
ar
X

iv
:1

80
6.

09
68

6v
1

 [
cs

.L
O

]
 2

5
Ju

n
20

18

Quantifier Elimination for Database Driven

Verification

Diego Calvanese1 , Silvio Ghilardi2, Alessandro Gianola1 ,
Marco Montali1, Andrey Rivkin1

1Faculty of Computer Science, Free University of Bozen-Bolzano (Italy)
2Dipartimento di Matematica, Università degli Studi di Milano (Italy)

Abstract. Running verification tasks in database driven systems re-
quires solving quantifier elimination problems (not including arithmetic)
of a new kind. In this paper, we supply quantifier elimination algorithms
based on Knuth-Bendix completions and begin studying the complexity
of these problems, arguing that they are much better behaved than their
arithmetic counterparts. This observation is confirmed by analyzing the
preliminary results obtained using the mcmt tool on the verification of
data-aware process benchmarks. These benchmarks can be found in the
last version of the tool distribution. The content of this manuscript is
very preliminary, its role being simply that of expanding the documenta-
tion available from mcmt v. 2.8 distribution.

1 Introduction

During the last two decades, the (fundamental) problem studying integrated
management of business processes and master data received great attention in
academia and the industry [24,16,23]. In its core, the problem requires a change
of an entrenched control-flow perspective adopted within the business process
community to a more holistic approach that moves towards considering how data
are manipulated and evolved by the process, and how the flow of activities is
affected by the presence of data as well as the evaluation of data-driven decisions.

In the light of this recent development, two main lines of research emerged:
one on the development of integrated models for processes and data [22], and
the other on their static analysis and verification [8]. Many various concrete
languages (as well as software platforms for their modeling and enactment) for
data-aware processes spawned from the first line of research. The main unify-
ing theme for such approaches is a shift from standard activity-centric models
to data-centric ones, where the focus is put on key business entities of the or-
ganization, integrating their structural and behavioral (lifecycle) aspects. This
resulted in the creation of various languages and frameworks [20,19] for model-
ing and execution such as IBM’s declarative rule-based Guard-Stage-Milestone
(GSM) notation [13], OMG’s modeling standard CMMN (Case Management
Model and Notation)1 and object-aware PHILharmonic Flows [20].

1 http://www.omg.org/spec/CMMN/

http://arxiv.org/abs/1806.09686v1
http://www.omg.org/spec/CMMN/

In turn, the second line of research resulted in a series various results on the
boundaries of decidability and complexity for the static analysis of data-aware
processes [26,8]. It is worth noting that formal models adopted along this line of
research can be divided into two main classes. The first one considers very gen-
eral data-aware processes that evolve a (full-fledged) relational database with
integrity constrains by means of atomic create-read-update-delete operations
that may introduce new values2 [6,5,1,9]. Here, verification tasks take an ini-
tial database instance as input and proof desired properties by constructing an
infinite-state transition system (whose states are labeled wit database instances)
considering all possible process evolutions. Conversely, the second class adopts
artifact-centric processes [14,12] with the underlying formal model based on:
(i) a read-only relational database that stores fixed, background information,
(ii) a working memory that stores the evolving state of artifacts, and (iii) ac-
tions that update the working memory. Different variants of this model have
been considered towards decidability of verification, by carefully tuning the rel-
ative expressive power of these three components. The most interesting settings
consider pure relational structures with a single-tuple working memory [7], and
artifact systems operating over a read-only database equipped with constraints
and tracking the co-evolution of multiple, unboundedly many artifacts [15]. Even
though in these works the working memory can be updated only using values
from the read-only database (i.e., no fresh values can be injected), verification is
extremely challenging as it is studied parametrically to the read-only database
itself, thus requiring to check infinitely many finite transition systems. This is
done to assess whether the system behaves well irrespectively of the read-only
data it operates on.

In [10], we propose a generalized model for artifact-centric systems and focus
on the (parameterized) safety problem, which amounts to determining whether
there exists an instance of the read-only database that allows the system to
evolve from its initial configuration to an undesired configuration falsifying a
given state property. We study this problem by establishing for the first time a
bridge between verification of artifact-centric systems and model checking based
on Satisfiability-Modulo-Theories (SMT). Specifically, our approach is grounded
in array-based systems – a declarative formalism originally introduced in [17,18]
to handle the verification of distributed systems (parameterized on the number
of interacting processes), and afterwards successfully employed also to attack the
static analysis of other types of systems [3,2]. The overall state of the system is
typically described by means of arrays indexed by process identifiers, and used
to store the content of process variables like locations and clocks. These arrays
are genuine second order variables. In addition, quantified formulae are used
to represent sets of system states. These formulae together with second order
function variables form the core of the model checking methodologies developed
in [17,18] and following papers. The declarative formalism of array-based sys-
tems is exploited as the model-theoretic framework of the tool mcmt. This tool

2 The values are taken from an infinite data domain

2

manages the verification of infinite-state systems by implementing a symbolic
version of the backward reachability algorithm.

In the work [10] we encode artifact systems into array-based systems by
providing a “functional view” of relational theories endowed with primary and
foreign key dependencies, where the read-only database and the artifact rela-
tions forming the working memory are represented with sorted unary function
symbols. The resulting framework, however, requires novel and non-trivial exten-
sions of the array-based technology to make it operational. In fact, quantifiers
are handled in array-based systems both by their instantiation and elimination.
While the first can be transposed to the new framework leveraging the Herbrand
Theorem, the latter becomes problematic due to the following reason: quanti-
fied data variables do not range over simple data types (e.g., integers, reals or
enumerated sets) as in standard array-based systems, but instead refer to the
content of a full-fledged (read-only) relational database. To overcome this prob-
lem, we employ classic model-theoretic machinery, namely model completions
[25], using which we prove that the runs of the systems we are interested in can
be lifted w.l.o.g. to richer contexts – so-called random-like structures –, where
quantifier elimination is indeed available, despite the fact that it was not avail-
able in the original setting. This allows us to recast the original safety problem
into an equivalent safety problem in the richer setting where quantifier elimi-
nation is available. Specifically, the quantifier elimination permits to resort for
symbolic representation of sets of reachable states without using quantifiers over
data taken from the read-only database.

The described quantifier elimination is the central topic of this paper. Note
that, in order to be able to eliminate quantifiers from the data variables, it is
important to study algorithms that could correctly perform this task. Specifi-
cally, we aim at developing formal procedures that eliminate quantifiers in the
model completions of the theories of sorted unary functions mentioned before. In
order to realize these procedures, we employ techniques based on Knuth-Bendix
completions that not only show the correctness of the proposed approach, but
also guarantee its computational efficiency. These procedures have been already
partially implemented in mcmt version 2.8.

2 Preliminaries

We adopt the usual first-order syntactic notions of signature, term, atom,
(ground) formula, and so on; our signatures are multi-sorted and include equality
for every sort. This implies that variables are sorted as well. For simplicity, most
basic definitions in this Section will be supplied for single-sorted languages only
(the adaptation to multi-sorted languages is straightforward). We compactly
represent a tuple 〈x1, . . . , xn〉 of variables as x. The notation t(x), φ(x) means
that the term t, the formula φ has free variables included in the tuple x.

We assume that a function arity can be deduced from the context. Whenever
we build terms and formulae, we always assume that they are well-typed, in
the sense that the sorts of variables, constants, and function sources/targets

3

match.A formula is said to be universal (resp., existential) if it has the form
∀x(φ(x)) (resp., ∃x(φ(x))), where φ is a quantifier-free formula. Formulae with
no free variables are called sentences.

From the semantic side, we use the standard notion of a Σ-structure M and
of truth of a formula in a Σ-structure under a free variables assignment.

A Σ-theory T is a set of Σ-sentences; a model of T is a Σ-structure M where
all sentences in T are true. We use the standard notation T |= φ to say that φ
is true in all models of T for every assignment to the variables occurring free in
φ. We say that φ is T -satisfiable iff there is a model M of T and an assignment
to the variables occurring free in φ making φ true in M.

We give now the definitions of constraint satisfiability problem and quantifier
elimination for a theory T .

A Σ-formula φ is a Σ-constraint (or just a constraint) iff it is a conjunction of
literals. The constraint satisfiability problem for T is the following: we are given
an existential formula3 ∃y φ(x, y) and we are asking whether there exist a model
M of T and an assignment α to the free variables x such that M, α |= ∃y φ(x, y).

A theory T has quantifier elimination iff for every formula φ(x) in the sig-
nature of T there is a quantifier-free formula φ′(x) such that T |= φ(x) ↔ φ′(x).
It is well-known (and easily seen) that quantifier elimination holds in case we
can eliminate quantifiers from primitive formulae, i.e. from formulae of the kind
∃y φ(x, y), where φ is a conjunction of literals (i.e. of atomic formulae and their
negations). Since we are interested in effective computability, we assume that
when we talk about quantifier elimination, an effective procedure for eliminat-
ing quantifiers is given.

We recall also some basic definitions and notions from logic and model theory.
We focus on the definitions of diagram, embedding, substructure and amalga-
mation.

2.1 Substructures and embeddings

Let Σ be a first-order signature. The signature obtained from Σ by adding to
it a set a of new constants (i.e., 0-ary function symbols) is denoted by Σa.
Analogously, given a Σ-structure A, the signature Σ can be expanded to a new
signature Σ|A| := Σ ∪ {ā | a ∈ |A|} by adding a set of new constants ā (the
name for a), one for each element a in A, with the convention that two distinct
elements are denoted by different ”name” constants. A can be expanded to a
Σ|A|-structure A′ := (A, a)a∈|A| just interpreting the additional costants over
the corresponding elements. From now on, when the meaning is clear from the
context, we will freely use the notation A and A′ interchangeably: in particular,
given a Σ-structure A and a Σ-formula φ(x) with free variables that are all in
x, we will write, by abuse of notation, A |= φ(a) instead of A′ |= φ(ā).

A Σ-homomorphism (or, simply, a homomorphism) between two Σ-structu-
res M and N is any mapping µ : |M| −→ |N| among the support sets |M| of

3 For the purposes of this definition, we may equivalently take φ to be quantifier-free.

4

M and |N | of N satisfying the condition

M |= ϕ ⇒ N |= ϕ (1)

for all Σ|M|-atoms ϕ (here M is regarded as a Σ|M|-structure, by interpreting
each additional constant a ∈ |M| into itself and N is regarded as a Σ|M|-
structure by interpreting each additional constant a ∈ |M| into µ(a)). In case
condition (1) holds for all Σ|M|-literals, the homomorphism µ is said to be an
embedding and if it holds for all first order formulae, the embedding µ is said to
be elementary. Notice the following facts:

(a) since we have equality in the signature, an embedding is an injective func-
tion;

(b) an embedding µ : M −→ N must be an algebraic homomorphism, that is
for every n-ary function symbol f and for every m1, ...,mn in |M|, we must
have fN (µ(m1), ..., µ(mn)) = µ(fM(m1, ...,mn));

(c) for an n-ary predicate symbol P we must have (m1, ...,mn) ∈ PM iff
(µ(m1), ..., µ(mn)) ∈ PN .

It is easily seen that an embedding µ : M −→ N can be equivalently defined as a
map µ : |M| −→ |N| satisfying the conditions (a)-(b)-(c) above. If µ : M −→ N
is an embedding which is just the identity inclusion |M| ⊆ |N |, we say that M
is a substructure of N or that N is an extension of M. A Σ-structure M is said
to be generated by a set X included in its support |M| iff there are no proper
substructures of M including X .

The notion of substructure can be equivalently defined as follows: given a
Σ-structure N and a Σ-structure M such that |M| ⊆ |N |, we say that M is a
Σ-substructure of N if:

– for every function symbol f inf Σ, the interpretation of f in M (denoted
using fM) is the restriction of the interpretation of f in N to |M| (i.e.
fM(m) = fN (m) for every m in |M|); this fact implies that a substructure
M must be a subset of N which is closed under the application of fN .

– for every relation symbol P in Σ and every tuple (m1, ...,mn) ∈ |M|n,
(m1, ...,mn) ∈ PM iff (m1, ...,mn) ∈ PN , which means that the relation
PM is the restriction of PN to the support of M.

We recall that a substructure preserves and reflects validity of ground for-
mulae, in the following sense: given a Σ-substructure A1 of a Σ-structure A2, a
ground Σ|A1|-sentence θ is true in A1 iff θ is true in A2.

2.2 Robinson Diagrams and Amalgamation

Let A be a Σ-structure. The diagram of A, denoted by ∆Σ(A), is defined as
the set of ground Σ|A|-literals (i.e. atomic formulae and negations of atomic
formulae) that are true in A. For the sake of simplicity, once again by abuse of
notation, we will freely say that ∆Σ(A) is the set of Σ|A|-literals which are true
in A.

5

An easy but nevertheless important basic result, called Robinson Diagram
Lemma [11], says that, given any Σ-structure B, the embeddings µ : A −→ B
are in bijective correspondence with expansions of B to Σ|A|-structures which
are models of ∆Σ(A). The expansions and the embeddings are related in the
obvious way: ā is interpreted as µ(a).

Amalgamation is a classical algebraic concept. We give the formal definition
of this notion.

Definition 2.1 (Amalgamation). A theory T has the amalgamation property
if for every couple of embeddings µ1 : M0 −→ M1, µ2 : M0 −→ M2 among
models of T , there exists a model M of T endowed with embeddings ν1 : M1 −→
M and ν2 : M2 −→ M such that ν1 ◦ µ1 = ν2 ◦ µ2

M

M1 M2

M0

ν2ν1

µ1 µ2

The triple (M, µ1, µ2) (or, by abuse, M itself) is said to be a T -amalgama of
M1,M2 over M0

3 Read-only Database Schemas

In this section, we provide a formal definition of (read-only) DB-schemas by
relying on an algebraic, functional characterization.

Definition 3.1. A DB schema is a pair 〈Σ, T 〉, where: (i) Σ is a DB signature,
that is, a finite multi-sorted signature whose only symbols are equality, unary
functions, and constants; (ii) T is a DB theory, that is, a set of universal Σ-
sentences.

Given a DB signature Σ, we respectively denote by Σsrt and Σfun the set of sorts
and functions in Σ. In the following, we sometimes omit the explicit definition
of DB schema, and refer directly to a (DB) theory T with a (DB) signature Σ.

We assume that in a DB signature Σ all function and constant symbols are
typed. Thus, every function symbol has a source and a target : given a func-
tion symbol f in Σfun , we write f : S −→ S′ to say that S is the source of S
and S′ is the target of f , where S and S′ are sorts from Σ. Constant symbols
are also sorted. Whenever we build terms and formulae, we always assume that
they are well-typed, in the sense that the sorts of variables, constants, and func-
tion sources/targets match. Consequently, sorts are implicitly determined by the
context: if we write g(f(c)), we implicitly get that the sort of constant c is the
source of f , and that the target sort of f is the source sort of g. Since only unary
function symbols and equality are allowed in Σ, all atomic Σ-formulae are of

6

the form t1(v1) = t2(v2), where t1, t2 are possibly complex terms, and v1, v2 are
either variables or constants.

We associate to a DB signature Σ a characteristic graph G(Σ) capturing
the dependencies that are induced by functions over sorts. Specifically, G(Σ) is
an edge-labeled graph whose nodes are the sorts in Σsrt , and such that G(Σ)

contains a labeled edge S
f
−→ S′ if and only if Σfun contains function symbol

f : S −→ S′. We say that Σ is acyclic if G(Σ) is so. The leaves of Σ are the nodes
of G(Σ) without outgoing edges. From a pragmatic point of view, these terminal
sorts are divided in two subsets, respectively representing unary relations and
value sorts. Non-value sorts (i.e., unary relations and non-leaf sorts) are called
id sorts, and are conceptually used to represent (identifiers of) different kinds of
objects. Value sorts, instead, represent datatypes such as strings, numbers, clock
values, etc. Whenever needed, we identify the set of id sorts in Σ by Σids , and
that of value sorts by Σval (recall that Σsrt = Σids ⊎Σval).

We now focus on extensional data conforming to a given DB schema.

Definition 3.2. A DB instance of DB schema 〈Σ, T 〉 is a Σ-structure M such
that: (i) M is a model of T , and (ii) every id sort of Σ is interpreted by M on
a finite set.

As usual, a DB instance has to be distinguished from an arbitrary model of T ,
where no finiteness assumption is posed on the interpretation of id sorts. What
may appear as not customary in Definition 3.2 is the fact that value sorts can be
interpreted on infinite sets. This allows us, at once, to reconstruct the classical
notion of DB instance as a finite model (since only finitely many values can be
pointed from id sorts using functions), at the same time supplying a potentially
infinite set of fresh values to be dynamically introduced in the working memory
during the evolution of the artifact system. We respectively denote by SM, fM,
and cM the interpretation in M of the sort S (this is a set), of the function
symbol f (this is a set-theoretic function), and of the constant c (this is an
element of the interpretation of the corresponding sort). Obviously, fM and cM

must match the sorts declared in Σ. For instance, if the source and the target of
f are, respectively, S and U , then the function fM has domain SM and range
UM.

We close our discussion on the formalization of DB schemas by discussing
DB theories. The role of a DB theory is to encode background axioms to express
constraints on the different elements of the corresponding signature. We illustrate
a typical background axiom, required to handle the possible presence of undefined
identifiers/values in the different sorts. This, in turn, is essential to capture
AAS whose working memory is initially undefined, in the style of [15,21]. To
accommodate this, we add to every sort S of Σ a constant undefS (written by
abuse of notation just undef from now on), used to specify an undefined value.
Then, for each function symbol f of Σ, we add the following axioms to the DB
theory:

∀x (x = undef ↔ f(x) = undef) (2)

7

This axiom states that the application of f to the undefined value produces an
undefined value, and it is the only situation for which f is undefined.

Remark 3.3. In the remainder of the paper, we always implicitly assume that
the DB theory consists of Axiom 2, but our technical results are not bound to
this specific choice. The specific conditions we require on the DB Theory towards
our results will be explicitly stated later.

As shown in [10], the algebraic, functional characterization of DB schema and
instance can be actually reinterpreted in the classical, relational model. Defini-
tion 3.1 naturally corresponds to the definition of relational database schema
equipped with single-attribute primary keys and foreign keys (plus a reformula-
tion of constraint (2)). In order to do so, we adopt the named perspective, where
each relation schema is defined by a signature containing a relation name and a
set of typed attribute names. Let 〈Σ, T 〉 be a DB schema. Each id sort S ∈ Σids

corresponds to a dedicated relation RS with the following attributes: (i) one
identifier attribute idS with type S; (ii) one dedicated attribute af with type S′

for every function symbol f ∈ Σfun of the form f : S −→ S′.

The fact that RS is constructed starting from functions in Σ naturally in-
duces corresponding functional dependencies within RS , and inclusion dependen-
cies from RS to other relation schemas. In particular, we obtain the following
constraints for RS :

• For each non-id attribute af of RS , we get a functional dependency from idS
to af . Altogether, such dependencies in turn witness that idS is the (primary)
key of RS .

• For each non-id attribute af of RS whose corresponding function symbol f
has id sort S′ as image, we get an inclusion dependency from af to the id
attribute idS′ of RS′ . This captures that af is a foreign key referencing RS′ .

Given a DB instance M of 〈Σ, T 〉, its corresponding relational in-
stance I is the minimal set satisfying the following property: for every
id sort S ∈ Σids , let f1, . . . , fn be all functions in Σ with domain S;
then, for every identifier o ∈ SM, I contains a labeled fact of the form
RS(idS : oM, af1 : f

M
1 (oM), . . . , afn : fM

n (oM)). With this interpretation, the ac-
tive domain of I is the finite set

⋃

S∈Σids
(SM \ {undefM})

∪

{

v ∈
⋃

V ∈Σval
V M

∣

∣

∣

∣

there exist f ∈ Σfun

and o ∈ dom(fM) s.t. fM(o) = v

}

consisting of all (proper) identifiers assigned by M to id sorts, as well as val-
ues obtained in M via the application of some function. Since such values are
necessarily finitely many, one may wonder why in Definition 3.2 we allow for in-
terpreting value sorts over infinite sets. The reason is that, in our framework, an
evolving artifact system may use such infinite provision to inject and manipulate
new values into the working memory.

8

4 Quantifier Elimination and Model Completion for DB

schemata

We fix a DB signature Σ and a DB theory T as in Definition 3.1.

A DB theory T (in the sense of Definition 3.1) need not eliminate quantifiers;
it is however often possible to strengthen T in a conservative way (with respect
to constraint satisfiability) and get quantifier elimination. We say that T has a
model completion iff there is a stronger theory T ∗ ⊇ T (still within the same
signature Σ of T) such that (i) every Σ-constraint which is satisfiable in a model
of T is satisfiable in a model of T ∗; (ii) T ∗ eliminates quantifiers.

The following Lemma gives a useful folklore technique for finding model
completions:

Lemma 4.1. Suppose that for every primitive Σ-formula ∃xφ(x, y) it is possible
to find a quantifier-free formula ψ(y) such that

(i) T |= ∀x∀y (φ(x, y) → ψ(y));

(ii) for every model M of T , for every tuple of elements a from the support of
M such that M |= ψ(a) it is possible to find another model N of T such
that M embeds into N and N |= ∃xφ(x, a).

Then T has a model completion T ∗ axiomatized by the infinitely many sentences 4

∀y (ψ(y) → ∃xφ(x, y)) . (3)

Proof. From (i) and (3) we clearly get that T ⋆ admits quantifier elimination: in
fact, in order to prove that a theory enjoys quantifier elimination, it is sufficient
to teliminate quantifiers from primitive formulae (then the quantifier elimination
for all formulae can be easily shown by an induction over their complexity). This
is exactly what is guaranteed by (i) and (3).

Let M be a model of T . We show (by using a chain argument) that there
exists a model M′ of T ⋆ such that M embeds into M′. For every primitive
formula ∃xφ(x, y), consider the set {(a, ∃xφ(x, a))} such that M |= ψ(a) (where
ψ is related to φ as in (i)). By Zermelo’s Theorem, the set {(a, ∃xφ(x, a))} can be
well-ordered: let {(ai, ∃xφi(x, ai))}i∈I be such a well-ordered set (where I is an
ordinal). By transfinite induction on this well-order, we define M0 := M and,
for each i ∈ I, Mi+1 as the extension of Mi such that Mi+1 |= ∃xφ(x, y), which
exists for (ii) since Mi |= ψ(a) (remember that validity of ground formulae is
preserved passing through substructures and superstructures, and M0 |= ψ(a)).

Now we take the chain union M1 :=
⋃

i∈I Mi: since T is universal, M1 is
again a model of T , and it is possible to construct an analogous chainM2 as done
above, starting from M1 instead of M. Clearly, we get M0 := M ⊆ M1 ⊆ M2

4 Notice that our T is assumed to be universal according to Definition 3.1, whereas
T ∗ turns out to be universal-existential.

9

by construction. At this point, we iterate the same argument countably many
times, so as to define a new chain of models of T :

M0 := M ⊆ M1 ⊆ ... ⊆ Mn ⊆ ...

Defining M′ :=
⋃

n M
n, we trivially get that M′ is a model of T such that

M ⊆ M′ and satisfies all the sentences of type (3). The last fact can be shown
using the following finiteness argument.

Fix φ, ψ as in (3). For every tuple a′ ∈ M′ such that M′ |= ψ(a′), by
definition of M′ there exists a natural number k such that a′ ∈ Mk: since ψ(a′)
is a ground formula, we get that also Mk |= ψ(a′). Therefore, we consider the
step k of the countable chain: there, we have that the pair (a′, ψ(a′)) appears
in the enumeration given by the well-ordered set {(ai, ∃xφi(x, ai))}i∈I (for such
ordinal I) such that Mk |= ψi(a). Hence, by construction and since ψ(a′) is a
ground formula, we have that there exists a j ∈ I such that Mk

j |= ψ(a′) and

Mk
j+1 |= ∃xφ(x, a′). In conclusion, since the existential formulae are preserved

passing to extensions, we obtain M′ |= ∃xφ(x, a′), as wanted. ⊣

Observe that if Σ is acyclic, there are only finitely many terms involving a
single variable x: in fact, there are as many terms as paths in G(Σ) starting
from the sort of x. If kΣ is the maximum number of terms involving a single
variable, then (since all function symbols are unary) there are at most knΣ terms
involving n variables.

The following proposition shows an interesting family of theories T that admit
model completion, and gives an explicit algorithm for quantifier elimination in
their model completions T ∗.

Theorem 4.2. T has a model completion in case it is axiomatized by universal
one-variable formulae and Σ is acyclic.

Proof. We freely take inspiration from an analogous result in [27]. We prelim-
inarly show that T is amalgamable. Then, for a suitable choice of ψ suggested
by the acyclicity assumption, the amalgamation property will be used to prove
the validy of the condition (ii) of Lemma 4.1: this fact (together with condition
(i)) yields that T has a model completion which is axiomatized by the infinitely
many sentences (3).

Let M1 and M2 two models of T with a submodel M0 of T in common (we
suppose for simplicity that |M1| ∩ |M2| = |M0|). We define a T -amalgam M of
M1,M2 over M0 as follows (we use in an essential way the fact that Σ contains
only unary function symbols). Let the support of M be the set-theoretic union
of the supports of M1 and M2, i.e. |M| := |M1| ∪ |M2|. M has a natural Σ-
structure inherited by the Σ-structures M1 and M2: for every function symbol
f in Σ, we define, for each mi ∈ |Mi|(i = 1, 2), fM(mi) := fM1(mi), i.e. the
interpretation of f in M is the restriction of the interpretation of f in Mi for
every element mi ∈ |Mi|. This is well-defined since, for every a ∈ |M1|∩|M2| =
|M0|, we have that fM(a) := fM1(a) = fM0(a) = fM2(a). It is clear that M1

and M2 are substructures of M, and their inclusions agree on M0.

10

We show that the Σ-structure M, as defined above, is a model of T . By
hypothesis, T is axiomatized by universal one-variable formulae: so, we can con-
sider T as a theory formed by axioms φ which are universal closures of clauses
with just one variable, i.e. φ := ∀x(A1(x) ∧ ... ∧ An(x) → B1(x) ∨ ... ∨ Bm(x)),
where Aj and Bk (j = 1, ..., n and k = 1, ...,m) are atoms.

We show that M satisfies all such formulae φ. In order to do that, suppose
that, for every a ∈ |M|, M |= Aj(a) for all j = 1, ..., n. If a ∈ |Mi|, then
M |= Aj(a) implies Mi |= Aj(a), since Aj(a) is a ground formula. Since Mi

is model of T and so Mi |= φ, we get that Mi |= Bk(a) for some k = 1, ...,m,
which means that M |= Bk(a), since Bk(a) is a ground formula. Thus, M |= φ

for every axiom φ of T , i.e. M |= T and, hence, M is a T -amalgam of M1,M2

over M0, as wanted

Now, given a primitive formula ∃xφ(x, y), we find a suitable ψ such that the
hypothesis of Lemma 4.1 holds. We define ψ(y) as the conjunction of the set of all
quantifier-free χ(y)-formulae such that φ(x, y) → χ(y) is a logical consequences
of T (they are finitely many - up to T -equivalence - because Σ is acyclic). By
definition, clearly we have that (i) of Lemma 4.1 holds.

We show that also condition (ii) is satisfied. Let M be a model of T such that
M |= ψ(a) for some tuple of elements a from the support of M. Then, consider
the Σ-substructure M[a] of M generated by the elements a: this substructure is
finite (since Σ is acyclic), it is a model of T and we trivially have that M[a] |=
ψ(a), since ψ(a) is a ground formula. In order to prove that there exists an
extension N ′ of M[a] such that N |= ∃xφ(x, a), it is sufficient to prove (by
the Robinson Diagram Lemma) that the Σ|M[a]|∪{e}-theory ∆(M[a])∪{φ(e, a)}
is T -consistent. For reduction to absurdity, suppose that the last theory is T -
inconsistent. Then, there are finitely many literals l1(a), ..., lm(a) from ∆(M[a])
(remember that ∆(M[a]) is a finite set of literals since M[a] is a finite structure)
such that φ(e, a) |=T ¬(l1(a) ∧ ... ∧ lm(a)). Therefore, defining A(a) := l1(a) ∧
... ∧ lm(a), we get that φ(e, a) |=T ¬A(a), which implies that ¬A(a) is one of
the χ(y)-formulae appearing in ψ(a). Since M[a] |= ψ(a), we also have that
M[a] |= ¬A(a), which is a contraddiction: in fact, by definition of diagram,
M[a] |= A(a) must hold. Hence, there exists an extension N ′ of M[a] such that
N ′ |= ∃xφ(x, a). Now, by amalgamation property, there exists a T -amalgam N
of M and N ′ over M[a]: clearly, N is an extension of M and, since N ′ →֒ N
and N ′ |= ∃xφ(x, a), also N |= ∃xφ(x, a) holds, as required.

⊣

The proof of Theorem 4.2 gives an algorithm for quantifier elimination in
the model completion. The algorithm works as follows (see the formula (3)): to
eliminate the quantifier x from ∃xφ(x, y) take the conjunction of the clauses
χ(y) implied by φ(x, y). Note that this algorithm is not practically efficient. In
fact, better algorithms can be obtained by using Knuth-Bendix procedure, which
we are going to study in detail in the following section.

11

5 Algorithms for quantifier elimination

The algorithm for quantifier elimination suggested by the proof of Theorem 4.2
is highly impractical: it relies on the formula (3), where ψ is in fact obtained by
conjoining the clauses χ(y) implied by φ(x, y).

In this section, we introduce better algorithms for the special theories we are
interested in and discuss their complexities. The content of this section gives
some details about our implementation in mcmt.

We take as complexity of a quantifier-elimination procedure the time/space
cost of applying it to a primitive formula: this reflects the needs of our applica-
tions and separates the cost of the procedure itself from other costs related to
disjunctive normal form conversions. Notice that array-based model checkers, in
order to represent sets of states - in particular, sets of states which are backward
reachable - use lists of primitive formulae 5 and it is precisely to these formulae
that quantifier elimination in T ∗ is applied in our tool mcmt.

One of the reasons for the high complexity of quantifier elimination in linear
arithmetics is that eliminating quantifiers from a primitive formula does not yield
in general a primitive formula: we shall see that in our contexts the situation is
different. Another problem in quantifier elimination for linear arithmetic (even
in real linear arithmetic, which is handled e.g. by Fourier-Motzkin algorithm)
is that the size of terms might grow after eliminating quantified variables - in
fact terms are here arbitrary linear polynomials. Again, this is not the case for
us: if we show that eliminating quantifiers from a primitive formula ∃y φ(x, y)
yields a conjunction of literals (and not a conjunction of clauses), then it is
clear that the space of the output is polynomially bounded in the length of the
tuple x (keeping kΣ as a constant). This may suggest that also the time for the
computation might be polynomial in relevant cases. In other words, quantifier
elimination in our context is computationally much better behaved than in the
arithmetic case, so that more sophisticated machinery (predicate abstraction,
interpolants, etc.) used in infinite state model checking to circumvent quantifier
elimination might not be needed here.

In all the algorithms below, we make reference to the Knuth-Bendix com-
pletion procedure, applied to a set of ground literals. Such procedure always
terminates in the ground case, we refer the reader to [4] for the necessary back-
ground.

5.1 The Basic Algorithm

We first give an algorithm for the case in which T is empty (notice that the
algorithm applies also to signatures Σ which may not be acyclic). The steps of
the algorithm are the following:

5 Conjunctions of literals (i.e. matrices of primitive formulae) are often called ’cubes’,
whence the name ‘Cubicle’ for the tool developed at LRI-Intel for bakward reacha-
bility in array-based systems.

12

Input: C := ∃e φ(e, y1, ..., yn), with φ(e, y1, ..., yn) a conjunction of lit-
erals (we write y for the tuple y1, ..., yn).

1. Replace variables e, y1, . . . , yn by free constants - we keep the names
e, y1, . . . , yn for these constants.

2. Choose a reduction ordering total for ground terms giving higher
precedence to e with respect to all the other symbols (thus equations
t(e) = u(y) are always oriented as t(e) → u(y)).

3. Run the Knuth-Bendix completion procedure (with simplification)
to the literals in φ considered as ground literals; let φc be the con-
junction of the literals resulting from the completion.

4. Delete from φc the literals in which e occurs and terminate.

Output: Let C′ be the output.

We assume that in case a literal like t 6= t is produced (while normalizing a
negative literal in Step 3 above), then the procedure stops with output ⊥.

We want to prove that the algorithm is correct in the sense that

Proposition 5.1. Let T be empty; then the set of axioms C′ → ∃eC (varying C
among the conjunctions of finite sets of literals) axiomatize the model completion
T ∗ of T .

Proof. In order to reach our goal, we apply Lemma 4.1; condition (i) of the
Lemma follows from the fact that Knuth-Bendix completion manipulates a set
of literals only up to logical equivalence. As a consequence, it is sufficient to
show the validity of the following Claim, corresponding to condition (ii) of the
Lemma.

Claim: given a modelM of T and elements b = b1, . . . , bn from the support of
M such that M |= C′(b) (where C′ is the output formula), M can be embedded
in a model M′ of T such that M′ |= C(b) (where C is the input formula).

To prove the Claim, we define a Σ-structure M′ which extends M in the fol-
lowing way (we let M = (M, I), where I is the interpretation function, extended
to an assignment mapping the y to the b):

- Let N be the set of the normal forms of the terms of the kind t(e) and let
N0 ⊆ N be the set of such normal forms which contain at least an occurrence
of e (notice that N0 can be empty in case the completion procedure produces
an equation like e = t(y) - recall that such equation is oriented as e→ t(y)).

- We define M ′ =M ∪N0; we extend I to I ′ as follows: (i) I ′(e) is the normal
form of e if it belongs to N0, otherwise it is tI where t(y) is the normal
form of e; (ii) I ′(f)(u(e)) is the normal form of f(u(e)) if it belongs to N0,
otherwise it is tI where t(y) is the normal form of f(u(e)).

An easy induction now shows that for every term t(e) normalizing to some t0,
we have t(e)I

′

= tI
′

0 ; moreover, if e occurs in t0, then t(e)
I′

= t0.

13

It remains to check that M′ = (M ′, I ′) |= φ; this is the same as saying that
M′ = (M ′, I ′) |= φc, because Knuth Bendix completion operates up to logical
equivalence.

Now, literals from φc not involving e are true in M and so also in M′; we
need to analize equalities and disequalities from φc where e occurs. These can
be of four kinds:

(i) equalities of the kind t(e) = u(e): since Knuth Bendix procedure removes
trivial equalities and the order is total on ground terms, we must have e.g.
t(e) > u(e) and that u(e) is the normal form of t(e), so that the claim is
obvious;

(ii) inequalities of the kind t(e) 6= u(e): here t(e) and u(e) must both be in
normal forms (and different, otherwise the procedure would have output ⊥),
so that once again the claim is immediate;

(iii) equalities of the kind t(e) = u(y): here t(e) normalizes to u, so that the
claim holds;

(iv) inequalities of the kind t(e) 6= u(y): here t(e) and u(y) are both in normal
forms and as a consequence tI

′

= t 6= uI
′

∈M .

This concludes the proof of the above Claim. ⊣

Notice that the above algorithm maps a primitive formula to a conjunction
of literals (not to a conjunction of clauses). In case of an acyclic signature Σ, it is
easily seen to run in polynomial time: in fact, a step of Knuth-Bendix completion
(with simplification, in the ground case), always replaces an equation by smaller
ones and we already observed that, keeping kΣ constant, there can be only
polynomially many terms and equations in a given finite number of variables.

5.2 Extensions

We consider two extensions of the above basic algorithm, both have been imple-
mented in our tool mcmt.

In the first extension, we consider the axiom

t(x) = undef ↔ x = undef (4)

for every term t (here we assume to have many constants undef, one for every
sort). One side of the above axiom is equivalent to the ground literal t(undef) =
undef and as such it does not interfer with the completion process and the
quantifier elimination procedure (we just add it to our constraint C from the
beginning).

To accommodate the other side, it is sufficient to do the following. We split
the initial constraint into a disjunction C1 ∨ C2, where C1 contains the literal
e = undef and C2 contains the literal e 6= undef. Then, C1 is handled in the
trivial way (replacing everywhere e with undef); as for C2, we check whether, at
the end of the completion, we have an equality like t(e) = u(yi) in the current

14

constraint: in that case, we add to the completion the literal u(yi) 6= undef.6 The
above correctness proof can be adjusted as follows to cover this modification. If
(by absurd) there is a term t(e) (in which e occurs) such that t(e)I

′

= undef
I′

,
then pick a minimal (wrt the ordering) such term t; since t(e)I

′

= undef
I′

,
t(e) cannot be in normal form by the definition of I ′. Since it is minimal, there
is an equality t(e) = u(yi) in the completion that rewrites t(e) itself (not a
subterm!) to its normal form u(yi). Hence t(e)

I′

= u(yi)
I′

and as a consequence
undef

I′

= u(yi)
I′

, which is the same as undefI = u(yi)
I , but the latter is absurd

because M was a model of u(yi) 6= undef (because such a literal is added to the
completion).

Thus, axioms (4) break our desired property that quantifier elimination ap-
plied to a primitive formula produces a conjunction of literals. However, in the
implementation, it is possible to assume that e 6= undef always occurs in the
matrix of a primitive formula we want to eliminate e from. In fact, according to
the backward search algorithm implemented in array-based systems tools, the
variable e to be eliminated always comes from the guard of a transition and we
can assume that such a guard contains the literal e 6= undef (if we need a tran-
sition with e = undef - for an existentially quantified variable e - it is possible
to write trivially this condition without using a quantified variable).

In a second extension, we consider the possibility of enriching Σ with unary
and binary (sorted) relation symbols. These symbols are not used in our for-
mal framework (they would represent relations without a key), but the exten-
sion is easy, so we decided to cover it too in our implementation. The mod-
ification to the above quantifier elimination algorithm is straightforward. Of
course, terms occurring in relational literals are also subject to normalization
during the completion phase. For unary relations this observation is sufficient,7

whereas for binary relations there is the need of the following further operation:
if in Step 3, the constraint φc contains R(t(e), u1(yi)) ∧ ¬R(t(e), u2(yj)) (resp.
R(u1(yi), t(e)) ∧ ¬R(u2(yj), t(e))), then u1(yi) 6= u2(yj) must be added to φc.

8

References

1. P. A. Abdulla, C. Aiswarya, M. F. M. M. Atig, and O. Rezine. Recency-bounded
verification of dynamic database-driven systems. In Proc. of PODS. ACM Press,
2016.

2. F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. An extension
of lazy abstraction with interpolation for programs with arrays. Formal Methods
in System Design, 45(1):63–109, 2014.

3. F. Alberti, S. Ghilardi, and N. Sharygina. A framework for the verification of
parameterized infinite-state systems. Fundam. Inform., 150(1):1–24, 2017.

6 This is sound because e 6= undef implies t(e) 6= undef, so u(yi) 6= undef follows.
7 Remember that complementary literals nevertheless produce ⊥ and that this applies
to relational atoms too.

8 Notice that ternary relations would generate disjunctions: R(t(e), u1(yi), v1(yr)) ∧
¬R(t(e), u2(yj), v2(ys)) should produce the disjunction u1(yi) 6= u2(yj) ∨ v1(yr) 6=
v2(ys).

15

4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, United Kingdom, 1998.

5. B. Bagheri Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and M. Montali.
Verification of relational data-centric dynamic systems with external services. In
Proc. of PODS, 2013.

6. F. Belardinelli, A. Lomuscio, and F. Patrizi. An abstraction technique for the
verification of artifact-centric systems. In Proc. of KR, 2012.

7. M. Bojańczyk, L. Segoufin, and S. Toruńczyk. Verification of database-driven
systems via amalgamation. In Proc. of PODS, pages 63–74, 2013.

8. D. Calvanese, G. De Giacomo, and M. Montali. Foundations of data aware process
analysis: A database theory perspective. In Proc. of PODS, 2013.

9. D. Calvanese, G. De Giacomo, M. Montali, and F. Patrizi. First-order mu-calculus
over generic transition systems and applications to the situation calculus. Inf. and
Comp., 2017.

10. D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. Verification of
data-aware processes via array-based systems. pages 1–12. preprint submitted to
PODS 2019.

11. C.-C. Chang and J. H. Keisler. Model Theory. North-Holland Publishing Co.,
Amsterdam-London, third edition, 1990.

12. E. Damaggio, A. Deutsch, and V. Vianu. Artifact systems with data dependencies
and arithmetic. ACM TODS, 37(3), 2012.

13. E. Damaggio, R. Hull, and R. Vacuĺın. On the equivalence of incremental and
fixpoint semantics for business artifacts with Guard-Stage-Milestone lifecycles. In
Proc. of BPM, 2011.

14. A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-
centric business processes. In Proc. of ICDT, pages 252–267, 2009.

15. A. Deutsch, Y. Li, and V. Vianu. Verification of hierarchical artifact systems. In
Proc. of PODS, pages 179–194. ACM Press, 2016.

16. M. Dumas. On the convergence of data and process engineering. In Proc. of
ADBIS, volume 6909 of LNCS. Springer, 2011.

17. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards SMT model checking
of array-based systems. In Proc. of IJCAR, pages 67–82, 2008.

18. S. Ghilardi and S. Ranise. Backward reachability of array-based systems by SMT
solving: Termination and invariant synthesis. Logical Methods in Computer Sci-
ence, 6(4), 2010.

19. R. Hull. Artifact-centric business process models: Brief survey of research results
and challenges. In Proc. of OTM, volume 5332 of LNCS. Springer, 2008.

20. V. Künzle, B. Weber, and M. Reichert. Object-aware business processes: Funda-
mental requirements and their support in existing approaches. Int. J. of Informa-
tion System Modeling and Design, 2(2), 2011.

21. Y. Li, A. Deutsch, and V. Vianu. VERIFAS: A practical verifier for artifact sys-
tems. PVLDB, 11(3):283–296, 2017.

22. A. Meyer, S. Smirnov, and M. Weske. Data in business processes. Technical Re-
port 50, Hasso-Plattner-Institut for IT Systems Engineering, Universität Potsdam,
2011.

23. M. Reichert. Process and data: Two sides of the same coin? In Proc. of the On
the Move Confederated Int. Conf. (OTM 2012), volume 7565 of LNCS. Springer,
2012.

24. C. Richardson. Warning: Don’t assume your business processes use master data.
In Proc. of BPM, volume 6336 of LNCS. Springer, 2010.

16

25. A. Robinson. On the metamathematics of algebra. Studies in Logic and the Foun-
dations of Mathematics. North-Holland Publishing Co., Amsterdam, 1951.

26. V. Vianu. Automatic verification of database-driven systems: a new frontier. In
Proc. of ICDT, pages 1–13, 2009.

27. W. H. Wheeler. Model-companions and definability in existentially complete struc-
tures. Israel J. Math., 25(3-4):305–330, 1976.

17

	Quantifier Elimination for Database Driven Verification
	Diego Calvanese1 , Silvio Ghilardi2, Alessandro Gianola1 , Marco Montali1, Andrey Rivkin1

