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1 Introduction

The goal of data integration is to provide a uniform access to a set of heterogeneous
data sources, freeing the user from the knowledge about where the data are, how they
are stored, and how they can be accessed. The problem of designing effective data in-
tegration solutions has been addressed by several research and development projects in
the last years. One of the outcomes of this research work is a clear conceptual architec-
ture for data integration According to this architecture [9], the main components of a
data integration system are the global schema, the sources, and the mapping. Thus, a
data integration system is seen as a trigleS, M), where:

— @ is theglobal schemaproviding both a conceptual representation of the appli-
cation domain, and a reconciled, integrated, and virtual view of the underlying
sources.

— S is thesource schema.e., the schema of the sources where real data are stored.

— M is themappingbetweeng andS, constituted by a set of assertions establish-
ing the connection between the elements of the global schema and those of the
source schema. Two basic approaches have been proposed in the literature. The
first approach, calledlobal-as-view(or simply GAV), focuses on the elements of
the global schema, and associates to each of them a view (query) over the sources.
On the contrary, in the second approach, cdibeal-as-view(or simply LAV), the
focus is on the sources, in the sense that a view (query) over the global schema is
associated to each of them.

We use the term “data integration management system” to denote a software tool
supporting the conceptual architecture described above. Among the various services to
be provided by a data integration management system, we concentrate on query an-
swering: Queries are posed in terms of the global schema, and are to be answered by
suitably reasoning on the global schema, and exploiting the mappings to access data at
the sources.

Data integration is still one of the major challenges in Information Technology.
One of the reasons is that large amounts of heterogeneous data are nowadays available
within an organization, but these data have been often collected and stored by different

1 Here we are concerned with the so-called centralized data integration. Other architectures,
e.g. [4], are outside the scope of this paper.



applications and systems. Therefore, the need of accessing data by means of flexible
and unified mechanisms is becoming more and more important. On the other hand, cur-
rent commercial data integration tools have several drawbacks. In particular, none of
them realizes the goal of describing the global schema independently from the sources.
In particular, these tools do not allow for specifying integrity constraints in the global
schema, and this implies that the global schema is a sort of data structure for accom-
modating a reconciled view of the source data, rather than a faithful description of the
application domain. It follows that current state-of-the-art data integration tools do not
support the conceptual architecture mentioned above.

In this paper, we present a comprehensive approach to, and a complete management
system for ontology-based data integration. The system, calkesiti®o-1, is based on
the following principles:

— The system fully adheres to the conceptual architecture developed by the scientific
community.

— The global schema is specified in terms of an ontology, specifically in terms of
a TBox expressed in a tractable Description Logics, nanidlylite . So, our
approach conforms to the view that the global schema of a data integration system
can be profitably represented by an ontology, so that clients can rely on a shared
conceptualization when accessing the services provided by the system.

— The source schema is the schema of a relational database.

— The mapping language allows for expressing G&dndmappings between the
sources and the global schema. A GAV sound mapping specifies that the exten-
sion of a source view provides a subset of the tuples satisfying the corresponding
element of the global schema.

Moreover, the mapping language has specific mechanisms for addressing the so-
calledimpedance mismatgbroblem. This problem arises from the fact that, while

the data sources store values, the instances of concepts in the ontology (global
schema) are objects, each one denoted by an identifier (e.g., a constant in logic),
not to be confused with any data item.

MASTRO-I is based on the systemu@NTO [1], a reasoner foDL-Lite 4, and is
coupled with DB2 Information Integrator, the IBM tool for data federafion

We point out that our proposal is not the first one advocating the use of ontologies
in data integration (see, for example, [7, 2]). However, to the best of our knowledge,
MASTRO-I is the first data integration management system addressing simultaneously
the following aspects:

— providing a solution to the impedance mismatch problem;

— answering unions of conjunctive queries posed to the global schema according to a
method which is sound and complete with respect to the semantics of the ontology;

— careful design of the various languages used in the system, resulting in a very effi-
cient technique (LOGSPACE with respect to data complexity) which reduces query
answering to standard SQL query evaluation over the sources.

One might wonder whether the expressive power of the data integration frame-
work underlying MASTRO-I can be improved. We answer this question by showing

2 http://www-128.ibm.com/developerworks/db2/zones/db2ii/



that even very slight extensions of the expressive abilities aEMRo-1 in modeling
the three components of a data integration system lead beyond the LOGSPACE com-
plexity bound.

We end this section by pointing out thatAdTRO-1 addresses the problem of
data integration, and not the one of schema or ontology integration. In other words,
MASTRO-I is not concerned with the task of building the ontology representing the
global schema starting from the source schema, or from other ontologies. This task,
which is strongly related to other important problems, such as database schema integra-
tion [3], ontology alignment, matching, merging, or integration, are outside the scope
of MASTRO-I.

2 MASTRO-I: The data integration framework

In this section we instantiate the conceptual architecture for data integration systems
introduced in Section 1, by describing the form of the global schema, the source schema,
and the mapping for data integration systems managed AgTHo-I.

The global schema.Global schemas managed byaABITRO-1 are given in terms of
TBoxes expressed DL-Lite 4 [5], a DL of theDL-Lite family. Besides the use of con-
cepts and roles, denoting sets of objects and binary relations between objects, respec-
tively, DL-Lite 4 allows one to use value-domains, a.k.a. concrete domains, denoting
unbounded sets of (data) values, and concept attributes, denoting binary relations be-
tween objects and valugdn particular, the value-domains that we consider here are
those corresponding to unbounded (i.e., value-domains with an unbounded size) RDF
data types, such as integers, real, strings, etc.

To describeDL-Lite 4, we first introduce the DIDL-Lite %, which combines the
main features of two DLs presented in [6], callBb-Lite - andDL-Liter, respectively.
We use the following notationd denotes amtomic conceptB a basic conceptC a
general conceptand T ¢ the universal conceptE’ denotes a basic value-domain, i.e.,
the range of an attributé}, . . ., T;, denote the: pairwise disjoint unbounded RDF data
types used in our logic, ankl denotes @eneral value-domaijrwhich can be either an
unbounded RDF data tyg@€ or theuniversal value-domaif p; P denotes amtomic
role, @ abasic role and R a general role U denotes amtomic attribute and Ve a
general attribute Given an attributé/, we calldomainof U, denoted by (U), the
set of objects thal/ relates to values, and we ceadingeof U, denoted by (Uc), the
set of values related to objects by:.

We are now ready to defif®L-Literr expressions as follows.

— Basic and general concept expressions:
B:=A1]3Q | 6(Up) C:=T¢ | B| -B | 3QC
— Basic and general value-domain expressions:
Eu=p(Uc) Fu=Tp |Ti| - | T,

3 The logic discussed in [5] is actually more expressive tBarLite 4, since it includes role
attributes, user-defined domains, as well as inclusion assertions over such domains.



— General attribute expressions:
Vo = Ue | -Ue
— Basic and general role expressions:
Q=P | P~ R:=Q | -Q

A DL-Literr TBoxallows one to represent intensional knowledge by means of
assertions of the following forms:

— Inclusion assertionsB T C (concept inclusion assertion)) = R (role inclusion
assertion);r C F' (value-domain inclusion assertiorfjo C V¢ (attribute inclu-
sion assertion). A concept inclusion assertion expresses that a (basic) cBrisept
subsumed by a (general) conc&pt Analogously for the other types of inclusion
assertions.

— Functionality assertion®n atomic attributes or basic roleffunct I), wherel
denotes either an atomic attribute or a basic role.

DL-Lite4 TBoxes areDL-Literr TBoxes with suitable limitations in the combi-
nation of DL-Literr TBoOX assertions. To describe such limitations we first introduce
some preliminary notions. An atomic attributg- (resp. a basic rol€)) is called an
identifying property in a TBo«, if 7 contains a functionality assertidifunct U¢)
(resp.(funct Q) or (funct @~)). Then, an atomic attribute or a basic role is called
primitive in 7, if it does not appear positively in the right-hand side of an inclusion
assertion of7’, and it does not appear in an expression of the f8@nC in 7.

Then,a DL-Lite4 TBox is a DL-Lite-r TBox7 satisfying the condition that every
identifying property inZ is primitive in7.

Roughly speaking, in our logiddentifying properties cannot be specializeg.,
they cannot be used positively in the right-hand side of inclusion assertions. As shown
in [5], reasoning over ®L-Lite4, knowledge base (constituted by a TBox and an
ABoOX) is tractable. More precisely, TBox reasoning is inIRE and query answer-
ing is in LOGSPACE w.r.t. data complexity, i.e., the complexity measured in the size
of the ABox only (whereas query answering ®tL-Liter is PTiME-hard). Thus,
DL-Lite 4 presents the same computational behavior of all DLs ofxthd. ite family,
and therefore is particularly suited for integration of large amounts of data.

The source schemaThe source schema in AATRO-I is a flat relational database
schema, representing the schemas of all the data sources. SKEERNB} integrates

data sources that are distributed, possibly heterogeneous, and not necessarily in rela-
tional format, the source schema may in fact be obtained by wrapping a set of physical
sources. Indeed, MsTRO-I is coupled with the IBM DB2 Information Integrator, and
relies on both the wrapping facilities provided by this data federation tool, and on its
ability to answer queries posed to a set of distributed physical sources.

The mapping. The mapping in MSTRO-I establishes the relationship between the
source schema and the global schema, thus specifying how data stored at the sources are
linked to the instances of the concepts and the roles in the global schema. To this aim,
the mapping specification takes suitably into account the impedance mismatch problem,
i.e., the mismatch between the way in which data is (and can be) represented in a data



source, and the way in which the corresponding information is rendered through the
global schema.

The MASTRO-1 mapping assertions keep data value constants separate from object
identifiers, and construct identifiers as (logic) terms over data values. More precisely,
object identifiers in MSTRO-1 aretermsof the form f(dy, ..., d,), wheref is a func-
tion symbol of arityn > 0, anddy, ..., d, are data values stored at the sources. Note
that this idea traces back to the work done in deductive object-oriented databases [8].

We detail below the above ideas. The mapping indvRo-I is a set of assertions
of the following the forms:

— Typing mapping assertion®(v) ~ T;(v), where® is a query over the source
schemaS denoting the projection of one relation over one of its attribuléds
one of theDL-Lite 4 data types, and is a variable,

— Data-to-ontology mapping assertiang(v) ~ P(t,v’), whered is a first-order
logic (FOL) query over the source scheiiaP is an atom in the global schema
G, v, v’ are variables such that C v andt arevariable object termsi.e., terms
having the formf(v"), where f is a function symbol, an@” are variables such
thatv” C v.

Typing mapping assertions are used to assign approfiatkite 4 types to values
occurring in the tuples at the sources. Basically, these assertions are used for interpreting
the values stored at the sources in terms of the types used in the global schema. Data-to-
ontology, on the other hand, are used to map source relations (and the tuples they store),
to global concepts, roles, and attributes (and the objects and the values that constitute
their instances).

3 MASTRO-I: Semantics

We now illustrate the semantics of a data integration system managedbyrRa-1.

Let 7 = (G,S, M) be a data integration system. The general idea is to start with a
database for the source schems, i.e., the extensions of the data sources, and define
the semantics off as the set of intepretations f@rthat both satisfy the TBox assertions
of G, and satisfy the mapping assertions\ih with respect taD.

The above informal definition makes use of different notions that we detail below.

— First, the notion of interpretation fa¥ is the usual one in DL. Alinterpretation
T = (A%, .T) for G consists of an interpretation domailf and aninterpretation
function-Z. A7 is the disjoint union of the domain of object¥,, and the domain of
valuesAZ,, while the interpretation functiod assigns the standard formal meaning
to all expressions and assertions of the IdglcLite 4 (see [5]). The only aspect
which is not standard here is the need of dealing with objects denoted by terms (see
previous section). To this end, we now introduce two disjoint alphabets, daljed
and!'y, respectively. Symbols ifi; are called object terms, and are used to denote
objects, while symbols iy, called value constants, are used to denote data values.
More precisely/ o is built starting fromly, and a set! of function symbols of any
arity (possibly 0), as follows: Iff € A, the arity of f isn, anddy, ...,d, € I'y,
thenf(dy,...,d,)isaterminlp, calledobject termIn other words, object terms
are either functional terms of arity O, called object constants, or terms constituted



by a function symbol applied to data value constants. We are ready to state how the
interpretation function” treatsIyy andIo: - simply assigns a different value in

AZ to each symbol iy, and a different element el to every object term (not

only object constant) id. In other wordsDL-Lite 4, enforces the unique name
assumption on both value constants and object terms.

— To the aim of describing the semantics of mapping assertions with respect to a
databaseD for the source schem@, we first assume that all data values stored in
the databas® belong tol}*. Then, ifq is a query over the source schehiawe
denote byans(q, D) the set of tuples obtained by evaluating the qugoyer the
databaséD (if ¢ has not distinguished variables, thems(q, D) is a boolean). Fi-
nally, we introduce the notion of ground instance of a formula."Lbe a formula
with free variablese = (z4,...,z,), and lets = (s1,...,s,) be a tuple of ele-
mentsin/y, UTo. A ground instance|x/s] of -y is obtained fromy by substituting
every occurrence aof; with s;.

We are now ready to specify the semantics of mapping assertions. We say that
an interpretatior = (AZ,.7) satisfiesthe mapping assertiop ~» v with re-

spect toD, if for every ground instance[x/s] ~ v[x/s] of ¢ ~ 1, we have

that ans(plxz/s], D) = true impliesiy[z/s]* = true (where, for a ground atom
p(t), with t = (¢,...,t,) a tuple of object terms, we have that)? = true if
(tf,...,t%) € p?). Note that the above definition formalizes the notion of sound
mapping, as it treats each mapping assertion as an implication.

— With the above notion in place, we can simply define the semanti¢g wiith
respect taD as follows:

semp(J) ={Z|Zisamodel of G, and Z satisfies all assertions in M wrt D }

As we said in the introduction, in this paper we are mainly interested in the problem
of answering unions of conjunctive queries (UCQs) posed to the global schema. The
semantics of query answering is given in terms of certain answers to the query, defined
as follows. Given a data integration systefn= (G, S, M), and a databask for S, the
set ofcertain answerso the query;(x) overg is the set (denoted byns(q, 7, D)) of
all tuplest of elements of \y U I'p such thalZ =roy, q[x/t] for everyZ € semp(J)

(notice thaty[x/t] is a boolean UCQ, i.e., a FOL sentence).

4 Query answering

In this section, we sketch our query answering technique (more details can be found
in [10]). Consider a data integration systeim= (G, S, M) and a databasPb for S.

We start with the following observation. Suppose we evaluate (Byehe queries
in the left-hand sides of the mapping assertions, and we materialize accordingly the
corresponding assertions in the right-hand sides. This would lead to a set of ground as-
sertions, that can be considered @3laLite ABox, denoted by4d™? It can be shown
that query answering ovey can be reduced to query answering over EieLite 4
knowledge base constituted by the TB@xand the ABoxAM-P. However, due to the
materializion of AP, the query answering algorithm resulting from this approach

4 We could also introduce suitable conversion functions in order to translate values stored at the
sources into value constantsiify, but we do not deal with this issue here.



would be polynomial in the size dP. On the contrary, our idea is to avoid any ABox
materialization, but rather answér by reformulating it into a new query that can be
afterwards evaluated directly over the databBséhis can be achieved by following
three steps, callegwriting, unfoldingandevaluation
Query rewriting. Given a UCQQ over a data integration systefh= (G, S, M), and
a databas® for S, the rewriting step computes a UGQQ over,7, where the assertions
of G are compiled in. It can be shown [10] th@t is such thatins(Q’, (0, S, M), D) =
ans(Q, J, D), i.e. rewriting allows to get rid off. Moreover, the rewriting procedure
does not depend o, runs in polynomial time in the size ¢f, and returns a querg’
whose size is at most exponential in the siz&)of
Unfolding. Given a UCQQ'’ over 7, this step computes, by using logic program-
ming technology, an SQL quer§)” over the source schems§, that possibly re-
turns object terms. It can be shown [5,10] th@! is such thatans(Q"”,D) =
ans(Q’, (0,8, M), D), i.e. unfolding allows to get rid of\. Moreover, the unfold-
ing procedure does not depend bn runs in polynomial time in the size o1, and
returns a query)”, whose size is at most exponential in the siz€)af
Evaluation. The evaluation step consists in simply delegating the evaluatigy’db
the data federation tool managing the data sources. Formally, such a tool returns the set
ans(Q", D)), i.e. the set of tuples obtained from the evaluatiof)8fover D.

From the above discussion, we have the following:

Theorem 1. Let J = (G, S, M) be aMASTRO-I data integration system, anB a
database forS. Answering a UCQ ovey/ with respect toD can be reduced to the
evaluation of an SQL query ovér, and isSLOGSPACEin the size ofD.

Finally, we remark that we are implicitly assuming that the dataliader S is
consistent with the data integration systefi.e., semp(J) is hon-empty. Notably,
checking consistency can also be reduced to sending appropriate SQL queries to the
sources [5, 10].

5 Extending the data integration framework

In this section we study whether the data integration setting presented above can be
extended while keeping the same complexity of query answering. In particular, we in-
vestigate possible extensions for all the three componénts, M) of the system.
Extensions toDL-Lite 4. With regard to the logic used to express the global sch@ma

the results in [6] already imply that it is not possible to go beybhdLite 4 (at least

by means of the usual DL constructs) and at the same time keep the data complexity
of query answering within LOGSPACE. Here we consider the possibility of removing
the unique name assumption (UNA), i.e., the assumption that, in every intepretation of
a data integration systeg, both two distinct value constants, and two distinct object
terms denote two different domain elements. Unfortunately, this leads query answering
out of LOGSPACE. This result can be proved by a reduction from Graph Reachability
to instance checking iDL-Liter [6], i.e., query answering for a boolean query whose
body is a single instantiated atom, over a DL that is a subget dfite 4.

Theorem 2. Let 7 = (G, S, M) be aMASTRO-I data integration system extended by
removing the UNA, an@d a database folS. Answering a UCQ ovel/ with respect to
D is NLOGSPACE-hard in the size b



Different source schemasAlthough MASTRO-1 is currently able to deal with rela-

tional sources only, it is not hard to see that all the results presented in this paper apply
also if we consider data at the sources structured according to a different data model
(e.g. XML). Obviously, depending on the specific data model, we have to resort to a
suitable query language for expressing the source queries appearing in the mapping as-
sertions. To adhere to our framework, the only constraint on this language is that it is
able to extract tuples of values from the sources, a constraint that is trivially satisfied by
virtually all query languages used in practice.

Extensions to the mapping languageAs for the language used to express the mapping

M, we investigate the extension of the mapping language to allow for GLAV assertions,
i.e., assertions that relate CQs over the sources to CQs over the global schema. Such
assertions are therefore an extension of both GAV and LAV mappings. The result we
present is that, even with LAV mappings only, instance checking and query answering
are no more in LOGSPACE wrt data compexity.

Theorem 3. Let 7 = (G,S, M) be aMASTRO-I data integration system extended
with LAV mapping assertions, arid a database fotS. Answering a UCQ ovel/ with
respect taD is NLOGSPACE-hard in the size bX.

The above result can be proved again by a reduction from Graph Reachability to in-
stance checking iDL-Lite.
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