not change the data complexity of the query answering
problem.

Theorem 11 Answering domain independent EQL-
Lite(UCQ) queries in DL-Lite is in LOGSPACE with
respect to data complexity.

In fact we can refine such a result by resorting to the no-
tion of FOL-reducibility [6]. Intuitively, FOL-reducibility
means that query answering can be reduced to evaluating
FOL queries over a finite FOL interpretation corresponding
to the ABox (which we assume contains assertions involv-
ing only atomic concepts and roles/relations) of a DL KB.
All members of theDL-Lite family enjoy FOL-reducibility
of UCQs[6]. We now show that FOL-reducibility holds also
for domain independentEQL-Lite(UCQ) queries. Given an
ABox A involving membership assertions on atomic con-
cepts and roles only, we define the interpretationIA as fol-
lows:

– aIA = a for each constanta,
– AIA = {a | A(a) ∈ A} for each atomic conceptA, and
– P IA = {(a1, a2) | P (a1, a2) ∈ A} for each atomic role
P .

Then, answering queries in a query languageL (contained
in EQL ) over a KB expressed in a DLDL is FOL-reducible
if for every queryq ∈ L and every TBoxT expressed in
DL, there exists a FOL queryrdc(q) such that for every
ABox A, we have thatans(q, (T ,A)) = eval(rdc(q), IA).
Observe that FOL-reducibility is a very meaningful property
from a practical point of view. Indeed, in all such cases in
which query answering can be reduced to evaluation of a do-
main independent FOL query, then such a query can be ex-
pressed in relational algebra, i.e., in SQL. Therefore, query

4It is easy to see that all results for CQs in[5; 6] can be immedi-
ately extended to UCQs.
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answering can take full advantage of optimization strategies
provided by current DBMSs (which can be put in charge of
managing ABoxes in secondary storage). As shown in[5;
6], this property holds for answering of UCQs overDL-Lite
KBs. Now, it turns out that the possibility of processing
queries by relying on DBMSs technology still holds forEQL-
Lite(UCQ) queries overDL-Lite KBs.

Theorem 12 AnsweringEQL-Lite(UCQ) queries inDL-Lite
is FOL-reducible. Moreover, if theEQL-Lite(UCQ) queryq
is domain independent, thenrdc(q) is so as well.

As a consequence, to answerEQL-Lite(UCQ) queries inDL-
Lite, we can rely on traditional relational DBMSs.

5 Constraints
In this section we discuss an application ofEQL-Lite(Q) to
modeling integrity constraints in DL KBs. Indeed, we argue
that, in the spirit of[17], a Boolean (i.e., of arity 0)EQL-
Lite(Q) query can be seen as an integrity constraint.

In particular, a DL KBΣ = (T ,A) (whereT is a TBox
andA is an ABox) satisfiesan integrity constraintγ ex-
pressed as a BooleanEQL-Lite(Q) query ifans(γ,Σ) = true,
i.e.,Σ |=EQL γ. Also,Σ satisfies a setC of integrity constraints
if for all γ ∈ C, ans(γ,Σ) = true.

With this notion in place, we can revise the notion of DL
KB: a DL KB with constraintsis a triple (T ,A, C), where
T is a TBox,A is an ABox, andC is a set of integrity con-
straints expressed inEQL-Lite(Q). The semantics of such a
DL KB Σ = (T ,A, C) is defined simply by specifying the set
of models ofΣ as follows:

Mod(Σ) =
{

Mod((T ,A)), if (T ,A) satisfiesC
∅, otherwise

We say that a DL KB with constraintsΣ is satisfiable if
Mod(Σ) is non-empty. Notably, the results presented in the
previous sections provide several cases where checking satis-
fiability of DL KBs with constraints can be effectively done,
and the data complexity of such a check is fully characterized.

Also, the notions ofΣ-interpretation, logical implication,
and certain answers ofEQL queries, easily extend to DL KBs
with constraints, as well as all complexity results for query
answering in the new setting.

6 Conclusions
Motivated by various needs related to querying DL KBs, we
have proposed the query languageEQL , based on a variant of
the well-known first-order modal logic of knowledge/belief.
Then, we have studied a subset of this language, calledEQL-
Lite(Q), arguing that it allows for formulating queries that are
interesting both from the expressive power point of view, and
from the computational complexity perspective. Finally, we
have investigated the properties ofEQL-Lite(Q) for various
interesting cases.

We are currently working onEQL-Lite(Q) for DL-Lite
KBs, for the case whereQ is the query language whose
queries are either UCQs or comparison atoms involving val-
ues taken from a set of given domains, and we are currently
implementing such an extended language within an existing
DL reasoning system[2].
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