
ar
X

iv
:1

90
6.

07
81

1v
3 

 [
cs

.L
O

] 
 2

4 
Ju

n 
20

19

Formal Modeling and SMT-Based Parameterized

Verification of Data-Aware BPMN

(Extended Version)

Diego Calvanese1 , Silvio Ghilardi2, Alessandro Gianola1,

Marco Montali1, Andrey Rivkin1

1Faculty of Computer Science, Free University of Bozen-Bolzano (Italy)
2Dipartimento di Matematica, Università degli Studi di Milano (Italy)

Abstract. We propose DAB – a data-aware extension of BPMN where the pro-

cess operates over case and persistent data (partitioned into a read-only database

called catalog and a read-write database called repository). The model trades off

between expressiveness and the possibility of supporting parameterized verifica-

tion of safety properties on top of it. Specifically, taking inspiration from the lit-

erature on verification of artifact systems, we study verification problems where

safety properties are checked irrespectively of the content of the read-only cat-

alog, and accepting the potential presence of unboundedly many tuples in the

catalog and repository. We tackle such problems using an array-based backward

reachability procedure fully implemented in MCMT – a state-of-the-art array-

based SMT model checker. Notably, we prove that the procedure is sound and

complete for checking safety of DABs, and single out additional conditions that

guarantee its termination and, in turn, show decidability of checking safety.

1 Introduction

In recent years, increasing attention has been given to multi-perspective models of busi-

ness processes that strive to capture the interplay between the process and data dimen-

sions [25]. Conventional finite-state verification techniques only work in this setting if

data are abstractly represented, e.g., as finite sate machines [24] or process annotations

[28]. If data are instead tackled in their full generality, verifying whether a process meets

desired temporal properties (e.g., is safe) becomes highly undecidable, and cannot be

directly attacked using conventional finite-state model checking techniques [2]. This

triggered a flourishing research on the formalization and the boundaries of verifiability

of data-aware processes, focusing mainly on data- and artifact-centric models [2,12].

Recent results in this stream of research [14,5] come with two strong advantages. First,

they consider the relevant setting where the running process evolves a set of relations

(henceforth called a data repository) containing data objects that may have been in-

jected from the external environment (e.g., due to user interaction), or borrowed from

a read-only relational database with constraints (henceforth called catalog). The repos-

itory acts as a working memory and a log for the process. Notably, it may accumulate

unboundedly many tuples resulting from complex constructs in the process, such as

while loops whose repeated activities insert new tuples in the repository (e.g., the ap-

plications sent by candidates in response to a job offer). The catalog stores background,

http://arxiv.org/abs/1906.07811v3


contextual facts that do not change during the process execution, such as the catalog of

product types, the usernames and passwords of registered customers in an order-to-cash

process. In this setting, verification is studied parametrically to the catalog, so as to en-

sure that the process works as desired irrespectively of the specific read-only data stored

therein. This is crucial to verify the process under robust conditions, also considering

that actual data may not yet be available at modeling time. The second main advantage

of these techniques is that they tame the infinity of the state space to be verified with a

symbolic approach, in turn paving the way for the development of feasible implemen-

tations [21,13], or for the exploitation of state-of-the-art symbolic model checkers for

infinite-state systems [5,19].

In a parallel research line more conventional, activity-centric approaches, such as

the de-facto standard BPMN, have been extended towards data support, mainly focus-

ing on conceptual modeling and enactment [22,9,7], but not on verification. At the same

time, several formalisms have been brought forward to capture multi-perspective pro-

cesses based on Petri nets enriched with various forms of data: from data items locally

carried by tokens [27,20], to case data with different data types [10], and/or persistent

relational data manipulated with the full power of FOL/SQL [11,23]. While these for-

malisms qualify well to directly capture data-aware extensions of BPMN (e.g., [22,9]),

they suffer of two main limitations. On the foundational side, they require to specify the

data present in the read-only storage, and only allow boundedly many tuples (with an

a-priori known bound) to be stored in the read-write ones. On the applied side, they do

not lend themselves to be symbolically verified and have not yet led to the development

of actual verifiers.

This leads us to the main question tackled by this paper: how to extend BPMN

towards data support, guaranteeing the applicability of the existing parameterized ver-

ification techniques and the corresponding actual verifiers, so far studied only in the

artifact-centric setting? We answer this question by considering the framework of [5]

and the verification of safety properties (i.e., properties that must hold in every state of

the analyzed system). Specifically, our first contribution is a data-aware extension of

BPMN called DAB, which supports case data, as well as persistent relational data par-

titioned into a read-only catalog and a read-write repository. Case and persistent data

are used to express conditions in the process as well as task preconditions; tasks, in

turn, change the values of the case variables and insert/update/delete tuples into/from

the repository.

The resulting framework is similar, in spirit, to the BAUML approach [16], which

relies on UML and OCL instead of BPMN as we do here. While [16] approaches ver-

ification via a translation to first-order logic with time, we follow a different route,

by encoding DABs into the array-based artifact system framework from [5]. Thanks

to this encoding, we can effectively verify safety properties of DABs using the well-

established MCMT (Model Checker Modulo Theories) model checker [17,18]. MCMT

implements a symbolic backward reachability procedure that relies on state-of-the-art

Satisfiability Modulo Theories (SMT) solvers, and that has been widely employed to

verify infinite-state array-based systems.

Using the encoding above, we provide our second contribution: we show that this

backward reachability procedure is sound and complete when it comes to checking

2



safety of DABs. In this context, soundness means that whenever the procedure termi-

nates the returned answer is correct, whereas completeness means that if the process is

unsafe then the procedure will always discover it.

The fact that the procedure is sound and complete does not guarantee that it will

always terminate. This brings us to the third and last contribution of this paper: we in-

troduce further conditions that, by carefully controlling the interplay between the pro-

cess and data components, guarantee the termination of the procedure. Such conditions

are expressed as syntactic restrictions over the DAB under study, thus providing a con-

crete, BPMN-grounded counterpart of the conditions imposed in [21,5]. By exploiting

the encoding from DABs to array-based artifact systems, and the soundness and com-

pleteness of backward reachability, we derive that checking safety for the class of DABs

satisfying these conditions is decidable.

To show that our approach goes end-to-end from theory to actual verification, we

finally report some preliminary experiments demonstrating how MCMT checks safety

of DABs.

This paper is the extended version of [3]. Full proofs of our technical results and the

files of the experiments with MCMT can be found in [4].

2 Data-aware BPMN

We start by describing our formal model of data-aware BPMN processes (DABs). We

focus here on private, single-pool processes, analyzed considering a single case, sim-

ilarly to soudness analysis in workflow nets [29].1 Incoming messages are therefore

handled as pure nondeterministic events. The model combines a wide range of (block-

structured) BPMN control-flow constructs with task, event-reaction, and condition logic

that inspect and modify persistent as well as case data. Given the aim of our approach,

recall that if something is not supported in the language, it is because it would hamper

soundness and completeness of SMT-based (parameterized) verification.

First, some preliminary notation. We consider a set S = Sv⊎Sid of (semantic) types,

consisting of primitive types Sv accounting for data objects, and id types Sid accounting

for identifiers. We assume that each type S ∈ S comes with a (possibly infinite) domain

DS, a special constant undefS ∈DS to denote an undefined value in that domain, and a

type-wise equality operator =S. We omit the type and simply write undef and = when

clear from the context. We do not consider here additional type-specific predicates (such

as comparison and arithmetic operators for numerical primitive types); these will be

added in future work. In the following, we simply use typed as a shortcut for S-typed.

We also denote by D the overall domain of objects and identifiers (i.e., the union of

all domains in S). We consider a countably infinite set V of typed variables. Given a

variable or object x, we may explicitly indicate that x has type S by writing x : S. We

omit types whenever clear or irrelevant. We compactly indicate a possibly empty tuple

〈x1, . . . ,xn〉 of variables as ~x, and with slight abuse of notation, we write ~x ⊆ ~y if all

variables in~x also appear in~y.

1 The interplay among multiple cases is also crucial. The technical report [4] already contains an

extension of the framework presented here, in which multiple cases are modeled and verified.

3



2.1 The Data Schema

Consistently with the BPMN standard, we consider two main forms of data: case data2,

instantiated and manipulated on a per-case basis; persistent data (cf. data store refer-

ences in BPMN), accounting for global data that are accessed by all cases. For simplic-

ity, case data are defined at the whole process level, and are directly visible by all tasks

and subprocesses (without requiring the specification of input-output bindings and the

like).

To account for persistent data, we consider relational databases. We describe re-

lation schemas by using the named perspective, i.e., by assigning a dedicated typed

attribute to each component (i.e., column) of a relation schema. Also for an attribute,

we use the notation a : S to explicitly indicate its type.

Definition 1. A relation schema is a pair R = 〈N,A〉, where: (i) N = R.name is the

relation name; (ii) A = R.attrs is a nonempty tuple of attributes. ⊳

We call |A| the arity of R. We assume that distinct relation schemas use distinct names,

blurring the distinction between the two notions (i.e., we set R.name = R). We also

use the predicate notation R(A) to represent a relation schema 〈R,A〉. An example of

a relation schema is given by User(Uid:Int,Name:String), where the first component

represents the id-number of a user, whereas the second component is the string formed

by her name.

Data schema. First of all, we define the catalog, i.e., a read-only, persistent storage

of data that is not modified during the execution of the process. Such a storage could

contain, for example, the catalog of product types and the set of registered customers

and their addresses in an order-to-cash scenario.

Definition 2. A catalog Cat is a set of relation schemas satisfying the following require-

ments:

(single-column primary key) Every relation schema R is such that the first attribute

in R.attrs has type in Sid , and denotes the primary key of the relation; we refer to

such attribute using the dot notation R.id.

(non-ambiguity of primary keys) for every pair R1 and R2 of distinct relation

schemas in Cat, we have that the types of R1.id and R2.id are different.

(foreign keys) for every relation schema R∈Cat and non-id attribute a∈ R.attrs\R.id

with type S ∈ Sid , there exists a relation schema R2 ∈R such that the type of R2.id

is S; a is hence a foreign key referring to R2. ⊳

Example 1. Consider a simplified example of a job hiring process in a company. To

represent information related to the process we make use of the Cat consisting of the

following relation schemas:

• JobCategory(Jcid:jobcatID) contains the different job categories available in the

company (e.g., programmer, analyst, and the like) - we just store here the identifiers

of such categories;

• User(Uid:userID,Name:StringName,Age:NumAge) stores data about users regis-

tered to the company website, and who are potentially interested in job positions

offered by the company.

2 These are called data objects in BPMN, but we prefer to use the term case data to avoid name

clashes with the formal notions.

4



Each case of the process is about a job. Jobs are identified by the type jobcatID. ⊳

We now define the data schema of a BPMN process, which combines a catalog

with: (i) a persistent data repository, consisting of updatable relation schemas possibly

referring to the catalog; (ii) a set of case variables, constituting local data carried by

each process case.

Definition 3. A data schema D is a tuple 〈Cat,Repo,X〉, where (i) Cat = D.cat is a

catalog, (ii) Repo =D.repo is a set of relation schemas called repository, and (iii) X =
D.cvars⊂ V is a finite set of typed variables called case variables, such that:

• for every relation schema R ∈ Repo and every attribute a ∈ R.attrs whose type is

S ∈ Sid , there exists R ∈ Cat such that the type of R.id is S;

• for every case variable x∈ X whose type is S ∈ Sid , there exists R∈ Cat such that the

type of R.id is S. ⊳

We use bold-face to distinguish a case variable x from a “normal” variable x. It is

worth noting that relation schemas in the repository are not equipped with an explicit

primary key, and thus they cannot reference each other, but may contain foreign keys

pointing to the catalog or the case identifiers. This is essential towards soundness and

completeness of SMT-based verification of DABs. It will be clear how tuples can be

inserted and removed from the repository once we will introduce updates.

Example 2. To manage key information about the applications submitted for the job

hiring, the company employs a repository that consists of one relation schema:

Application(Jcid:JobcatID,Uid:UserID,Eligible:Bool)

NumScore is a finite-domain type containing 100 scores in the range [1,100]. For read-

ability, we use the usual comparison predicates for variables of type NumScore: this is

syntactic sugar and does not require to introduce datatype predicates in our framework.

Since each posted job is created using a dedicated portal, its corresponding data do not

have to be stored persistently and thus can be maintained just for a given case. At the

same time, some specific values have to be moved from a specific case to the reposi-

tory and vice-versa. This is done by resorting to the following case variables D.cvars:
(i) jcid : jobcatID references a job type from the catalog, matching the type of job as-

sociated to the case; (ii) uid : userID references the identifier of a user who is applying

for the job associated to the case; (iii) result : Bool indicates whether the user identified

by uid is eligible for winning the position or not; (iv) qualif : Bool indicates whether

the user identified by uid qualifies for directly getting the job (without the need of car-

rying out a comparative evaluation of all applicants); (v) winner : userID contains the

identifier of the applicant winning the position. ⊳

At runtime, a data snapshot of a data schema consists of three components:

• An immutable catalog instance, i.e., a fixed set of tuples for each relation schema

contained therein, so that the primary and foreign keys are satisfied.

• An assignment mapping case variables to corresponding data objects.

• A repository instance, i.e., a set of tuples forming a relation for each schema con-

tained therein, so that the foreign key constraints pointing to the catalog are satisfied.

Each tuple is associated to a distinct primary key that is not explicitly accessible.

Querying the data schema. To inspect the data contained in a snapshot, we need suit-

able query languages operating over the data schema of that snapshot. We start by con-

5



sidering boolean conditions over (case) variables. These conditions will be attached to

choice points in the process.

Definition 4. A condition is a formula of the form ϕ ::= (x = y) | ¬ϕ | ϕ1∧ϕ2, where

x and y are variables from V or constant objects from D. ⊳

We make use of the standard abbreviation ϕ1∨ϕ2 = ¬(¬ϕ1∧¬ϕ2).
We now extend conditions to also access the data stored in the catalog and repos-

itory, and to ask for data objects subject to constraints. We consider the well-known

language of unions of conjunctive queries with atomic negation, which correspond to

unions of select-project-join SQL queries with table filters.

Definition 5. A conjunctive query with filters over a data componentD is a formula of

the form Q ::= ϕ | R(x1, . . . ,xn) | ¬R(x1, . . . ,xn) | Q1∧Q2, where ϕ is a condition with

only atomic negation, R ∈D.cat∪D.repo is a relation schema of arity n, and x1, . . . ,xn

are variables from V (including D.cvars) or constant objects from D. We denote by

free(Q) the set of variables occurring in Q that are not case variables in D.cvars. ⊳

For example, a conjunctive query JobCategory( jt)∧ jt 6= HR lists all the job categories

available in the company, apart from HR.

Definition 6. A guard G over a data component D is an expression of the form

q(~x) ←
∨n

i=1 Qi, where: (i) q(~x) is the head of the guard with answer variables ~x;

(ii) each Qi is a conjunctive query with filters over D; (iii) for some i ∈ {1, . . . ,n},
~x⊆ free(Qi). We denote by casevars(G)⊆ D.cvars the set of case variables used in G,

and by normvars(G) =
⋃

i∈{1,...,n} free(Qi) the other variables used in G. ⊳

To distinguish guard heads from relations, we write the former in camel case, while the

latter shall always begin with capital letters.

Definition 7. A guard G over a data component D is repo-free if none of its atoms

queries a relation schema from D.repo. ⊳

Notice that going beyond this guard query language (e.g., by introducing univer-

sal quantification) would hamper the soundness and completeness of SMT-based ver-

ification over the resulting DABs. We will come back to this important aspect in the

conclusion.

As anticipated before, this language can be seen as a standard query language

to retrieve data from a snapshot, but also as a mechanism to constrain the combi-

nations of data objects that can be injected into the process. E.g., a simple guard

input(y:string,z:string)→ y 6= z returns all pairs of strings that are different from each

other. Picking an answer in this (infinite) set of pairs can be interpreted as a (con-

strained) user input where the user decides the values for y and z.

2.2 Tasks, Events, and Impact on Data

We now formalize how the process can access and update the data component when

executing a task or reacting to the trigger of an external event.

The update logic. We start by discussing how data maintained in a snapshot can be

subject to change while executing the process.

Definition 8. Given a data schema D, an update specification α is a pair 〈G,E〉,
where: (i) G = α.pre is a guard over D of the form q(~x)← Q, called precondition;

6



(ii) E = α.eff is an effect rule that changes the snapshot of D, as described next. Each

effect rule has one of the following forms:

(Insert&Set) INSERT~u INTO R AND SET x1 = v1, . . . ,xn = vn, where: (i)~u,~v are vari-

ables in ~x or constant objects from D; (ii)~x ∈ D.cvars are distinct case variables;

(iii) R is a relation schema fromD.repo whose arity (and types) match~u. Either the

INSERT or SET parts may be omitted, obtaining a pure Insert rule or Set rule.

(Delete&Set) DEL~u FROM R AND SET x1 = v1, . . . ,xn = vn, where: (i)~u,~v are variables

in ~x or constant objects from D; (ii)~x ∈ D.cvars; (iii) R is a relation schema from

D.repo whose arity (and types) match ~u. As in the previous rule type, the AND SET

part may be omitted, obtaining a pure (repository) Delete rule.

(Conditional update) UPDATE R(~v) IF ψ(~u,~v) THEN η1 ELSE η2, where: (i) ~u is a

tuple containing variables in ~x or constant objects from D; (ii) ψ is a repo-free

guard (called filter); (iii) R is a relation schema from D.repo; (iv) ~v is a tuple

of new variables, i.e., such that ~v∩ (~u∪D.cvars) = /0; (v) ηi is either an atomic

formula of the form R(~u′) with ~u′ a tuple of elements from ~x∪D∪~v, or a nested

IF . . .THEN . . .ELSE. ⊳

We now comment on the semantics of update specifications. An update specifi-

cation α is executable in a given data snapshot if there is at least one answer to the

precondition α.pre in that snapshot. If this is the case, then the process executor(s) can

nondeterministically decide which answer to pick so as to bind the answer variables of

α.pre to corresponding data objects in D. This confirms the interpretation discussed in

Section 2.1 for which the answer variables of α.pre can be seen as constrained user

inputs in case multiple bindings are available.

Once a specific binding for the answer variables is selected, the corresponding effect

rule α.eff , instantiated using that binding, is issued. How this affects the current data

snapshot depends on which effect rule is adopted.

If α.eff is an insert&set rule, the binding is used to simultaneously insert a tuple in

one of the repository relations, and update some of the case variables – with the implicit

assumption that those not explicitly mentioned in the SET part maintain their current

values. Since repository relations do not have an explicit primary key, two possible

semantics can be attached to the insertion of a tuple ~u in the instance of a repository

relation R:

(multiset insertion) Upon insertion, ~u gets an implicit, fresh primary key. The inser-

tion then always results in the genuine addition of the tuple to the current instance

of R, even in the case where the tuple already exists there.

(set insertion) In this case, R comes not only with its implicit primary key, but also

with an additional, genuine key constraint defined over a subset K ⊆ R.attrs of its

attributes. Upon insertion, if there already exists a tuple in the current instance of R

that agrees with ~u on K, then that tuple is updated according to ~u. If no such tuple

exists, then as in the previous case~u gets implicitly assigned to a fresh primary key,

and inserted into the current instance of R. By default, if no explicit key is defined

over R, then the entire set of attributes R.attrs is considered as a key, consequently

enforcing a set semantics for insertion.

Example 3. We continue the job hiring example, by considering two update specifica-

tions of type insert&set. When a new case is created, the first update is about indicating

7



what is the category of job associated to the case. This is done through the update

specification InsJobCat, where InsJobCat.pre selects a job category from the corre-

sponding catalog relation, while InsJobCat.eff assigns the selected job category to the

case variable jcid:

InsJobCat.pre, getJobType(c)← JobCategory(c)

InsJobCat.eff , SET jcid = c

When the case receives an application, the user id is picked from the corresponding

User via the update specification InsUser, where:

InsUser.pre, getUser(u)← User(u,n,a)

InsUser.eff , SET uid = u

A different usage of precondition, resembling a pure external choice, is the update spec-

ification CheckQual to handle a quick evaluation of the candidate and check whether

she has such a high profile qualifying her to directly get an offer:

CheckQual.pre, isQualified(q : Bool)← true

CheckQual.eff , SET qualif = q

As an example of insertion rule, we consider the situation where the candidate whose id

is currently stored in the case variable uid has not been directly judged as qualified. She

is consequently subject to a more fine-grained evaluation of her application, resulting in

a score that is then registered in the repository (together with the applicant data). This

is done via the EvalApp specification:

EvalApp.pre, getScore(s : NumScore)← 1≤ s∧ s≤ 100

EvalApp.eff , INSERT 〈jcid,uid,s,undef〉 INTO Application

Here, the insertion indicates an undef eligibility, since it will be assessed in a conse-

quent step of the process.

Notice that, by adopting the multiset insertion semantics, the same user may apply

multiple times for the same job (resulting multiple times as applicant). With a set in-

sertion semantics, we could enforce the uniqueness of the application by declaring the

second component (i.e., the user id) of Application as a key. ⊳

If α.eff is a delete&set rule, then the executability of the update is subject to the fact

that the tuple ~u selected by the binding and to be removed from R, is actually present

in the current instance of R. If so, the binding is used to simultaneously delete ~u from

R and update some of the case variables – with the implicit assumption that those not

explicitly mentioned in the SET part maintain their current values.

Finally, a conditional update rule applies, tuple by tuple, a bulk operation over the

content of R. For each tuple in R, if it passes the filter associated to the rule, then the

tuple is updated according to the THEN part, whereas if the filter evaluates to false, the

tuple is updated according to the ELSE part.

Example 4. Continuing with our running example, we now consider the update speci-

fication MarkE handling the situation where no candidate has been directly considered

as qualified, and so the eligibility of all received (and evaluated) applications has to be

assessed. Here we consider that each application is eligible if and only if its evaluation

8



resulted in a score greater than 80. Technically, MarkE.pre is a true precondition, and:

MarkE.eff , UPDATE Application( jc,u,s,e)
IFs > 80 THEN Application( jc,u,s,true)
ELSE Application( jc,u,s,false)

If there is at least one eligible candidate, she can be selected as a winner using

the SelWinner update specification, which deletes the selected winner tuple from

Application, and transfers its content to the corresponding case variables (also ensuring

that the winner case variable is set to the applicant id). Technically:

SelWinner.pre, getWinner( jc,u,s,e)← Application( jc,u,s,e)
∧e = true

SelWinner.eff , DEL 〈 jc,u,s,e〉 FROM Application

AND SET jcid = jc,uid = u,winner = u,result = e,qualif = false

Deleting the tuple is useful in the situation where the selected winner may refuse the job,

and consequently should not be considered again if a new winner selection is carried

out. To keep such tuple in the repository, one would just need to remove the DEL part

from SelWinner.eff . ⊳

The task/event logic. We now substantiate how the update logic is used to specify the

task/event logic within a DAB process. The first important observation, not related to

our specific approach, but inherently present whenever the process control flow is en-

riched with relational data, is that update effects manipulating the repository must be

executed in an atomic, non-interruptible way. This is essential to ensure that insertion-

s/deletions into/from the repository are applied on the same data snapshot where the

precondition is checked. Breaking simultaneity would lead to nondeterministic inter-

leave with other update specifications potentially operating over the same portion of

the repository. This is why in our approach we consider two types of task: atomic and

nonatomic.

Each atomic task/catching event is associated to a corresponding update specifi-

cation. In the case of tasks, the specification precondition indicates under which cir-

cumstances the task can be enacted, and the specification effect how enacting the task

impacts on the underlying data snapshot. In the case of events, the specification pre-

condition constrains the data payload that comes with the event (possibly depending on

the data snapshot, which is global and therefore accessible also from the perspective of

an external event trigger), and the specification effect how reacting to a triggered event

impacts on the underlying data snapshot. More concretely, this is realized according to

the following lifecycle.

The task/event is initially idle, i.e., quiescent. When the progression of a case

reaches an idle task/event, such a task/event becomes enabled. An enabled

task/event may nondeterministically fire depending on the choice of the process ex-

ecutor(s). Upon firing, a binding satisfying the precondition of the update specification

associated to the task/event is selected, consequently grounding and applying the corre-

sponding effect. At the same time, the lifecycle moves from enabled to compl. Finally,

a compl task/event triggers the progression of its case depending on the process-control

flow, simultaneously bringing the task/event back to the idle state (which would then

9



Block Attributes

empty

task A
(1) Atomic/non-atomic

(2) update specification.

catch event e
(1) Type of event e (msg, timer, none)

(2) update specification.

process block es B et

(1) Type of start event es (msg, timer, none)

(2) Update specification of es

(3) Type of end event et (msg, none)

(4) Update specification of et

(5) Arbitrary nested block B

subprocess
A
+

(1) Inner process block

Fig. 1: DAB Basic blocks

make it possible for the task to be executed again later, if the process control-flow dic-

tates so).

The lifecycle of a nonatomic task diverges in two crucial respects. First of all,

upon firing it moves from enabled to active, and later on nondeterministically from

active to compl (thus having a duration). The precondition of its update specification

is checked and bound to one of the available answers when the task becomes active,

while the corresponding effect is applied when the task becomes compl. Since these

two transitions occur asynchronously, to avoid the aforementioned transactional issues

we assume that the effect operates, in this context, only on case variables (and not on

the repository).

2.3 Process Schema

A process schema consists of a block-structured BPMN diagram, enriched with con-

ditions and update effects expressed over a given data schema, according to what de-

scribed in the previous sections. As for the control flow, we consider a wide range of

block-structured patterns compliant with the standard. We focus on private BPMN pro-

cesses, thereby handling incoming messages in a pure nondeterministic way. So we do

for timer events, nondeterministically accounting for their expiration without entering

into their metric temporal semantics. Focusing on block-structured components helps us

in obtaining a direct, execution semantics, and a consequent modular and clean transla-

tion of various BPMN constructs (including boundary events and exception handling).

However, it is important to stress that our approach would seamlessly work also for

non-structured processes where each case introduces boundedly many tokens.

As usual, blocks are recursively decomposed into sub-blocks, the leaves being task

or empty blocks. Depending on its type, a block may come with one or more nested

blocks, and be associated with other elements, such as conditions, types of the involved

events, and the like. We consider a wide range of blocks, covering basic (cf. Figure 1),

flow (cf. Figure 2), and exception handling (cf. Figure 3) patterns. Figure 4 gives an idea

about what is covered by our approach. With these blocks at hand, we finally obtain the

full definition of a DAB.

10



Block Attributes

sequence B1 B2 (1) Arbitrary nested blocks B1 and B2

possible

completion X
ϕ1

e
ϕ2

(1) Conditions ϕ1 and ϕ2

(2) Type of end event e (error,msg,none)

deferred

choice

/ parallel

g

B1

B2

g (1) Gateway type g: X (def. choice), + (parallel)

(2) Arbitrary nested blocks B1 and B2

choice g

B1

B2

g

ϕ1

ϕ2

(1) Gateway type g: X/O (excl./incl. choice)

(2) Conditions ϕ1 and ϕ2

(3) Arbitrary nested blocks B1 and B2

loop X

B1

B2

X
ϕ1

ϕ1

(1) Conditions ϕ1 and ϕ2

(2) Arbitrary nested blocks B1 and B2

event-driven

choice

E1

E2

B1

B2

X
(1) Cath event nested blocks E1 and E2

(2) Arbitrary nested blocks B1 and B2

Fig. 2: Flow DAB blocks; for simplicity, we consider only two nested blocks, but mul-

tiple nested blocks can be seamlessly handled.

Definition 9. A DAB M is a pair 〈D,P〉 where D is a data schema, and P is a root

process block such that all conditions and update effects attached to P and its descen-

dant blocks are expressed over D. ⊳

Example 5. The full hiring job process is shown in Figure 4, using the update effects

described in Examples 3 and 4. Intuitively, the process works as follows. A case is

created when a job is posted, and enters into a looping subprocess where it expects

candidates to apply. Specifically, the case waits for an incoming application, or for an

external message signalling that the hiring has to be stopped (e.g., because too much

time has passed from the posting). Whenever an application is received, the CV of the

candidate is evaluated, with two possible outcomes. The first outcome indicates that

the candidate directly qualifies for the position, hence no further applications should

be considered. In this case, the process continues by declaring the candidate as winner,

and making an offer to her. The second outcome of the CV evaluation is instead that

the candidate does not directly qualify. A more detailed evaluation is then carried out,

assigning a score to the application and storing the outcome into the process repository,

11



Block Attributes

backward

exception X A

e

B

(1) Type of boundary event e (error,msg,timer)

(2) Subprocess nested block A

(3) Arbitrary nested block B

forward

exception
A B1

B2

X

e

(1) Type of boundary event e (error,msg,timer)

(2) Subprocess nested block A

(3) Arbitrary nested blocks B1 and B2

forward

non-interrupting

exception
A B1

B2

O

e

(1) Type of boundary event e (msg,timer)

(2) Subprocess nested block A

(3) Arbitrary nested blocks B1 and B2

Fig. 3: DAB exception handling blocks; for simplicity, we show a single boundary

event, but multiple boundary events and their corresponding handlers can be seamlessly

handled.

then waiting for additional applications to come. When the application management

subprocess is stopped (which we model through an error so as to test various types of

blocks in the experiments reported in Section 3.3), the applications present in the repos-

itory are all processed in parallel, declaring which candidates are eligible and which not

depending on their scores. Among the eligible ones, a winner is then selected, making

an offer to her. We implicitly assume here that at least one applicant is eligible, but we

can easily extend the DAB to account also for the case where no application is eligible.⊳

As customary, each block has a lifecycle that indicates the current state of the block,

and how the state may evolve depending on the specific semantics of the block, and the

evolution of its inner blocks. In Section 2.2 we have already characterized the lifecycle

of tasks and catch events. For the other blocks, we continue to use the standard states

idle, enabled, active and compl. We use the very same rules of execution described

in the BPMN standard to regulate the progression of blocks through such states, taking

advantage from the fact that, being the process block-structured, only one instance of

a block can be enabled/active at a given time for a given case. For example, the life-

cycle of a sequence block S with nested blocks B1 and B2 can be described as follows

(considering that the transitions of S from idle to enabled and from compl back to

idle are inductively regulated by its parent block): (i) if S is enabled, then it becomes

active, simultaneously inducing a transition of B1 from idle to enabled; (ii) if B1 is

compl, then it becomes idle, simultaneously inducing a transition of B2 from idle to

enabled; (iii) if B2 is compl, then it becomes idle, simultaneously inducing S to move

from active to compl. The lifecycle of other block types can be defined analogously.

2.4 Execution Semantics

We intuitively describe the execution semantics of a case over DABM= 〈D,P〉, using

the update/task logic and progression rules of blocks as a basis. Upon execution, each

state ofM is characterized by anM-snapshot, in turn constituted by a data snapshot

12



Job posted

[InsJobCat]
App. received

[InsUser]

Stop Stopped

Evaluate

CV

[CheckQual]

qualif =
true

Evaluate

Application
[EvalApp]

qualif =
false

Stopped

Decide

Eligible

Candidates

[MarkE]

Select

Winner
[SelWinner]

Assign

Winner

Make

Offer

Fig. 4: The job hiring process. Elements in squared brackets attach the update specifi-

cations in Examples 3 and 4 to corresponding tasks/events.

indexes

0
1

..
.

a

s

a
insert "s" into a

(a) Insertion of value "s"

into an empty string array

indexes

catalog

0
1

..
.

JobCategory

analyst

programmer

u1 alice 20

u2 bob 23

u3 dana 22

User

Jcid UidScore Eli

Application

Jcid UidScore Eli

Application

Jcid Uid

85

Score Eli

Application
u3 applies as programmer her application scores 85

(b) Array-based representation of the job hiring repository of Ex-

ample 2, and manipulation of a job application with a fixed catalog.

Fig. 5: Graphical intuition showing the evolution of different array-based systems. The

current state of the array is represented in green, whereas consequent states resulting

from updates are shown in blue and violet. Empty cells implicitly hold the undef value

of their corresponding type.

of D (cf. Section 2.1), and a further assignment mapping each block in P to its current

lifecycle state.

Initially, the data snapshot fixes the immutable content of the catalog D.cat, while

the repository instance is empty, the case assignment is initialized to all undef, and the

control assignment assigns to all blocks in P the idle state, with the exception of P
itself, which is enabled. At each moment in time, theM-snapshot is then evolved by

nondeterministically evolving the case through one of the executable steps in the pro-

cess, depending on the currentM-snapshot. If the execution step is about the progres-

sion of the case inside the process control-flow, then the control assignment is updated.

If instead the execution step is about the application of some update effect, the newM
-snapshot is then obtained by following Section 2.2.

3 Parameterized Verification of Safety Properties

We now focus on parameterized verification of DABs using SMT-based techniques

grounded in the theory of arrays.

13



3.1 Array-Based Artifact Systems and Safety Checking

We recall the key notions behind array-based systems, and the array-based artifact sys-

tems recently studied in [5] to bridge the gap between SMT-based model checking

of array-based systems [17,18], and verification of data- and artifact-centric processes

[12,14].

In general terms, an array-based system logically describes the evolution of array

data structures of unbounded size. Figure 5a intuitively shows a simple array-based

system consisting of a single array storing strings. The logical representation of an

array relies on a theory with two types of sorts, one accounting for the array indexes,

and the other for the elements stored in the array cells. Since the content of an array

changes over time, it is referred to using a function variable, called array state variable.

The interpretation of such a variable in a state is that of a total function mapping indexes

to elements: for each index, it returns the element stored by the array in that index. In

the initial green state of Figure 5a, the array a is interpreted as a total function mapping

every index to the undefined string.

Starting from an initial configuration, the interpretation changes when moving from

one state to another, reflecting the intended manipulation on the array. Hence, the def-

inition of an array-based system with array state variable a always requires (i) a state

formula I(a) describing the initial configuration(s) of the array a; (ii) a formula τ(a,a′)
describing the transitions that transform the content of the array from a to a′. By suit-

ably using logical operators, τ can express in a single formula a repertoire of different

updates over a.

In such a setting, one of the most fundamental, and studied, verification prob-

lem is that of checking whether the evolution induced by τ over a starting from a

configuration in I(a) eventually reaches one of the unsafe configurations described

by a state formula K(a). This, in turn, can be tackled by showing that the formula

I(a0)∧ τ(a0,a1)∧ ·· · ∧ τ(an−1,an)∧K(an) is satisfiable for some n. If no such n ex-

ists, then no finite run of the system can reach the undesired configurations, and hence

the system is safe. Several mature model checkers exist to ascertain (un)safety of these

type of systems, such as MCMT [19] and CUBICLE [8]. Specifically, MCMT handles

this verification problem through a symbolic backward reachability procedure. This is

a goal-directed procedure that starts from the undesired states captured by K(a), and it-

eratively computes so-called preimages, i.e., logical formulae symbolically describing

those states that, through consecutive applications of τ , directly or indirectly reach con-

figurations satisfying K(a). Two checks are then applied, so as to determine whether the

procedure has to stop or must continue the iteration. The first one, called fixpoint check,

tests if the newly computed preimages all coincide with already computed states: if no

new state can be produced, the procedure stops by emitting safe. Otherwise, a second

test, called fixpoint check, is applied to determine if one of such iterated preimages sat-

isfies I(a): if so, the procedure stops by emitting unsafe as a verdict; if not, new iterated

preimages are computed and the procedure is repeated. MCMT generates the proof obli-

gations arising from safety and fixpoint checks, and passes them to a state-of-the-art

SMT solver (currently, YICES [15] is employed).

In [5], we have extended array-based systems towards an array-based version of the

artifact-centric approach, considering in particular the sophisticated model in [21]. In

14



the resulting formalism, called RAS, a relational artifact system accesses a read-only

database with keys and foreign keys (cf. our DAB catalog). In addition, it operates over

a set of relations possibly containing unboundedly many updatable entries (cf. our DAB

repository). Figure 5b gives an intuitive idea of how this type of system looks like, us-

ing the catalog and repository relations from Example 2. Contrast this with the simple

array system of Figure 5a. On the one hand, the catalog is treated as a rich, background

theory, which can be considered as a more sophisticated version of the element sort in

basic array systems. On the other hand, each repository relation is treated as a set of ar-

rays, in which each array accounts for one component of the corresponding repository

relation. A tuple in the relation is reconstructed by accessing all such arrays with the

same index. In [5], we focus on parameterized (un)safety of RAS, verifying whether

there exists an instance of the read-only database such that the artifact system can reach

an unsafe configuration. Since the cells of the arrays may point to identifiers in the cat-

alog, in turn related to other catalog relations via foreign keys, the standard backward

reachability procedure needs to be suitably revised [5]. In fact, when computing preim-

age formulae over RAS, existentially quantified “data” variables may be introduced,

breaking the format of state formulae. To restore the key property that the preimage of

a state is again represented symbolically as a state formula, such additional quantified

variables must be eliminated. Suitable quantifier elimination techniques have been stud-

ied in [5,6] and implemented in the latest version 2.8 of MCMT, which can now natively

handle the verification of RAS. In addition, while the unsafety verification is in general

undecidable for RAS, several subclasses with decidable unsafety have been singled out.

One of such classes corresponds to RAS operating over arrays whose maximum size is

bounded a-priori. A RAS of this type is called SAS (for simple artifact systems). All in

all, the RAS framework provides a natural foundational and practical basis to formally

analyze DABs, which we tackle next.

3.2 Verification Problems for DABs

First, we need a language to express unsafety properties over a DABM= 〈D,P〉. Prop-

erties are expressed in a fragment of the guard language of Definition 6 that queries

repo-relations and case variables as well as the cat-relations that tuples from repo-

relations or case variables refer to. Properties also query the control state of P . This

is done by implicitly extending D with additional, special case control variables that

refer to the lifecycle states of the blocks in P (where a block named B gets variable

Blifecycle). Given a snapshot, each such variable is assigned to the lifecycle state of the

corresponding block (i.e., idle, enabled, and the like). We use FP to denote the set

of all these additional case control variables.

Definition 10. A property overM= 〈D,P〉 is a guard G over D and the control vari-

ables of P , such that every non-case variable in G also appears in a relational atom

R(y1, . . . ,yn), where either R is a repo-relation, or R is a cat-relation and y1 ∈D.cvars.⊳

Example 6. By naming HP the root process block of Figure 4, the property

(HPlifecycle = completed) checks whether some case of the process can terminate.

This property is unsafe for our hiring process, since there is at least one way to evolve

the process from the start to the end. Since DAB processes are block structured, this

15



is enough to ascertain that the hiring process is sound. Property EvalApplifecycle =
completed∧Application( j,u,s,true)∧ s > 100 describes instead the undesired situ-

ation where, after the evaluation of an application, there exists an applicant with score

greater than 100. The hiring process is safe w.r.t. this property (cfr. the 5th safe property

from Section 3.3). ⊳

We study unsafety of these properties by considering the general case, and also the

one where the repository can store only boundedly many tuples, with a fixed bound. In

the latter case, we call the DAB repo-bounded.

Translating DABs into Array-Based Artifact Systems. Given an unsafety verification

problem over a DABM= 〈D,P〉, we encode it as a corresponding unsafety verification

problem over a RAS that reconstructs the execution semantics ofM. We only provide

here the main intuitions behind the translation, which is fully addressed in [4]. In the

translation,D.cat andD.cvars are mapped into their corresponding abstractions in RAS

(namely, the RAS read-only database and artifact variables, respectively).D.repo is in-

stead encoded using the intuition of Figure 5b: for each R ∈ D.repo and each attribute

a ∈ R.attrs, a dedicated array is introduced. Array indexes represent (implicit) identi-

fiers of tuples in R, in line with our repository model. To retrieve a tuple from R, one

just needs to access the arrays corresponding to the different attributes of R with the

same index. Finally, case variables are represented using (bounded) arrays of size 1. On

top of these data structures, P is translated into a RAS transition formula that exactly

reconstructs the execution semantics of the blocks in P .

With this transition in place, we define BackReach as the backward reachability

procedure that: (1) takes as input (i) a DABM, (ii) a property ϕ to be verified, (iii) a

boolean indicating whetherM is repo-bounded or not (in the first case, also providing

the value of the bound), and (iv) a boolean indicating whether the semantics for inser-

tion is set or multiset; (2) translates M into a corresponding RAS M̂, and ϕ into a

corresponding property ϕ̂ over M̂ (Definition 10 ensures that ϕ ′ is indeed a RAS state

formula); (3) returns the result produced by the MCMT backward reachability procedure

(cf. Section 3.1) on M̂ and ϕ̂ .

3.3 Verification Results

By exploiting the DAB-to-RAS translation and the formal results in [5], we are now

ready to provide our main technical contributions. First and foremost: DABs can be

correctly verified using BackReach.

Theorem 1. BackReach is sound and complete for checking unsafety of DABs that use

the multiset or set insertion semantics. ⊳

Soundness tell us that when BackReach terminates, it produces a correct answer, while

completeness guarantees that whenever a DAB is unsafe with respect to a property, then

BackReach detects this. Hence, BackReach is a semi-decision procedure for unsafety.

We study additional conditions on the input DAB for which BackReach is guar-

anteed to terminate, then becoming a full decision procedure for unsafety. The first,

unavoidable condition is on the constraints used in the catalog: its foreign keys cannot

form referential cycles (where a table directly or indirectly refers to itself). This is in

line with [21,5]. To define acyclicity, we associate to a catalog Cat a characteristic graph

16



G(Cat) that captures the dependencies between relation schema components induced

by primary and foreign keys. Specifically, G(Cat) is a directed graph such that:

• for every R ∈ Cat and every attribute a ∈ R.attrs, the pair 〈R,a〉 is a node of G(Cat)
(and nothing else is a node);

• 〈R1,a1〉 → 〈R2,a2〉 if and only if one of the two following cases apply: (i) R1 = R2,

a1 6= a2, and a1 = R1.id; (ii) a2 = R2.id and a1 is a foreign key referring R2.

Definition 11. A DAB is acyclic if the characteristic graph of its catalog is so. ⊳

Theorem 2. BackReach terminates when verifying properties over repo-bounded and

acyclic DABs using the multiset or set insertion semantics. ⊳

If the input DAB is not repo-bounded, acyclicity of the catalog is not enough: termina-

tion requires to carefully control the interplay between the different components of the

DAB. While the required conditions are quite difficult to grasp at the syntactic level,

they can be intuitively understood using the following locality principle: whenever the

progression of the DAB depends on the repository, it does so only via a single entry

in one of its relations. Hence, direct/indirect comparisons and joins of distinct tuples

within the same or different repository relations cannot be used. To avoid indirect com-

parisons/joins, queries cannot mix case variables and repository relations.

Thus, set insertions cannot be supported, since by definition they require to compare

tuples in the same relation. The next definition is instrumental to enforce locality.

Definition 12. A guard G , q(~x) ←
∨n

i=1 Qi over data component D is separated

if normvars(Qi) ∩ normvars(Q j) = /0 for every i 6= j, and each Qi is of the form

χ ∧R(~y)∧ ξ (with χ , R(~y), and ξ optional), where: (i) χ is a conjunctive query with

filters only over D.cat, and that can employ case variables; (ii) R ∈ D.repo is a repo-

relation schema; (iii) ~y is a tuple of variables and/or constant objects in D, such that

~y∩D.cvars= /0, and normvars(χ)∩~y = /0; (iv) ξ is a conjunctive query with filters over

D.cat only, that possibly mentions variables in~y but does not include any case variable,

and such that normvars(χ)∩ normvars(ξ ) = /0. A property is separated if it is so as a

guard. ⊳

Intuitively, a separated guard consists of two isolated parts: one part χ inspecting

the content of case variables and their relationship with the catalog, and another part

R(~y)∧ ξ retrieving a single tuple ~y in some repository relation R, possibly filtering it

through inspection of the catalog via ξ .

Example 7. Consider the refinement EvalApp.pre,GetScore(s : NumScore)← ξ ∧χ
of the guard EvalApp.pre from Example 3, where χ := User(uid,name,age) checks if

the variables 〈uid,name,age〉 form a tuple in User, and ξ := 1≤ s∧s≤ 100. This guard

is separated since χ and ξ match the requirements of the previous definition. ⊳

Theorem 3. LetM be an acyclic DAB that uses the multiset insertion semantics, and

is such that for each update specification u ofM, the following holds:

1. If u.eff is an insert&set rule (with explicit INSERT part), u.pre is repo-free;

2. If u.eff is a set rule (with no INSERT part), then either (i) u.pre is repo-free, or

(ii) u.pre is separated and all case variables appear in the SET part of u.eff;

3. If u.eff is a delete&set rule, then u.pre is separated and all case variables appear

in the SET part of u.eff;

17



4. If u.eff is a conditional update rule, then u.pre is repo-free and boolean (i.e., it

returns either false or the empty tuple), so that u.eff only makes use of the new

variables introduced in its UPDATE part (as well as constant objects in D).

Then, BackReach terminates when verifying separated properties overM. ⊳

Notably, the conditions of Theorem 3 represent a concrete, BPMN-like counterpart of

the abstract conditions used in [21] and [5] towards decidability.

Specifically, Theorem 3 uses two conditions: (i) repo-freedom, or (ii) the combina-

tion of separation with the manipulation of all case variables at once. We now intuitively

explain how these conditions substantiate the aforementioned locality principle. Over-

all, the main difficulty is that case variables may be loaded with data objects extracted

from the repository. Hence, the usage of a case variable may mask an underlying ref-

erence to a tuple component stored in some repo-relation. Given this, locality demands

that no two case variables can simultaneously hold data objects coming from different

tuples in the repository. At the beginning, this is trivially true, since all case variables

are undefined. A safe snapshot guaranteeing this condition continues to stay so after

an insertion of the form mentioned in point 1 of Theorem 3: a repo-free precondition

ensures that the repository is not queried at all, and hence trivially preserves locality.

Locality may be easily destroyed by arbitrary set or delete&set rules whose precondi-

tion accesses the repository. Three aspects have to be considered to avoid this. First, we

have to guarantee that the precondition does not mix case variables and repo-relations:

Theorem 3 does so thanks to separation. Second, we have to avoid that when the pre-

condition retrieves objects from the repository, it extracts them from different tuples

therein: this is again guaranteed by separation, since only one tuple is extracted. A third,

subtle situation that would destroy locality is the one in which the objects retrieved from

(the same tuple in) the repository are only used to assign a proper subset of the case

variables: the other case variables could in fact still hold objects previously retrieved

from a different tuple in the repository. Theorem 3 guarantees that this never happens

by imposing that, upon a set or delete&set operation, all case variables are involved in

the assignment. Those case variables that get objects extracted from the repository are

then guaranteed to all implicitly point to the same, single repository tuple retrieved by

the separated precondition.

Example 8. By considering the data and process schema of the hiring process DAB,

one can directly show that it obeys to all conditions in Theorem 3, in turn guaranteeing

termination of BackReach. For example, rule EvalApp in Example 3 matches point 1

since EvalApp.pre is repo-free. SelWinner from the same example matches instead

point 3, since SelWinner.pre is trivially separated and all case variables appear in the

SET part of SelWinner.eff. ⊳

prop. time(s)

sa
fe

1 0.20

2 5.85

3 3.56

4 0.03

5 0.27

u
n

sa
fe

1 0.18

2 1.17

3 4.45

4 1.43

5 1.14

First Experiments with MCMT. We have encoded the job hir-

ing DAB described in the paper into MCMT, systematically follow-

ing the translation rules recalled in Section 3.2, and fully spelled

out in [4] when proving the main theorems of Section 3.3. Run-

ning MCMT Version 2.8 (http://users.mat.unimi.it/users/

ghilardi/mcmt/), we have checked the encoding of the job hiring

DAB for process termination (which took 0.43sec), and against five

safe and five unsafe properties. For example, the 1st unsafe prop-

18

http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/


erty describes the desired situation in which, after having evaluated

an application (i.e., EvalApp is completed), there exists at least an

applicant with a score greater than 0. Formally: EvalApplifecycle =
completed∧Application( j,u,score,e)∧score> 0. The 4th safe prop-

erty represents instead the situation in which a winner has been selected after the dead-

line (i.e., SelWin is completed), but the case variable result witnesses that the winner is

not an eligible candidate. Formally: SelWinlifecycle = completed∧ result = false.

MCMT returns SAFE, witnessing that this configuration is not reachable from the initial

states. Additional properties (taken from the table on the right) are described in [4].

The table on the right summarizes the obtained, encouraging results, reporting the

MCMT running time in seconds. The MCMT specifications containing all the properties

to check (together with their intuitive interpretation) are available in [4], and all tests are

directly reproducible. Experiments were performed on a machine with Ubuntu 16.04,

2.6 GHz Intel Core i7 and 16 GB RAM.

4 Conclusion and Discussion

We have introduced a data-aware extension of BPMN, called DAB, balancing between

expressiveness and verifiability. We have shown that parameterized safety problems

over DABs can be correctly tackled by off-the-shelf array-based SMT techniques, and

in particular by the backward reachability procedure implemented in the MCMT model

checker. Differently from conventional process-centric verification, the verification lan-

guage proposed in this paper supports properties that address both process and data

aspects.

We have then identified classes of DABs suitably controlling the data components

and the way the process manipulates it, guaranteeing termination of backward reacha-

bility. We have finally shown that a realistic example of DAB can be actually verified

by MCMT with a very promising performance.

There are plenty of avenues for future work. We enumerate the most important ones,

considering methodological, foundational, and experimental aspects.

From the methodological point of view, the conditions we have introduced to guar-

antee termination can be seen as modeling principles for data-aware process designers

who aim at making their processes verifiable. The applicability of such principles to

real-life processes is an open question, calling for genuine, further research on empiri-

cal validation on real-world scenarios, as well as on the definition of guidelines helping

modeling and refactoring of arbitrary DABs into fully verifiable ones. Frameworks for

the empirical validation of data-aware process models have been recently brought for-

ward [26], and can be in fact extended also considering the verifiability factor.

From the foundational perspective we are interested in equipping DABs with

datatypes and corresponding rigid predicates, including arithmetic operators, as done in

[14] for artifact systems. This is promising especially considering that there are plenty

of state-of-the-art SMT techniques to handle arithmetics. At the same time, we want

to attack the main limitation of our approach, namely that guards and conditions are

actually existential formulae, and the only (restricted) form of universal quantification

available in the update language is that of conditional updates. Universal guards in tran-

19



sition formulae could be very useful in specifications: for example, they would allow us

to specify a branch in a job hiring process that is followed only if no applicant satisfies

a certain condition. The question has been debated since longtime in the literature and

the most effective solution so far is the introduction of suitable “monotonic abstrac-

tions” (see [1] for a survey). Notably, this is already implemented in MCMT. Monotonic

abstractions could introduce spurious unsafe traces, and in fact MCMT warns the user

about this (in practice, not so frequent) possibility. An orthogonal, challenging question

is how, and to what extent, some of the most recent techniques developed for temporal

model checking of artifact-centric systems [14] can be incorporated in our approach,

allowing us to prove more sophisticated properties beyond safety.

From the experimental point of view, while a systematic evaluation is out of scope

of this paper, the initial experiments carried out in this paper and [5] indicate that the

approach is promising. We intend to fully automate the translation from DABs to array-

based systems, and to set up a benchmark to evaluate the performance of verifiers for

data-aware processes, starting from the examples collected in [21]: they are inspired by

reference BPMN processes, and consequently should be easily encoded as DABs.

References

1. F. Alberti, S. Ghilardi, and N. Sharygina. Monotonic abstraction techniques: from parametric

to software model checking. In Proc. MOD*, EPTCS, pages 1–11, 2014.

2. D. Calvanese, G. De Giacomo, and M. Montali. Foundations of data aware process analysis:

A database theory perspective. In Proc. PODS, pages 1–12, 2013.

3. D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. Formal modeling and

SMT-based parameterized verification of data-aware BPMN. In Proc. of BPM, LNCS.

Springer, 2019.

4. D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. Formal modeling and

SMT-based parameterized verification of multi-case data-aware BPMN. Technical Report

arXiv:1905.12991, arXiv.org, 2019.

5. D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. From model completeness

to verification of data aware processes. In Description Logic, Theory Combination, and All

That, LNCS. Springer, 2019.

6. D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. Model completeness,

covers and superposition. In Proc. of CADE, 2019.

7. C. Combi, B. Oliboni, M. Weske, and F. Zerbato. Conceptual modeling of processes and

data. In Proc. ER, volume 11157 of LNCS, pages 236–250. Springer, 2018.

8. S. Conchon, A. Goel, S. Krstic, A. Mebsout, and F. Zaı̈di. Cubicle: A parallel SMT-based

model checker for parameterized systems - Tool paper. In Proc. CAV, pages 718–724, 2012.

9. G. De Giacomo, X. Oriol, M. Estañol, and E. Teniente. Linking data and BPMN processes

to achieve executable models. In Proc. CAISE, 2017.

10. M. de Leoni, P. Felli, and M. Montali. A holistic approach for soundness verification of

decision-aware process models. In Proc. ER, LNCS, pages 219–235. Springer, 2018.

11. R. De Masellis, C. Di Francescomarino, C. Ghidini, M. Montali, and S. Tessaris. Add data

into business process verification: Bridging the gap between theory and practice. In Proc.

AAAI, pages 1091–1099. AAAI Press, 2017.

12. A. Deutsch, R. Hull, Y. Li, and V. Vianu. Automatic verification of database-centric systems.

SIGLOG News, 5(2):37–56, 2018.

20



13. A. Deutsch, R. Hull, and V. Vianu. Automatic verification of database-centric systems. SIG-

MOD Record, 43(3):5–17, 2014.

14. A. Deutsch, Y. Li, and V. Vianu. Verification of hierarchical artifact systems. In Proc. PODS,

pages 179–194, 2016.

15. B. Dutertre and L. De Moura. The YICES SMT solver. Technical report, SRI International,

2006.

16. M. Estañol, M. Sancho, and E. Teniente. Verification and validation of UML artifact-centric

business process models. In Proc. CAISE, LNCS, pages 434–449. Springer, 2015.

17. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards SMT model checking of

array-based systems. In Proc. IJCAR, pages 67–82, 2008.

18. S. Ghilardi and S. Ranise. Backward reachability of array-based systems by SMT solving:

Termination and invariant synthesis. Logical Methods in Computer Science, 6(4), 2010.

19. S. Ghilardi and S. Ranise. MCMT: A model checker modulo theories. In Proc. IJCAR, 2010.

20. S. Lasota. Decidability border for petri nets with data: WQO dichotomy conjecture. In Proc.

PETRI NETS, volume 9698 of LNCS, pages 20–36. Springer, 2016.

21. Y. Li, A. Deutsch, and V. Vianu. VERIFAS: A practical verifier for artifact systems. PVLDB,

11(3):283–296, 2017.

22. A. Meyer, L. Pufahl, D. Fahland, and M. Weske. Modeling and enacting complex data

dependencies in business processes. In Proc. BPM, volume 8094 of LNCS, pages 171–186.

Springer, 2013.

23. M. Montali and A. Rivkin. DB-Nets: on the marriage of colored Petri Nets and relational

databases. ToPNoC, 28(4), 2017.

24. D. Müller, M. Reichert, and J. Herbst. Data-driven modeling and coordination of large pro-

cess structures. In Proc. OTM, volume 4803 of LNCS, pages 131–149. Springer, 2007.

25. M. Reichert. Process and data: Two sides of the same coin? In Proc. OTM, volume 7565 of

LNCS. Springer, 2012.

26. H. A. Reijers, I. T. P. Vanderfeesten, M. G. A. Plomp, P. Van Gorp, D. Fahland, W. L. M.

van der Crommert, and H. D. D. Garcia. Evaluating data-centric process approaches: Does

the human factor factor in? Software and System Modeling, 16(3):649–662, 2017.

27. F. Rosa-Velardo and D. de Frutos-Escrig. Decidability and complexity of petri nets with

unordered data. Theor. Comput. Sci., 412(34):4439–4451, 2011.

28. N. Sidorova, C. Stahl, and N. Trcka. Soundness verification for conceptual workflow nets

with data: Early detection of errors with the most precision possible. Inf. Syst., 36(7):1026–

1043, 2011.

29. W. M. P. van der Aalst. Verification of workflow nets. In Proc. ICATPN, 1997.

21


	Formal Modeling and SMT-Based Parameterized Verification of Data-Aware BPMN
	Diego Calvanese1 , Silvio Ghilardi2, Alessandro Gianola1,  Marco Montali1, Andrey Rivkin1 

