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Abstract. We study peer-to-peer data integration, where each peer models an
autonomous system that exports data in terms of its own schema, and data in-
teroperation is achieved by means of mappings among the peer schemas, rather
than through a global schema. We propose a multi-modal epistemic semantics
based on the idea that each peer is conceived as a rational agent that exchanges
knowledge/belief with other peers, thus nicely modeling the modular structure of
the system. We then address the issue of dealing with possible inconsistencies,
and distinguish between two types of inconsistencies, called local and P2P, re-
spectively. We define a nonmonotonic extension of our logic that is able to reason
on the beliefs of peers under inconsistency tolerance. Tolerance to local inconsis-
tency essentially means that the presence of inconsistency within one peer does
not affect the consistency of the whole system. Tolerance to P2P inconsistency
means being able to resolve inconsistencies arising from the interaction between
peers. We study query answering and its data complexity in this setting, and we
present an algorithm that is sound and complete with respect to the proposed
semantics, and optimal with respect to worst-case complexity.

1 Introduction

In this paper we study data integration in a peer-to-peer (P2P) architecture. In a P2P data
integration system (P2PDIS), each peer is an autonomous information system providing
part of the overall information available from a distributed environment, and acts both
as a client and as a server. Information integration in these systems does not rely on
a single global view (as in traditional data integration [22]): instead, it is achieved by
establishing mappings between peers, and by exploiting such mappings to collect and
merge data from the various peers when answering user queries.

P2P data integration has been the subject of several investigations in the last years.
Recent papers focused on providing techniques for evolving from basic P2P net-
works supporting only file exchanges to more complex systems like schema-based
P2P networks, capable of supporting the exchange of structured contents. From pa-
pers like [19,4,18,10,16,27] the idea of peer data management emerges: every peer is
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characterized by a schema that represents the domain of interest from the peer per-
spective, and is equipped with mappings to other peers [25], each mapping providing a
semantic relationship between pairs of peers. Data integration in such systems is typi-
cally virtual: data stored in one peer is not replicated in other peers, and when a query
is posed to a peer, query processing is done by both looking at local data, and collect-
ing relevant data from other peers according to the mappings. Cycles in the mappings
pose challenging problems, and various proposals have been put forward to deal with
them. For example, in [10], an epistemic semantics is proposed that weakens the usual
first-order semantics of mappings, and allows for both a better modeling of the modular
structure of the system, and decidable (even polynomially tractable w.r.t. data complex-
ity) query answering. Some papers look at peer data management under the perspective
of exchanging data between peers. Peers are again interconnected by means of map-
pings, but in this case, the focus is on materializing the data flowing from one peer to
another [14,2].

In this paper we are interested in virtual P2P data integration, and thus we do not deal
with the issue of materializing exchanged data. In particular, we aim at addressing an
important problem that is still unexplored in P2P data integration, namely inconsistency
tolerance, i.e., how to deal with inconsistencies in the data stored by the peers.

The problem of dealing with inconsistency has been addressed in several research
projects both in the context of a single database, and in the context of traditional data
integration. This problem is closely related to the studies in belief revision and up-
date [1,15], which deal with the problem of integrating new information with previ-
ous knowledge. In the context of databases, the underlying theory takes the form of a
database schema, and the revision process focuses on data. Thus, research in this set-
ting often concentrates on specialized algorithmic and complexity results for this case.
The general goal is to provide informative answers even when a database that does not
satisfy its integrity constraints (see, for example, [3,8]). Most of these papers rely on
the notion of repair as introduced in [3]: a repair of a database is a new database that
satisfies the constraints in the schema, and minimally differs from the original one.

The above results are not specifically tailored to the case of different consistent
sources that are mutually inconsistent, which is the case of interest in data integration.
More recently, some papers (see, e.g., [9,6]) have tackled data inconsistency in a data
integration setting, where the basic idea is to apply the repairs to data retrieved from
the sources, again according to some minimality criteria. To the best of our knowledge,
the only paper that deals with inconsistencies in P2P architectures is [5]. That approach
is based on the notion of “solution” for a peer P , i.e., an instance for the peer database
schema that respects both the mappings and the trust relationships that P has with other
peers, and stays as close as possible to the available data in the system. This mechanism
characterizes how each peer locally repairs data collected from other peers. On the con-
verse, we provide here a formal semantics to the whole P2PDIS which does not rely on
a particular repairing strategy adopted by the peers.

In this paper we follow the approach of [10] and study its extension as follows:

– We want to stress the modularity of P2P architectures, i.e., the fact that each peer
is autonomous. To this end, we formalize a P2P data integration system in terms
of a multi-modal epistemic logic, namely K45n, where each peer is modeled as
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a rational agent that exchanges knowledge/belief with other peers. This is in line
with the idea of modeling a distributed information system in terms of multi-agent
modal logic [13]. Our formalization nicely models the modular structure of the
system, without resorting to any assumptions, such as acyclicity, on its topology.

– We want our semantics to be inconsistency tolerant in two ways. First, we want a
P2PDIS to be able to “isolate” peers that are locally inconsistent, i.e., that contain
inconsistent data. Second, we aim at a system that is tolerant to P2P inconsistency,
i.e., is able to repair inconsistent data coming from different peers. In order to deal
with both types of tolerance, we introduce a novel nonmonotonic epistemic logic,
called K45A

n , which extends K45n with nonmonotonic modal operators. Within
this logic, we represent a P2PDIS in which each locally inconsistent peer is iso-
lated, and each other peer on the one hand, believes its own data, and, on the other
hand, maximizes information coming from other peers, but without falling into
inconsistency.

– Finally, we aim at designing a distributed query answering algorithm in the line
of the one proposed in [10]. Indeed, we present an algorithm that is sound and
complete with respect to our K45A

n -formalization of P2PDISs, thus showing that
query answering is decidable. More precisely, under reasonable assumptions on the
reasoning capabilities of each peer, our algorithm works in coNP data complexity
(i.e., the complexity with respect to the size of the data at the peer sources). We also
observe that the problem is coNP-hard already for very simple peer theories, thus
showing that our technique is optimal with respect to worst-case complexity.

The paper is organized as follows. In Section 2 we introduce the P2PDIS frame-
work. In Section 3 we model the framework in terms of the multi-modal epistemic
logic K45n. In Section 4 we present K45A

n , and use it for handling inconsistency.
In Section 5 we provide a sound and complete query answering technique, and es-
tablish computational complexity of query answering. In Section 6 we conclude the
paper.

2 Framework

In our work, we use the framework for peer-to-peer (P2P) data integration presented
in [10], which is briefly described in this section.

We refer to a fixed, infinite, denumerable set Γ of constants. Such constants are
shared by all peers, and denote the data items managed by the P2PDIS. Moreover,
given a relational alphabet A, we denote with LA the set of function-free first-order
logic (FOL) formulas whose relation symbols are in A and whose constants are in Γ .

A P2P data integration system P = {P1, . . . , Pn} is constituted by a set of n peers.
Each peer Pi ∈ P (cf. [19]) is defined as a tuple Pi = (id , G, S, L,M,L), where:

– id is a symbol that identifies the peer Pi within P , called the identifier of Pi.
– G is the schema of Pi, which is a finite set of formulas of LAG (representing local

integrity constraints), where AG is a relational alphabet (disjoint from the other
alphabets in P) called the alphabet of Pi. We assume that the language LAG of
peer Pi includes the special sentence ⊥i that is false in every interpretation for
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LAG . Intuitively, the peer schema provides an intensional view of the information
managed by the peer.

– S is the (local) source schema of Pi, which is simply a finite relational alphabet
(again disjoint from the other alphabets in P), called the local alphabet of Pi.
Intuitively, the source schema describes the structure of the data sources of the peer
(possibly obtained by wrapping physical sources), i.e., the sources where the real
data managed by the peer are stored.

– L is a set of (local) mapping assertions between G and S. Each local mapping
assertion is an expression of the form cqS � cqG, where cqS and cqG are two
conjunctive queries of the same arity, respectively over the source schema S and
over the peer schema G. The local mapping assertions establish the connection be-
tween the elements of the source schema and those of the peer schema in Pi. In
particular, an assertion of the form cqS � cqG specifies that all the data satis-
fying the query cqS over the sources also satisfy the concept in the peer schema
represented by the query cqG. In the terminology used in data integration, the com-
bination of peer schema, source schema, and local mapping assertions constitutes a
GLAV data integration system [22] managing a set of sound data sources S defined
in terms of a (virtual) global schema G.

– M is a set of P2P mapping assertions, which specify the semantic relationships
that the peer Pi has with the other peers. Each assertion in M is an expression of
the form cq ′ � cq , where cq , called the head of the assertion, is a conjunctive
query over the peer (schema of) Pi, while cq ′, called the tail of the assertion, is a
conjunctive query of the same arity as cq over (the schema of) one of the other peers
inP . A P2P mapping assertion cq ′ � cq from peerPj to peer Pi expresses the fact
that the Pj-concept represented by cq ′ is mapped to the Pi-concept represented by
cq . From an extensional point of view, the assertion specifies that every tuple that
can be retrieved from Pj by issuing query cq ′ satisfies cq in Pi. Observe that no
limitation is imposed on the topology of the whole set of P2P mapping assertions
in the system P , and hence, as in [10], the set of all P2P mappings may be cyclic.

– L is a relational query language specifying the class of queries that the peer Pi can
process. We assume that L is any fragment of FOL that accepts at least conjunctive
queries and the sentence ⊥i. We say that the queries in L are those accepted by
Pi. Notice that this implies that, for each P2P mapping assertion cq ′ � cq from
another peer Pj to peer Pi in M , we have that cq ′ is accepted by Pj .

An extension for a P2PDIS P = {P1, . . . , P2} is a set D = {D1, . . . , Dn}, where
each Di is an extension of the predicates in the local source schema of peer Pi.

A P2PDIS, together with an extension, is intended to be queried by external users. A
user enquires the whole system by accessing any peer P of P , and by issuing a query q
to P . The query q is processed by P if and only if q is expressed over the schema of P
and is accepted by P .

Example 1. Let us consider the P2PDIS in Figure 1, in which we have 4 peers P1, P2,
P3, and P4 (in the following, we assume that each peer Pi is identified by i).

The global schema of peer P1 is formed by a relation schema
Person1(name, livesIn, citizenship), where name is the key (we underline the key
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Citizen4(name, livesIn, citizenship)

S4(name, livesIn, citizenship)
("Joe", "Rome", "Italian")

Person3(name, livesIn, citizenship)
P1

Person1(name, livesIn, citizenship)

S1(name, livesIn)

("Joe", "Rome")

P2
Citizen2(name, birthDate, citizenship)

S2(name, birthDate, citizenship)
("Joe", "24/12/70", "Canadian")

P3

P4

Fig. 1. A P2P system

of a relation). P1 contains a local source S1(name, livesIn), mapped to the global view
by the assertion {x, y | S1(x, y)} � {x, y | ∃z. Person1(x, y, z)}. Moreover, it has a
P2P mapping assertion {x, z | ∃y. Citizen2(x, y, z)} � {x, z | ∃y. Person1(x, y, z)}
relating information in peer P2 to those in peer P1.
P2 has Citizen2(name, birthDate, citizenship) as global schema, and a local source

S2(name, birthDate, citizenship) mapped to the global schema through the local map-
ping {x, y, z | S2(x, y, z)} � {x, y, z | Citizen2(x, y, z)}. P2 has no P2P mappings.
P3 has Person3(name, livesIn, citizenship) as global schema, contains no local

sources, and has a P2P mapping {x, y, z | Person1(x, y, z)} � {x, y, z |
Person3(x, y, z)} with P1, and a P2P mapping {x, y, z | Citizen4(x, y, z)} �

{x, y, z | Person3(x, y, z)} with P4.
P4 has Citizen4(name, livesIn, citizenship) as global schema, and a local source

S4(name, livesIn, citizenship) mapped to the global schema through the local mapping
{x, y, z | S4(x, y, z)} � {x, y, z | Citizen4(x, y, z)}. P4 has no P2P mappings.

Finally, Figure 1 shows also an extension of the P2P data integration system,
which includes S1("Joe","Rome"), S2("Joe","24/12/70","Canadian"),
and S4("Joe","Rome","Italian").

3 Multi-modal Epistemic Formalization

In this section we present a logical formalization of P2PDISs of the kind described
above. Although one possible choice for formalizing such systems is classical first or-
der logic, it was argued in [10] that using epistemic logic brings several advantages.
However, while [10] resorted to epistemic logic with a single modal operator, here we
use a multi-modal epistemic logic, based on the premise that each peer in the system
can be seen as a rational agent. Furthermore, we move from the modal logic of knowl-
edge/belief S5 to the modal logic K45 [11,23]. More precisely, the formalization we
provide in this section, is based on K45n, the multi-modal version of K45 .

The language L(K45 n) of K45n is obtained from first-order logic by adding a set
K1, . . . ,Kn of modal operators, for the forming rule: if φ is a (possibly open) formula,
then also Kiφ is so, for 1 ≤ i ≤ n for a fixed n. In K45n, each modal operator is used
to formalize the epistemic state of a different agent. Informally, the formula Kiφ should
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be read as “φ is known to hold by the agent i”. In fact, in K45n, we do not have that
what is known by an agent must hold in the real world: the agent can have inaccurate
knowledge of what is true, i.e., believe something to be true although in reality it is
false. Often this kind of knowledge is referred to as belief. On the other hand, K45n

states that the agent has complete information on what it knows, i.e., if agent i knows φ
then it knows of knowing φ, and if agent i does not know φ, then it knows that it does
not know φ. In other words, the following assertions hold for every K45n formula φ:

Kiφ ⊃Ki(Kiφ) known as the axiom schema 4
¬Kiφ ⊃ Ki(¬Kiφ) known as the axiom schema 5

To define the semantics of K45n, we start from first-order interpretations. In par-
ticular, we restrict our attention to first-order interpretations that share a fixed infinite
domain ∆. We further assume that for each domain element d ∈ ∆, we have a unique
constant cd ∈ Γ that denotes exactly d, and, vice versa, that every constant cd ∈ Γ
denotes exactly one domain element d ∈ ∆1.

Formulas of K45n are interpreted over K45n-structures. A K45n-structure is a
Kripke structure E of the form (W, {R1, . . . Rn}, V ), where: W is a set whose ele-
ments are called possible worlds; V is a function assigning to each w ∈ W a first-order
interpretation V (w); and each Ri, called the accessibility relation for the modality Ki,
is a binary relation over W , with the following constraints:

if (w1, w2) ∈ Ri and (w2, w3) ∈ Ri then (w1, w3) ∈ Ri, i.e., Ri is transitive
if (w1, w2) ∈ Ri and (w1, w3) ∈ Ri then (w2, w3) ∈ Ri, i.e., Ri is euclidean

A K45n-interpretation is a pair (E,w), where E = (W, {R1, . . . Rn}, V ) is a
K45n-structure, and w is a world in W . A sentence (i.e., a closed formula) φ is true in
an interpretation (E,w) (or, is true on world w ∈W in E), written E,w |= φ iff:2

E,w |= P (c1, . . . , cn) iff V (w) |= P (c1, . . . , cn)
E,w |= φ1 ∧ φ2 iff E,w |= φ1 and E,w |= φ2

E,w |= ¬φ iff E,w �|= φ
E,w |= ∃x.ψ iff E,w |= ψx

c for some constant c
E,w |= Kiφ iff E,w′ |= φ for every w′ such that (w,w′) ∈ Ri

We say that a sentence φ is satisfiable if there exists a K45n-model for φ, i.e., a
K45n-interpretation E,w such that E,w |= φ, unsatisfiable otherwise. A model for a
set Σ of sentences is a model for every sentence inΣ. A sentence φ is logically implied
by a set Σ of sentences, written Σ |=K45n

φ, if and only if in every K45n-modelE,w
of Σ, we have that E,w |= φ.

Notice that, since each accessibility relation of a K45n-structure is transitive and
Euclidean, all instances of axiom schemas 4 and 5 are satisfied in every K45n-
interpretation, whereas no instance of the axiom schema (Kiφ ⊃ φ) is so.

1 In other words, the constants in Γ act as standard names [23].
2 We have used ψx

c to denote the formula obtained from ψ by substituting each free occurrence
of the variable x with the constant c.



96 D. Calvanese et al.

Due to the characteristics mentioned above, K45n is well-suited to formalize
P2PDISs of the kind presented in Section 2. Let P = {P1, . . . , Pn} be a P2PDIS in
which each peer Pi has identifier i. For each peer Pi = (i, G, S, L,M,L) we define the
theory TK(Pi) in K45n as the union of the following sentences:

– Global schema G of Pi: for each sentence φ in G, we have

Kiφ

Observe that φ is a first-order sentence expressed in the alphabet of Pi, which is
disjoint from the alphabets of all the other peers in P .

– Local mapping assertions L between G and the local source schema S: for each
mapping assertion {x | ∃y. bodycqS

(x,y)} � {x | ∃z. bodycqG
(x, z)} in L, we

have
Ki(∀x. ∃y. bodycqS

(x,y) ⊃ ∃z. bodycqG
(x, z))

– P2P mapping assertions M : for each P2P mapping assertion {x |
∃y. bodycqj

(x,y)} � {x | ∃z. bodycqi
(x, z)} between the peer j and the peer

i in M , we have

∀x. Kj(∃y. bodycqj
(x,y)) ⊃Ki(∃z. bodycqi

(x, z)) (1)

In words, this sentence specifies the following rule: for each tuple of values t,
if peer j knows the sentence ∃y. bodycqj

(t,y), then peer i knows the sentence
∃z. bodycqi

(t, z) holds.

We denote by TK(P) the theory corresponding to the P2PDIS P , i.e., TK(P) =⋃
i=1,...,n TK(Pi).

Example 2. We provide now the formalization of the P2PDIS of Example 1. The theory
TK(P1) modeling peer P1 is the conjunction of:

K1(∀x, y, y′, z, z′. Person1(x, y, z) ∧ Person1(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K1(∀x, y. S1(x, y) ⊃ ∃z. Person1(x, y, z))
∀x, z. K2(∃y. Citizen2(x, y, z)) ⊃K1(∃y. Person1(x, y, z))

The theory TK(P2) modeling peer P2 is the conjunction of:

K2(∀x, y, y′, z, z′. Citizen2(x, y, z) ∧ Citizen2(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K2(∀x, y, z. S2(x, y, z) ⊃ Citizen2(x, y, z))

The theory TK(P3) modeling peer P3 is the conjunction of:

K3(∀x, y, y′, z, z′. Person3(x, y, z) ∧ Person3(x, y′, z′) ⊃ y = y′ ∧ z = z′)
∀x, y. K1(∃z. Person1(x, z, y)) ⊃ K3∃z. Person3(x, z, y)
∀x, y, z. K4(Citizen4(x, y, z)) ⊃ K3Person3(x, y, z)

The theory TK(P4) modeling peer P4 is the conjunction of:

K4(∀x, y, y′, z, z′. Citizen4(x, y, z) ∧ Citizen4(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K4(∀x, y, z. S4(x, y, z) ⊃ Citizen4(x, y, z))
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The extension D = {D1, . . . , Dn} of a P2PDIS P is modeled as a sentence consti-
tuted by the conjunction of all facts corresponding to the tuples stored in the sources,
i.e., DB(D) =

∧n
i=1 DB(Di) where DB(Di) = Ki(

∧
t∈rDi r(t)).

A client of the P2PDIS interacts with one of the peers, say peer Pi, posing a query
to it. A query q is an open formula q(x) with free variables x expressed in the language
accepted by the peer Pi (we recall that such a language is a subset of first-order logic).
The semantics of a query q ∈ L posed to a peer Pi = (i, G, S, L,M,L) of P with
respect to an extension D is defined as the set of tuples ANSK45n

(q, i,P ,D) = {t |
TK(P) ∪ DB(D) |=K45n

Kiq(t)}, where q(t) denotes the sentence obtained from
the open formula q(x) by replacing all occurrences of the free variables in x with the
corresponding constants in t.

Interestingly, our current formalization extends the one in [10] in two ways. First, we
have moved to multi-modal epistemic logic, so as to model each peer as an autonomous
agent. Second, we have moved from S5 to K45, hence dropping the assumption that
what is believed by an agent is actually true. These modifications set the stage for the
treatment of inconsistencies to be presented next.

4 Inconsistency Tolerance

We now modify our basic framework so as to be able to handle inconsistency. In partic-
ular, we want the P2PDIS to be inconsistency-tolerant in the following sense:

1. When a peer is locally inconsistent, i.e., data at the sources in Pi contradict, via the
local mapping, the peer schema, making the whole peer inconsistent, the P2PDIS
should be equivalent to the one obtained by eliminating the peerPi from the system.
In other words, an inconsistent peer should be “isolated” from the other peers: in
this way, a local inconsistency does not affect the overall consistency (and meaning)
of the system. The choice of isolating locally inconsistent peers is motivated by the
modularity of P2PDISs pursued by our approach, in which each peer is considered
as a black box. Of course, the study of inconsistency might be also interesting in an
alternative setting not focused on modularity. However, this is outside the scope of
the present paper.

2. In the presence of P2P inconsistency, i.e., when in a peer Pi the data coming from
another peer Pj (through a P2P mapping) contradict the local data of Pi (or the data
coming to Pi from another peer Pk), the peer Pi should not reach an inconsistent
state: rather, it should discard a minimal amount of the data retrieved from the other
peers in order to preserve consistency.

We now formally state the above notions of local inconsistency and P2P inconsis-
tency. Let P = {P1, . . . , Pn} be a P2PDIS and D = {D1, . . . , Dn} be an extension D
for P . We say that:

– A peer Pi ∈ P is locally inconsistent wrt Di if T −
K (Pi) ∪DB(Di) |=K45n

Ki⊥i,
where T −

K (Pi) is obtained from TK(Pi) by dropping the sentences formalizing the
P2P mappings (otherwise we say that Pi is locally consistent wrt Di).

– A peer Pi ∈ P is P2P inconsistent wrt D if Pi is locally consistent wrt Di and
TK(P) ∪DB(D) |=K45n

Ki⊥i.
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As we said before, we aim at a formalization that makes our system inconsistency-
tolerant. It is immediate to see that no monotonic logic, e.g., K45n, is suited for this pur-
pose. Therefore, we now introduce a nonmonotonic variant of our logic, called K45A

n .

The Nonmonotonic Modal Logic K45A
n . The language L(K45A

n ) is an exten-
sion of L(K45 n), obtained by adding to the first-order modal language a new set
of modal operators, A1, . . . ,An. The semantics of L(K45A

n ) sentences is non-
monotonic, and is formally defined as follows. A K45A

n -structure E is a tuple
(W, {R1, . . . , Rn, R

a
1 , . . . , R

a
n}, V ), where W is a set of worlds, each Ri and each

Ra
i are transitive and Euclidean binary relations over W , and V is a function map-

ping worlds to first-order interpretations. Therefore, with respect to K45n-structures,
K45A

n -structures have n additional accessibility relations Ra
1 , . . . , R

a
n. Such relations

account for the additional modal operators A1, . . . ,An.
The notion of truth of a K45A

n sentence in a world of a K45A
n -structure is analogous

to the notion given in Section 3 for K45n, with the addition of:

E,w |= Aiφ iff E,w′ |= φ for each w′ such that (w,w′) ∈ Ra
i

So far, the logic K45A
n does not appear as a significant extension of K45n: indeed,

according to the above notion of truth, the new modal operators Ai are treated just like
any Ki operator in K45n, so there is no apparent reason to distinguish the Ai’s opera-
tors from the Ki’s. Actually, the different meaning of the two sets of modal operators in
the logic K45A

n , as well as its nonmonotonicity, is due to the following notion of K45A
n -

model for a sentence φ, which makes use of a preference order over K45A
n -structures.

Let E = (W, {R1, . . . , Rn, R
a
1 , . . . , R

a
n}, V ) and E′ = (W ′, {R′

1, . . . , R
′
n, R

a
1 ,

. . . , Ra
n}, V ′) be K45A

n -structures. We say that E′ is preferred to E if the following
conditions hold:

1. W ′ ⊇W and V ′(w) = V (w) for every w ∈ W ,
2. R′

i ⊇ Ri, for all i ∈ {1, . . . , n},
3. there exist w1 ∈ W , w2 ∈ W ′, i ∈ {1, . . . , n} such that (w1, w2) ∈ R′

i − Ri and
there exists no w′ ∈ W such that (w1, w

′) ∈ Ri and V (w′) = V ′(w2).

Intuitively, E′ is preferred to E if E′ is a structure “larger” than E (conditions 1 and
2) and there exists a world w1 which is connected in E′ (through the relation R′

i) to
a larger set of possible worlds than in E (condition 3), which means that w1 in E has
“less objective knowledge” than in E′ with respect to the modality Ki. For instance,
it can be immediately verified that, if E′ is preferred to E, then, for each first-order
sentence φ and for each w ∈ W , if E′, w |= Kiφ then E,w |= Kiφ, but not vice-versa.

Let φ ∈ L(K45A
n ), let E = (W,R1, . . . , Rn, R

a
1 , . . . , R

a
n, V ) be a K45A

n -structure,
and let w ∈W . (E,w) is a K45A

n -model for φ if the following conditions hold:

1. E,w |= φ;
2. Ri = Ra

i for each i ∈ {1, . . . , n};
3. there exists no K45A

n -structure E′ = (W ′, {R′
1, . . . , R

′
n, R

a
1 , . . . , R

a
n}, V ′) such

that E′ is preferred to E, and E′, w |= φ.

The notions of model of a set of sentences and of logical implication are defined in the
same way as in the case of K45n.
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The above semantics formalizes the idea of selecting K45A
n -structures that satisfy

two intuitive principles: (i) knowledge is minimal, which is realized through the notion
of preference between structures; and (ii) assumptions are justified by knowledge, which
is realized by the fact that, for each i, the meaning of the operators Ai and Ki is the
same, since Ri = Ra

i . Such semantic principles of minimal knowledge and justified
assumptions are well-known in nonmonotonic reasoning [24,26]. In particular, the logic
K45A

n can be seen as a first-order, multimodal generalization of [24].

Handling Local Inconsistency. To capture tolerance wrt local inconsistency, we need
to refine the epistemic formalization of P2P mapping assertions presented in Section 3
as follows: for each P2P mapping assertion of peer i in M , we replace in TK(Pi) the
sentence (1) with

∀x.¬Aj⊥j ∧Kj(∃y. bodycqj
(x,y)) ⊃ Ki(∃z. bodycqi

(x, z))

It is easy to see that, for a P2PDIS P without locally inconsistent peers, the new
formalization of P coincides with the formalization in the logic K45n.

On the other hand, the following theorem shows that, with the above change, the
P2PDIS is tolerant to local inconsistency, in the sense that it isolates the peers that are
locally inconsistent.

Theorem 1. Let P be a P2PDIS, let D be an extension for P , let Pi ∈ P be a
peer locally inconsistent wrt Di, and let P ′ = P − {Pi}. Then, for each query q
posed to a peer Pj ∈ P different from Pi, we have that ANSK45A

n
(q, j,P ,D) =

ANSK45A
n
(q, j,P ′,D).

Handling Both Local and P2P Inconsistency. We are now ready to formalize, in
K45A

n , P2PDISs that are inconsistency-tolerant wrt both local and P2P mappings.
Again, the K45A

n theory representing the P2PDIS P , denoted by TA(P), is similar
to the theory TK(P) defined in Section 3, but with an important difference on how to
formalize P2P mapping assertions. In particular, such a formalization is obtained by
replacing each sentence of the form (1) with

∀x.¬Aj⊥j ∧Kj(∃y. bodycqj
(x,y)) ∧ ¬Ai(¬∃z. bodycqi

(x, z)) ⊃ Ki(∃z. bodycqi
(x, z))

Informally, the above sentence specifies the following rule: for each tuple of val-
ues t, if peer j is consistent and knows the sentence∃y. bodycqj

(t,y), and the sen-
tence ∃z. bodycqi

(t, z) is consistent with what peer i knows, then peer i knows the
sentence ∃z. bodycqi

(t, z). In other words, information flows from peer j to peer i
through a P2P mapping assertion only if adding such information to peer i does not
give rise to a P2P inconsistency in peer i. More precisely, the meaning of the above
sentence in K45A

n is that exactly a maximal amount of information (i.e., a maximal set
of tuples) consistent with peer i flows from peer j to peer i through the P2P mapping
assertion.

The semantics ANSK45A
n
(q, i,P ,D) of a query q posed to a peer Pi of a P2PDIS

P wrt an extension D is defined as for K45n, except that now we have to take into
account the K45A

n formalization of the P . The following theorem shows that such a
formalization is a “conservative extension” of the one based on K45n, in the sense that,
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if no peer is locally inconsistent, and the data at the sources do not give rise to P2P
inconsistencies, then the semantics of queries is the same in the two logics.

Theorem 2. Let P be a P2PDIS and letD be an extension for P such that each peer in
P is neither locally inconsistent, nor P2P inconsistent wrt D. Then, for each peer Pi ∈
P and for each query q posed to Pi, ANSK45A

n
(q, i,P ,D) = ANSK45n

(q, i,P ,D).

Moreover, the following theorem shows that the new formalization enjoys one of the
basic properties for being tolerant to P2P inconsistency.

Theorem 3. Let P be a P2PDIS and let D be an extension for P . If Pi ∈ P is locally
consistent wrt Di, then TA(P) ∪DB(D) �|=K45A

n
Ki⊥i.

Finally, we remark that the above semantics implies that: (i) when inconsistency
arises between local data and non-local data in a peer, i.e., when data coming from the
peer sources through the local mapping contradicts the data retrieved by a peer through
a P2P mapping, then the peer always prefers the local data. Formally, in this case there
is one K45A

n -model for the P2PDIS, which represents the situation in which non-local
data is discarded; (ii) when inconsistency arises between two different pieces of non-
local data, i.e., when a piece of data retrieved by a peer through a P2P mapping contra-
dicts another piece of data retrieved through the P2P mappings, then no preference is
made between these two pieces of information, in the sense that in this case there are
two K45A

n -models for the P2PDIS, each of which represents the situation in which one
of the two pieces of data is discarded.

Example 3. Consider the P2PDIS of Example 1. It is easy to see that P3

gets from P1 that Person3("Joe","Rome","Canadian") and from P4 that
Person3("Joe","Rome","Italian"), but since name is a key for Person3 this
would give rise to an inconsistency. As a result, we have two K45A

n models,
one in which Person3("Joe","Rome","Canadian") holds, and one in which
Person3("Joe","Rome","Italian") holds, and hence P3 does not know anymore
the citizenship of "Joe". However, P3 still knows that "Joe" lives in "Rome". In
other words, the query {x | ∃y. Person3("Joe", x, y)} returns {"Rome"}, while the
query {y | ∃x. Person3("Joe", x, y)} returns the empty set.

5 Query Processing

In this section we study query answering in a P2P setting. We present a distributed
algorithm for answering queries in a P2P system, we prove its termination, soundness
and completeness, and then we use it to provide the complexity characterization of
the query answering problem. The algorithm extends the one presented in [7] with the
capability in handling inconsistency in accordance to the P2P system formalization in
the multimodal logic K45A

n .

The Algorithm. The algorithm is based on two main functionalities, called user query
handler and peer query handler, that are described in Figure 2. Each peer must provide
such functionalities in order to answer a user query posed to any peer in the P2P system
P . Such functionalities are executed over an extension D of P .
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Algorithm P.user-query-handler, with P = (id , G, S, L,M,L)
Input: user query q ∈ L
Output: ANSK45A

n
(q, id ,P ,D)

begin
generate a new transaction id T ;
(DP , rq) := P.peer-query-handler(q, T );
return Eval(rq,DP);

end

Algorithm P.peer-query-handler
Input: query q ∈ L, transaction id T
Output: Datalog¬ program DP = (DPI ,DPE), query predicate rq in DPI

begin
(rq,DPI) := computePerfectRef(q, σ(P ));
(⊥id ,DP ′

I) := computePerfectRef(⊥id , σ(P ));
DPI = DPI ∪DP ′

I ; DPE := ∅;
for each predicate r ∈ S ∪ AuxAlph(P ) occurring in DPI do

if getTransaction(r, T ) = notProcessed
then begin

setTransaction(r, T, processed);
if r ∈ S then DPE := DPE ∪ Ext(r,D);
else if isConsistent(π(r))
then begin

(DP ′, r′) := π(r).peer-query-handler(Q(r), T );
ρ := r(x)← r′(x), not ⊥id ;
DPI := DPI ∪ ρ ∪DP ′

I ;
DPE := DPE ∪ DP ′

E ;
end

end
return (DP , rq);

end

Fig. 2. Algorithms user-query-handler and peer-query-handler, executed over an extension D

Each user query q to the peer P is the input of the user query handler of P . Such
a module computes the set ANSK45A

n
(q,P ,D) by evaluating a suitable Datalog¬ pro-

gram, i.e., a Datalog program enriched with unstratified negation, which is returned by
the peer query handler of P . Roughly speaking, the module peer query handler refor-
mulates the query q in terms of a Datalog¬ program over the data sources of P , and
combines rules and facts thus obtained with the programs provided by consistent peers
connected to P that the module queries by calling their own peer query handler. A suit-
able rule (using negation in its body) is also added to the program to make data coming
from other peers contribute to answer computation only if they do not generate incon-
sistency within P (i.e., they do not contradict local data of the peer P or data coming
from another peer). Obviously, each queried peer can in turn propagate the computation
by invoking the peer query handlers of its neighborhoods. The association of the iden-
tifier of a transaction (started by the user query handler) to each peer query handler call
ensures termination of the process (even in the presence of cycles among peers).



102 D. Calvanese et al.

In the algorithms of Figure 2, DP denotes a Datalog¬ program constituted by a
set of rules DPI , and a set of facts DPE . The pair (rq ,DPI), denotes a Datalog¬

query, whereas Eval(rq,DP) indicates the evaluation of the predicate rq over the stable
models of the programDP [28]. Also, starting from P = (id , G, S, L,M,L) we define
a simplified peer σ(P ) = (id , G, S ∪ AuxAlph(P ), L ∪ LAuxAlph(P ), ∅,L), where we
drop the P2P mapping assertions, and “simulate” their effects by adding the new source
symbols AuxAlph(P ) (one for each assertion) and the new local mappingsLAuxAlph(P )

involving them. In particular for a mapping cq ′ � cq from peer P ′ to P , we introduce
a new source relation r with a local mapping {x | r(x} � cq , and use the notation
Q(r) to denote cq ′ and π(r) to denote P ′ (see also [10] for further details).

The peer query handler makes use of a function computePerfectRef which, taken
as input a query q and σ(P ), returns the perfect reformulation of q in σ(P ), that is
a query qr such that, for each extension D of the source predicates S ∪ AuxAlph(P ),
qD
r = {t | T (σ(P )) ∪ TD |= q(t)}, where T (σ(P )) is the first-order theory obtained

from TK(σ(P )) by dropping the modal operator in front of the assertions constructed
from G and L ∪ LAuxAlph(P ) (see Section 3) and TD is used denote the set of facts
corresponding to D. In the terminology used in data integration, computePerfectRef
computes the query that returns the certain answers to the query q posed to the single
peer σ(P ) wrt a source database D [22].

We assume that each peer P is able to compute the perfect reformulation in σ(P ) of
any query q accepted by P . We also assume that such reformulation can be expressed
in Datalog¬, and call reformulation capable each peer that satisfies the above assump-
tions. Notable cases in which the above assumption holds can be found in the extensive
literature on data integration and data exchange (see, e.g., [20,12]).

The use of the functions getTransaction and setTransaction guarantees that a peer
query handler never processes the same mapping query twice in the same transaction,
whereas isConsistent(π(r)) is used to check if the peer π(r) is locally consistent. This
function is implemented by asking the query ⊥j to π(r), where j is the identifier of
π(r). Furthermore, Ext(r,D) denotes the set {r(t) | t ∈ rD}, i.e., the extension of r
in D. Finally, the rule ρ := r(x) ← r′(x), not ⊥id specifies that data coming from
the peer π(r) contribute to the answer to the query q only if they do not generate any
inconsistency in the peer P . Such a mechanism does the job since we include in the
program DPI the rules that define the predicate ⊥id by means of the function call
computePerfectRef(⊥id , σ(P )).

Termination and Correctness. Termination of the algorithm follows immediately from
the fact that, through the use of the transaction states of the procedures getTransaction
and setTransaction in P.peer-query-handler, each mapping query associated with a
predicate in AuxAlph(P ) is processed at most once for each user query. Moreover, the
algorithm is sound and complete with respect to the K45A

n formalization of the P2P
system.

Theorem 4. Let P be a P2P system, P = (id , G, S, L,M,L) a peer in P , q ∈
L a query of arity n over P , and D an extension for P . Then, the execution of
P.user-query-handler(q) over D terminates, and a n-tuple t of constants in Γ is in
the set of returned answers if and only if t ∈ ANSK45A

n
(q, id ,P ,D).
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Complexity. Finally, we characterize the computational complexity of the problem of
query answering in our P2P data integration setting, with respect to the size of data
stored in the peers of P , i.e., the size of the extension D for P (data complexity). No-
tice that computing perfect reformulations through the algorithm computePerfectRef
does not depend on the data at the sources, therefore it does not affect data
complexity.

Theorem 5. Let P be a P2P system where each peer is reformulation capable. Let
P = (id , G, S, L,M,L) be a peer in P , D an extension for P , q ∈ L a query of arity
n over P , and t a n-tuple of constants in Γ . The problem of establishing whether t ∈
ANSK45A

n
(q, id ,P ,D) is in coNP in the size of D (i.e., in data complexity). Moreover,

it is coNP-hard in data complexity even in a setting where only key constraints are
allowed in peer schemas.

Proof (sketch). Membership in coNP follows from Theorem 4 and from the fact that
checking whether t ∈ Eval(rq,DP), where DP is a Datalog¬ program, is coNP-
complete in data complexity [17]. The hardness part can be proved by a reduction of
the three-colorability problem to our problem in the setting where only key constraints
are allowed in peer schemas. The proof follows the line used for establishing coNP-
hardness of query answering in the setting of a single inconsistent database in [8].

According to the above theorem, query answering in a P2PDIS under the K45A
n

semantics is decidable and our algorithm turns out to be optimal with respect to worst-
case data complexity. Notice that assuming that each peer is reformulation capable
strips off cases in which query answering is undecidable and guarantees its member-
ship in coNP. Obviously, with respect to [10], a computational complexity blow up in
query answering arises, which is the price that we have to pay to deal with inconsistent
data.

6 Conclusions

In this paper we have proposed a multi-modal nonmonotonic formalization for P2PDISs
which allowed us to properly model the modularity of a P2P system, localize local in-
consistency, and handle peers that may provide mutually inconsistent data. We have also
provided an algorithm for query processing in our setting that is sound and complete
with respect to the multi-modal semantics of the system, and have characterized the
computational complexity of the query answering problem. The results reported here
can be extended in several directions. First, we can remove the assumption that all peers
share a common alphabet of constants by making use of mapping tables [21]. Also, we
believe that preferences between peers can be smoothly integrated in our framework, in
the line of [5]. We aim also at extending the framework to the case in which each peer
in the system has its own strategy for resolving data inconsistency.
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