
Data & Knowledge Engineering 145 (2023) 102157

A
a

b

c

d

o

l
i

a
c
[

h
R
A
0

Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier.com/locate/datak

Conceptually-grounded mapping patterns for Virtual Knowledge
Graphs
Diego Calvanese a,b, Avigdor Gal c, Davide Lanti a,∗, Marco Montali a,

lessandro Mosca a, Roee Shraga d

Free-University of Bozen-Bolzano, Bolzano, Italy
Umeå University, Umeå, Sweden
Technion – Israel Institute of Technology, Haifa, Israel
Khoury College of Computer Science, Northeastern University, Boston, MA, United States of America

A R T I C L E I N F O

Keywords:
Virtual knowledge graphs
Ontology-based data access
Mapping patterns
Data integration

A B S T R A C T

Virtual Knowledge Graphs (VKGs) constitute one of the most promising paradigms for integrat-
ing and accessing legacy data sources. A critical bottleneck in the integration process involves
the definition, validation, and maintenance of mapping assertions that link data sources to a
domain ontology. To support the management of mappings throughout their entire lifecycle, we
identify a comprehensive catalog of sophisticated mapping patterns that emerge when linking
databases to ontologies. To do so, we build on well-established methodologies and patterns
studied in data management, data analysis, and conceptual modeling. These are extended
and refined through the analysis of concrete VKG benchmarks and real-world use cases, and
considering the inherent impedance mismatch between data sources and ontologies. We validate
our catalog on the considered VKG scenarios, showing that it covers the vast majority of
mappings present therein.

1. Introduction

Data integration and access to legacy data sources using end-user oriented languages are increasingly challenging contemporary
rganizations. In the whole spectrum of data integration and access solutions, the approach based on Virtual Knowledge Graphs

(VKGs) is gaining momentum [1], especially when the underlying data sources to be integrated come in the form of relational
databases (DBs) [2]. VKGs replace the rigid structure of tables with the flexibility of a graph that incorporates domain knowledge
and is kept virtual, eliminating the need of making a copy of the data as in a typical ETL-based (Extract, Transform, Load) approach,
thus avoiding duplication of data and guaranteeing the freshness of the information being accessed. A VKG specification consists of
three main components: (i) data sources (in the context of this paper, constituted by relational DBs) where the actual data are stored;
(ii) a domain ontology, capturing the relevant concepts, relations, and constraints of the domain of interest; (iii) a set of mappings
inking the data sources to the ontology. One of the most critical bottlenecks towards the adoption of the VKG approach, especially
n complex, enterprise scenarios, is the definition and management of mappings.

Mappings play a central role in a variety of data management tasks, within both the Semantic Web and the DB communities,
nd come in different forms. In schema matching, for example, mappings (typically referred to as ‘‘matches’’) aim at expressing
orrespondences between atomic, constitutive elements of two different relational schemata, such as attributes and relation names
3]. In this context, very sophisticated (semi-)automatic techniques are being developed to bootstrap this simple type of mappings,

∗ Corresponding author.
E-mail address: lanti@inf.unibz.it (D. Lanti).
ttps://doi.org/10.1016/j.datak.2023.102157
eceived 24 March 2022; Received in revised form 7 October 2022; Accepted 25 February 2023
vailable online 4 March 2023
169-023X/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.datak.2023.102157
https://www.elsevier.com/locate/datak
http://www.elsevier.com/locate/datak
http://crossmark.crossref.org/dialog/?doi=10.1016/j.datak.2023.102157&domain=pdf
mailto:lanti@inf.unibz.it
https://doi.org/10.1016/j.datak.2023.102157

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157
Fig. 1. The database and the ontology both stem from common domain knowledge.

without prior knowledge on the two schemata [4–6]. A similar setting arises in the context of ontology matching (also referred to as
ontology alignment), where the atomic elements to be put into correspondence are concepts and properties [7]. Just like with schema
matching, a huge body of applied research has led to effective (semi-)automatic techniques for establishing mappings [8,9]. In data
exchange, instead, more complex mapping specifications (like the well-known formalism of TGDs [10–12]) are needed to express
how data extracted from a source DB schema should be used to populate a target DB schema [13]. Due to the complex nature of
these mappings, research in this field has been mainly foundational, with few notable exceptions [14,15].

The VKG approach appears to be the one that poses the most advanced challenges when it comes to mapping specification,
debugging, and maintenance. On the one hand, VKG mappings are inherently more sophisticated than those used in schema and
ontology matching. On the other hand, while they appear to resemble those typically used in data exchange, they need to overcome
the abstraction mismatch between the relational schema of the underlying data storage, and the target ontology; consequently, they
are required to explicitly handle how (tuples of) data values extracted from the DB lead to the creation of corresponding objects in
the ontology.

It is not surprising, then, that management of VKG mappings throughout their entire lifecycle is currently a labor-intensive and
mostly manual effort, which requires highly-skilled professionals [16] that, at once: (i) have in-depth knowledge of the domain of
discourse and how it can be represented using structural conceptual models (such as UML class diagrams) and ontologies; (ii) possess
the ability to understand and query the logical and physical structure of the DB; and (iii) master languages, methodologies, and
technologies for representing the ontology and the mappings using standard frameworks from Semantic Web (such as the OWL 2
profiles and R2RML). Even in the presence of all these skills, writing mappings is demanding and poses a number of challenges
related to semantics, correctness, and performance. More concretely, no comprehensive approach currently exists to support ontology
engineers and knowledge scientists [17] in the creation of VKG mappings, exploiting all the involved information artifacts to their
full potential: the relational schema with its constraints and the extensional information stored in the DB, the ontology axioms,
and a conceptual model that lies, explicitly or implicitly, at the basis of the relational schema.

Bootstrapping techniques [18,19] have been developed to relieve the ontology engineer from the ‘‘blank paper syndrome’’.
However, they are typically adopted in scenarios where neither the ontology nor the mappings are initially available, and various
assumptions are posed over the schema of the DB (e.g., in terms of normalization). Hence, they essentially bootstrap at once the
ontology as a ‘‘query-preserving’’ [20] mirrored image of the DB, and the corresponding one-to-one mappings. These approaches
typically work at the level of DB schemata, ignoring the data, and therefore they might fail in those cases where the DB schema is
either poorly structured or the applicable constraints are not fully specified.

Most of research so-far has been focused on bootstrapping, and a common trait of all these works is that they gloss over, or
altogether ignore, the actual conceptual model underlying the given database instance, arguing that such conceptual model is in
many cases not available to the bootstrapper. This choice, however, leads to ambiguities and arbitrary decisions: the same relational
schema might, in fact, correspond to several different conceptual representations. We here take a completely different approach: we
single out mapping patterns by fully accounting for the intended conceptual representation and the database schema corresponding
to such representation. This allows us to define each pattern in a non-ambiguous way, and to precisely specify the constraints to be
imported into the VKG.1

The justification for our approach is depicted in Fig. 1, and foresees a scenario where both the ontology and the DB schema
are derived from a conceptual analysis of the domain of interest. The resulting knowledge may stay implicit, or lead to an explicit
representation in the form of a structured conceptual model [21], usually represented using well-established notations such as UML,
ORM 2, or E-R. On the one hand, this conceptual model provides the basis for creating a corresponding domain ontology through a
series of transformation steps, where these steps should ideally preserve the semantics of the original model, modulo the expressivity
of the considered ontology language [22–24]. On the other hand, it can trigger the design process that finally leads to the deployment
of an actual DB. This is done via a series of restructuring and adaptation steps, considering a number of aspects that go beyond

1 Modulo the expressive power of the ontology language being considered.
2

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

i
t
l

V
p
a

a
m
i

(
s

c
d
s

2

a

E

T

r
t

e

S
d

r

pure conceptualization, such as query load, performance, volume, and the abstraction gap that exists between the conceptual and
logical/physical layers. It is precisely the reconciliation of these two transformation chains (resp., from the conceptual model to the
ontology, and from the conceptual model to the DB) that is reflected in the VKG mappings.

From this key observation, we derive a catalog of mapping patterns that emerge when linking DBs to ontologies. To do so, we
build on well-established methodologies and patterns studied in data management (such as W3C Direct Mapping – W3C-DM [25] –
and its extensions), data analysis (such as algorithms for discovering dependencies), and conceptual modeling (such as well-known
lossless transformations from E-R diagrams to DB schemata [26–28]). These are suitably extended and refined, by considering the
inherent impedance mismatch between data sources and ontologies, which requires to handle the creation of objects starting from
DB values.

The idea of mapping patterns is not new, and was first introduced in [29], later refined in [30]. However, there are substantial
differences between the patterns discussed in this line of works and the patterns we introduce here. Specifically, those patterns are
usually informally specified and quite permissive, not grounding the DB instance to any particular conceptual representation. This
allows the KG practitioner to map KGs that are potentially very different from the intended DB conceptualization. On the contrary,
each of our patterns explicitly and non-ambiguously specifies the link between the conceptualization and the DB instance, which
is the one arising from applying well-known and semantics-preserving transformations studied in the area of DB design. Our choice
s motivated by the observation that the conceptual structures ‘‘encoded’’ in the DB instance are not arbitrary, but derive from
he design phase of the DB and reflect the actual domain knowledge, and from the fact that the expressive power of the ontology
anguage commonly adopted for VKGs is comparable to that of E-R diagrams.

This foundational grounding, which clearly distinguishes our work from related literature, paves the way towards a variety of
KG design scenarios, depending on which information artifacts are available, and which ones must be produced. For example, our
atterns could be used to validate existing mappings, to generate mappings and an ontology if only the DB is available, or even also
s a basis for reconstructing the conceptual model when it is left implicit or inaccessible.

Another major contribution of this work, which to the best of our knowledge distinguishes it from all the related literature, is
n evaluation of our approach. Concretely, we analyze six concrete VKG scenarios and benchmarks, and report on the coverage of
appings appearing therein in terms of our patterns, as well as on how many times the same pattern recurs. This also gives an

nteresting indication on which patterns are more pervasively used in practice.
As a final remark, the patterns we introduce here were developed while satisfying the restrictions imposed by the VKG setting

e.g., at the level of expressiveness of the ontology language). However, they can be directly applied in all those contexts where
uch restrictions are satisfied, regardless of whether the knowledge graph is virtual.

The remainder of this paper is structured as follows: Section 2 introduces the notation and basic notions on VKGs; Section 3
ontains our catalog of mapping patterns, the main contribution of this work; Section 4 discusses possible applications of the catalog,
epending on the information artifacts that are available to the VKG designer; Section 5 presents an evaluation of the catalog over
ix different scenarios of different complexities; Section 6 discusses related work, and Section 7 concludes the paper.

. Preliminaries

In this work, we use the bold font to denote tuples, e.g., 𝐱, 𝐲, are tuples. When convenient and non-ambiguous, we treat tuples
s sets and use set operators on them.

We assume that the reader is familiar with standard notions and languages from the relational databases world, such as SQL or
-R diagrams. Other readers might want to refer to the abundant literature on the subject, with [10] as an excellent primer.

We rely on the VKG framework as previously introduced in [31]. A VKG specification is a triple (,,) where is an ontology
Box, is a set of VKG mappings (or, simply, mappings), and is a DB schema. We next introduce these elements and their semantics.

The schema is a pair (𝛴, 𝛤). 𝛴 is the signature of , that is, a set of table schemata of the form 𝑇 (𝐴1,… , 𝐴𝑛), where 𝑇 is a table
name and 𝐴1,… , 𝐴𝑛 are attributes, each associated to a SQL datatype. 𝛤 is a set of database constraints. In this work, 𝛤 consists of
key and foreign key constraints, as well as inclusion dependencies. In this work, foreign keys are inclusion dependencies where the
eferred attributes form a (not necessarily primary) key.2 A database instance for is a first-order interpretation mapping each
able name to a relation over the interpretation domain, and that satisfies3 the constraints in 𝛤 .

The ontology is formulated in OWL2QL [33], but for conciseness we here use its logical underpinning, DL-Lite [34], slightly
nriched to handle datatypes.

yntax. We fix four enumerable, pairwise-disjoint sets: NI of individuals, NC of class names, NP of object property names, and ND of
ata property names. An OWL2QL TBox is a finite set of axioms of the following form:

𝐵 ⊑ 𝐶 𝑞 ⊑ 𝑟
𝜌(𝑑) ⊑ 𝑓 𝑑 ⊑ 𝑣

2 Although some systems, like MySQL, do not impose particular restrictions over the referred attributes, the common assumption in the literature is that the
eferred attributes form a primary key (e.g., see [32]).

3 For details, refer to classic literature such as [10].
3

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

𝑝
w
c
R
v
o
s

Table 1
Semantics for OWL2QL constructs.

Construct Syntax element Example Semantics

Top class ⊤𝐶 𝛥𝑂
Top domain ⊤𝑉 𝛥𝑉
Concept name 𝐴 ∈ NC Person 𝐴 ⊆ 𝛥𝑂
Object property name 𝑝 ∈ NP hasSpouse 𝑝 ⊆ 𝛥𝑂 × 𝛥𝑂
Data property name 𝑑 ∈ ND hasName 𝑑 ⊆ 𝛥𝑂 × 𝛥𝑉
Datatype 𝑇𝑖 xsd:int 𝑇

𝑖 ⊆ 𝛥𝑉
Existential restriction ∃𝑟 ∃𝗁𝖺𝗌𝖲𝗉𝗈𝗎𝗌𝖾

{

𝑜 ∈ 𝛥𝑂 ∣ ∃𝑜′ ∈ 𝛥𝑂 ∶ (𝑜, 𝑜′) ∈ 𝑟
}

Data property domain 𝛿(𝑑) 𝛿(𝗁𝖺𝗌𝖭𝖺𝗆𝖾)
{

𝑜 ∈ 𝛥𝑂 ∣ ∃𝑣 ∈ 𝛥𝑉 ∶ (𝑜, 𝑣) ∈ 𝑑
}

Data property range 𝜌(𝑑) 𝜌(𝗌𝖺𝗅𝖺𝗋𝗒)
{

𝑣 ∈ 𝛥𝑉 ∣ ∃𝑜 ∈ 𝛥𝑂 ∶ (𝑜, 𝑣) ∈ 𝑑
}

Concept negation ¬𝐴 ¬𝖧𝗎𝗆𝖺𝗇 𝛥𝐼𝑂 ⧵ 𝐴

Inverse object property 𝑝− hasSpouse−
{

(𝑜′ , 𝑜) ∣ (𝑜, 𝑜′) ∈ 𝑝
}

Object property negation ¬𝑟 ¬𝗁𝖺𝗌𝖲𝗉𝗈𝗎𝗌𝖾 𝛥𝐼𝑂 × 𝛥𝑂 ⧵ 𝑟

Data property negation ¬𝑑 ¬𝗁𝖺𝗌𝖭𝖺𝗆𝖾 𝛥𝐼𝑂 × 𝛥𝑉 ⧵ 𝑑

Individual 𝑎 ∈ NI george 𝑎 ∈ 𝛥𝑂
Literal 𝓁 ∈ ND ‘‘george’’ 𝓁 ∈ 𝛥𝑉

where 𝐵,𝐶 are classes, 𝑞, 𝑟 are object properties, 𝑑 is a data property, 𝑓 is a datatype expression, 𝜌(𝑑) is a data property range expression,
and 𝑣 is a data property expression. The elements above are defined according to the following grammar, where 𝐴 ∈ NC, 𝑑 ∈ ND,
𝑝 ∈ NP, 𝛿(𝑑) is a data property domain expression, and 𝑇1,… , 𝑇𝑛 are the RDF datatypes4:

𝐵 → 𝐴 ∣ ∃𝑟 ∣ 𝛿(𝑑) 𝐶 → ⊤𝐶 ∣ 𝐵 ∣ ¬𝐵
𝑞 → 𝑝 ∣ 𝑝− 𝑟 → 𝑞 ∣ ¬𝑞
𝑓 → ⊤𝐷 ∣ 𝑇1 ∣ ⋯ ∣ 𝑇𝑛 𝑣 → 𝑑 ∣ ¬𝑑

In the rules above, ⊤𝐶 and ⊤𝐷 denote the ‘‘top’’ concepts for concepts and data values (called literals in the RDF terminology),
respectively.

There are a few differences between the (DL-Lite-like) language introduced here and OWL2QL. Specifically, OWL2QL also
allows one to express special features of binary relations, such as reflexivity or transitivity. Since these additional constructs do not
affect our patterns, they are not part of the ontology language considered here.

An OWL2QL ABox is a finite set of assertions of the form 𝐴(𝑎), 𝑝(𝑎, 𝑏), or 𝑑(𝑎,𝓁), where 𝐴 ∈ NC, 𝑝 ∈ NP, 𝑑 ∈ ND, 𝑎 and 𝑏 are
individuals in NI, and 𝓁 is a literal value. We call the pair = ⟨ ,⟩ an OWL2QL ontology.

Semantics. Similarly to first-order logic, the semantics of OWL2QL ontologies is given through Tarski-style interpretations of the
form = (𝛥𝑂 , 𝛥

𝑉 , ⋅

), where 𝛥𝑂 is a non-empty domain of objects, 𝛥𝑉 is a non-empty domain of values, and ⋅ is an interpretation
function defined according to the inductive definition of Table 1.

Let be an interpretation. satisfies an inclusion axiom 𝜙 ⊑ 𝜓 , denoted as ⊧ 𝜙 ⊑ 𝜓 , if 𝜙 ⊆ 𝜓 . satisfies a TBox , denoted
as ⊧ , if it satisfies all axioms in . satisfies a class assertion 𝐶(𝑎), denoted as ⊧ 𝐶(𝑎), if 𝑎 ∈ 𝐶 . satisfies an object property
assertion 𝑅(𝑎, 𝑏) (resp., a data property assertion 𝑑(𝑎,𝓁)), denoted as ⊧ 𝑟(𝑎, 𝑏) (resp., ⊧ 𝑑(𝑎,𝓁)), if (𝑎 , 𝑏) ∈ 𝑟 (resp., (𝑎 ,𝓁) ∈ 𝑑).
 satisfies an ABox , denoted as ⊧ , if it satisfies all assertions in . Finally, satisfies an ontology = (,), denoted as ⊧ ,
if ⊧ and ⊧ .

Mappings. In the VKG literature, mappings specify how to populate classes and properties of the ontology with individuals and
values constructed from the data in the underlying DB. In other words, mappings provide the ABox that, together with a given
TBox, realizes an ontology. In VKGs, the adopted language for mappings in real-world systems is R2RML [35], but for conciseness
we use here a more convenient abstract notation inspired by the literature [31]: a mapping 𝑚 is a pair of the form

𝑠 ∶ 𝑄(𝐱) 𝑡 ∶ 𝐋(t(𝐱))

where 𝑄(𝐱) is a SQL query over the DB schema , called source query, and 𝐋(t(𝐱)) is a list of target atoms of the form 𝐶(t1(𝐱𝟏)),
(t1(𝐱𝟏), t2(𝐱𝟐)), or 𝑑(t1(𝐱𝟏), t2(𝐱𝟐)), where 𝐶 ∈ NC, 𝑝 ∈ NP, 𝑑 ∈ ND, and t1(𝐱𝟏) and t2(𝐱𝟐) are terms that we call templates. In this
ork we express source queries using the notation of relational algebra, omitting answer variables under the assumption that they

oincide with the variables used in the target atoms. Intuitively, a template t(𝐱) in the target atom of a mapping corresponds to an
2RML string template,5 and is used to generate object IRIs (Internationalized Resource Identifiers) or (RDF) literals, starting from DB
alues retrieved by the source query in that mapping. Note that R2RML constants can be rendered in our syntax by using templates
f zero arity, and that data values (e.g., using the rr:column predicate) can be simulated by introducing a dedicated special template
ymbol.

4 The RDF and OWL Recommendations use the simple types from XML Schema (https://www.w3.org/TR/xmlschema-2/).
5 https://www.w3.org/TR/r2rml/#dfn-string-template.
4

https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/r2rml/#dfn-string-template

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

S

c
i
d

p
e

n
t
D

2

O

I
a

a
h

Given a set of mappings and a database instance , the virtual ABox () exposed by through is the set of ABox
assertions:

{

𝐋(at(t(𝐱), (𝐱 ↦ 𝐨))) ∣ (𝐱 ↦ 𝐨) ∈ 𝑄(𝐱), (𝑠 ∶ 𝑄(𝐱), 𝑡 ∶ 𝐋(t(𝐱))) ∈
}

where (𝐱 ↦ 𝐨) is a solution mapping belonging to the evaluation 𝑄(𝐱) of the source query 𝑄(𝐱) over the DB instance , and
𝐋(at(t(𝐱), (𝐱 ↦ 𝐨))) is a set of ABox assertions deriving from the application of the template t(𝐱) over the solution mapping (𝐱 ↦ 𝐨).
uch template application is usually defined by replacing 𝐱 with 𝐨 in 𝐭(𝐱), through string concatenation operations.

In the following, we provide an example of mapping and virtual ABox derived through it. For the examples, we will use the
oncrete syntax adopted by the Ontop VKG system [36], in which the source query is expressed in SQL and each target atom
s expressed as an RDF triple pattern with templates. The answer variables of the source query occurring in the target atoms are
istinguished by enclosing them in curly brackets {⋯}. The following is an example mapping expressed in such syntax:

@prefix ex: <http://www.example.com/> .
source SELECT ssn FROM person
target ex:person/{ssn} a ex:Person .

The first line is a prefix declaration, used to abbreviate URIs. For instance, ex:Person is an abbreviation for the URI
http://www.example.com/Person. The effect of such mapping, when applied to a DB instance for 𝛴, is to populate the class
ex:Person with IRIs constructed by replacing the answer variable ssn occurring in the target atom with the corresponding
assignments for that variable in the solution mappings to the source query evaluated over . For instance, if the SQL query
in the source retrieves the solution mappings (ssn ↦ 000-00-0000) and (ssn ↦ 000-00-0001), then the mapping above
roduces the following RDF graph (expressed in the Turtle [37] syntax), stating that individuals ex:person/000-00-0000 and
x:person/000-00-0001 are both instances of class ex:Person:

@prefix ex: <http://www.example.com/> .
ex:person/000-00-0000 a ex:Person .
ex:person/000-00-0001 a ex:Person .

Given a VKG specification (,,) and a database instance of , the ontology = (,()) is called Virtual Knowledge
Graph of (,,) through . The term ‘‘virtual’’ in the name derives from the fact that the virtual ABox () in a VKG setting is
ot materialized and stored somewhere. Query answering in VKGs, in fact, is carried out through query rewriting and query unfolding
echniques [31,36]: SPARQL queries get translated on-the-fly into equivalent SQL queries, which are directly evaluated against the
B, transparently to the end-user.

.1. R2RML mappings vs. VKG mappings

In this work, we adopt an abstract syntax for mappings inspired by the well-established scientific literature on VKGs, e.g., [31].
n the other hand, R2RML was inspired by the works on RDB2RDF systems,6 and does not enforce some of the conventions that

are common (and, sometimes, required) in a VKG setting. Usually these low-level differences are never addressed explicitly in the
scientific literature, but in our experience of maintainers of the Ontop VKG system [36] we have witnessed that these can be a major
source of confusion for VKG practitioners. Since this work is also targeting potential users of a VKG system that will have to write
concrete R2RML mappings, we here explicitly clarify what these conventions are.

We recognize two main differences between R2RML mappings and VKG mappings: the first is that R2RML mappings support
what we here call intensional mappings, and the second one is that R2RML also allows for templates that are not injective.

ntensional mappings. R2RML allows for mappings at the intensional level, i.e., for mappings defining TBox axioms rather than ABox
ssertions, like the following one (expressed in the Ontop [36] concrete mapping syntax):

@prefix ex: <http://www.example.com/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
source SELECT star_id, star_type FROM star
target ex:star/{star_type} rdfs:subClassOf :Star .

Mappings like the one above go beyond those considered in the scientific literature for VKGs, and are often a source of confusion
mong VKG practitioners: they are perfectly valid R2RML mappings, hence virtually all R2RML-based VKG systems accept them,
owever the semantics of query answering in the presence of such mappings is system-dependent, often leading to ‘‘surprising’’

6 https://www.w3.org/2001/sw/rdb2rdf/.
5

http://www.example.com/Person
https://www.w3.org/2001/sw/rdb2rdf/

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

a

d
t
f

t
r
t
g
t

3

results that are due to the well-studied computational complexity boundaries of the VKG approach [31,38]. Here, we ignore such
kind of mappings, and focus instead on traditional VKG mappings.

Injective templates. In classic VKG literature [31], templates are always injective, that is, the application of different templates
(i.e., templates differing in either function symbol or arity) can never generate the same ground term.7 This detail is usually8 never
made explicit, because it is a trivial consequence of the fact that, in those settings, equality between terms is realized through
syntactic unification. R2RML deals with URIs, not with logical terms. Hence, it is inherently more flexible, and different URI templates
do not guarantee that two different URIs will be generated. As an example, consider the following pair of mappings:

@prefix : <http://www.example.com/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
source SELECT star_id, star_type FROM star
target :star-{star_id} a :Star .

@prefix : <http://www.example.com/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
source SELECT star_id1, star_id2 FROM binary_systems
target :star-{star_id1}-{star_id2} a :BinaryStarSystem .

Assume a database instance such that the SQL query in the first mapping retrieves (star_id↦ 001-100), and the SQL query in
the second mapping retrieves (star_id1 ↦ 001, star_id2 ↦ 100). Then, these solutions together with the mapping assertions
bove would construct the following RDF graph:

@prefix : <http://www.example.com/> .
:star -001-100 a :Star .
:star -001-100 a :BinaryStarSystem .

That is, object :star-001-100 is both recognized as a single star and as a binary system composed of two stars. Note that this
oes not correspond to the information that was contained in the original DB instance: it might be the result of a careful analysis of
he domain (hence, the original DB was either incomplete, or not in 1st Normal Form), or it could be just a mistake induced by the
act of not having used injective templates. If the latter, to guarantee injectivity it would have sufficed to use a safe URI separator

in place of the dash ‘‘-’’ in the target of the second mapping. As a matter of fact, the R2RML recommendation states that designers
should use safe URI separators9: if this recommendation is observed, then the injectivity condition is trivially satisfied.

Contrarily to the issue of mappings at the intensional level discussed above, the VKG specification can naturally be extended
o the scenario of non-injective templates. However, adopting non-injective templates usually worsens the performance of query
eformulation, since joins over individuals built out of different templates are not anymore guaranteed to be empty. Non-injective
emplates can become useful in particular applications where the URIs to be produced for object identifiers should conform to some
lobal vocabulary [40]. In this work we adopt the standard assumption of injective templates, as we are interested in preserving
he semantics of the original data instance.

. Mapping patterns

We now enter into the core contribution of this paper, namely the catalog of mapping patterns. In our vision, (ontology) mapping
patterns can be used to unravel the high-level conceptualization behind the database design, and to exploit this conceptualization to
better link the content of the database to a domain ontology, according to the vision displayed in Fig. 1. To justify our formalization
of patterns, we make the following two fundamental observations:

(i) a conceptual model may have more than one admissible relational representation, according to the applied methodology, as
well as to considerations about efficiency, performance optimization, and space consumption on the final information system;

(ii) given the logical schema of a relational database, regardless of its normal form, multiple conceptual models can provide
(admissible) alternative representations of its domain.

By (i) and (ii), and differently from most other approaches in the literature, our patterns explicitly specify the target conceptual
model, in order to disambiguate among the various admissible conceptualizations for the same database schema.

Our patterns are tailored towards the VKG setting, however they can be directly applied also in those, possibly non-virtualized,
contexts requiring a lightweight ontology language. The only strict requirements are that the target ontology language is not more

7 In DL literature, logical first-order terms are used in place of URIs or literals from the RDF world.
8 An exception is the notion of ‘‘OBDA-complete mapping’’ introduced in [39].
9 https://www.w3.org/TR/r2rml/#dfn-template-valued-term-map.
6

https://www.w3.org/TR/r2rml/#dfn-template-valued-term-map

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

r
f

Table 2
R2RML natural mapping.

SQL datatype RDF datatype

String-like xsd:string
BINARY, BINARY VARYING, BINARY LARGE OBJECT xsd:hexBinary
NUMERIC, DECIMAL xsd:decimal
SMALLINT, INTEGER, BIGINT xsd:integer
FLOAT, REAL, DOUBLE PRECISION xsd:double
BOOLEAN xsd:boolean
DATE xsd:date
TIME xsd:time
TIMESTAMP xsd:dateTime

expressive than OWL2QL, and that the mapping language conforms to the restrictions set in place in Section 2. Studying patterns
under different assumptions, e.g., more expressive ontology languages, goes beyond the scope of this work.

In its basic form, a mapping pattern is a quadruple (, ,,), where is a conceptual model, a database schema, a set
of mappings, and an (OWL2QL) ontology. In such pattern, the pair (,) puts into correspondence a conceptual representation
to one of its (many) admissible (i.e., formally sound [41,42]) database schemata, like those prescribed by well-established database
modeling methodologies. The pair (,), instead, is formed by the DB ontology , which is the OWL2QL encoding10 of the conceptual
model , and the set of mappings, providing the link between and . The term ‘‘DB ontology’’ refers to an ontology whose
concepts and properties reflect the constructs of the conceptual model, mirroring the structure of the relational database, as displayed
in Fig. 1.

As pointed out in Section 1, we do not fix which of these information artifacts are given, and which are produced as output, but
we simply describe how they relate to each other, on a per-pattern basis. Inputs and outputs will depend on the specific application
scenario, as we will discuss in Section 5.

Some of the more advanced patterns have a more complex structure, where pairs of conceptual models and/or pairs of database
schemata are respectively used in place of and (e.g., Patterns SRR or SHa, which we will introduce in Section 3.2, fall under
this category). These patterns prescribe specific transformations to be applied on an input conceptual (resp., DB) schema, in order
to obtain an output conceptual (resp., DB) schema. These output artifacts make explicit the presence of specific structures that are
revealed through the application of the pattern itself. We will see that these structures can in turn enable further applications of
patterns.

3.1. Pattern organization and presentation conventions

Pattern organization. We organize patterns in two major groups: schema-driven patterns, shaped by the structure of the DB schema
and its explicit constraints, and data-driven patterns, which in addition consider constraints emerging from specific configurations
of the data in the DB. Observe that, for each schema-driven pattern, we actually identify a corresponding data-driven version in
which the constraints over the schema are not explicitly specified, but hold in the data. We denote such pattern as its schema-driven
counterpart, but with a leading ‘‘D’’ in place of ‘‘S’’ (e.g., Pattern DE is the data-driven version of Pattern SE shown in Table 3).

Presentation conventions. We show the fragment of the conceptual model that is affected by the pattern in E-R notation (adopting the
original notation by Chen [43]) — but any structural conceptual modeling language, such as UML or ORM 2 [24,44], would work as
well. To compactly represent sets of attributes, we use a small diamond in place of the small circle used for single attributes in Chen
notation. For cardinality constraints, we follow the ‘‘look-here’’ convention, that is, the cardinality constraint for a role is placed next
to the entity participating in that role. In the DB schema, we use 𝑇 (𝗞,𝗔) to denote a table with name 𝑇 , primary key consisting of
the attributes 𝗞, and additional attributes 𝗔. Given a set 𝗨 of attributes in 𝑇 , we denote by 𝗄𝖾𝗒𝑇 (𝗨) the fact that 𝗨 forms a key for
𝑇 . Referential integrity constraints (like, e.g., inclusion dependencies and foreign keys) are depicted with edges, pointing from the
referencing attribute(s) to the referenced one(s). For conciseness, we denote sets of the form {𝑜 ∣ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} as {𝑜}𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. In order
to express datatypes for data properties, we introduce two auxiliary functions: a function 𝜏 that, given a DB attribute 𝐴, returns the
DB datatype of 𝐴, and a function 𝜇 that associates, to each DB datatype, a corresponding RDF datatype. For the definition of 𝜇, we
e-use the Natural Mapping 11 correspondence provided by the R2RML recommendation, and displayed in Table 2. As a final note,
ollowing the E-R-diagrams convention, we assume a default (1, 1) cardinality on attributes. For such a reason, in the DB schema

we assume all attributes to be not nullable by default (using the SQL convention, declared as ‘‘NOT NULL’’). If attribute 𝐴 is instead
optional, we denote this fact in the DB schema through the notation 𝑜𝑝𝑡(𝐴). Such notation extends in the natural way to the case of
a set 𝗔 of attributes.

10 Modulo the expressivity of the OWL2QL language.
11 https://www.w3.org/TR/r2rml/#natural-mapping.
7

https://www.w3.org/TR/r2rml/#natural-mapping

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

t
H
w

S
a
p
m
a
r

E
i
d

Table 3
Schema-driven patterns: Entities and binary relationships without attributes.

Conceptual model DB schema Mappings Ontology

Schema Entity (SE)

𝑇𝐸 (𝗞,𝗔)
𝑠∶ 𝑇𝐸
𝑡∶ 𝐶𝐸 (t𝐸 (𝗞)),

{𝑑𝐴(t𝐸 (𝗞), 𝐴)}𝐴∈𝗞∪𝗔

⎧

⎪

⎨

⎪

⎩

𝛿(𝑑𝐴) ⊑ 𝐶𝐸 ,
𝜌(𝑑𝐴) ⊑ 𝜇(𝜏(𝐴)),
𝐶𝐸 ⊑ 𝛿(𝑑𝐴)

⎫

⎪

⎬

⎪

⎭𝐴∈𝗞∪𝗔

In case of optional attributes, for each optional attribute 𝐴′ add an 𝑜𝑝𝑡(𝐴′) constraint to the DB schema and drop the corresponding axiom 𝐶𝐸 ⊑ 𝛿(𝑑𝐴′) from
the ontology.

Schema Relationship (SR)
𝑇𝐸 (𝗞𝐸 ,𝗔𝐸) 𝑇𝐹 (𝗞𝐹 ,𝗔𝐹)

𝑇𝑅(𝗞𝑅𝐸 ,𝗞𝑅𝐹)

𝑠∶ 𝑇𝑅
𝑡∶ 𝑝𝑅(t𝐶𝐸 (𝗞𝑅𝐸), t𝐶𝐹 (𝗞𝑅𝐹))

∃𝑝𝑅 ⊑ 𝐶𝐸
∃𝑝−𝑅 ⊑ 𝐶𝐹

• In case of (_, 1) cardinality on role 𝑅𝐸 (resp., 𝑅𝐹), the primary key for 𝑇𝑅 is restricted to the attributes 𝗞𝑅𝐸 (resp., 𝗞𝑅𝐹). In case both roles have (_, 1)
cardinality, either choice for the primary key is made, and the remaining attributes form a non-primary key in the logical schema.
• In case of (1, 𝑁) cardinality on role 𝑅𝐸 (resp., 𝑅𝐹), the inclusion dependency 𝗞𝐸 ⊆ 𝗞𝑅𝐸 (resp., 𝗞𝐹 ⊆ 𝗞𝑅𝐹) holds in the schema, and the first (resp.,
second) inclusion axiom in the ontology holds in both directions.
• In case of (1, 1) cardinality on role 𝑅𝐸 (resp., 𝑅𝐹), the same considerations as for (_, 1) cardinality apply; in addition, the foreign key 𝗞𝐸 ⊆ 𝗞𝑅𝐸 (resp.,
𝗞𝐹 ⊆ 𝗞𝑅𝐹) holds in the schema, and the first (resp., the second) inclusion axiom in the ontology holds in both directions.

Schema Relationship with Identifier Alignment (SRa)

𝑇𝐸 (𝗞𝐸 ,𝗔𝐸) 𝑇𝐹 (𝗞𝐹 ,𝗨𝐹 ,𝗔𝐹)

𝑇𝑅(𝗞𝑅𝐸 ,𝗨𝑅𝐹) 𝗄𝖾𝗒𝑇𝐹 (𝗨𝐹)

𝑠∶ 𝑇𝑅 ⨝𝗨𝑅𝐹 =𝗨𝐹
𝑇𝐹

𝑡∶ 𝑝𝑅(t𝐶𝐸 (𝗞𝑅𝐸), t𝐶𝐹 (𝗞𝐹))
∃𝑝𝑅 ⊑ 𝐶𝐸
∃𝑝−𝑅 ⊑ 𝐶𝐹

Cardinality constraints are handled similarly as for Pattern SR, with the difference that now the constraints involve 𝑈𝑅𝐹 and 𝑈𝐹 .
The case where both sets of attributes in 𝑇𝑅 require alignment is treated similarly.

Schema Relationship with Merging (SRm)
𝑇𝐹 (𝗞𝐹 ,𝗔𝐹)

𝑇𝐸 (𝗞𝐸 ,𝗞𝐸𝐹 ,𝗔𝐸)

𝑠∶ 𝑇𝐸
𝑡∶ 𝑝𝐸𝐹 (t𝐶𝐸 (𝗞𝐸), t𝐶𝐹 (𝗞𝐸𝐹))

∃𝑝𝐸𝐹 ⊑ 𝐶𝐸
∃𝑝−𝐸𝐹 ⊑ 𝐶𝐹

Cardinality constraints are handled similarly as for Pattern SR, with the catch that in case of (0, 1) cardinality on role 𝑅𝐸 , we have that 𝗞𝐸𝐹 is nullable.
The alignment variant SRma/DRma, where the foreign key references a non-primary identifier, is defined in the straightforward way.

Schema Weak-Entity (SEw)

𝑇𝐹 (𝗞𝐹 ,𝗔𝐹)

𝑇𝐸 (𝗞𝐸 ,𝗞𝐸𝐹 ,𝗔𝐸)

𝑠∶ 𝑇𝐸
𝑡∶ 𝐶𝐸 (t𝐸 (𝗞𝐸 ,𝗞𝐸𝐹)),

{𝑑𝐴(t𝐸 (𝗞𝐸 ,𝗞𝐸𝐹), 𝐴)}𝐴∈𝗞𝐸∪𝗔𝐸
𝑝𝐸𝐹 (t𝐸 (𝗞𝐸 ,𝗞𝐸𝐹), t𝐶𝐹 (𝗞𝐸𝐹))

⎧

⎪

⎨

⎪

⎩

𝛿(𝑑𝐴) ⊑ 𝐶𝐸 ,
𝜌(𝑑𝐴) ⊑ 𝜇(𝜏(𝐴)),
𝐶𝐸 ⊑ 𝛿(𝑑𝐴)

⎫

⎪

⎬

⎪

⎭𝐴∈𝗞𝐸∪𝗔𝐸
∃𝑝𝐸𝐹 ≡ 𝐶𝐸
∃𝑝−𝐸𝐹 ⊑ 𝐶𝐹

Cardinality constraints are handled similarly as for Pattern SR.
Optional attributes are handled similarly as for Pattern SE.
The alignment variant SEwa/DEwa, where the foreign key references a non-primary identifier, is defined in the straightforward way.

3.2. Schema-driven patterns

Next we comment on schema-driven patterns, shown in Tables 3 and 4. For each pattern, we provide an example and references
o the relevant related literature. We point out that the reference to the literature is only with respect to the pattern being considered.
ence, patterns that have been proposed or that can be identified in the related literature, but that do not find a correspondence
ith our patterns, are out of the scope of this section. These and other considerations will instead be discussed in Section 6.

chema Entity (SE). This fundamental pattern describes the correspondence between an entity with a primary identifier and
ttributes to a class and data properties in the ontology. The entity is expressed in the DB schema through a single table 𝑇𝐸 with
rimary key 𝗞 and other attributes 𝗔, as it is the norm in sound DB design practices. The mappings column explains how 𝑇𝐸 is
apped into a corresponding class 𝐶𝐸 . The primary key of 𝑇𝐸 is employed to construct the objects that are instances of 𝐶𝐸 , using
template t𝐸 specific for that entity. Each relevant attribute of 𝑇𝐸 is mapped to a data property of 𝐶𝐸 , with suitable domain and

ange axioms. A mandatory participation constraint is added to the each data property corresponding to a mandatory attribute.

xample: A client registry table containing social security numbers (SSNs) of clients, together with their name as an additional attribute,
s mapped to a Client class using the SSN to construct its objects. In addition, the SSN and name are mapped to two corresponding

ata properties.

8

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157
Table 4
Schema-driven patterns: Relationships with attributes, 𝑛-ary relationships, and hierarchies. For patterns yielding views, we show the views together with the DB
schema, separating them from the original tables using a thick horizontal bar. We use a similar notation for changes in the conceptual model.

Conceptual model DB schema Mappings Ontology

Schema Reified Relationship (SRR)

𝗞𝑅 ∶= 𝗞𝑅𝐸 ,𝗞𝑅𝐹 ,𝗞𝑅𝐺

𝑇𝐺(𝗞𝐺 ,𝗔𝐺)

𝑇𝑅(𝗞𝑅𝐸 ,𝗞𝑅𝐹 ,𝗞𝑅𝐺 ,𝗔𝑅)

𝑇𝐸 (𝗞𝐸 ,𝗔𝐸) 𝑇𝐹 (𝗞𝐹 ,𝗔𝐹)

𝑠∶ 𝑇𝑅
𝑡∶ 𝐶𝑅(t𝑅(𝗞𝑅)),

{𝑑𝐴(t𝑅(𝗞𝑅), 𝐴)}𝐴∈𝗔𝑅 ,
𝑝𝑅𝐸 (t𝑅(𝗞𝑅), t𝐶𝐸 (𝗞𝑅𝐸)),
𝑝𝑅𝐹 (t𝑅(𝗞𝑅), t𝐶𝐹 (𝗞𝑅𝐹)),
𝑝𝑅𝐺(t𝑅(𝗞𝑅), t𝐶𝐺 (𝗞𝑅𝐺))

∃𝑝𝑅𝐸 ≡ 𝐶𝑅
∃𝑝−𝑅𝐸 ⊑ 𝐶𝐸
∃𝑝𝑅𝐹 ≡ 𝐶𝑅
∃𝑝−𝑅𝐹 ⊑ 𝐶𝐹
∃𝑝𝑅𝐺 ≡ 𝐶𝑅
∃𝑝−𝑅𝐺 ⊑ 𝐶𝐺
⎧

⎪

⎨

⎪

⎩

𝛿(𝑑𝐴) ⊑ 𝐶𝑅 ,
𝜌(𝑑𝐴) ⊑ 𝜇(𝜏(𝐴)),
𝐶𝑅 ⊑ 𝛿(𝑑𝐴)

⎫

⎪

⎬

⎪

⎭𝐴∈𝗔𝑅

Pattern SRR applies whenever there are three or more participating roles, or when the relationship has attributes. Given the nature of RDF graphs, in
order to handle these cases we need reification, hence this pattern requires a change in the conceptual model (see ER-diagram below the line). After
reification, we apply the patterns discussed for binary relationships (cardinality constraints, weak entities, and optional attributes are handled as
discussed). Observe that, in the conversion to OWL2QL, the identification constraint on 𝑅 is lost (similarly to other identifiers).

Schema Hierarchy (SH)

𝑇𝐸 (𝗞𝐸 ,𝗔𝐸)

𝑇𝐹 (𝗞𝐹𝐸 ,𝗔𝐹)

𝑠∶ 𝑇𝐹
𝑡∶ 𝐶𝐹 (t𝐶𝐸 (𝗞𝐹𝐸)),

{𝑑𝐴(t𝐶𝐸 (𝗞𝐹𝐸), 𝐴)}𝐴∈𝗔𝐹

𝐶𝐹 ⊑ 𝐶𝐸
⎧

⎪

⎨

⎪

⎩

𝛿(𝑑𝐴) ⊑ 𝐶𝐹 ,
𝜌(𝑑𝐴) ⊑ 𝜇(𝜏(𝐴)),
𝐶𝐹 ⊑ 𝛿(𝑑𝐴)

⎫

⎪

⎬

⎪

⎭𝐴∈𝗔𝐹
Optional attributes are handled as in Pattern SE.

Schema Hierarchy with Identifier Alignment (SHa)

𝑇𝐸 (𝗞𝐸 ,𝗔𝐸)

𝑇𝐹 (𝗞𝐹 ,𝗞𝐹𝐸 ,𝗔𝐹)

𝗄𝖾𝗒𝑇𝐹 (𝗞𝐹𝐸)

𝑇𝐸 (𝗞𝐸 ,𝗔𝐸)

𝑉𝐹 (𝗞𝐹 ,𝗞𝐹𝐸 ,𝗔𝐹) = 𝑇𝐹

𝗄𝖾𝗒𝑉𝐹 (𝗞𝐹)

𝑠∶ 𝑉𝐹
𝑡∶ 𝐶𝐹 (t𝐶𝐸 (𝗞𝐹𝐸)),

{𝑑𝐴(t𝐶𝐸 (𝗞𝐹𝐸), 𝐴)}𝐴∈𝗞𝐹 ∪𝗔𝐹

𝐶𝐹 ⊑ 𝐶𝐸
⎧

⎪

⎨

⎪

⎩

𝛿(𝑑𝐴) ⊑ 𝐶𝐹 ,
𝜌(𝑑𝐴) ⊑ 𝜇(𝜏(𝐴)),
𝐶𝐹 ⊑ 𝛿(𝑑𝐴)

⎫

⎪

⎬

⎪

⎭𝐴∈𝗞𝐹 ∪𝗔𝐹

In this pattern, the ‘‘alignment’’ is meant to align the primary identifier used in the child entity to the primary identifier used in the parent entity. The
other two possibilities for the application of the pattern are:
• the foreign key in the child entity is the primary key of that entity, and references a non-primary key of the parent entity;
• the foreign key in the child entity is a non-primary key of that entity, and references a non-primary key of the parent entity.
We here depict the most common scenario, where the foreign key points to the primary key of the parent entity.
Observe that this pattern requires a change in the conceptual model (essentially keeping track the attributes used for identifying the objects of the subclass).
Optional attributes are handled as in Pattern SH.

Conceptual model DB schema

client(ssn:int, name:string)

Mappings Ontology
:Client a owl:Class .
:client#ssn a owl:DatatypeProperty . :client#name a owl:DatatypeProperty .

s: SELECT * FROM client :client#ssn rdfs:domain :Client . :client#ssn rdfs:range xsd:integer .
t: :client/{ssn} a :Client . :client#name rdfs:domain :Client . :client#name rdfs:range xsd:string .

:client/{ssn} :client#ssn {ssn} . :Client rdfs:subClassOf _:r1 . _:r1 a owl:Restriction .
:client/{ssn} :client#name {name} . _:r1 owl:onProperty :client#ssn . _:r1 owl:someValuesFrom rdfs:Literal .

:Client rdfs:subClassOf _:r2 . _:r2 a owl:Restriction .
_:r2 owl:onProperty :client#name . _:r2 owl:someValuesFrom rdfs:Literal .

References: This is the most basic pattern, and variants or portions of it are widespread in other approaches.

∙ W3C-DM states that each table with a primary key must be transformed into a class similarly to Pattern SE. This approach
does not fix the conceptual model, nor does it consider ontology axioms.

∙ The extension of W3C-DM with OWL2 discussed in [20] includes domain and range axioms for properties, but not mandatory
participation of data properties. It includes, however, OWL2 key axioms (owl:hasKey), which we ignore here because they
fall outside of the OWL2QL profile. As for W3C-DM, also this approach does not fix the conceptual model underlying the

DB schema.

9

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

S
O
t
𝗞
p
s
𝐶

E
T
t

∙ Pattern SE resembles the combination of the cases non-binary relation and data attribute discussed in BootOX [18], however
there are also substantial differences: the catalog of BootOX does not fix the underlying conceptual representation, and as
a result ambiguities can arise. For instance, SE adds a mandatory participation constraint for a data property only if such
property is mapped to a mandatory attribute, whereas in BootOX the choice of having or not each constraint is left to the
user.

∙ The algorithm of MIRROR [45] applies a variant of this pattern where the datatype information is encoded into the R2RML
mappings, and not added as ontology axioms. Mandatory participation for properties relative to not nullable attributes cannot
be encoded through this approach.

∙ Among the mapping patterns from [30], our SE resembles the union of Direct Concept and Direct Concept Attribute. Ontology
axioms are not included.

chema Relationship (SR). This pattern describes the correspondence between a binary relationship without attributes to an
WL2QL object property, for the case where such relationship is represented in the DB as a separate (usually, ‘‘many-to-many’’)

able. This pattern considers three tables 𝑇𝑅, 𝑇𝐸 , and 𝑇𝐹 , in which the set of columns in 𝑇𝑅 is partitioned into two parts 𝗞𝑅𝐸 and
𝑅𝐹 that are foreign keys to 𝑇𝐸 and 𝑇𝐹 , respectively. The identifier of 𝑇𝑅 depends on the role cardinalities in the E-R model. The
attern captures how 𝑇𝑅 is mapped to an object property 𝑝𝑅, using the two partitions 𝗞𝑅𝐸 and 𝗞𝑅𝐹 to construct respectively the
ubject and the object of the triples in 𝑝𝑅. The templates t𝐶𝐸 and t𝐶𝐹 must be those used for building instances of classes 𝐶𝐸 and
𝐹 , respectively.

xample: An additional table in the client registry stores the addresses of each client, and has a foreign key to a table with locations.
he former table is mapped to an address object property, for which the ontology asserts that the domain is the class Person and
he range an additional class Location, which corresponds to the latter table.

Conceptual model (datatypes omitted) DB schema (datatypes omitted)

client(ssn, name) location(city, street, lat, long)

address(client, ccity, cstreet)

Mappings Ontology
s: SELECT * FROM address :address a owl:ObjectProperty .
t: :client/{ssn} :address :location/{ccity}/{cstreet} . :address rdfs:domain :Client . :address rdfs:range :Location .

References: The pattern scenario foresees a separate table for the relationship. When this is the case, other approaches often prefer
to apply a relationship reification instead, where the relationship is reified into a class.

∙ It is not present in W3C-DM, where the scenario captured by Pattern SR is instead handled through relationship reification
(see Pattern SRR).

∙ Pattern SR slightly corresponds to the handling of binary relations in [20], however that approach is substantially more
limited than Pattern SR:

– it only applies to tables with exactly two attributes;
– the primary key must comprise both attributes;
– incoming foreign keys are not allowed.

On the other hand, the approach in [20] for binary relations applies also in those cases where the foreign keys do not refer
the primary keys of the tables participating in the relationship. In our methodology, we decided to render this variant explicit
through the dedicated Pattern SRa. Finally, their definition of foreign-key ignores the standard assumption that the referred
attributes must form a key.

∙ Case 2 in BootOX [18] is comparable to Pattern SR, however there are some ambiguities arising from the lack of a fixed
conceptual representation. For instance, the treatment of BootOX is incomplete w.r.t. mandatory participation: constraints
are handled correctly for role 𝑅𝐸 , but they are ignored for role 𝑅𝐹 . Other details of BootOX are omitted, and so it is unclear
how they are handled: for instance, it is stated that mappings are generated according to W3C-DM, however W3C-DM does
not handle the case of binary relationships (as discussed above), which is an apparent contradiction. BootOX does not impose
any constraint on the attributes referred by the foreign keys, which could in principle not form a key.

∙ In the algorithm of MIRROR [45], ontology axioms over object properties are never included, since that algorithm does not
consider OWL2 and only works at the level of R2RML. Modulo this major difference, our Pattern SR is partially covered by
different cases there, which differentiate from each other depending on the cardinality constraints in the logical schema:

– Cases 5b and 8 resemble Pattern SR with a (1, 1) or a (1, 𝑁) cardinality on one of the two roles, and (0, 𝑁) on the
other. A notable difference, though, is that in Pattern SR the identification constraint entailed by the (1, 1) cardinality
is correctly translated into a key constraint in the logical schema, whereas it is ignored by MIRROR.

– Case 7 resembles Pattern SR with mandatory participation on both roles. In our case, however, we can exploit OWL2QL

to partially encode the mandatory participation, using suitable class equivalence axioms.

10

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

𝑝
n

w

E
c

S
D
i
r
d

E
b

– The case where both roles of a relationship participate with cardinality (0, 𝑁) is pruned on purpose from their catalogue,
with the argumentation that ‘‘primary keys must be defined not null and unique’’. Clearly, the fact that primary keys
must be not null and unique is completely independent from the fact of having (0, 𝑁) relationships in a conceptual
model. Hence, we are not able to actually reconstruct what the authors’ intention there was.

∙ Pattern SR strictly includes Pattern 12: Many to Many Table in [29]. In particular, Pattern SR covers all possible cardinality
constraints, whereas Pattern 12 should cover only the many-to-many case (according to its name). However, such pattern is
not formally specified, and the choice on where to apply it is totally left open to the domain expert. One could in fact apply it
even to tables representing binary relationships with arbitrary cardinality constraints, simply by ignoring such cardinalities.
Pattern 12 does not discuss ontology axioms, and it does not rule out the case where the relationship has attributes (which
cannot be correctly handled through Pattern SR, nor through Pattern 12, because it requires reification, as we will describe
for Pattern SRR).

∙ Pattern SR strictly includes pattern Relationship: Many to Many in [30], since such pattern is just a renaming of Pattern 12:
Many to Many Table from [29]. This pattern does not rule out the case where the relationship has attributes, which in the
scope of that work is perfectly reasonable since the KGs they consider allow for specifying attributes on properties. This is
common, for instance, in property graphs [1]. Recently, an extension of RDF called RDF-star12 is being proposed that also
incorporates this feature.

Schema Relationship with Identifier Alignment (SRa). This pattern is similar to Pattern SR, but it comes with a modifier a
indicating that the pattern can be applied after the identifiers involved in the relationship have been aligned. The alignment is
necessary because the foreign key in 𝑇𝑅 does not refer to the primary key 𝗞𝐹 of 𝑇𝐹 , but to an alternative key 𝗨𝐹 . Since the instances
of the class 𝐶𝐹 corresponding to 𝑇𝐹 are constructed using the primary key 𝗞𝐹 of 𝑇𝐹 (cf. Pattern SE), also the pairs that populate
𝑅 should refer in their object position to that primary key, which can only be retrieved via a join between 𝑇𝑅 and 𝑇𝐹 on the
on-primary key 𝗨𝐹 .

Note that alignment variants can be defined in a straightforward way for other patterns involving relationships. For conciseness,
e omit these variants from our catalog.

xample: The primary key of the table with locations is not given by the city and street, which are used in the table that relates
lients to their addresses, but is given by the latitude and longitude of locations.

Conceptual model (datatypes omitted) DB schema (datatypes omitted)

client(ssn, name) location(city, street, lat, long)

address(client, ccity, cstreet)

𝗄𝖾𝗒location(city,street)

Mappings Ontology
s: SELECT A.client, L.lat, L.long FROM address A, location L :address a owl:ObjectProperty .

WHERE L.city=A.ccity AND L.street=A.cstreet :address rdfs:domain :Client . :address rdfs:range :Location .
t: :client/{ssn} :address :location/{lat}/{long} .

References: This pattern is original, as either it has never been considered by other approaches or it is mixed with the general strategy
for handling binary relationships.

∙ It is not present in W3C-DM, where the scenario captured by Pattern SRa is instead handled through relationship reification.
∙ Pattern SRa covers the handling of binary relations in [20] and in BootOX [18] for the case when the foreign keys refer to

non-primary keys of the participating entities. The issues of these approaches highlighted in comparison to Pattern SR apply
for Pattern SRa as well.

∙ Pattern SRa does not correspond to any of the cases treated in MIRROR [45] or to any of the patterns presented in [30].

chema Relationship with Merging (SRm). This pattern handles the case where the binary relationship is not rendered in the
B as a separate table, but rather merged into the table representing one of the participating entities, which can be done without

ntroducing redundancy whenever such participation is with cardinality (_, 1). It considers a table 𝑇𝐸 in which the foreign key 𝗞𝐸𝐹
eferring a table 𝑇𝐹 is disjoint from its primary key 𝗞𝐸 . The table 𝑇𝐸 is mapped to an object property, whose subject and object are
erived respectively from 𝗞𝐸 and 𝗞𝐸𝐹 .

xample: The relationship between a client and its unique billing address is merged into the client table. In the ontology, a
illingAddress object property relates the Client class to the Location class, and is populated via a mapping from the client table.

12 https://www.w3.org/2021/12/rdf-star.html.
11

https://www.w3.org/2021/12/rdf-star.html

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157
Conceptual model (datatypes omitted) DB schema (datatypes omitted)

client(ssn, name, ccity, cstreet)

location(city, street, lat, long)

Mappings Ontology
:billingAddress a owl:ObjectProperty .

s: SELECT ssn, ccity, cstreet FROM client :billingAddress rdfs:domain :Client . :billingAddress rdfs:range :Location .
t: :client/{ssn} :billingAddress :location/{ccity}/{cstreet} . :Client rdfs:subClassOf _:r1 . _:r1 a owl:Restriction .

_:r1 owl:onProperty :billingAddress . _:r1 owl:someValuesFrom owl:Thing .

References: This pattern, as its alignment variant SRma, slightly overlaps with the common strategy of transforming each foreign
key into an object property.

∙ It is partially covered by W3C-DM, where each foreign key is translated to an object property. However, there are substantial
differences, going beyond the fact that OWL2QL constraints are not considered in W3C-DM. For instance, in case of
cardinality (1, 1), where the foreign-key holds in both directions, W3C-DM prescribes the creation of two different object
properties, whereas Pattern SRm would create only one property (the one focused on the relationship), encoding the
additional foreign-key as an additional OWL2QL inclusion.

∙ Since [20] adopts an approach close to W3C-DM, similar considerations apply.
∙ It roughly corresponds to Case 4 in BootOX [18]. However, since the catalog of BootOX does not fix the underlying conceptual

representation, ambiguities can arise: for instance, Pattern SRm adds a mandatory participation constraint only if such
constraint derives from a mandatory participation in the ER-diagram, whereas constraints in BootOX are explicitly handled
by the user (without an indication on how this should be done). Similarly to what we observed when discussing Pattern SR,
BootOX Case 4 seems to be incomplete, for example, cardinality constraints on the role for the entity 𝐹 are ignored.

∙ In the algorithm of MIRROR [45], a substantial portion of Pattern SRm corresponds to the combination of Cases 2b, 4, and 5a.
The only difference is that Pattern SRm also covers the case when 𝐹 participates with cardinality (1, 1) to 𝑅, and that MIRROR
does not produce ontology axioms by design.

∙ In [30], the only pattern resembling Pattern SRm is Direct Relationship, which is the same approach used in W3C-DM. Hence,
all considerations discussed for W3C-DM apply to Direct Relationship as well.

Schema Weak-Entity (SEw). This pattern considers a weak entity 𝐸 identified through a relationship 𝑅. The table 𝑇𝐸 , corresponding
to 𝐸, is mapped to a class 𝐶𝐸 , whose instances are built through the primary identifier of 𝑇𝐸 , and whose data properties correspond
to the attributes of 𝐸. The relationship 𝑅 is captured through an object property 𝑝𝐸𝐹 , as in Pattern SRm.

Example: A room in a university is identified by a code and the building it belongs to. Since a room must belong to exactly one
building, the relationship belongsTo has been merged into entity Room, and Room is a weak entity identified through belongsTo.
In the ontology, a class Room is created, populated via a mapping that builds Room individuals by combining the code of the room
together with the identifier of the building. Room individuals are put in correspondence to their respective Building individuals
through an appropriate belongsTo object property.

Conceptual model (datatypes omitted) DB schema (datatypes omitted)

building(id, height)

room(code, building, size)

Mappings Ontology
:Room a owl:Class . :room#code a owl:DatatypeProperty .
:room#size a owl:DatatypeProperty . :belongsTo a owl:ObjectProperty .
:room#code rdfs:domain :Client . :room#size rdfs:domain :Client .

s: SELECT * FROM room :belongsTo rdfs:domain :Room . :belongsTo rdfs:range :Client .
t: :room/{code}/{building} a :Room . :Room rdfs:subClassOf _:r1 . _:r1 a owl:Restriction .

:room/{code}/{building} :room#code {code} . _:r1 owl:onProperty :room#code . _:r1 owl:someValuesFrom rdfs:Literal .
:room/{code}/{building} :room#size {size} . :Client rdfs:subClassOf _:r2 . _:r2 a owl:Restriction .
:room/{code}/{building} :belongsTo :Building/{building} . _:r2 owl:onProperty :room#size . _:r2 owl:someValuesFrom rdfs:Literal .

:Client rdfs:subClassOf _:r3 . _:r3 a owl:Restriction .
_:r3 owl:onProperty :belongsTo . _:r3 owl:someValuesFrom owl:Thing .

References: This pattern, and its alignment variant SEwa, slightly overlaps with the common strategy of transforming each foreign
key into an object property.

∙ It is partially covered by W3C-DM, where each foreign key is translated to an object property, and object identifiers are
always built from primary keys. However, the differences already mentioned for Patterns SE and SRm apply to this pattern
as well.

∙ Since [20] adopts an approach close to W3C-DM, similar considerations apply.
∙ From a DB schema as the one in Pattern SEw, the combination of Rules 1, 2, 3, 4 and 7 from BootOX [18] would generate

mappings and ontology conforming to Pattern SEw.
12

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157
∙ Pattern SEw is partially captured by Case 6b of MIRROR [45]. MIRROR only captures the case of cardinality (0, 𝑁) for role
𝑅𝐹 , whereas Pattern SEw captures all possible cases. Another difference is that, in MIRROR, no alignment variant SEwa is
discussed. Finally, MIRROR does not produce ontology axioms by design.

∙ To obtain mapping assertions of Pattern SEw from [30], one can apply the Direct patterns described therein, which correspond
to W3C-DM. Such work does not consider ontology axioms.

Schema Reified Relationship (SRR). This pattern deals with 𝑛-ary relationships and/or relationships with attributes. For both
cases, it is necessary to first reify the relationship into a class. This is because RDF can only encode unary predicates (through
classes and assertions on them) and binary predicates (through object properties and assertions on them), and it does not allow
for attributes over properties (recall that this is instead possible in property graphs [1]). The pattern considers a table 𝑇𝑅 whose
primary key is partitioned in at least three parts 𝗞𝑅𝐸 , 𝗞𝑅𝐹 , and 𝗞𝑅𝐺, that are foreign keys to three additional tables; or when the
primary key is partitioned in at least two such parts, but there are additional attributes in 𝑇𝑅. Such a table naturally corresponds
to an 𝑛-ary relationship 𝑅 with 𝑛 > 2 (or with attributes), and to represent it at the ontology level we require a class 𝐶𝑅, which
reifies 𝑅, whose instances are built from the primary key of 𝑇𝑅. The mapping accounts for the fact that the components of the 𝑛-ary
relationship have to be represented by suitable object properties, one for each such component, and that the tuples that instantiate
these object properties can all be derived from 𝑇𝑅 alone.

Example: A table containing information about signed contracts, which involve a player, a team, and the contracts themselves. This
information is represented by a relationship that is inherently ternary. The ontology should contain a class corresponding to the
reification of such relationship, e.g., a class Signs.

Conceptual model (datatypes omitted) DB schema (datatypes omitted)

team(id)

signs(player, contract, team)

player(ssn) contract(regN)

Mappings Ontology
:Signs a owl:Class . :hasContract a owl:ObjectProperty .
:hasPlayer a owl:ObjectProperty . :hasTeam a owl:ObjectProperty .
:hasContract rdfs:domain :Signs . :hasContract rdfs:range :Contract .

s: SELECT * FROM signs :hasPlayer rdfs:domain :Signs . :hasPlayer rdfs:range :Player .
t: :signs/{player}/{contract}/{team} a :Signs . :hasTeam rdfs:domain :Signs . :hasTeam rdfs:range :Team .

:signs/{player}/{contract}/{team} :Signs rdfs:subClassOf _:r1 . _:r1 a owl:Restriction .
:hasContract :Contract/{contract} . _:r1 owl:onProperty :hasContract . _:r1 owl:someValuesFrom owl:Thing .

:signs/{player}/{contract}/{team} :Signs rdfs:subClassOf _:r2 . _:r2 a owl:Restriction .
:hasPlayer :Player/{player} . _:r2 owl:onProperty :hasPlayer . _:r2 owl:someValuesFrom owl:Thing .

:signs/{player}/{contract}/{team} :Signs rdfs:subClassOf _:r3 . _:r3 a owl:Restriction .
:hasTeam :Team/{team} . _:r3 owl:onProperty :hasTeam . _:r3 owl:someValuesFrom owl:Thing .

:Contract rdfs:subClassOf _:r4 . _:r4 a owl:Restriction .
_:r4 owl:onProperty _:r5 . _:r5 owl:inverseOf :hasContract .
_:r4 owl:someValuesFrom owl:Thing .

References: This pattern, which corresponds to reification in ontological and conceptual modeling [22,23,46], is commonly used to
handle the case of ‘‘many-to-many’’ tables. A main difference with respect to other approaches is that we do not create data properties
for the attributes identifying the reified relationship (i.e., entity 𝑅), because such attributes are already being represented as data
properties of the classes encoding the entities participating to the relationship.

∙ In W3C-DM, every table encoding a relationship is handled according to a strategy similar to Pattern SRR, devoid of ontology
axioms.

∙ Also [20] adopts an approach very similar to W3C-DM, so the same considerations discussed for W3C-DM apply as well, apart
from the fact that domain and range axioms (but not mandatory participations) are added to the ontology.

∙ Case 2 of BootOX [18] is used to handle both the case of binary relationships and general relationships needing reification.
For these reasons, the same considerations already discussed for Pattern SR apply to Pattern SRR as well.

∙ None of the cases in MIRROR [45] handles the situation of a table encoding an 𝑛-ary relationship or a relationship with
attributes.

∙ The notion of reification is also present in the Direct Patterns of [30], given that such patterns encode W3C-DM. A notable
difference, though, is that the focus there is on property graphs, which as mentioned allow one to avoid reification for the
case of binary relationship with attributes.

Schema Hierarchy (SH). This pattern captures the most common case of ISA (i.e., the parent–child E-R relation) between entities.
It considers a table 𝑇𝐹 whose primary key is a foreign key referring the primary key of a table 𝑇𝐸 . Then, 𝑇𝐹 is mapped to a class
𝐶 in the ontology that is a sub-class of the class 𝐶 to which 𝑇 is mapped. Hence, 𝐶 ‘‘inherits’’ the template t of 𝐶 , so that
𝐹 𝐸 𝐸 𝐹 𝐸 𝐸

13

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

o

the instances of the two classes are ‘‘compatible’’. Note that here we discuss the case where both the child and the parent tables are
maintained in the database schema. Other strategies for handling ISAs between entities might be considered as well [24].

Example: An entity Student in an ISA relation with an entity Person.

Conceptual model (datatypes omitted) DB schema (datatypes omitted)

person(ssn, age)

student(sssn, credits)

Mappings Ontology
s:
t:

SELECT * FROM student
:person/{sssn} a :Student .
:person/{sssn}

:student#credits {credits} .

:Student a owl:Class .
:student#credits a owl:DatatypeProperty .
:Student rdfs:subClassOf _:r1 .
_:r1 owl:onProperty :student#credits .

:Student rdfs:subClassOf :Person .
:student#credits rdfs:domain :Student .
_:r1 a owl:Restriction .
_:r1 owl:someValuesFrom rdfs:Literal .

References: This is an advanced pattern, and it is present only in few approaches.

∙ It is not present in W3C-DM, where each foreign-key is translated into an object property instead.
∙ It is also not present in the extension of W3C-DM discussed in [20].
∙ Class subsumption is considered in Case 5 of BootOX [18]. However, it is unclear how the mapping assertions are actually

built. In the text, it is stated that mappings are generated according to W3C-DM, however such a strategy would not produce
the desired results, since the templates used for generating objects of the subclass differ from those used for generating objects
of the superclass.

∙ Case 2b of MIRROR [45] should handle ISAs between two entities, however it differs from Pattern SH and BootOX [18] since,
in the DB schema, the foreign key is not required to refer to a key. This seems to be a glitch.

∙ Class hierarchies are not discussed in any of the mapping patterns from [30].

Schema Hierarchy with Identifier Alignment (SHa). Such pattern is like Pattern SH, apart from the foreign-key constraint that
can come in three different variants. In the depicted one, the foreign key in 𝑇𝐹 is over a non-primary key 𝗞𝐹𝐸 . The objects for 𝐶𝐹
have to be built out of 𝗞𝐹𝐸 , rather than out of its primary key. For this purpose, the pattern creates a view 𝑉𝐹 in which 𝗞𝐹𝐸 is the
primary key, and the foreign key relations are preserved. Such view might enable further applications of patterns (see Example 1).

Example: An ISA relation between entities Student and Person. Students are identified by their matriculation number, whereas
persons are identified by their SSN.

Conceptual model (datatypes omitted) DB schema (datatypes omitted)

person(ssn, age)

𝗄𝖾𝗒student(sssn)

student(sssn, matN, credits)

Mappings Ontology
s:
t:

SELECT * FROM student
:person/{sssn} a :Student .
:person/{sssn}

:student#matN {matN} .
:person/{sssn}

:student#credits {credits} .

:Student a owl:Class .
:student#matN a owl:DatatypeProperty .
:student#credits rdfs:domain :Student .
:Student rdfs:subClassOf _:r1 .
_:r1 owl:onProperty :student#credits .
:Student rdfs:subClassOf _:r2 .
_:r2 owl:onProperty :student#matN .

:Student rdfs:subClassOf :Person .
:student#credits a owl:DatatypeProperty .
:student#matN rdfs:domain :Student .
_:r1 a owl:Restriction .
_:r1 owl:someValuesFrom rdfs:Literal .
_:r2 a owl:Restriction .
_:r2 owl:someValuesFrom rdfs:Literal .

References: This is an advanced pattern, and it is present only in few approaches.

∙ It is not present in W3C-DM, where each foreign-key is translated into an object property instead.
∙ It is not present in [20].
∙ Case 5 of BootOX [18] also deals also with the situation in which the foreign-key points to a non-primary identifier of

the parent entity. However, it does not deal with the two other variants admitted by Pattern SHa. Regarding the mapping
assertions, the same considerations discussed for Pattern SH apply here as well.

∙ Regarding MIRROR [45], the same considerations we had for Pattern SH apply.
∙ Class hierarchies are not discussed in any of the mapping patterns from [30].

We now provide an example showing one of the possible usages of schema-driven mapping patterns, specifically, to derive an
ntology and mappings starting from a conceptualization and a DB schema.
14

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

E
p

t

m

r

Fig. 2. The application of patterns can induce a refactoring of the DB schema and conceptual model.

xample 1. Consider the situation depicted in the top row of Fig. 2. For conciseness, we omit datatypes. We use schema-driven
atterns to derive an ontology and mappings.

Under such a configuration of conceptual model/DB schema, we can only apply Pattern SE on Company or Person. As IRI
emplate functions, we adopt here the W3C-DM convention, assuming the base IRI http://www.example.com/.13

We start with the entity Company. The application of Pattern SE yields the following mapping assertion and ontology axioms:

Mappings Ontology
(Datatypes and mandatory participations omitted)
s:
t:

SELECT * FROM Company
:Company/cid={cid} a :Company ;

:Company#cid {cid} ;
:Company#revenue {revenue} .

:Company a owl:Class .
:Company#cid a owl:DatatypeProperty .
:Company#revenue a

owl:DatatypeProperty .

:Company#cid rdfs:domain
:Company .

:Company#revenue rdfs:domain
:Company .

We proceed similarly for entity Person:

Mappings Ontology
(Datatypes and mandatory participations omitted)
s:
t:

SELECT * FROM Person
:Person/ssn={ssn} a :Person ;

:Person#ssn {ssn} ;
:Person#age {age} .

:Person a owl:Class .
:Person#ssn a owl:DatatypeProperty .
:Person#age a owl:DatatypeProperty .

:Person#ssn rdfs:domain :Person .
:Person#age rdfs:domain :Person .

Since the IRI template for the superclass Person has been established, Pattern SHa becomes now applicable over entity Employee:

Mappings Ontology
(Datatypes and mandatory participations omitted)
s:
t:

SELECT * FROM Employee
:Person/ssn={ssn} a :Employee ;

:Employee#eid {eid} .

:Employee a owl:Class .
:Employee#eid a owl:DatatypeProperty .
:Employee#eid rdfs:domain :Employee .

As by-product of the application of such pattern, we also obtain the updated conceptual model and DB schema depicted in the
iddle row of Fig. 2. Such by-product enables the application of Pattern SRa over relationship worksFor, leading to the following

mapping assertion and ontology axioms:

Mappings Ontology
(Datatypes and mandatory participations omitted)
s:

t:

SELECT ssn, wcid
FROM Employee JOIN worksFor ON weid=eid
:Person/ssn={ssn} :worksFor :Company/cid={wcid} .

:worksFor a owl:ObjectProperty .
:worksFor rdfs:domain :Employee .
:worksFor rdfs:range :Company .

No further pattern is applicable, and the obtained ontology is indeed a DB ontology because it represents all the entities and
elationships in the conceptual model.

13 Hence, the prefix ‘‘:’’ is associated to the IRI http://www.example.com/.
15

http://www.example.com/
http://www.example.com/

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

l
c

Table 5
Data-driven patterns.

Conceptual model DB schema Mappings Ontology

Data Entity with Merged 1-N Relationship and Entity (DR1Nm)
𝑇𝐸 (𝗞𝐸 ,𝗔𝐸 ,𝗞𝐹 ,𝗔𝐹)

fd(𝑇𝐸∶ 𝗞𝐹 → 𝗔𝐹)

𝑉𝐸 (𝗞𝐸 ,𝗞𝐸𝐹 ,𝗔𝐸) = 𝜋𝗞𝐸 ,𝗞𝐹 ,𝗔𝐸 (𝑇𝐸)

𝑉𝐹 (𝗞𝐹 ,𝗔𝐹) = 𝜋𝗞𝐹 ,𝗔𝐹 (𝑇𝐸)

𝑠∶ 𝑉𝐸
𝑡∶ 𝑝𝑅(t𝐸 (𝗞𝐸), t𝐹 (𝗞𝐸𝐹))

∃𝑝𝑅 ⊑ 𝐶𝐸
∃𝑝−𝑅 ⊑ 𝐶𝐹

Mappings and ontology axioms for classes 𝐶𝐸 and 𝐶𝐹 , not shown here, conform to Pattern SE/DE on the newly introduced views 𝑉𝐸 and 𝑉𝐹 .
All considerations on cardinality constraints and optional attributes described for Pattern SRm extend to this pattern in the natural way.

Data Entity with Optional Participation in a Relationship (DH01)
𝑇𝐸 (𝗞𝐸 ,𝗔𝐸) 𝑇𝐹 (𝗞𝐹 ,𝗔𝐹)

𝑇𝑅(𝗞𝑅𝐸 ,𝗞𝑅𝐹)

𝑇𝐸 (𝗞𝐸 ,𝗔𝐸) 𝑇𝐹 (𝗞𝐹 ,𝗔𝐹)

𝑇𝑅(𝗞𝑅𝐸 ,𝗞𝑅𝐹)

𝑉𝐸𝑅 (𝗞𝐸) = 𝜋𝗞𝑅𝐸 (𝑇𝑅)

𝑠1∶ 𝑉𝐸𝑅
𝑡1∶ 𝐶𝐸𝑅 (t𝐶𝐸 (𝗞𝐸))
𝑠2∶ 𝑇𝑅
𝑡2∶ 𝑝𝑅(t𝐶𝐸 (𝗞𝑅𝐸), t𝐶𝐹 (𝗞𝑅𝐹))

𝐶𝐸𝑅 ⊑ 𝐶𝐸
∃𝑝𝑅 ≡ 𝐶𝐸𝑅
∃𝑝−𝑅 ⊑ 𝐶𝐹

This pattern extends in the natural way to the variants with identifier alignment (see Pattern SRa) and reified relationship (see Pattern SRR).
All considerations on cardinality constraints and optional attributes described for Patterns SE and SRm extend to this pattern in the
natural way.

Clustering Entity to Class (CE2C)

partitions to classes

𝑇𝐸 (𝗞,𝗔)
𝗕 ⊆ 𝗞 ∪ 𝗔
part(𝗕, 𝐸)

{

𝑠 ∶ 𝜎p(𝑇𝐸)
𝑡 ∶ 𝐶p

𝐸 (t𝐶𝐸 (𝗞))

}

p∈part(𝗕,𝐸)
{𝐶p

𝐸 ⊑ 𝐶𝐸}p∈part(𝗕,𝐸)

Clustering Entity to Object (CE2O)

partitions to objects

𝑇𝐸 (𝗞,𝗔)
𝗕 ⊆ 𝗞 ∪ 𝗔
part(𝗕, 𝐸)

{

𝑠 ∶ 𝜎p(𝑇𝐸)
𝑡 ∶ 𝑝𝗕(t𝐶𝐸 (𝗞), 𝛾p)

}

p∈part(𝗕,𝐸)
∃𝑝𝗕 ⊑ 𝐶𝐸

Clustering Entity to Data Value (CE2D)

partitions to values

𝑇𝐸 (𝗞,𝗔)
𝗕 ⊆ 𝗞 ∪ 𝗔
part(𝗕, 𝐸)

{

𝑠 ∶ 𝜎p(𝑇𝐸)
𝑡 ∶ 𝑑𝗕(t𝐶𝐸 (𝗞), 𝜉p)

}

p∈part(𝗕,𝐸)
𝛿(𝑑𝗕) ⊑ 𝐶𝐸

3.3. Data driven mapping patterns

Data-driven patterns are mapping patterns that depends both on the schema and on the actual data in the DB. They are not
imited to the variants corresponding to the schema-driven patterns, but they also comprehend specific patterns that do not have a
orresponding schema version, e.g., due to denormalized tables. Such patterns, for which we provide a detailed description below,

are shown in Table 5. Similarly as we did for schema-driven patterns, we provide an example and references to related literature
for each data-driven pattern.

Data Entity with Merged 1-N Relationship and Entity (DR1Nm). This pattern describes the situation where both the relationship
and the participating entity have been merged into a table. It considers a table 𝑇𝐸 that has, besides its primary key 𝗞𝐸 , also attributes
𝗞𝐹 which functionally determine attributes 𝗔𝐹 . Observe that the latter condition is not possible if the DB schema is in 3rd normal
form14 [26]. When this pattern is applied, the key 𝗞𝐹 and the attributes 𝗔𝐹 that go along with it, can be projected out from 𝑇𝐹 ,

14 A straightforward variant of this pattern, violating the 2nd normal form, could be added to our list.
16

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

D
r
c

C

t

E
t
a

resulting in a view 𝑉𝐹 to which further patterns can be applied, for instance Pattern SE. An additional view 𝑉𝐸 is also created,
representing the entity 𝐸.

Example: A table restaurant containing information about restaurants, their unique supplier (identified by a code), and the address
of the supplier. The supplier identifier, which is not a key for restaurant, uniquely determines the address of the supplier. Table
restaurant will be vertically partitioned into two views, restaurant and suppliers, that will later be linked to their respective
ontology classes Restaurant and Supplier through the applications of Pattern SE on the fresh views. An object property suppliedBy
is created connecting restaurants to their suppliers.

Conceptual model (datatypes omitted) DB schema (datatypes omitted)

restaurant(id, name, supC, supA)

fd(restaurant∶ supC → code)

Mappings Ontology
s:
t:

V-restaurant ∶=

SELECT id, supC FROM V-restaurant
:restaurant/{id} :suppliedBy :supplier/{supC} .

SELECT id, name, supC FROM restaurant

:suppliedBy a owl:ObjectProperty .
:Restaurant rdfs:subClassOf _:r1 .
_:r1 a owl:Restriction .
_:r1 owl:onProperty :suppliedBy .
_:r1 owl:someValuesFrom rdfs:Literal .

:suppliedBy rdfs:domain
:Restaurant .

:suppliedBy rdfs:range
:Supplier .

References: Slight variants for this pattern can be found in the literature:

∙ BootOX [18] reports a mappings generation strategy for situations similar to the one of Pattern DR1Nm. However, details of
how this is actually carried out are not provided.

∙ Pattern Relationship: One to Many with Duplicates from [30] handles the same situation as Pattern DR1Nm, proposing a similar
solution. Such work also proposes an alternative solution in Pattern Relationship: One to Many without Duplicates, where the
primary identifier of table 𝑇𝐸 is used to create both IRIs for 𝐶𝐸 and 𝐶𝐹 .

ata Entity with Optional Participation in a Relationship (DH01). This pattern describes the situation where a non-mandatory
elationship is transformed into a mandatory one through the introduction of a subconcept on one of its participating roles. It is
haracterized by a table 𝑇𝐸 that represents the merge of a child entity 𝐸𝑅 into a father entity 𝐸, and 𝐸𝑅 has a mandatory participation

in a relationship 𝑅. The join between the tables 𝑇𝑅 and 𝑇𝐸 identifies the objects in 𝐸 that are instances of 𝐸𝑅, and is used in a
mapping to create instances of the concept 𝐶𝑅𝐸 , as well as the object property 𝑅 connecting 𝐸𝑅 to 𝐹 . This pattern produces a view
𝑉𝐸𝑅 , to which further patterns can be applied.

Example: A table student and a table attends relating students to undergraduate courses. Each student participating in such
relationship is an undergraduate student.

Conceptual model (datatypes omitted) DB schema (datatypes omitted)

student(matN, age) ucourse(code, name)

attends(smatN, ccode)

Mappings Ontology
s1: SELECT smatN FROM v-UStudent :UStudent a owl:Class . :attends a owl:ObjectProperty .
t1: :student/{smatN} a :UStudent . :attends rdfs:domain :UStudent . :attends rdfs:range :UCourse .
s2: SELECT smatN, ccode FROM attends :UStudent rdfs:subClassOf _:r1 . _:r1 a owl:Restriction .
t2: :student/{smatN} :attends :course/{ccode} . _:r1 owl:onProperty :attends . _:r1 owl:someValuesFrom owl:Thing .
v-UStudent ∶= SELECT smatN FROM attends

References: To the best of our knowledge, only BootOX [18] reports a mapping generation strategy handling a scenario that resembles
the one of Pattern DH01. However, details of how this is actually carried out are not provided.

lustering Entity to Concept/Data Property/Object Property (CE2C/CE2D/CE2O). Such patterns are characterized by an entity
𝐸 and a derivation rule defining sub-entities of 𝐸 according to the values for attributes 𝗕 in 𝐸. Instances in these sub-entities can
be mapped to objects in the subclasses 𝐶p

𝐸 of the ontology (Pattern CE2C), to objects connected through a data property to some
literal constructed through a value invention function 𝜉 applied on a partition p (Pattern CE2D), or to objects (i.e., IRIs) constructed
hrough an object invention function 𝛾 applied on p (Pattern CE2O).

xample: A table person containing people with an attribute defining their sex and ranging over ‘M’ and ‘F’. The ontology defines
wo sub-classes Male and Female of the class Person (corresponding to the entity Person). Then, Pattern CE2C clusters the table
ccording to the sex attribute, so as to obtain objects to become instances of either of the two classes.
17

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

R

E
r
c

f
e

Conceptual model (datatypes omitted) DB schema (datatypes omitted)

person(ssn, name, sex)

Mappings Ontology
s1: SELECT ssn FROM person WHERE sex=’M’
t1: :person/{ssn} a :Male . :Male a owl:Class . :Male owl:subClassOf :Person
s2: SELECT ssn FROM person WHERE sex=’F’ :Female a owl:Class . :Female owl:subClassOf :Person .
t2: :person/{ssn} a :Female .

Alternatively, the ontology could define a data property hasSex, ranging over the two RDF literals "Male" and "Female". Then,
Pattern CE2D clusters the table according to the sex attribute, so as to obtain objects to be linked to either of the two RDF literals.

eferences: For what concerns the CE2C variant, the clustering pattern is related to a number of works:

∙ In BootOX [18], an automated approach that mentions ‘‘clustering’’ is reported. However, the clusters in their approach
are sets of ‘‘similar’’ tuples. This is different from our Pattern CE2C, which instead requires a set of columns whose values
explicitly determine the different clusters.

∙ In [30], Patterns Complex Concept: Conditions and Complex Concept: Data as Concept share the idea of imposing a condition
in order to identify subsets of a table and creating concepts out of them. However, it has to be noted that ontology axioms
are not in the scope of that work. Pattern Complex Concept Attribute: Constant Value is similar to our Pattern CE2D, since it
associates objects satisfying a certain equality filter condition to a constant data value.

xample 2. Consider again the conceptual model, DB schema, mappings, and ontology derived in Example 1. Assume a derivation
ule on entity Person identifying two sub-entities: an entity representing those whose age is greater than or equal to 18, which we
all OfAge, and another one representing the others, which we call UnderAge. Under these assumptions, we can apply Pattern CE2C

and obtain:

Mappings Ontology
(Datatypes and mandatory participations omitted)
s1: SELECT ssn FROM person where age >= 18
t1: :Person/ssn={ssn} a :OfAge . :OfAge a owl:Class . :UnderAge a owl:Class .
s2: SELECT ssn FROM person where age < 18 :OfAge owl:subClassOf :Person . :UnderAge owl:subClassOf :Person .
t2: :Person/ssn={ssn} a :Underage .

3.4. Variations and combinations

More complex patterns arise from the combination of the patterns described so far. For instance, recall the example we discussed
or Pattern DH01. Graduate students, which are a by-product of the application of such pattern, might be in relationship with an
ntity Graduation. The object property capturing the relationship might be created by applying Pattern DR. In our analysis, we

have observed that combinations are quite common in those VKG specifications where the DB has been created independently from
the ontology.

Another important variation is the one introduced by modifiers, such as value invention or combination, in which DB values are
used and combined to get RDF literals, typically by relying on R2RML templates. We have already encountered an instance of value
invention, specifically when we introduced the CE2D pattern.

3.5. Automatic discovery of data-driven patterns

When it comes to discovering data-driven patterns, our methodology may benefit from techniques that were developed in the
research discipline of schema matching [3]. Over the years, the proposed methods were shown to serve as a solid basis to handle
small-scale schemata, typically encountered as a part of a mapping process [6]. Schema matching becomes handy when a pattern
involves two (or more) under-specified schemata. By way of motivation, consider the case of an implicit relationship (Pattern DR).
In such a case, the mapping may consider several relation pair candidates that may be semantically interpreted as representing
a missing relationship. Let 𝑇𝐸 and 𝑇𝐹 with primary keys 𝗞𝐸 = 𝐾𝐸1

,… , 𝐾𝐸𝑛 and 𝗞𝐹 = 𝐾𝐹1 ,… , 𝐾𝐹𝑚 , respectively, be a relation
candidate pair. A matching process between 𝗞𝐸 and 𝗞𝐹 aligns their attributes using matchers that utilize matching cues such as
attribute names, instance data, schema structure, etc. Accordingly, the matching process yields similarity values (typically a real
number in [0, 1]) between 𝐾𝐸𝑖 ∈ 𝗞𝐸 and 𝐾𝐹𝑗 ∈ 𝗞𝐹 . These values are then used to deduce a match 𝜎(𝗞𝐸 ,𝗞𝐹). Such a match may
comply with different constraints as set by the environment, e.g., a one-to-one matching. For example, the similarity values may be
assigned using a string similarity matcher like [47]

𝑙𝑒𝑛(𝐾𝐸𝑖 .𝑛𝑎𝑚𝑒 ∩𝐾𝐹𝑗 .𝑛𝑎𝑚𝑒)
𝑚𝑎𝑥(𝑙𝑒𝑛(𝐾𝐸𝑖 .𝑛𝑎𝑚𝑒), 𝑙𝑒𝑛(𝐾𝐹𝑗 .𝑛𝑎𝑚𝑒))

18

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

a
a

o

C
i
H
p
o
s

M
t
o

and a match may be inferred using a threshold selection rule [4]. Once a match is obtained, it may serve as a realization of a
schema relationship mapping pattern. Obviously, not all tables have relationships. Thus, one should decide which of the generated
relationships should be included in the final mapping. To do so, we should assess the quality of the matching outcome, allowing to
rank among them [48] (e.g., selecting matches with high similarity values to be included in the final mapping). Match quality may
also be learned as a domain specific input introducing other quality measures to the usefulness of a match.

The schema matching literature offers a mechanism to map multiple schemata to a global schema, which bears similarity to
Pattern SR1Nm. Schema cover [49] matches parts of schemata (subschemata) with concepts, using schema matching techniques,
iming at covering all attributes of the global schema with minimum number of overlaps between the subschemata. Using a similar
pproach, one can ‘‘cover’’ a schema by using multiple ontology concepts to generate an instance of Pattern SR1Nm. Recalling

the example we discussed for Pattern SR1Nm, using the schema cover methodology, we can cover the restaurants table using the
properties relative to restaurants defined in the ontology, and the data property address from the concept Supplier.

4. Usage scenarios for VKG patterns

We now comment on how having a catalog of patterns for VKG specifications is instrumental in a number of usage scenarios.
The provided list is by no means complete, but gives a fair account on the usefulness of our approach.

Debugging of a VKG Specification. This scenario arises when a full VKG specification is already in place and must be debugged. If
the conceptual model is available, for instance in the form of knowledge by the data curators, each component of the specification
can be checked for compliance against the patterns. Such checks are more effective on ontologies that are closer to the actual
conceptual representation of the DB, and can answer questions such as whether the relationships are being correctly represented
in terms of their domains, range, and mandatory participations, or whether subclasses are defined using the correct templates.
Ontologies whose structure is far from the DB ontology require more effort. A possibility is to adopt a two-step process of deriving
the DB ontology first, conforming to the patterns, and then checking whether there exists a ‘‘lossless’’ alignment between the DB
ntology and the target one (in line with the intuition of Fig. 1).

onceptual Model Reverse Engineering. Another relevant scenario arising when a full VKG specification is given, is that of
nferring a conceptual model of the DB that represents the domain of interest by reflecting the content of the VKG specification.
ere the ontology provides the main source to reconstruct entities, attributes, and relationships, while the DB and the mappings
rovide the basis to ground the conceptual model in the actual DB, and to infer additional constraints that are not captured by the
ntology (e.g., due to limited expressivity of OWL2QL). As for the debugging case, also this approach works best if the ontology is
emantically close to the conceptual model.

apping Bootstrapping. In this scenario, the DB and the ontology are given, but mappings relating them are not. We envision
his as a two-step process: in the first step, we use our patterns to derive a well-structured DB ontology; in the second step, we rely
n techniques coming from the field of ontology matching or alignment [50] to produce so-called alignment mappings, which relate

the DB ontology to the actual target ontology. Schema patterns are the most suitable ones to automatically guide the bootstrapping
process. When patterns contain tables that merge multiple entities/relationships, the presence of a conceptual model becomes crucial
to disambiguate the mappings to be bootstrapped. This is, e.g., the case for Pattern DR1Nm and the patterns based on clustering.
If the conceptual model is not available in this tricky case, bootstrapping can still be attempted by relying on schema matching
techniques [3], as done in BootOX [18]. Specifically, schema matching comes handy when a pattern involves two (or more) under-
specified schemata. For instance, in the case of Pattern DR, pair candidates between primary keys can be matched in order to make
implicit relationships explicit. This can be done through matchers (such as string similarity matchers [47]) that employ attribute
names, instance data, schema structure, etc. To separate genuine relationships from false positives generated by poor matchers,
ranking techniques have to be employed [48].

Ontology+Mapping Bootstrapping. Here, neither the ontology nor the mappings are given as input, and have to be synthesized.
This scenario can be tackled as the Mapping Bootstrapping one, by omitting the second step. As already discussed, best results are
to be expected when a conceptual model is available, since the obtained ontology will likely be closer to the level of abstraction
expected by the domain experts.

VKG Bootstrapping. In this scenario, we just have a conceptual model of the domain, and the goal is to set up a VKG specification.
The conceptual model can be then transformed into a normalized DB schema using well-established relational mapping techniques
(e.g., [24]). At the same time, as pointed out above, a direct encoding into ontology axioms can be applied to bootstrap the ontology.
The generation of mappings becomes then a quite trivial task, considering that the induced DB and ontology are very close in terms
of abstraction. This setting resembles, in spirit, that of object-relational mapping, used in software engineering to instrument a DB
and corresponding access mechanisms starting from classes written in object-oriented code.

5. Analysis of scenarios

In this section we look at a number of VKG scenarios in order to understand how patterns occur in practice, and with which
frequency. To this purpose, we have gathered 6 different scenarios,15 coming either from the literature on VKGs, or from actual real-
world applications. Table 6 shows the results of our analysis, and for each cell pattern/scenario, it reports the number of applications

15 Available here: https://github.com/ontop/ontop-examples/tree/master/dke-2022-mapping-patterns/.
19

https://github.com/ontop/ontop-examples/tree/master/dke-2022-mapping-patterns/

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

s

i

Table 6
Occurrences of mapping patterns over the considered scenarios.

BSBM NPD UOBM ODH ST-OD Cordis Total

SE 8 52 34 406 8 16 10 43 8 37 13 60 81 614
SR – – – – 2 2 – – – – 3 3 5 5
SRm 8 8 74 74 5 5 – – 7 7 10 10 104 104
SEw/DEw – – 30 266 1 1 – – – – – – 31 267
SRR – – 1 12 – – – – – – 1 16 2 28
SH – – 3 132 – – – – – – – – 3 132
DE – – – – – – – – 3 7 4 9 7 16
DRm 5 5 17 17 36 36 2 2 1 1 2 2 63 63
DH – – – – 5 9 – – – – – – 5 9
DRR 2 2 – – – – – – – – – – 2 2
DR1Nm 4 4 19 54 – – 6 78 14 29 1 1 44 166
DH01 – – – – – – – – – – 1 2 1 2
CE2C – – 11 82 6 19 5 23 – – 1 12 23 136
CE2D – – 23 49 – – – – – – – – 23 49
CE2O – – 13 148 – – – – – – – – 13 148
UNKNOWN – – 3 6 2 13 1 4 1 12 4 9 11 44

of that pattern over that scenario (leftmost number in the cell) and the number of mappings involved (rightmost number in the cell).
The last column in the table reports total numbers. We have manually classified a total of 1559 mapping assertions, falling in 407
applications of the described patterns. Of these applications, about 52.8% are of schema-driven patterns, 44.7% of data-driven
patterns, and 2.5% are of patterns falling outside of our categorization. In the remainder of this section we describe the detailed
results for each scenario. In [51] we present a similar evaluation, but restricted to schema-driven patterns and based on the results
of an automated tool able to discover patterns starting from DB schemas.

Berlin Sparql Benchmark (BSBM) [52]. This scenario is built around an e-commerce use case in which products are offered by
vendors and consumers review them. Such benchmark does not natively come with mappings, but these have been created in
different works belonging to the VKG literature. We analyzed those in [53]. The ontology in BSBM reflects quite precisely the actual
organization of data in the DB. Due to this, each mapping falls into one of the patterns we identified. Notably, in the DB foreign
key constraints are not specified. Therefore, we notice a number of applications of data-driven patterns, which cannot be captured
by simple approaches based on W3C-DM.

NPD Benchmark (NPD) [54]. This scenario is built around the domain of oil and gas extraction. It presents the highest number
of mappings (>1k). The majority of these were automatically generated, and fall under W3C-DM or schema-driven patterns. There
are, however, numerous exceptions. Mainly, there are a few denormalized tables that require the use of Pattern DR1Nm, such as
for the following mapping:

target npd:quadrant/{wlbNamePart1} a npdv:Quadrant .
source SELECT " wlbNamePart1 " FROM " wellbore_development_all "

A quadrant is not an entity in the DB schema (because wlbNamePart1 is not a key of wellbore_development_all), but it is
represented as a class in the ontology. Moreover, quadrants have themselves their own data (resp., object) properties, triggering the
application of other patterns in composition with Pattern DR1Nm.

University Ontology Benchmark (UOBM) [55]. This scenario is built around the academic domain. Such benchmark provides a
tool to automatically generate OWL ontologies, but does not include mappings nor a DB instance. These two have been manually
crafted in [56], by reverse-engineering the ontology. The mappings in this setting are quite interesting, and are mostly data-driven, as
witnessed by the many applications of the clustering patterns. One critical aspect about these mappings is the use of a sophisticated
version of the identifier alignment pattern modifier. Specifically, the table People has the following primary key:

PRIMARY KEY (ID,deptID,uniID,role)

Table GraduateStudent, which at the conceptual level corresponds to a subclass of the class People, has the following key, which
is incompatible with the one of the superclass:

PRIMARY KEY (studentID ,deptID,uniID)

The subclass relation between People and GraduateStudents requires the two keys to be aligned. This is done ‘‘artificially’’, in the
ense that the missing field role is created on-the-fly by the mapping:

source SELECT deptID, univID, studID, ’GraduateStudent ’ as role FROM GraduateStudents
target <http://www.Dept{deptID}.Univ{univID}.edu/{role}{studID}> a :GraduateStudent .

Suedtirol OpenData (ST-OD).16 This is an application scenario coming from the turism domain. The ontology has been created
ndependently from the DB. Moreover, the DB is itself highly de-normalized, since it is essentially a relational rendering of a

16 https://github.com/dinglinfang/suedTirolOpenDataOBDA.
20

https://github.com/dinglinfang/suedTirolOpenDataOBDA

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

P
t

C

D
t
w

i
t
c
m
t
s
b
a
t
d

W
c
s
r
t
o
u
o
c
t
n
f
t
T
p
a
[

i

JSON file. These aspects have a direct impact on the patterns we observed. In particular, we identified several applications of
Pattern DR11m, which, as we discussed, poses a huge challenge to automatic generation of mappings. Further complications arise
from a number of applications of the value invention pattern modifier, which appears quite often in the form, for instance, of
language tags:

source SELECT istat_code , name_i, name_d FROM municipalities
target :mun/mun={istat_code} a :Municipality ; rdfs:label {name_i}@it, {name_d}@de .

Open Data Hub VKG (ODH).17 This setting is the one behind the SPARQL endpoint located at the Open Data Hub portal from the
rovince of Bozen-Bolzano (Italy). This setting is also a denormalized one, and the same considerations we made for ST-OD apply
o this setting as well.

ordis.18 This setting is provided by SIRIS Academic S.L., a consultancy company specialized in higher education and research, and
is designed around the domain of competitive research projects. As opposed to the previous two scenarios, this one comes with a
well-structured relational schema, which reflects in a number of applications of schema patterns. Although in this scenario we have
DB views, such views have explicit constraints defined on them (such as, UNIQUE constraints in SQL) that allow for the application
of schema patterns.

6. Related work

In the last two decades a plethora of tools and approaches have been developed to bootstrap an ontology and mappings from a
DB. The approaches in the literature differ in terms of the overall purposes of the bootstrapping (e.g., VKGs, data integration, ontology
learning, check of DB schema constraints using ontology reasoning), the ontology and mapping languages in place (e.g., OWL2 profiles
or RDFS, as ontology languages, and R2RML or custom languages, for the specification of mappings), the different focus on direct
and/or complex mappings, and the assumed level of automation. The majority of the most recent approaches closely follow W3C-

M, deriving ontologies that mirror the structure of the input DB, and are equipped with further ontology-to-ontology mapping
echniques and custom mapping definition interfaces and languages in order to support the user in aligning the extracted ontology
ith domain-specific ontologies whose concepts and relationships pertain to a given domain of interest.

A notable example in this category is represented by the D2RQ system [57]. Once in its automated mode, D2RQ relies on the
mplementation of W3C-DM, and of additional reverse engineering methods for the discovery of many-to-many relationships and
he translation of foreign keys into object properties. Manual and semi-automatic modes are also allowed in the system. In these
ases, the user has available an RDF-compatible mapping language that can be used to map subset only of a relation, specify the
echanism for the generation of the individual IRIs in the ontology and schemes for the translation of database values. Another

ool that complements the automatic extraction of database-to-ontology mapping is Ultrawrap Mapper [58]. The main aim of this
ystem is to hide the complexity of the R2RML language to the user by offering a bootstrapping of the mapping process which is
ased on an enhanced version of W3C-DM. The user can interact with the system in several ways: by choosing which tables and
ttributes of the database are to be mapped, refining the automatically extracted ontology, suggesting that specific data values have
o be treated as ontology classes, specifying domain-driven SQL views to represent new concepts and, finally, by uploading a target
omain-ontology for which specific mapping recommendations will be provided based on ontology matching techniques.

A special category of bootstrapping tools that is worth to mention is the one including those systems that implement extensions of
3C-DM, while keeping a semi-automatic or fully automatic approach to mapping generation. A system that is representative of this

ategory is BootOX [18], which relies on the R2RML language to produce direct mappings. BootOX implements a (fully-automatic)
chema-driven bootstrapping. It aims at facilitating creation of an ontology by automatic extraction through bootstrapping from
elational databases. Differently from other systems, BootOX covers all the OWL2 profiles of the output ontologies and suggest how
o implement the ontology axioms resulting from a given mapping according to them (e.g., ‘‘functionality’’ or ‘‘inverse functionality’’
f a given data property are covered by the OWL2RL and OWL2EL profiles only, as well as ‘‘key axiom’’ for a given class). The
ser can select the preferred OWL2 profile, as well as special characteristics of the extracted properties (e.g., symmetry, transitivity,
r reflexivity) which may not be explicitly present in the source database. Besides W3C-DM, BootOX supports the user in building
omplex mappings based on selection and/or join operators. The proposed extensions to W3C-DM are about mapping patterns
hat resolve into sub-class relationships and class hierarchies. To this aim, clusters of tuples in a table are detected by means of
umerical vectors distance metrics, as well as subsets of the attributes of a table (especially when tables are not in BCNF normal
orm) with repeated values, and special evaluation of the application of outer join operations among tables. Still, the generation of
hese complex mappings heavily relies on the user intervention, e.g., in the naming of the newly discovered classes and properties.
he generation of provenance mappings (at different levels of granularity) is also an extension to W3C-DM provided by BootOX:
rovenance information, such as the source database from which the information is extracted or the table and column identifiers,
re modeled in the mapping assertions. BootOX is able to perform ad-hoc alignment with a target ontology using the LogMap system
59–61].

MIRROR [45] is also a tool for the automatic generation of R2RML mappings that extends W3C-DM. Taking a DB as input (which
s assumed to be, at least, in 3NF), MIRROR generates two groups of mappings: a first one strictly derived from the application of

17 https://sparql.opendatahub.bz.it/.
18 https://www.sirisacademic.com/wb/.
21

https://sparql.opendatahub.bz.it/
https://www.sirisacademic.com/wb/

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

d
t
o
e
e
c
i

p
a
a
f
b
d
w

a

W3C-DM, and a second one complementing the first with additional transformations that are extracted from information, such as
class hierarchies and many-to-many relationships, that are usually not directly derivable from a database schema. From the point of
view of the present contribution, the MIRROR categorization of the relationships between tables (two or more) that can be observed
in the physical implementation of a relational database is especially interesting. Most of the categories identified in MIRROR can
be linked with the mapping patterns introduced in the present paper, as we have seen in Section 3.2.

Rather than providing a bootstrapping algorithm, some works have studied the foundational framework underlying W3C-DM
and proved a number of results [20,62]. Specifically, [20] presents a Direct Mapping (different from W3C-DM) that enjoys query
preservation, that is, every query that can be posed over the original DB schema can be expressed as a query over the mapped KG.
It also shows that Direct Mapping is not lossless, due to the impossibility of rendering constraints such as foreign and primary keys
in the OWL2 language. Similar conclusions are reached by [62], which instead of OWL2 uses SHACL constraints [63], in order to
better translate DB (closed-world) constraints into their KG counterparts.

Bootstrapping approaches based on learning techniques and similarity measures are also present in the literature. In [64–66],
for instance, ontology learning techniques are used to mine the source data and discover patterns that suggest how to specify the
target ontology. The core of RDBToOnto [66] is based on the learning algorithm RTAXON [65], which performs hierarchy mining
in the data to identify categorization patterns from which class hierarchies can be generated. RDBToOnto (which is currently part
of the commercial portfolio of software by the RedcoolMedia company19) also allows users to iteratively refine the results provided
by the automatic generation of the ontology, by suggesting a number of predefined constraints to be added (e.g., the selection of
relevant categorization attributes and user-defined instance naming). The tool also includes a database normalization step driven by
the identification of specific inclusion dependencies by the user, whose main aim is to try to eliminate data duplication and, more
in general, redundancy due to bad design in the source tables. Unfortunately, we have not been able to find a description of the
mappings generated by the tool, and this prevents us from a deeper comparison with our approach.

In schema matching literature, simple rule-based mappings are used to create a uniform representation of the data sources to
be matched, may they be schemata or ontologies [67–69]. For example, in COMA++ [67], concept hierarchies, attributes and
relationship types are mapped into generic model representation based on directed acyclic graphs. Using such mappings, schema
matchers are applied to the uniform representation to create a matching result. Similarly, IncMap [69] relies on a graph structure
called IncGraph to represent schema elements from both ontologies and relational schemata in a unified way. Therefore, the main
algorithmic task is to convert the ontology as well as the relational schema into the unified IncGraph representation. IncMap
then computes ranked correspondences between elements of the two graphs using lexical and structural similarities, based on the
Similarity Flooding algorithm, and converts the correspondences into direct mappings between the ontology and schema. The entire
process is semi-automatic and each suggestion needs to be accepted by the user (human inputs are used to rerank correspondences
after each round of interaction).

The Karma system [70] provides support for extracting data from a variety of sources (relational databases, CSV files, JSON,
and XML), for cleaning and normalizing data, for mapping them to a target vocabulary, for integrating multiple data sources, and
for publishing in a variety of formats (CSV, KML, and RDF). Karma does not support a fully automatic mapping generation: it
supports the users with a sophisticated user interface where an OWL-specified vocabulary, one of more data sources and a database
of so-called semantic types are assumed as input. The algorithmic core of the system, which computes the relationships among
the schema elements of a source, is based on conditional random fields (CRF) [71] and a Steiner tree algorithm. The idea is that
Karma automatically infers the semantic types (i.e., pairs made of a concept and/or a data property of the domain ontology, such
as, <Person,name> or <Artwork,title>) that it has been trained to identify in the source tables, whereas it asks the user to explicitly
specify them whenever this process fails. In a second step, those semantic labeled source attributes are related to each other in terms
of the properties of the target ontology in order to reconstruct the overall semantic model of the data source (for instance, in the case
above, painter is then suggested to be the right relationship between Person and Artwork, instead of owner or sculptor). More
etails about the way Karma exploits the knowledge from a domain ontology and the semantic models of previously modeled sources
o automatically learn a rich semantic model for a new source can be found in [72,73]. These papers focus on the characteristics
f the algorithms that are responsible for the generation of the semantic models of the sources, but the final mappings are never
xplicitly specified according to a standard mapping language. Nonetheless, the CRF-based approach is declared to encompass other
xisting approaches base on schema matching techniques that have been used to identify the semantic types of source attributes by
omparing them with already labeled ones, such as [74], or [75], which is based on learning regular expression-like rules for data
n the source columns.

Although the work in [76] starts from a setting that is different from the one assumed in this paper, it is worth mentioning it. The
aper focuses on automatically compiling R2RML mappings, once a set of algebraic correspondences between a relational source
nd a target ontology have been manually specified by the user. The so-called ‘‘Correspondence Assertions’’ are a set of algebraic
ssertions that are meant to express data-metadata mapping, mappings containing custom value functions (e.g., transformation
unctions to change the data formats), and union, intersection, and difference between tables. SQL views are then created on the
asis of the specified user assertions and used as an intermediate step to automatically compile the final R2RML mappings. The
esign and implementation of an authoring tool supporting the user in the specification of the algebraic correspondence assertions
as also foreseen.

As for a systematic categorization of mappings, the proposals in [29,30] are very closely related to ours, as they also introduce
catalog of mapping patterns. However, there are major differences to our proposal, since in those works:

19 https://www.redcoolmedia.net/
22

https://www.redcoolmedia.net

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

m
[
r
s
s

7

t
t
t
V
i

i
f
e
i
a
f

(
a
s

D

t

D

A

o
F
t
F
S

R

∙ patterns are not formalized, and are presented in a ‘‘by-example’’ fashion following the R2RML syntax;
∙ patterns are derived from ‘‘commonly-occurring mapping problems’’ based on the experience of the authors, whereas in our

work patterns are derived from conceptual modeling and database design principles;
∙ patterns are not evaluated against a number of different real-world, and complex scenarios over heterogeneous domains and

design practices, as has been done here.

Other works provide a systematic categorization of mappings in VKGs [18,45], however they do so while focussing on supporting
apping bootstrapping. Other contributions restrict their attention to the algorithms behind the generation of mappings, notably

36,58,69] for the R2RML language. We mention also some surveys and comparative analyses [16,77–80], where the interested
eader can further explore the tools and techniques mentioned here. We finally notice that, in our review, we did not find any
tudy introducing an in depth analysis of existing real scenarios of DB-to-ontology mapping, as we do in the present paper, aimed at
howing that the identified categories actually reflect the real design choices and methodologies in use by the mapping designers.

. Conclusions and future work

In this work we identified and formally specified a number of mapping patterns emerging when linking DBs to ontologies in a
ypical VKG setting. Our patterns are grounded to well-established practices of DB design, and render explicit the connection between
he conceptual model, the DB schema, and the ontology. We argue that the organization in patterns can enable a number of relevant
asks, apart from the classic one of bootstrapping mappings in an incomplete VKG scenario. Through a systematic analysis of various
KG scenarios, ranging from benchmarks to real world and denormalized ones, we observed that the patterns we formalized occur

n practice, and capture most cases.
This work is only a first step, with respect to both categorization of patterns, and their actual use. Regarding the former, our plan

s to extend this initial catalog with more advanced data-driven patterns, such as those deriving from other kinds of transformations
or the hierarchies in the conceptual model (e.g., the case where all children and their attributes are fully merged in the parent
ntity, or the inverse case), and to better explore the interaction between patterns and pattern modifiers, such as value invention or
dentifier alignment. Regarding the latter, in this paper we have used patterns to investigate, and highlight, the specific problems to
ddress when setting-up a VKG scenario. We plan to investigate solutions to these problems, by exploiting approaches from other
ields, e.g., schema matching.

One point we did not formally investigate in this work is which properties are guaranteed to hold when applying our patterns
such as losslessness or query preservation). Since our patterns are grounded in textbook methodologies from DB design, such
s standard translations of ER-diagrams into the relational model, we believe that query preservation might work without any
ubstantial modification. We plan to investigate these aspects in future work, in the same spirit as the literature in [20] or [62].

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

A link to supplemental material is provided in Section 5.

cknowledgments

This research has been partially supported by the EU H2020 project INODE (grant agreement No. 863410), by the Italian Ministry
f University and Research (MUR) under PRIN projects HOPE (Prot. 2017MMJJRE) and PINPOINT (Prot. 2020FNEB27), and by the
ree University of Bozen-Bolzano, Italy through the projects MP4OBDA, ADAPTERS, and QUEST. Diego Calvanese also acknowledges
he support of the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg
oundation, Sweden, Avigdor Gal the support of the Benjamin and Florence Free Chair, and Roee Shraga the support of the National
cience Foundation (NSF) under award number IIS-1956096.

eferences

[1] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutiérrez, S. Kirrane, J.E.L. Gayo, R. Navigli, S. Neumaier, A.N. Ngomo, A. Polleres,
S.M. Rashid, A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab, A. Zimmermann, Knowledge Graphs, Synthesis Lectures on Data, Semantics, and Knowledge,
Morgan & Claypool Publishers, 2021.

[2] G. Xiao, L. Ding, B. Cogrel, D. Calvanese, Virtual Knowledge Graphs: An overview of systems and use cases, Data Intell. 1 (3) (2019) 201–223,
http://dx.doi.org/10.1162/dint_a_00011.

[3] E. Rahm, P.A. Bernstein, A survey of approaches to automatic schema matching, Very Large Database J. 10 (4) (2001) 334–350.
[4] H.-H. Do, E. Rahm, COMA++ system for flexible combination of schema matching approaches, in: Proc. of the 28th Int. Conf. on Very Large Data Bases

(VLDB), Elsevier, 2002, pp. 610–621.
[5] C. Chen, B. Golshan, A.Y. Halevy, W.-C. Tan, A. Doan, BigGorilla: An open-source ecosystem for data preparation and integration, IEEE Data Eng. Bull.
41 (2) (2018) 10–22.

23

http://refhub.elsevier.com/S0169-023X(23)00017-4/sb1
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb1
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb1
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb1
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb1
http://dx.doi.org/10.1162/dint_a_00011
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb3
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb4
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb4
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb4
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb5
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb5
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb5

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157
[6] R. Shraga, A. Gal, H. Roitman, ADnEV: Cross-domain schema matching using deep similarity matrix adjustment and evaluation, in: Proc. of the 46th Int.
Conf. on Very Large Data Bases (VLDB) 13 (9), 2020, pp. 1401–1415.

[7] J. Euzenat, P. Shvaiko, Ontology Matching, Springer, 2007.
[8] V. Ivanova, B. Bach, E. Pietriga, P. Lambrix, Alignment Cubes: Towards interactive visual exploration and evaluation of multiple ontology alignments, in:

Proc. of the 16th Int. Semantic Web Conf. (ISWC), in: LNCS, vol. 10587, Springer, 2017, pp. 400–417.
[9] P. Kolyvakis, A. Kalousis, D. Kiritsis, Deepalignment: Unsupervised ontology matching with refined word vectors, in: Proc. of NAACL, Association for

Computational Linguistics, 2018, pp. 787–798.
[10] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison Wesley Publ. Co, 1995.
[11] G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, On reconciling data exchange, data integration, and peer data management, in: Proc. of the 26th ACM

Symp. on Principles of Database Systems (PODS), 2007, pp. 133–142.
[12] P.G. Kolaitis, Schema mappings, data exchange, and metadata management, in: Proc. of the 24th ACM Symp. on Principles of Database Systems (PODS),

2005, pp. 61–75.
[13] M. Lenzerini, Data integration: A theoretical perspective, in: Proc. of the 21st ACM Symp. on Principles of Database Systems (PODS), 2002, pp. 233–246,

http://dx.doi.org/10.1145/543613.543644.
[14] R. Fagin, L.M. Haas, M.A. Hernández, R.J. Miller, L. Popa, Y. Velegrakis, Clio: Schema mapping creation and data exchange, in: Conceptual Modeling:

Foundations and Applications – Essays in Honor of John Mylopoulos, in: LNCS, vol. 5600, 2009, pp. 198–236, http://dx.doi.org/10.1007/978-3-642-
02463-4_12.

[15] B. ten Cate, P.G. Kolaitis, K. Qian, W. Tan, Active learning of GAV schema mappings, in: Proc. of the 37th ACM Symp. on Principles of Database Systems
(PODS), ACM, 2018, pp. 355–368.

[16] D.-E. Spanos, P. Stavrou, N. Mitrou, Bringing relational databases into the semantic web: A survey, Semantic Web J. 3 (2) (2012) 169–209.
[17] G. Fletcher, P. Groth, J.F. Sequeda, Knowledge scientists: Unlocking the data-driven organization, 2020, CoRR abs/2004.07917 arXiv:2004.07917 URL

https://arxiv.org/abs/2004.07917.
[18] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks, C. Pinkel, M.G. Skjæveland, E. Thorstensen, J. Mora, BootOX: Practical mapping of RDBs to

OWL 2, in: Proc. of the 14th Int. Semantic Web Conf. (ISWC), in: LNCS, vol. 9367, Springer, 2015, pp. 113–132, http://dx.doi.org/10.1007/978-3-319-
25010-6_7.

[19] E. Kharlamov, D. Hovland, M.G. Skjæveland, D. Bilidas, E. Jiménez-Ruiz, G. Xiao, A. Soylu, D. Lanti, M. Rezk, D. Zheleznyakov, M. Giese, H. Lie, Y.E.
Ioannidis, Y. Kotidis, M. Koubarakis, A. Waaler, Ontology based data access in Statoil, J. Web Semant. 44 (2017) 3–36, http://dx.doi.org/10.1016/j.
websem.2017.05.005.

[20] J.F. Sequeda, M. Arenas, D.P. Miranker, On directly mapping relational databases to RDF and OWL, in: Proc. of the 21st Int. World Wide Web Conf.
(WWW), ACM, 2012, pp. 649–658.

[21] D. Calvanese, T.E. Kalayci, M. Montali, A. Santoso, W. van der Aalst, Conceptual schema transformation in ontology-based data access, in: Proc. of the 21st
Int. Conf. on Knowledge Engineering and Knowledge Management (EKAW), in: LNCS, vol. 11313, Springer, 2018, pp. 50–67, http://dx.doi.org/10.1007/978-
3-030-03667-6_4.

[22] D. Calvanese, M. Lenzerini, D. Nardi, Description logics for conceptual data modeling, in: J. Chomicki, G. Saake (Eds.), Logics for Databases and Information
Systems, Kluwer Academic Publishers, 1998, pp. 229–264.

[23] D. Berardi, D. Calvanese, G. De Giacomo, Reasoning on UML class diagrams, Artificial Intelligence 168 (1–2) (2005) 70–118, http://dx.doi.org/10.1016/
j.artint.2005.05.003.

[24] T. Halpin, T. Morgan, Information Modeling and Relational Databases, Morgan Kaufmann, 2010.
[25] M. Arenas, A. Bertails, E. Prud’hommeaux, J. Sequeda, A Direct Mapping of Relational Data To RDF, W3C Recommendation, W3C, 2012, available at

http://www.w3.org/TR/rdb-direct-mapping/.
[26] E.F. Codd, Further Normalization of the Data Base Relational Model, Research Report / RJ / IBM /, San Jose, California RJ909, 1971.
[27] T. Halpin, T. Morgan, Information Modeling and Relational Databases, Morgan Kaufmann, 2010, (Chapter 11).
[28] D.W. Embley, B. Thalheim, Handbook of Conceptual Modeling: Theory, Practice, and Research Challenges, Springer, 2011, (Chapter 5).
[29] J. Sequeda, F. Priyatna, B. Villazón-Terrazas, Relational database to RDF mapping patterns, in: Proc. of the 3rd Int. Conf. on Ontology Patterns, in: CEUR

Workshop Proceedings, vol. 929, CEUR-WS.org, 2012, pp. 97–108.
[30] J. Sequeda, O. Lassila, Designing and Building Enterprise Knowledge Graphs, Morgan & Claypool, 2021, http://dx.doi.org/10.2200/

S01105ED1V01Y202105DSK020.
[31] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to ontologies, J. Data Semantics 10 (2008) 133–173,

http://dx.doi.org/10.1007/978-3-540-77688-8_5.
[32] A. Silberschatz, H.F. Korth, S. Sudarshan, Database System Concepts, seventh ed., McGraw-Hill Book Company, 2020, URL https://www.db-book.com/

db7/index.html.
[33] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, OWL 2 Web Ontology Language Profiles, 2nd, W3C Recommendation, W3C, 2012,

available at http://www.w3.org/TR/owl2-profiles/.
[34] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: The DL-Lite

family, J. of Automated Reasoning 39 (3) (2007) 385–429, http://dx.doi.org/10.1007/s10817-007-9078-x.
[35] S. Das, S. Sundara, R. Cyganiak, R2RML: RDB to RDF Mapping Language, W3C Recommendation, W3C, 2012, available at http://www.w3.org/TR/r2rml/.
[36] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-Muro, G. Xiao, Ontop: Answering SPARQL queries over relational

databases, Semantic Web J. 8 (3) (2017) 471–487, http://dx.doi.org/10.3233/SW-160217.
[37] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, G. Carothers, RDF 1.1 Turtle – Terse RDF Triple Language, W3C Recommendation, W3C, 2014, available

at http://www.w3.org/TR/turtle/.
[38] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations, J. of Artificial Intelligence Research 36 (2009) 1–69,

http://dx.doi.org/10.1613/jair.2820.
[39] D. Lanti, Benchmarking and Optimization of OBDA Systems (Ph.D. thesis), Free University of Bozen-Bolzano, 2018, URL http://hdl.handle.net/10863/6081.
[40] D. Calvanese, D. Lanti, T.M. de Farias, A. Mosca, G. Xiao, Accessing scientific data through knowledge graphs with Ontop, Patterns 2 (10) (2021)

http://dx.doi.org/10.1016/j.patter.2021.100346.
[41] R. Hull, Relative information capacity of simple relational database schemas, SIAM J. Comput. 15 (3) (1986) 856–886.
[42] R.J. Miller, Y.E. Ioannidis, R. Ramakrishnan, Schema equivalence in heterogeneous systems: Bridging theory and practice, Inf. Syst. 19 (1) (1994) 3–31.
[43] P.P. Chen, The Entity-Relationship model: Toward a unified view of data, ACM Trans. on Database Systems 1 (1) (1976) 9–36.
[44] Unified Modeling Language (UML) specification Version 2.5.1, Object Management Group, 2017, Available at https://www.omg.org/spec/UML/.
[45] L.F. de Medeiros, F. Priyatna, O. Corcho, MIRROR: Automatic R2RML mapping generation from relational databases, in: Proc. of the 15th Int. Conf. on

Web Engineering (ICWE), in: LNCS, vol. 9114, Springer, 2015, pp. 326–343.
[46] D. Calvanese, M. Lenzerini, D. Nardi, Unifying class-based representation formalisms, J. of Artificial Intelligence Research 11 (1999) 199–240, http:

//dx.doi.org/10.1613/jair.548.
[47] A. Gal, Uncertain schema matching, Synthesis Lectures in Data Management 3 (1) (2011) 1–97.
[48] A. Gal, H. Roitman, R. Shraga, Learning to rerank schema matches, IEEE Trans. on Knowledge and Data Engineering (2019).
24

http://refhub.elsevier.com/S0169-023X(23)00017-4/sb6
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb6
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb6
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb7
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb8
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb8
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb8
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb9
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb9
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb9
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb10
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb11
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb11
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb11
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb12
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb12
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb12
http://dx.doi.org/10.1145/543613.543644
http://dx.doi.org/10.1007/978-3-642-02463-4_12
http://dx.doi.org/10.1007/978-3-642-02463-4_12
http://dx.doi.org/10.1007/978-3-642-02463-4_12
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb15
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb15
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb15
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb16
http://abs/2004.07917
http://arxiv.org/abs/2004.07917
https://arxiv.org/abs/2004.07917
http://dx.doi.org/10.1007/978-3-319-25010-6_7
http://dx.doi.org/10.1007/978-3-319-25010-6_7
http://dx.doi.org/10.1007/978-3-319-25010-6_7
http://dx.doi.org/10.1016/j.websem.2017.05.005
http://dx.doi.org/10.1016/j.websem.2017.05.005
http://dx.doi.org/10.1016/j.websem.2017.05.005
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb20
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb20
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb20
http://dx.doi.org/10.1007/978-3-030-03667-6_4
http://dx.doi.org/10.1007/978-3-030-03667-6_4
http://dx.doi.org/10.1007/978-3-030-03667-6_4
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb22
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb22
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb22
http://dx.doi.org/10.1016/j.artint.2005.05.003
http://dx.doi.org/10.1016/j.artint.2005.05.003
http://dx.doi.org/10.1016/j.artint.2005.05.003
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb24
http://www.w3.org/TR/rdb-direct-mapping/
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb26
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb27
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb28
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb29
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb29
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb29
http://dx.doi.org/10.2200/S01105ED1V01Y202105DSK020
http://dx.doi.org/10.2200/S01105ED1V01Y202105DSK020
http://dx.doi.org/10.2200/S01105ED1V01Y202105DSK020
http://dx.doi.org/10.1007/978-3-540-77688-8_5
https://www.db-book.com/db7/index.html
https://www.db-book.com/db7/index.html
https://www.db-book.com/db7/index.html
http://www.w3.org/TR/owl2-profiles/
http://dx.doi.org/10.1007/s10817-007-9078-x
http://www.w3.org/TR/r2rml/
http://dx.doi.org/10.3233/SW-160217
http://www.w3.org/TR/turtle/
http://dx.doi.org/10.1613/jair.2820
http://hdl.handle.net/10863/6081
http://dx.doi.org/10.1016/j.patter.2021.100346
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb41
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb42
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb43
https://www.omg.org/spec/UML/
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb45
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb45
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb45
http://dx.doi.org/10.1613/jair.548
http://dx.doi.org/10.1613/jair.548
http://dx.doi.org/10.1613/jair.548
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb47
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb48

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157

D
(
r
D
b

A
E
p
i
e

[49] A. Gal, M. Katz, T. Sagi, M. Weidlich, K. Aberer, H.Q.V. Nguyen, Z. Miklós, E. Levy, V. Shafran, Completeness and ambiguity of schema cover, in: Proc.
of Confederated Int. Conf. on the Move To Meaningful Internet Systems (OTM), in: LNCS, vol. 8185, Springer, 2013, pp. 241–258.

[50] É. Thiéblin, O. Haemmerlé, N. Hernandez, C. Trojahn, Survey on complex ontology matching, Semantic Web J. 11 (4) (2020) 689–727, http://dx.doi.org/
10.3233/SW-190366.

[51] D. Calvanese, A. Gal, N. Haba, D. Lanti, M. Montali, A. Mosca, R. Shraga, [Adamap]: Automatic alignment of relational data sources using mapping
patterns, in: Proc. of the 33rd Int. Conf. on Advanced Information Systems Engineering (CAiSE), in: LNCS, vol. 12751, Springer, 2021, pp. 193–209,
http://dx.doi.org/10.1007/978-3-030-79382-1_12.

[52] C. Bizer, A. Schultz, The Berlin SPARQL benchmark, Int. J. Semantic Web Information Systems 5 (2) (2009) 1–24, http://dx.doi.org/10.4018/jswis.
2009040101.

[53] D. Lanti, G. Xiao, D. Calvanese, VIG: Data scaling for OBDA benchmarks, Semantic Web J. 10 (2) (2019) 413–433, http://dx.doi.org/10.3233/SW-180336.
[54] D. Lanti, M. Rezk, G. Xiao, D. Calvanese, The NPD benchmark: Reality check for OBDA systems, in: Proc. of the 18th Int. Conf. on Extending Database

Technology (EDBT), 2015, pp. 617–628, http://dx.doi.org/10.5441/002/edbt.2015.62.
[55] Y. Zhou, B.C. Grau, I. Horrocks, Z. Wu, J. Banerjee, Making the most of your triple store: query answering in OWL 2 using an RL reasoner, in: Proc. of

the 22nd Int. World Wide Web Conf. (WWW), 2013, pp. 1569–1580.
[56] E. Botoeva, D. Calvanese, V. Santarelli, D.F. Savo, A. Solimando, G. Xiao, Beyond OWL 2 QL in OBDA: Rewritings and approximations, in: Proc. of the

30th AAAI Conf. on Artificial Intelligence (AAAI), 2016, pp. 921–928, URL http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12238.
[57] C. Bizer, A. Seaborne, D2RQ – Treating non-RDF databases as virtual RDF graphs, in: Proc. of the ISWC 2004 Posters Track, 2004.
[58] J.F. Sequeda, D.P. Miranker, Ultrawrap Mapper: A semi-automatic relational database to RDF (RDB2RDF) mapping tool, in: Proc. of the ISWC 2015 Posters

& Demonstrations Track, in: CEUR Workshop Proceedings, vol. 1486, CEUR-WS.org, 2015, URL http://ceur-ws.org/Vol-1486/paper_105.pdf.
[59] A. Solimando, E. Jiménez-Ruiz, G. Guerrini, Detecting and correcting conservativity principle violations in ontology-to-ontology mappings, in: Proc. of the

13th Int. Semantic Web Conf. (ISWC), in: LNCS, vol. 8797, Springer, 2014, pp. 1–16.
[60] E. Jiménez-Ruiz, B.C. Grau, Y. Zhou, I. Horrocks, Large-scale interactive ontology matching: Algorithms and implementation, in: Proc. of the 20th Eur.

Conf. on Artificial Intelligence (ECAI), 2012, pp. 444–449.
[61] E. Jiménez-Ruiz, B.C. Grau, LogMap: Logic-based and scalable ontology matching, in: Proc. of the 10th Int. Semantic Web Conf. (ISWC), in: LNCS, vol.

7031, Springer, 2011, pp. 273–288.
[62] R.B. Thapa, M. Giese, A source-to-target constraint rewriting for direct mapping, in: Proc. of the 21st Int. Semantic Web Conf. (ISWC), ISWC, in: LNCS,

vol. 12922, Springer, 2021, pp. 21–38, http://dx.doi.org/10.1007/978-3-030-88361-4_2.
[63] H. Knublauch, D. Kontokostas, Shapes Constraint Language (SHACL), W3C Recommendation, W3C, 2017, available at https://www.w3.org/TR/shacl/.
[64] F. Cerbah, N. Lammari, Ontology learning from databases: Some efficient methods to discover semantic patterns in data, in: Perspectives on Ontology

Learning, Vol. 18, IOS Press, 2014, pp. 207–222.
[65] F. Cerbah, Mining the content of relational databases to learn ontologies with deeper taxonomies, in: Proc. of the IEEE/WIC/ACM Int. Conf. on Web

Intelligence and Intelligent Agent Technology, Vol. 1, IEEE, 2008, pp. 553–557.
[66] F. Cerbah, Learning highly structured semantic repositories from relational databases, in: Proc. of the 5th European Semantic Web Conf. (ESWC), in: LNCS,

vol. 5021, Springer, 2008, pp. 777–781.
[67] D. Aumueller, H.-H. Do, S. Massmann, E. Rahm, Schema and ontology matching with COMA++, in: Proc. of the 2005 ACM SIGMOD Int. Conf. on

Management of Data, 2005, pp. 906–908.
[68] A. Gal, G. Modica, H. Jamil, OntoBuilder: Fully automatic extraction and consolidation of ontologies from web sources, in: Proc. of the 20th IEEE Int.

Conf. on Data Engineering (ICDE), 2004, p. 853.
[69] C. Pinkel, C. Binnig, E. Kharlamov, P. Haase, IncMap: pay as you go matching of relational schemata to OWL ontologies, in: Proc. of the 8th Int. Workshop

on Ontology Matching, in: CEUR Workshop Proceedings, vol. 1111, CEUR-WS.org, 2013, pp. 37–48.
[70] S. Gupta, P. Szekely, C.A. Knoblock, A. Goel, M. Taheriyan, M. Muslea, Karma: A system for mapping structured sources into the Semantic Web, in: Proc.

of the ESWC Satellite Events, in: LNCS, vol. 7540, Springer, 2012, pp. 430–434.
[71] J.D. Lafferty, A. McCallum, F.C.N. Pereira, Conditional random fields: Probabilistic models for segmenting and labeling sequence data, in: Proc. of the

18th Int. Conf. on Machine Learning (ICML), Morgan Kaufmann, 2001, pp. 282–289.
[72] C.A. Knoblock, P. Szekely, J.L. Ambite, A. Goel, S. Gupta, K. Lerman, M. Muslea, M. Taheriyan, P. Mallick, Semi-automatically mapping structured sources

into the semantic web, in: Proc. of the 9th Extended Semantic Web Conf. (ESWC), in: LNCS, vol. 7295, Springer, 2012, pp. 375–390.
[73] M. Taheriyan, C.A. Knoblock, P. Szekely, J.L. Ambite, Learning the semantics of structured data sources, J. of Web Semantics 37 (2016) 152–169.
[74] A. Doan, P.M. Domingos, A.Y. Levy, Learning source description for data integration, in: WebDB (Informal Proceedings), 2000, pp. 81–86.
[75] K. Lerman, A. Plangprasopchock, C.A. Knoblock, Semantic labeling of online information sources, Int. J. Semantic Web Information Systems (IJSWIS) 3

(3) (2007) 36–56.
[76] V.M. Pequeno, V.M. Vidal, M.A. Casanova, L.E.T. Neto, H. Galhardas, Specifying complex correspondences between relational schemas and rdf models for

generating customized r2rml mappings, in: Proc. of the 18th Int. Database Engineering & Applications Symposium, 2014, pp. 96–104.
[77] J.F. Sequeda, S.H. Tirmizi, O. Corcho, D.P. Miranker, Survey of directly mapping SQL databases to the semantic web, Knowledge Engineering Review 26

(4) (2011) 445–486.
[78] K. Mogotlane, J.V. Fonou Dombeu, Automatic conversion of relational databases into ontologies : A comparative analysis of Protègè plug-ins performances,

Int. J. Web Semantic Technology 7 (2016) 21–40, http://dx.doi.org/10.5121/ijwest.2016.7403.
[79] C. Pinkel, C. Binnig, E. Jiménez-Ruiz, E. Kharlamov, W. May, A. Nikolov, A. Sasa, M.G. Skjæveland, A. Solimando, M. Taheriyan, C. Heupel, I. Horrocks,

Rodi: Benchmarking relational-to-ontology mapping generation quality, Semantic Web J. 9 (2016) 25–52.
[80] S.-C. Haw, J.W. May, S. Subramaniam, Mapping relational databases to ontology representation: A review, in: Proc. of the 1st Int. Conf. on Digital

Technology in Education (ICDTE), ACM, 2017, pp. 54–58, http://dx.doi.org/10.1145/3134847.3134852.

iego Calvanese is a Full Professor at the Research Centre for Knowledge and Data (KRDB) at the Faculty of Engineering of the Free University of Bozen-Bolzano
Italy), and Wallenberg Guest Professor in AI for Data Management at Umeå University (Sweden). His research interests include knowledge representation and
easoning, virtual knowledge graphs, ontology languages, description logics, conceptual data modeling and data integration. He is one of the editors of the
escription Logic Handbook. He is a Fellow of EurAI and a Fellow of ACM. He is the originator and a co-founder of Ontopic, a startup whose mission is to
ring the VKG technology to industry.

vigdor Gal is the Benjamin and Florence Free Chaired Professor at the Technion - Israel Institute of Technology, were he established the Data Science &
ngineering program. He specializes in various aspects of data management and mining with about 150 publications in leading journals, books, and conference
roceedings. He served as a program co-chair and general co-chair of several conferences, including BPM and DEBS. In the past he gave keynotes and tutorials
n leading conferences in the areas of data and process management. Avigdor Gal is a recipient of the prestigious Yannai award for excellence in academic
ducation, multiple best paper and test-of-time awards.
25

http://refhub.elsevier.com/S0169-023X(23)00017-4/sb49
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb49
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb49
http://dx.doi.org/10.3233/SW-190366
http://dx.doi.org/10.3233/SW-190366
http://dx.doi.org/10.3233/SW-190366
http://dx.doi.org/10.1007/978-3-030-79382-1_12
http://dx.doi.org/10.4018/jswis.2009040101
http://dx.doi.org/10.4018/jswis.2009040101
http://dx.doi.org/10.4018/jswis.2009040101
http://dx.doi.org/10.3233/SW-180336
http://dx.doi.org/10.5441/002/edbt.2015.62
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb55
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb55
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb55
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12238
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb57
http://ceur-ws.org/Vol-1486/paper_105.pdf
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb59
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb59
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb59
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb60
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb60
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb60
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb61
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb61
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb61
http://dx.doi.org/10.1007/978-3-030-88361-4_2
https://www.w3.org/TR/shacl/
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb64
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb64
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb64
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb65
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb65
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb65
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb66
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb66
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb66
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb67
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb67
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb67
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb68
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb68
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb68
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb69
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb69
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb69
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb70
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb70
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb70
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb71
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb71
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb71
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb72
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb72
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb72
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb73
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb74
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb75
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb75
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb75
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb76
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb76
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb76
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb77
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb77
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb77
http://dx.doi.org/10.5121/ijwest.2016.7403
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb79
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb79
http://refhub.elsevier.com/S0169-023X(23)00017-4/sb79
http://dx.doi.org/10.1145/3134847.3134852

D. Calvanese, A. Gal, D. Lanti et al. Data & Knowledge Engineering 145 (2023) 102157
Davide Lanti is an Assistant Professor at the Research Centre for Knowledge and Data (KRDB) at the Faculty of Engineering of the Free University of Bozen-
Bolzano (Italy), where he carries out research on Virtual Knowledge Graphs, Semantic Web, Databases, and Description Logics. He received his MSc degree in
Computational Logic jointly from the Technische Universität Dresden (Germany), and the Free University of Bozen-Bolzano (Italy). He received his PhD at the
Faculty of Computer Science at the Free University of Bozen-Bolzano, Italy.

Marco Montali is Full Professor and Vice-Dean of Teaching at the Faculty of Engineering, Free University of Bozen-Bolzano, Italy, where he also coordinates the
MSc Program in Computational Data Science. He investigates foundational and applied techniques grounded in artificial intelligence, formal methods, knowledge
representation and reasoning, for the model- and data-driven analysis of business processes and multiagent systems. He has served as PC Chair of BPM 2018,
RuleML+RR 2019, ICPM 2020, and CBI 2021, as General Chair of ICPM 2022 and EDOC 2022, and is steering committee member of the IEEE task force on
process mining. He is co-author of more than 200 papers, many of which in top-tier conferences and journals, and recipient of 8 best paper awards. He received
the ‘‘Marco Cadoli 2015’’ award, given by the Italian Association of Artificial Intelligence to the best under 35 Italian researcher who autonomously contributed
to advance the state-of-the-art in Artificial Intelligence.

Alessandro Mosca is Assistant Professor at the Research Centre for Knowledge and Data (KRDB) at the Faculty of Engineering, and member of the Smart
Data Factory, the technology and knowledge transfer lab for Computer Science, Free University of Bozen-Bolzano (Italy). His research interests include logic-
based formalisms for knowledge representation and conceptual modeling for data management. He works on the theoretical and methodological aspects behind
the creation of ontology-based data management solutions which, in particular, subsume the design and development of formal ontologies, multi-format data
integration and access services, efficient ontology-based query answering.

Roee Shraga is a Postdoctoral fellow at the Khoury College of Computer Science at Northeastern University in Boston. He received his PhD degree from the
Technion – Israel Institute of Technology in 2020. Roee has published more than a dozen papers in leading journals and conferences on the topics of data
integration, human-in-the-loop, machine learning, process mining, and information retrieval. He is a recipient of several PhD fellowships including the Leonard
and Diane Sherman Interdisciplinary Fellowship (2017) and the Miriam and Aaron Gutwirth Memorial Fellowship (2020).
26

	Conceptually-grounded mapping patterns for Virtual Knowledge Graphs
	Introduction
	Preliminaries
	R2RML Mappings vs. VKG Mappings

	Mapping Patterns
	Pattern Organization and Presentation Conventions
	Schema-driven Patterns
	Data Driven Mapping Patterns
	Variations and Combinations
	Automatic Discovery of Data-driven Patterns

	Usage Scenarios for VKG Patterns
	Analysis of Scenarios
	Related Work
	Conclusions and Future Work
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

