
ar
X

iv
:1

80
6.

11
45

9v
1

 [
cs

.L
O

]
 2

9
Ju

n
20

18

Verification of Data-Aware Processes via
Array-Based Systems

(Extended Version)

Diego Calvanese1, Silvio Ghilardi2, Alessandro Gianola1, Marco Montali1, Andrey Rivkin1

1 Free University of Bozen-Bolzano
surname@inf.unibz.it

2 Università degli Studi di Milano
silvio.ghilardi@unimi.it

ABSTRACT

We study verification over a general model of data-aware
processes, to assess (parameterized) safety properties irre-
spectively of the initial database instance. We rely on an
encoding into array-based systems, which allows us to check
safety by adapting backward reachability, establishing for
the first time a correspondence with model checking based
on Satisfiability-Modulo-Theories (SMT). To do so, we make
use of the model-theoretic machinery of model completion,
which surprisingly turns out to be an effective tool for verifi-
cation of relational systems, and represents the main original
contribution of this paper. Our encoding pursues a twofold
purpose. On the one hand, it allows us to reconstruct and
generalize the essence of some of the most important decid-
ability results obtained in the literature for artifact-centric
systems, and to devise a genuinely novel class of decidable
cases. On the other, it makes it possible to exploit SMT
technology in implementations, building on the well-known
MCMT model checker for array-based systems, and extend-
ing it to make all our foundational results fully operational.

1. INTRODUCTION

During the last two decades, a huge body of research
has been dedicated to the difficult problem of reconcil-
ing master data management and business process man-
agement within contemporary organizations [40, 28,
39]. This requires to move from a purely control-flow
understanding of business processes to a more holistic
approach that also considers how data are manipulated
and evolved by the process, and how the flow of activ-
ities is affected by the presence of data as well as the
evaluation of data-driven decisions.

Two main lines of research emerged in this spectrum:
one on the development of integrated models for pro-
cesses and data [38], and the other on their static anal-
ysis and verification [16]. The first line of research pro-
duced a plethora of concrete languages for data-aware
processes, as well as software platforms for their mod-
eling and enactment. The main unifying theme for
such approaches is a shift from standard activity-centric
models to data-centric models focused on key business
entities of the organization, integrating their structural
and behavioral (lifecycle) aspects. This resulted in the
definition of so-called object-centric [36] and artifact-

centric processes [34]. In particular, the artifact-centric
paradigm has been made operational by IBM, leading
to the GSM (Guard-Stage-Milestone) notation [24] and
the BizArtifact1 execution platform. GSM, in turn, is
the core of the CMMN OMG standard for (adaptive)
case management2.

The second line of research resulted in a series of
deep, but very fragmented results on the boundaries
of decidability and complexity for the static analysis of
data-aware processes, considering a variety of assump-
tions on the model, as well as different static analy-
sis tasks, from reachability to model checking of first-
order temporal logics [44, 16]. Two main trends can be
identified within this line. A recent series of results fo-
cuses on very general data-aware processes that evolve
a full-fledged, relational database with arbitrary first-
order constraints [11, 10, 1, 17]. Actions amount to
full create-read-update-delete operations that may in-
ject into the database fresh values taken from an infinite
data domain. Verification is studied by fixing the initial
instance of the database, and by considering all possible
evolutions induced by the process over the initial data.
This requires to verify an infinite-state transition sys-
tem whose states are labeled with database instances,
a problem that is highly undecidable in general. A sec-
ond trend of research, with a longer tradition, is instead
specifically focused on the formalization and verification
of artifact-centric processes. Since the very first contri-
butions [26, 23], the underlying formal model is based
on: (i) a read-only relational database that stores fixed,
background information, (ii) a working memory that
stores the evolving state of artifacts, and (iii) actions
that update the working memory.

Different variants of this model have been considered
towards decidability of verification, by carefully tuning
the relative expressive power of the three components.
In this whole spectrum, we consider some of the most
recent and intriguing approaches, ranging from pure
relational structures with a single-tuple working mem-
ory [12] to artifact systems operating over a read-only
database equipped with constraints, and tracking the
co-evolution of multiple, unboundedly many artifacts

1https://sourceforge.net/projects/bizartifact/
2http://www.omg.org/spec/CMMN/

http://arxiv.org/abs/1806.11459v1
https://sourceforge.net/projects/bizartifact/
http://www.omg.org/spec/CMMN/

[27]. We do not consider numerical domains and arith-
metics. Notably, the foundational results in [27] are
backed up by a proof-of-concept verifier called verifas
[37]. Even though in these works the working memory
can be updated only using values from the read-only
database (i.e., no fresh values can be injected), verifica-
tion is extremely challenging as it is studied paramet-
rically to the read-only database itself, thus requiring
to check infinitely many finite transition systems. This
is done to assess whether the system behaves well irre-
spectively of the read-only data it operates on.

In this work, we propose a generalized model for
artifact-centric systems that subsumes those present in
the literature, in particular [12, 27, 37]. We then focus
on the (parameterized) safety problem, which amounts
to determine whether there exists an instance of the
read-only database that allows the system to evolve
from its initial configuration to an undesired configu-
ration falsifying a given state property.

To study this problem in its full generality, we estab-
lish for the first time a bridge between verification of
artifact-centric systems and model checking based on
Satisfiability-Modulo-Theories (SMT). Specifically, our
approach is grounded in array-based systems. Array-
based systems are a declarative formalism originally in-
troduced in [31, 32] to handle the verification of dis-
tributed systems, and afterwards successfully employed
also to attack the static analysis of other types of sys-
tems [8, 4]. Distributed systems are parameterized in
their essence: the number N of interacting processes
within a distributed system is unbounded, and the chal-
lenge is that of supplying certifications that are valid for
all possible values of the parameterN . The overall state
of the system is typically described by means of arrays
indexed by process identifiers, and used to store the
content of process variables like locations and clocks.
These arrays are genuine second order variables. In ad-
dition, quantifiers are used to represent sets of system
states. Quantified formulae and second order function
variables are at the heart of the model checking method-
ologies developed in [31, 32] and following papers.

The key, novel idea underlying the present paper is
that of encoding artifact systems into array-based sys-
tems. This is done by providing a “functional view”
of relations, where the read-only database and the ar-
tifact relations forming the working memory are repre-
sented with sorted unary function symbols. The result-
ing framework, however, requires novel and non-trivial
extensions of the array-based technology to make it op-
erational. In fact, quantifiers are handled in array-based
systems both by quantifier instantiation and by quan-
tifier elimination. Quantifier instantiation (ultimately
referring to variants of the Herbrand Theorem) can be
transposed to the new framework, whereas quantifier
elimination becomes problematic. In fact, quantifier
elimination should be applied to data variables, which
do not simply range over data types (like integers, re-
als, or enumerated sets) as in standard array-based sys-
tems, but instead point to the content of a whole, full-
fledged (read-only) relational database. To overcome

this problem, we employ classic model-theoretic ma-
chinery, namely model completions [41]: via model com-
pletions, we prove that the runs of the systems we are
interested in can be lifted (without loss of generality) to
richer contexts—which we call random-like structures—
where quantifier elimination is indeed available, despite
the fact that it was not available in the original more re-
stricted structures. This allows us to recast the original
safety problem into an equivalent safety problem in the
richer setting where quantifier elimination is available.

By exploiting this machinery and its model-theoretic
properties, we then provide a threefold contribution:
• We consider the backward reachability algorithm [31,

32], one of the most widely employed techniques to
effectively verify array-based systems. In particular,
we show that an adaptation of this algorithm can be
employed to assess safety of artifact-centric systems,
retaining soundness and completeness.
• We isolate three notable classes of artifact-centric sys-

tems where the backward reachability algorithm is
also guaranteed to terminate, in turn proving decid-
ability of safety. The first two classes reconstruct and
generalize the essence of the main decidability results
obtained in [12] and [37], thus providing a homoge-
neous framework to understand them. The third class
is instead novel, and to prove termination of back-
ward reachability we resort to techniques based on
well-quasi orders (in particular, a non-trivial applica-
tion of Kruskal’s Tree Theorem [35]).
• We build on the well-known mcmt model checker for

array-based systems [33], and extend it so as to tackle
verification of artifact systems. The resulting version
of mcmt provides a fully operational counterpart to
all the foundational results presented in the paper.

Even though implementation and experimental evalua-
tion are not the central goal of this paper, we also note
that our model checker correctly handles the examples
produced to test verifas [37], as well as additional ex-
amples that go beyond the verification capabilities of
verifas, and report some interesting case here. The
performance of mcmt to conduct verification of these
examples is very encouraging, and indeed provides the
first stepping stone towards effective, SMT-based veri-
fication techniques for artifact-centric systems.

After giving necessary preliminaries in Section 2, we
deepen our introduction to artifact-centric systems with
reference to the literature in Section 3, which also pro-
vides the basis for the organization of the technical part
of the paper. Full-fledged examples as well as complete
proofs of all results are given in the appendix.

2. PRELIMINARIES

We adopt the usual first-order syntactic notions of
signature, term, atom, (ground) formula, and so on.
We use u to represent a tuple 〈u1, . . . , un〉. Our signa-
tures Σ are multi-sorted and include equality for every
sort, which implies that variables are sorted as well.
Depending on the context, we keep the sort of a vari-
able implicit, or we indicate explicitly in a formula that
variable x has sort S by employing notation x : S. The

notation t(x), φ(x) means that the term t, the formula
φ has free variables included in the tuple x. We are
concerned only with constants and function symbols f ,
each of which has sources S and a target S′, denoted
as f : S −→ S′. We assume that terms and formu-
lae are well-typed, in the sense that the sorts of vari-
ables, constants, and function sources/targets match.
A formula is said to be universal (resp., existential) if
it has the form ∀x (φ(x)) (resp., ∃x (φ(x))), where φ is a
quantifier-free formula. Formulae with no free variables
are called sentences.

From the semantic side, we use the standard notions
of a Σ-structure M and of truth of a formula in a Σ-
structure under an assignment to the free variables. A
Σ-theory T is a set of Σ-sentences; a model of T is a Σ-
structure M where all sentences in T are true. We use
the standard notation T |= φ to say that φ is true in all
models of T for every assignment to the free variables
of φ. We say that φ is T -satisfiable iff there is a model
M of T and an assignment to the free variables of φ
that make φ true in M.

In the following, we use definable extensions as a
means to introduce case-defined functions F , abbreviat-
ing more complicated (still first-order) expressions. Let
us fix a signature Σ and a Σ-theory T ; a T -partition is
a finite set κ1(x), . . . , κn(x) of quantifier-free formulae
such that T |= ∀x

∨n

i=1 κi(x) and T |=
∧

i6=j ∀x¬(κi(x)∧

κj(x)). Given such a T -partition κ1(x), . . . , κn(x) to-
gether with Σ-terms t1(x), . . . , tn(x) (all of the same
target sort), a case-definable extension is the Σ′-theory
T ′, where Σ′ = Σ ∪ {F}, with F a “fresh” function
symbol (i.e., F 6∈ Σ)3, and T ′ = T ∪

⋃n

i=1{∀x (κi(x)→
F (x) = ti(x))}. Intuitively, F represents a case-defined
function, which can be reformulated using nested if-
then-else expressions and can be written as

F (x) := case of {κ1(x) : t1; · · · ;κn(x) : tn}.

By abuse of notation, we shall identify T with any of
its case-definable extensions T ′. In fact, it is easy to
produce from a Σ′-formula φ′ a Σ-formula φ that is
equivalent to φ′ in all models of T ′: just remove (in the
appropriate order) every occurrence F (v) of the new
symbol F in an atomic formula A, by replacing A with
∨n

i=1(κi(v) ∧ A(ti(v))). We also exploit λ-abstractions
(see, e.g., formula (6) below) for more “compact” rep-
resentation of some complex expressions, and always
use them in atoms like b = λy.F (y, z) as abbreviations
of ∀y. b(y) = F (y, z) (where, typically, F is a sym-
bol introduced in a case-defined extension as above).
Thus, also formula containing lambda abstractions, can
be converted into plain first-order formulae.

3. ARTIFACT SYSTEMS

To capture data-aware processes, we follow the tradi-
tional line of research focused on the formal represen-
tation of artifact systems. Since their initial versions
[26, 23], such systems are traditionally formalized us-
ing three components: (i) a read-only database (DB),
3Arity, source sorts and target sort for F can be deduced
from the context (considering that everything is well-typed).

storing background information that does not change
during the system evolution; (ii) an artifact working
memory, storing data and lifecycle information about
artifact(s) that does change during the system evolu-
tion; (iii) actions (also called services) that access the
read-only database and the working memory, and deter-
mine how the working memory itself has to be updated.

Different variants of this framework have been con-
sidered towards decidability of verification, by carefully
tuning the expressive power of the three components.
As for the read-only DB, approaches differ depending
on which constraints may be attached to the DB rela-
tion schemas. Results range from the basic case where
the DB schema consists of a purely relational structure
without constraints [12], to the case where (restricted
forms) of keys and foreign keys are supported [27].

As for the working memory, radically different mod-
els are obtained depending on whether only a single
artifact instance is evolved, or whether instead the co-
evolution of multiple instances of possibly different ar-
tifacts is supported. In particular, early formal models
for artifact systems merely considered a fixed set of so-
called artifact variables, altogether instantiated into a
single tuple of data. This, in turn, allows to capture
the evolution of a single artifact instance. This is the
model studied in [26, 12]. We call artifact systems of
this form Simple Artifact System (SAS). More sophis-
ticated types of artifact systems have been instead re-
cently studied in [27, 37]. Here, the working memory
is not only equipped with artifact variables as in SAS,
but also with so-called artifact relations, which supports
storing arbitrarily many tuples, each accounting for a
different artifact instance that can be separately evolved
on its own. We call artifact systems of this form Rela-
tional Artifact System (RAS).

Finally, actions are usually specified using quantifier-
free formulae relating the content of the read-only DB as
well as the current configuration of the working memory
to (possibly different) next configurations. An applica-
ble action may be executed, nondeterministically trans-
forming the current configuration of working memory in
one of such next configurations. When multiple artifact
instances can be evolved, the shape of actions has to
be controlled towards decidability of verification, espe-
cially by limiting the ability of a single action to update
multiple relations at once, as well as that of comparing
the content of different relations [27, 37]. In addition,
actions typically do not bring in new data while updat-
ing the working memory, but only use values present
in the read-only DB. The only exception to this is [23],
which requires to insert possibly fresh numerical values
due to arithmetics, which we do not consider here.

Starting from this basis, we study a more general
model of artifact systems accounting for various forms
of updates (possibly comparing and updating multiple
relations at once), and for the injection of possibly fresh
values during the execution. Specifically, we study read-
only DB schemas in Section 4, SAS in Section 5, and
RAS in Section 6. We consider the safety problem for
such systems, which amounts to check whether there

exists an instance of the read-only DB such that the
system can evolve from the initial configuration of its
working memory to an undesired configuration. Since
in the case of RAS the decidability of verification subtly
depends the richness of actions in updating the working
memory, in Section 7 we study kinds of actions and of
the read-only DB schema that guarantee termination.

4. READ-ONLY DATABASE SCHEMAS

We now provide a formal definition of (read-only) DB-
schemas by relying on an algebraic, functional charac-
terization, and derive some key model-theoretic proper-
ties instrumental to the technical treatment.

Definition 1. A DB schema is a pair 〈Σ, T 〉, where:
(i) Σ is a DB signature, that is, a finite multi-sorted
signature whose only symbols are equality, unary func-
tions, and constants; (ii) T is a DB theory, that is, a
set of universal Σ-sentences. ⊳

Next, we refer to a DB schema simply through its (DB)
theory T and (DB) signature Σ. Given a DB signature
Σ, we denote by Σsrt the set of sorts and by Σfun the set
of functions in Σ. Since Σ contains only unary function
symbols and equality, all atomic Σ-formulae are of the
form t1(v1) = t2(v2), where t1, t2 are possibly complex
terms, and v1, v2 are either variables or constants.

We associate to a DB signature Σ a characteristic
graph G(Σ) capturing the dependencies induced by
functions over sorts. Specifically, G(Σ) is an edge-
labeled graph whose set of nodes is Σsrt, and with a

labeled edge S
f
−→ S′ for each f : S −→ S′ in Σfun .

We say that Σ is acyclic if G(Σ) is so. The leaves of Σ
are the nodes of G(Σ) without outgoing edges. These
terminal sorts are divided in two subsets, respectively
representing unary relations and value sorts. Non-value
sorts (i.e., unary relations and non-leaf sorts) are called
id sorts, and are conceptually used to represent (identi-
fiers of) different kinds of objects. Value sorts, instead,
represent datatypes such as strings, numbers, clock val-
ues, etc. We denote the set of id sorts in Σ by Σids, and
that of value sorts by Σval , hence Σsrt = Σids ⊎ Σval .

We now consider extensional data.

Definition 2. A DB instance of DB schema 〈Σ, T 〉 is
a Σ-structure M that is a model of T and such that
every id sort of Σ is interpreted in M on a finite set. ⊳

Contrast this to arbitrary models of T , where no finite-
ness assumption is made. What may appear as not
customary in Definition 2 is the fact that value sorts
can be interpreted on infinite sets. This allows us, at
once, to reconstruct the classical notion of DB instance
as a finite model (since only finitely many values can be
pointed from id sorts using functions), at the same time
supplying a potentially infinite set of fresh values to be
dynamically introduced in the working memory during
the evolution of the artifact system. More details on
this will be given in Section 4.1.

We respectively denote by SM, fM, and cM the in-
terpretation in M of the sort S (this is a set), of the
function symbol f (this is a set-theoretic function), and

UserId userName

EmpId empName

CompInId who
what

JobCatId jobCatDescr

String

id : UserId userName : StringUser

id : EmpId empName : StringEmployee

id : CompInId who : EmpId what : JobCatIdCompetentIn

id : JobCatId jobCatDescr : StringJobCategory

Figure 1: On the left: characteristic graph of the

human resources DB signature from Example 1. On

the right: relational view of the DB signature; each

cell denotes an attribute with its type, underlined

attributes denote primary keys, and directed edges

capture foreign keys.

of the constant c (this is an element of the interpreta-
tion of the corresponding sort). Obviously, fM and cM

must match the sorts in Σ. E.g., if f has source S and
target U , then fM has domain SM and range UM.

Example 1. The human resource (HR) branch of a
company stores the following information inside a re-
lational database: (i) users registered to the company
website, who are potentially interested in job positions
offered by the company; (ii) the different, available job
categories; (iii) employees belonging to HR, together
with the job categories they are competent in (in turn
indicating which job applicants they could interview).
To formalize these different aspects, we make use of a
DB signature Σhr consisting of: (i) four id sorts, used
to respectively identify users, employees, job categories,
and the competence relationship connecting employees
to job categories; (ii) one value sort containing strings
used to name users and employees, and describe job
categories. In addition, Σhr contains five function sym-
bols mapping: (i) user identifiers to their corresponding
names; (ii) employee identifiers to their corresponding
names; (iii) job category identifiers to their correspond-
ing descriptions; (iv) competence identifiers to their cor-
responding employees and job categories. The charac-
teristic graph of Σhr is shown in Figure 1 (left part). ⊳

We close the formalization of DB schemas by dis-
cussing DB theories. The role of a DB theory is to
encode background axioms to express constraints on
the different elements of the corresponding signature.
We illustrate a typical background axiom, required to
handle the possible presence of undefined identifiers/-
values in the different sorts. This, in turn, is essential
to capture artifact systems whose working memory is
initially undefined, in the style of [27, 37]. To accom-
modate this, to specify an undefined value we add to
every sort S of Σ a constant undefS (written from now
on, by abuse of notation, just as undef, used also to
indicate a tuple). Then, for each function symbol f of
Σ, we add the following axiom to the DB theory:

∀x (x = undef↔ f(x) = undef) (1)

This axiom states that the application of f to the un-
defined value produces an undefined value, and it is the
only situation for which f is undefined.

Remark 1. In the following, we always implicitly as-

sume that the DB theory consists of Axioms 1, but our
technical results are not bound to this specific choice.
The specific conditions we require on the DB theory to-
wards our results will be explicitly stated later. ⊳

4.1 Relational View of DB Schemas

We now clarify how the algebraic, functional charac-
terization of DB schema and instance can be actually
reinterpreted in the classical, relational model. Defini-
tion 1 naturally corresponds to the definition of rela-
tional database schema equipped with single-attribute
primary keys and foreign keys (plus a reformulation of
constraint (1)). To technically explain the correspon-
dence, we adopt the named perspective, where each re-
lation schema is defined by a signature containing a
relation name and a set of typed attribute names. Let
〈Σ, T 〉 be a DB schema. Each id sort S ∈ Σids corre-
sponds to a dedicated relation RS with the following
attributes: (i) one identifier attribute idS with type S;
(ii) one dedicated attribute af with type S′ for every
function symbol f ∈ Σfun of the form f : S −→ S′.

The fact that RS is built starting from functions in
Σ naturally induces different database dependencies in
RS . In particular, for each non-id attribute af ofRS , we
get a functional dependency from idS to af ; altogether,
such dependencies in turn witness that idS is the (pri-
mary) key of RS . In addition, for each non-id attribute
af of RS whose corresponding function symbol f has id
sort S′ as image, we get an inclusion dependency from
af to the id attribute idS′ of RS′ ; this captures that af

is a foreign key referencing RS′ .

Example 2. The diagram on the right in Figure 1
graphically depicts the relational view corresponding to
the DB signature of Example 1. ⊳

Given a DB instance M of 〈Σ, T 〉, its corre-
sponding relational instance I is the minimal set
satisfying the following property: for every id
sort S ∈ Σids, let f1, . . . , fn be all functions
in Σ with domain S; then, for every identifier
o ∈ SM, I contains a labeled fact of the form
RS(idS : oM, af1

: fM
1 (oM), . . . , afn

: fM
n (oM)). With

this interpretation, the active domain of I is the set
⋃

S∈Σids
(SM \ {undefM})

∪

{

v ∈
⋃

V ∈Σval
V M

∣

∣

∣

∣

there exist f ∈ Σfun

and o ∈ dom(fM) s.t. fM(o) = v

}

consisting of all (proper) identifiers assigned byM to id
sorts, as well as values obtained in M via the applica-
tion of some function. Since such values are necessarily
finitely many, one may wonder why in Definition 2 we
allow for interpreting value sorts over infinite sets. The
reason is that, in our framework, an evolving artifact
system may use such infinite provision to inject and
manipulate new values into the working memory.

This relational interpretation of DB schemas exactly
reconstruct the requirements posed by [27, 37] on the
schema of the read-only database: (i) each relation
schema has a single-attribute primary key; (ii) at-
tributes are typed; (iii) attributes may be foreign keys

referencing other relation schemas; (iv) the primary
keys of different relation schemas are pairwise disjoint.

We stress that all such requirements are natively cap-
tured in our functional definition of a DB signature,
and do not need to be formulated as axioms in the DB
theory. The DB theory is used to express additional
constraints, like that in Axiom (1). In the following
section, we thoroughly discuss which properties must
be respected by signatures and theories to guarantee
that our verification machinery is well-behaved.

One may wonder why we have not directly adopted
a relational view for DB schemas. This will become
clear during the technical development. We anticipate
the main, intuitive reasons. First, our functional view
allows us to reconstruct in a single, homogeneous frame-
work, some important results on verification of artifact
systems, achieved on different models that have been
unrelated so far [12, 27]. E.g., the model adopted in
[12] cannot be naively extended with keys, since rela-
tional structures with key constraints do not enjoy the
amalgamation property, which is the crucial condition
for the main decidability results in that work. Second,
our functional view makes the dependencies among dif-
ferent types explicit. In fact, our notion of characteristic
graph, which is readily computed from a DB signature,
exactly reconstructs the central notion of foreign key
graph used in [27] towards the main decidability results.

4.2 Formal Properties of DB Schemas

The theory T from Definition 1 must satisfy few cru-
cial requirements for our approach to work. In this sec-
tion, we define such requirements and show that they
are matched whenever the signature Σ is acyclic. Actu-
ally, acyclicity is a stronger requirement than needed,
which, however, simplifies our exposition.

4.2.1 Finite model property

A Σ-formula φ is a Σ-constraint (or just a constraint)
iff it is a conjunction of literals. The constraint satisfi-
ability problem for T asks: given an existential formula
∃y φ(x, y) (with φ a constraint4), are there a model M
of T and an assignment α to the free variables x s.t.
M, α |= ∃y φ(x, y)?

We say that T has the finite model property (for con-
straint satisfiability) iff every constraint φ that is satis-
fiable in a model of T is satisfiable in a DB instance of
T .5 The following is proved in Appendix B:

Proposition 1. T has the finite model property in case
Σ is acyclic. ⊳

The finite model property implies decidability of the
constraint satisfiability problem in case T is recursively
axiomatized.

4.2.2 Quantifier elimination

A Σ-theory T has quantifier elimination iff for every

4For the purposes of this definition, we may equivalently
take φ to be quantifier-free.
5 It is easily seen that this implies that φ is satisfiable also
in a DB instance interpreting also value sorts into finite sets.

Σ-formula φ(x) there is a quantifier-free formula φ′(x)
such that T |= φ(x)↔ φ′(x). It is known that quantifier
elimination holds if quantifiers can be eliminated from
primitive formulae, i.e., formulae of the kind ∃y φ(x, y),
with φ a constraint. We assume that when quantifier
elimination is considered, there is an effective procedure
that eliminates quantifiers.

A DB theory T does not necessarily have quantifier
elimination; it is however often possible to strengthen
T in a conservative way (w.r.t. constraint satisfiability)
and get quantifier elimination. We say that T has a
model completion iff there is a stronger theory T ∗ ⊇ T
(still within the same signature Σ of T) s.t. (i) every
Σ-constraint satisfiable in a model of T is also so in a
model of T ∗; (ii) T ∗ has quantifier elimination. T ∗ is
called a model completion of T .

Proposition 2. T has a model completion in case it
is axiomatized by universal one-variable formulae and
Σ is acyclic. ⊳

In Appendix B we prove the above proposition and
give an algorithm for quantifier elimination. This al-
gorithm is far from optimal from two points of view.
First, contrary to what happens in linear arithmetics,
the quantifier elimination needed to prove Proposition 2
has a much better behaviour (from the complexity point
of view) if obtained via a suitable version of the Knuth-
Bendix procedure [9]. Since these aspects concerning
quantifier elimination are rather delicate, we address
them in a dedicated paper [18] (our mcmt implementa-
tion, however, already partially takes into account such
future development).

Secondly, the algorithm presented in Appendix B uses
the acyclicity assumption, whereas such assumption is
in general not needed for Proposition 2 to hold: for in-
stance, when T := ∅ or when T contains only Axiom (1),
the model completion can be proved to exist, even if Σ
is not acyclic, by using the Knuth-Bendix version of the
quantifier elimination algorithm.

Hereafter, we make the following assumption:

Assumption 1. The DB theories we consider have de-
cidable constraint satisfiability problem, finite model
property, and admit a model completion. ⊳

This assumption is matched, for instance, in the fol-
lowing three cases: (i) when Σ is acyclic; (ii) when T is
empty; (iii) when T is axiomatized by Axiom (1).

5. SIMPLE ARTIFACT SYSTEMS

In this section we consider systems manipulating only
individual variables and reading data from a given
database instance. In order to introduce verification
problems in a symbolic setting, one first has to specify
which formulae are used to represent sets of states, the
system initializations, and system evolution. Given a
DB schema 〈Σ, T 〉 and a tuple x = x1, . . . , xn of vari-
ables, we introduce the following classes of Σ-formulae:
– a state formula is a quantifier-free Σ-formula φ(x);
– an initial formula is a conjunction of equalities of the

form
∧n

i=1 xi = ci, where each ci is a constant;6

– a transition formula τ̂ is an existential formula

∃y
(

G(x, y) ∧
∧n

i=1 x
′
i = Fi(x, y)

)

(2)

where x′ are renamed copies of x, G is quantifier-free
and F1, . . . , Fn are case-defined functions. We call G
the guard and Fi the updates of Formula (2).

Definition 3. A Simple Artifact System (SAS) is

S = 〈Σ, T, x, ι(x), τ(x, x′)〉

where: (i) 〈Σ, T 〉 is a (read-only) DB schema, (ii) x =
x1, . . . , xn are variables (called artifact variables), (iii) ι
is an initial formula, and (iv) τ is a disjunction of tran-
sition formulae. ⊳

Example 3. We consider a SAS working over the DB
schema of Example 1. It captures a global, single-
instance artifact tracking the main, overall phases of
a hiring process. The job hiring artifact employs a ded-
icated pState variable to store the current process state.
Initially, hiring is disabled, which is captured by setting
the pState variable to undef. A transition of the process
from disabled to enabled may occur provided that the
read-only HR DB contains at least one registered user
(who, in turn, may decide to apply for a job). Tech-
nically, we introduce a dedicated artifact variable uId
initialized to undef, and used to load the identifier of
such a registered user, if (s)he exists. Enablement is
then captured by the following transition formula:

∃y : UserId

(

pState = undef ∧ y 6= undef

∧ pState′ = enabled∧ uId′ = y

)

Notice in particular how the existence of a user is
checked using the typed variable y, checking that it is
not undef and correspondingly assigning it to uId. ⊳

A safety formula for SAS S is a state formula υ(x)
describing undesired states of S. We say that S is safe
with respect to υ if intuitively the system has no finite
run leading from ι to υ. Formally, there is no DB-
instance M of 〈Σ, T 〉, no k ≥ 0, and no assignment in
M to the variables x0, . . . , xk such that the formula

ι(x0) ∧ τ(x0, x1) ∧ · · · ∧ τ(xk−1, xk) ∧ υ(xk) (3)

is true in M (here xi’s are renamed copies of x). The
safety problem for S is the following: given a safety
formula υ decide whether S is safe w.r.t. υ.

Algorithm 1 describes the backward reachability al-
gorithm (or, backward search) for handling the safety
problem for S. An integral part of the algorithm is
to compute preimages. For that purpose, we define
for any φ1(z, z′) and φ2(z), Pre(φ1, φ2) as the formula
∃z′(φ1(z, z′)∧φ2(z′)). The preimage of the set of states
described by a state formula φ(x) is the set of states
described by Pre(τ, φ).7 The subprocedure QE(T ∗, φ)
in Line 6 applies the quantifier elimination algorithm of
T ∗ to the existential formula φ. Algorithm 1 computes
iterated preimages of υ and applies to them quantifier
elimination, until a fixpoint is reached or until a set

6Typically, ci is an undef constant mentioned above.
7Notice that, when τ =

∨

τ̂ , then Pre(τ, φ) =
∨

Pre(τ̂ , φ).

Algorithm 1: Backward reachability algorithm

Function BReach(υ)
1 φ←− υ; B ←− ⊥;
2 while φ ∧ ¬B is T -satisfiable do
3 if ι ∧ φ is T -satisfiable. then

return unsafe

4 B ←− φ ∨B;
5 φ←− Pre(τ, φ);
6 φ←− QE(T ∗, φ);

return (safe, B);

intersecting the initial states (i.e., satisfying ι) is found.
We state now the main result of this section:

Theorem 1. Let 〈Σ, T 〉 be a DB schema. Then, for ev-
ery SAS S = 〈Σ, T, x, ι, τ〉 the following holds: (1) back-
ward search is effective and partially correct for solving
safety problems for S;8 (2) if Σ is acyclic, backward
search terminates and decides safety problems for S in
Pspace in the combined size of x, ι, and τ . ⊳

Proof (sketch). Algorithm 1, to be effective, re-
quires the availability of decision procedures for dis-
charging the satisfiability tests in Lines 2-3. Thanks
to our hypotheses in Assumption 1, we can freely as-
sume that all the runs we are interested in take place
inside models of T ∗ where we can eliminate quantifiers:
in fact, formulae of the kind (3) are existential so they
are satisfiable in a model of T iff they are satisfiable
in a DB instance iff they are satisfiable in a model of
T ∗. Thanks to quantifier elimination, the preimage of a
state is a state formula and this fact is exploited both to
make safety and fixpoint tests effective, and to ensure
termination (because there are only finitely many state
formulae, up to T -equivalence). As for complexity, it
can be shown that, when Σ is acyclic, backward search
can be modified so as to run in Pspace. �

The proof of Theorem 1 shows that, whenever Σ is not
acyclic, backward search is still a semi-decision proce-
dure: if the system is unsafe, backward search always
terminates and discovers it; if the system is safe, the
procedure can diverge (but it is still correct).

Theorem 1 reconstructs the main decidability and
complexity result from [12], restricted to first-order de-
finable classes of database instances used in our case.
First, it can be shown that every existential formula
φ(x, x′) can be turned into the form of Formula (2).
The proof of Statement (2) of Theorem 1 requires that
T : (i) admits a model completion; (ii) is locally finite,
i.e., up to T -equivalence, there are only finitely many
atoms involving a fixed finite number of variables (this
condition is assumed in [12], and is implied by acyclic-
ity); (iii) is universal; and (iv) enjoys decidability of
constraint satisfiability. Conditions (iii) and (iv) imply
that one can decide whether a finite structure is a model

8Partial correctness means that, when the algorithm termi-
nates, it gives a correct answer. Effectiveness means that all
subprocedures in the algorithm can be effectively executed.

of T (as assumed in [12]). If (ii) and (iii) hold, it is
well-known that (i) is equivalent to amalgamation [45].
Moreover, (ii) alone always holds for relational signa-
tures and (iii) is equivalent to T being closed under
substructures (this is a standard preservation theorem
in model theory [21]). It follows that relational signa-
tures (and locally finite theories in general) require only
amalgamability and closure under substructures, which
precisely coincide with the hypotheses in [12].

The major difference with [12] is in the adopted sys-
tem settings. In our first-order case we can perform ver-
ification in a purely symbolic way, using (semi-)decision
procedures provided by SMT-solvers, even when lo-
cal finiteness fails. As mentioned before, local finite-
ness is guaranteed in the relational context, but it does
not hold anymore when arithmetic operations are intro-
duced. Note that the theory of a single uninterpreted
binary relation (i.e., the theory of graphs) is amalgam-
able, whereas it can be easily seen that the theory of one
binary relation endowed with primary key dependencies
is not. Our second distinctive feature naturally follows
from this observation: thanks to our functional repre-
sentation of DB schemas (with keys), the amalgamation
property, required by Theorem 3, holds.

6. RELATIONAL ARTIFACT SYSTEMS

We now turn to systems manipulating higher order
variables, which are supposed to model evolving rela-
tions, the so-called “artifact relations”. The idea is to
treat artifact relations in a uniform way as we did for
the the read-only DB: we need extra sort symbols (re-
call that each sort symbol corresponds to a database
relation symbol) and extra unary function symbols, the
latter being treated as second-order variables.

Given a DB schema Σ, an artifact extension of Σ is
a signature Σext obtained from Σ by adding to it some
extra sort symbols9. These new sorts (usually indicated
with letters E,F, . . .) are called artifact sorts (or arti-
fact relations by some abuse of terminology), while the
old sorts from Σ are called basic sorts. Below, given
〈Σ, T 〉 and an artifact extension Σext of Σ, when we
speak of a Σext-model of T , a DB instance of 〈Σext, T 〉,
or a Σext-model of T ∗, we mean a Σext-structure M
whose reduct to Σ respectively is a model of T , a DB
instance of 〈Σ, T 〉, or a model of T ∗.

An artifact setting over Σext is a pair (x, a) given by
a finite set of individual variables x and a finite set of
unary function variables a: the latter are required to
have an artifact sort as source sort and a basic sort as
target sort. Variables in x are called (as before) artifact
variables, and variables in a artifact components.

Given a DB instanceM of Σext, an assignment to an
artifact setting (x, a) over Σext is a map α assigning to
every artifact variable xi ∈ x of sort Si an element xα ∈
SM

i and to every artifact component aj : Ej −→ Uj

(with aj ∈ a) a set-theoretic function aα
j : EM

j −→ UM
j .

9By ‘signature’ we always mean ’signature with equality’, so
as soon as new sorts are added, the corresponding equality
predicates are added too.

We can view an assignment to an artifact setting
(x, a) as a DB instance extending the DB instanceM as
follows. Let all the artifact components in (x, a) hav-
ing source E be ai1

: E −→ S1, · · · , ain
: E −→ Sn.

Viewed as a relation in the artifact assignment (M, α),
the artifact relation E “consists” of the set of tuples

{〈e, aα
i1

(e), . . . , aα
in

(e)〉 | e ∈ EM}

Thus each element of E is formed by an “entry” e ∈ EM

(uniquely identifying the tuple) and by “data” aα
i (e)

taken from the read-only database M. When the
system evolves, the set EM of entries remains fixed,
whereas the components aα

i (e) may change: typically,
we initially have aα

i (e) = undef, but these values are
changed when some defined values are inserted into the
relation modeled by E; the values are then repeatedly
modified (and possibly also reset to undef, if the tuple is
removed and e is re-set to point to undefined values)10.

To introduce Relational Artifact Systems we discuss
the kind of formulae we use. In such formulae, we use
notations like φ(z, a) to mean that φ is a formula whose
free individual variables are among the z and whose free
unary function variables are among the a. Let (x, a)
be an artifact setting over Σext, where x = x1, . . . , xn

are the artifact variables and a = a1, . . . , am are the
artifact components (their source and target sorts are
left implicitly specified):
• An initial formula is a formula ι(x) of the form11

∧n
i=1 xi = ci ∧

∧m
j=1 aj = λy.dj (4)

where ci, dj are constants from Σ.
• A state formula has the form

∃e φ(e, x, a) (5)

where φ is quantifier-free and the e are individual
variables of artifact sorts.
• A transition formula τ̂ has the form

∃e

(

γ(e, x, a) ∧
∧

i x
′
i = Fi(e, x, a)

∧
∧

j a
′
j = λy.Gj(y, e, x, a)

)

(6)

where the e are individual variables (of both basic
and artifact sorts), γ (the ’guard’) is quantifier-free,
x′, a′ are renamed copies of x, a, and the Fi, Gj (the
’updates’) are case-defined functions.
Note that transition formulae as above can express,

e.g., (i) insertion (with/without duplicates) of a tuple in
an artifact relation, (ii) removal of a tuple from an arti-
fact relation, (iii) transfer of a tuple from an artifact re-
lation to artifact variables (and vice versa), and (iv) re-
moval/modification of all the tuples satisfying a certain
condition from an artifact relation. All the above opera-
tions can also be constrained. Our framework is strictly
more expressive than, e.g., the one in [37], as shown in
Appendix F, and also than the one in [27].

Definition 4. A Relational Artifact System (RAS) is

S = 〈Σ, T,Σext, x, a, ι(x, a), τ(x, a, x′, a′)〉

10In accordance with mcmt conventions, we denote the ap-
plication of an artifact component a to a term (i.e., constant
or variable) v also as a[v], instead of a(v).

11Recall that aj = λy.dj abbreviates ∀y aj(y) = dj .

where: (i) 〈Σ, T 〉 is a (read-only) DB schema, (ii) Σext

is an artifact extension of Σ, (iii) (x, a) is an artifact
setting over Σext, (iv) ι is an intitial formula, and (v) τ
is a disjunction of transition formulae. ⊳

Example 4. We transform the SAS of Example 3 into
a RAS Shr containing a multi-instance artifact account-
ing for the evolution of job applications. Each job cate-
gory may receive multiple applications from registered
users. Such applications are then evaluated, finally de-
ciding which are accepted and which are rejected. The
example is inspired by the job hiring process presented
in [43] to show the intrinsic difficulties of capturing real-
life processes with many-to-many interacting business
entities using conventional process modeling notations
(such as BPMN). An extended version of this example,
capturing the co-evolution of multiple instances of two
different artifacts, is presented in Appendix A.1.

As for the read-only DB, Shr works over the DB
schema of Example 1, extended with a further value
sort Score used to score job applications. Score contains
102 values in the range [−1, 100], where −1 denotes the
non-eligibility of the application, and a score from 0
to 100 indicates the actual one assigned after evaluat-
ing the application. For the sake of readability, we use
usual predicates <, > and = to compare variables of
type Score. This is syntactic sugar and does not require
to introduce rigid predicates in our framework.

As for the working memory, Shr consists of two arti-
facts: the single-instance job hiring artifact tracking the
three main phases of the overall process (and described
in Example 3), and a multi-instance artifact accounting
for the evolution of user applications. To model appli-
cations, we take the DB signature Σhr of the read-only
database of human resources, and enrich it with an arti-
fact extension containing an artifact sort appIndex used
to index (i.e., “internally” identify) job applications.
The management of job applications is then modeled
by an artifact setting with: (i) artifact components
with domain appIndex capturing the artifact relation
that store the different job applications; (ii) additional
individual variables as a temporary memory to manipu-
late the artifact relation. Specifically, each application
consists of a job category, the identifier of the appli-
cant user and that of an HR employee responsible for
the application, the application score and final result
(indicating whether the application is among the win-
ners or the losers for the job offer). These information
slots are encapsulated into dedicated artifact compo-
nents, i.e., function variables with domain appIndex that
collectively realize the application artifact relation:

appJobCat : appIndex −→ JobCatId

applicant : appIndex −→ UserId

appResp : appIndex −→ EmpId

appScore : appIndex −→ Score

appResult : appIndex −→ String

We now discuss the relevant transitions for inserting
and evaluating job applications. When writing transi-
tion formulae, we make the following assumption: if an
artifact variable/component is not mentioned at all, it

is meant that is updated identically; otherwise, the rel-
evant update function will specify how it is updated.12

The insertion of an application into the system can be
executed when the hiring process is enabled (cf. Ex-
ample 3), and consists of two consecutive steps. To
indicate when a step can be applied, also ensuring that
the insertion of an application is not interrupted by the
insertion of another one, we manipulate a string arti-
fact variable aState. The first step is executable when
aState is undef, and aims at loading the application
data into dedicated artifact variables through the fol-
lowing simultaneous effects: (i) the identifiers of the
user who wants to submit the application, and that of
the targeted job category, are selected and respectively
stored into variables uId and jId; (ii) the identifier of
an HR employee who becomes responsible for the appli-
cation is selected and stored into variable EmpId, with
the requirement that such an employee must be com-
petent in the job category targeted by the application;
(iii) aState evolves into state received. Formally:

∃u:UserId, j:JobCatId, e:EmpId, c:CompInId

pState = enabled ∧ aState = undef

∧ u 6= undef ∧ j 6= undef ∧ e 6= undef ∧ c 6= undef

∧ who(c) = e ∧ what(c) = j

∧ pState′ = enabled ∧ aState′ = received

∧ uId′ = u ∧ jId′ = j ∧ eId ′ = e ∧ cId′ = c

The second step transfers the application data into
the application artifact relation, using its corresponding
function variables, at the same resetting all application-
related artifact variables to undef (including aState, so
that new applications can be inserted). For the inser-
tion, a “free” index (i.e., an index pointing to an un-
defined applicant) is picked. The newly inserted appli-
cation gets a default score of -1 (thus initializing it to
“not eligible”), while the final result is undef:

∃i:appIndex

pState = enabled ∧ aState = received

∧ applicant[i] = undef

∧ pState′ = enabled ∧ aState′ = undef ∧ cId′ = undef

∧ appJobCat ′ = λj. (if j = i then jId else appJobCat[j])
∧ applicant ′ = λj. (if j = i then uId else applicant[j])
∧ appResp′ = λj. (if j = i then eId else appResp[j])
∧ appScore′ = λj. (if j = i then -1 else appScore[j])
∧ appResult′ = λj. (if j = i then undef else appResult[j])
∧ jId′ = undef ∧ uId′ = undef ∧ eId′ = undef

Notice that such a transition does not prevent the pos-
sibility of inserting exactly the same application twice,
at different indexes. If this is not wanted, the transition
can be suitably changed so as to guarantee that no two
identical applications can coexist in the same artifact
relation (see Appendix A.1 for an example).

Each application currently considered as not eligible
can be made eligible by assigning a proper score to it:

∃i:appIndex, s:Score
(

pState = enabled ∧ appScore[i] = -1 ∧ s ≥ 0
∧ pState′ = enabled ∧ appScore′[i] = s

)

12Notice that non-deterministic updates can be formalized
using the existential quantified variables in the transition.

Finally, application results are computed when the pro-
cess moves to state notified. This is handled by the fol-
lowing bulk transition, which declares applications with
a score above 80 as winning, and the others as losing:

pState = enabled ∧ pState′ = notified

∧ appResult ′ = λj.

(

if appScore[j] > 80 then winner

else loser

)

⊳

As for SAS, a safety formula for S is a state formula
υ(x). We say that S is safe with respect to υ if there
is no DB-instance M of 〈Σext, T 〉, no k ≥ 0, and no
assignment in M to the variables x0, a0 . . . , xk, ak such
that the formula

ι(x0, a0) ∧ τ(x0, a0, x1, a1)
∧ · · · ∧ τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)

(7)

is true in M (here xi, ai are renamed copies of x, a).
The safety problem is defined as for SAS.

Example 5. We consider a safety property for the RAS
from Example 4 that checks whether, after having re-
ceived the evaluation notification, the are no applicants
left without winner or loser status being assigned:

∃i:appIndex
(

pState = notified∧ applicant [i] 6= undef
∧ appResult[i] 6= winner∧ appResult[i] 6= loser

)

The job hiring RAS Shr turns out to be safe w.r.t. this
property (cf. Section 8). ⊳

Interestingly, we can still run backward search for
handling safety problems in RASs. In analogy to State-
ment (1) of Theorem 1, we obtain:

Theorem 2. Backward search (cf. Algorithm 1) is ef-
fective and partially correct for solving safety problems
for RASs. ⊳

Proof (sketch). We can keep Algorithm 1 almost
unmodified. The procedure QE(T ∗, φ) mentioned on
Line 6 can be extended so as to convert the preimage
Pre(τ, φ)13 of a state formula φ into a state formula
(equivalent to it modulo the axioms of T ∗): this is
because a technical lemma ensures that T ∗ still elim-
inates from primitive formulae the existentially quanti-
fied variables over the basic sorts (elimination of quanti-
fied variables over artifact sorts is not possible, because
these variables occur as arguments of artifact compo-
nents). In addition, the satisfiability tests from Lines 2–
3 can still be discharged (in fact, we prove that the
entailment between state formulae can be decided via
instantiation techniques). �

Notice that the role of quantifier elimination (Line 6
of Algorithm 1) is twofold: (i) it allows to discharge the
fixpoint test of Line 2 (see Lemma 4); (ii) it ensures
termination in significant cases, namely those where
(strongly) local formulae introduced below are involved.

7. TERMINATION RESULTS FOR RASs

13Notice that in this case the definition of Pre(τ, φ) gives us
∃x′∃a′(τ (x, a, x′, a′) ∧ φ(x′, a′)).

Theorem 2 gives a semi-decision procedure for un-
safety: if the system is unsafe, the procedure discovers
it, but if the system is safe, the procedure (still correct)
may not terminate. Termination is much more difficult
to achieve for RASs, since acyclicity of Σ is not
sufficient to guarantee it. We present two termination
results, both obtained via the use of well quasi-orders. I

7.1 Termination with Local Updates

Consider an acyclic signature Σ, a theory T (satis-
fying our Assumption 1), and an artifact setting (x, a)
over an artifact extension Σext of Σ. We call a state
formula local if it is a disjunction of the formulae

∃e1 · · · ∃ek

(

δ(e1, . . . , ek) ∧
∧k

i=1 φi(ei, x, a)
)

, (8)

and strongly local if it is a disjunction of the formulae

∃e1 · · · ∃en (δ(e1, . . . , en) ∧ ψ(x) ∧
∧n

i=1 φi(ei, a)) . (9)

In (8) and (9), δ is a conjunction of variable equalities
and inequalities, φi, ψ are quantifier-free, and e1, . . . , en

are individual variables varying over artifact sorts. The
key expressivity limitation of local state formulae is that
they cannot compare entries belonging to different tu-
ples of artifact relations: in fact, each φi in (8) and (9)
can contain only the existentially quantified variable ei.

A transition formula τ̂ is local (resp., strongly local)
if whenever a formula φ is local (resp., strongly local),
so is Pre(τ̂ , φ) (modulo the axioms of T ∗). Examples of
(strongly) local τ̂ are discussed in Appendix F.

Theorem 3. If Σ is acyclic, backward search (cf. Algo-
rithm 1) terminates when applied to a local safety for-
mula in a RAS whose τ is a disjunction of local transi-
tion formulae. ⊳

Proof (sketch). Let Σ̃ be Σext ∪ {a, x}, that is, Σext

expanded with function symbols a and constants x
(thus, a Σ̃-structure is a Σext-structure endowed with
an assignment to x and a, which were variables and
now are treated as symbols of Σ̃). We call a Σ̃-structure
cyclic14 if it is generated by one element belonging to
the interpretation of an artifact sort. Since Σ is acyclic,
so is Σ̃, and then one can show that there are only
finitely many cyclic Σ̃-structures C1, . . . , CN up to iso-
morphism. With a Σ̃-structure M we associate the tu-
ple of numbers k1(M), . . . , kN (M) ∈ N∪{∞} counting
the numbers of elements generating (as singletons) the
cyclic substructures C1, . . . , CN , respectively. Then we
show that, if the tuple associated withM is componen-
twise bigger than the one associated with N , then M
satisfies all the local formulae satisfied by N . Finally
we apply Dikson Lemma [9]. �

Note that Theorem 3 can be used to subsume the
decidability results of [37] concerning safety problems.
Specifically, one needs to show that transitions in [37]
are strongly local which, in turn, can be shown us-
ing quantifier elimination (see Appendix F for more

14This is unrelated to cyclicity of Σ defined in Section 4, and
comes from universal algebra terminology.

details). Interestingly, Theorem 3 can be applied to
more cases not covered in [37]. For example, one can
provide transitions enforcing updates over unboundedly
many tuples (bulk updates) that are strongly local (cf.
Appendix F). One can also see that the safety prob-
lem for our running example is decidable since all its
transitions are strongly local. Another case considers
coverability problems for broadcast protocols [30, 25],
which can be encoded using local formulae over the triv-
ial one-sorted signature containing just one basic sort
and finitely many constants (in the artifact setting, it
is sufficient to take one artifact sort with one artifact
component). These problems can be decided with a
non-primitive recursive lower bound [42] (whereas the
problems in [37] have an ExpSpace upper bound).

7.2 Termination with tree-like signatures

Σ is tree-like if it is acyclic and all non-leaf modes
have outdegree 1. An artifact setting over Σ is tree-like
if Σ̃ := Σext ∪{a, x} is tree-like. In tree-like artifact set-
tings, artifact relations have a single “data” component,
and basic relations are unary or binary.

Theorem 4. Backward search (cf. Algorithm 1) termi-
nates when applied to a safety problem in a RAS with
a tree-like artifact setting. ⊳

Proof (sketch). The crux of the proof is to show, us-
ing Kruskal’s Tree Theorem [35], that the finitely gen-
erated Σ̃-structures are a well-quasi-order with respect
to the embeddability partial order. �

Tree-like RAS are not subject to any locality restric-
tion on their transitions. This allows to express so-
phisticated updates, including general bulk updates and
transitions comparing different entries in artifact rela-
tions at once. The flight management process in Ap-
pendix A shows all these advanced features, with a tree-
like RAS whose safety verification is indeed decidable.

8. FIRST EXPERIMENTS

We implemented a prototype of our backward reacha-
bility algorithm for artifact systems on top of the mcmt
model checker. mcmt manages the verification in the
infinite-state case by exploiting as its model-theoretic
framework the declarative formalism of array-based sys-
tems. This formalism allows for symbolic representation
of transitions and sets of states using formulae, whereas
the system dynamics is defined by manipulating second
order variables (i.e., arrays). Since their first introduc-
tion in [31, 32], array-based systems have been provided
with various implementations of the standard backward
reachability algorithms (including more sophisticated
variants and heuristics). Starting from its first ver-
sion [33], mcmt was successfully applied to cache co-
herence and mutual exclusions protocols [32], timed [19]
and fault-tolerant [6, 5] distributed systems, and then to
imperative programs [7, 8]; interesting case studies con-
cerned waiting time bounds synthesis in parameterized
timed networks [15] and internet protocols [14]. Further
related tools include safari [3] and asasp [2]; finally,

Cubicle [22] implements the array-based setting on a
parallel architecture with further powerful extensions.

The mcmt work principle is rather simple: the tool
generates the proof obligations arising from the safety
and fixpoint tests in backward search (lines 2-3 of Al-
gorithm 1) and passes them to the background SMT-
solver (currently it is Yices [29]). In practice, the situa-
tion is more complicated because SMT-solvers are quite
efficient in handling satisfiability problems in combined
theories at quantifier-free level, but may encounter dif-
ficulties with quantifiers. For this reason, mcmt imple-
ments modules for quantifier elimination and quantifier
instantiation. A specific module for the quantifier elimi-
nation problems mentioned in line 6 of Algorithm 1 has
been added to version 2.8 of mcmt.

We produced a benchmark consisting of eight realistic
business process examples and ran it in mcmt (detailed
explanations and results are given in Appendix G). The
examples are partially made by hand and partially ob-
tained from those supplied in [37]. A thorough compar-
ison with Verifas [37] is at the moment rather prob-
lematic, for the reasons mentioned below. First, we
deal with safety problems, whereas Verifas handles
general LTL-FO properties. At the same time, our set-
ting is more expressive (for instance, we cover “bulk”
updates). Second, mcmt is based on backward reach-
ability, while Verifas employs forward search. Hence,
the state space representation in the two approaches
may differ extensively depending on the given system
and property. Third, mcmt allows the user to specify
custom safety properties, while Verifas works on pre-
defined LTL-FO templates, instantiated based on syn-
tactic criteria (not defined by the user). Finally, the
tools use different input specification languages.

The benchmark is available as part of the last distri-
bution 2.8 of the tool.15 Table 1 shows the very encour-
aging results (the first row tackles Example 5). While
a systematic evaluation is matter of future work, mcmt
seems to effectively handle the benchmark with a simi-
lar performance to that shown in other, well-established
settings, with verification times below 1s in most cases.

9. CONCLUSION

We have laid the foundations of SMT-based verifi-
cation for artifact systems, focusing on safety prob-
lems and relying on array-based systems as underly-
ing formal model. We have shown how to overcome
the main technical difficulty arising from this approach,
namely reconstructing quantifier elimination techniques
in the rich setting of artifact systems, using the model-
theoretic machinery of model completion. We have then
exploited the so-obtained framework to homogeneously
reconstruct and extend known results on the decidabil-
ity of verification of artifact systems, and to single out
a novel, decidable class. The presented techniques have
been implemented on top of the well-established MCMT

15http://users.mat.unimi.it/users/ghilardi/mcmt/,
subdirectory /examples/dbdriven of the distribution.
The user manual contains a new section giving essential
information on how to produce user-defined examples.

Exp. #(AC) #(AV) #(T) Property Result Time (s)

E1 9 18 15 E1P1 SAFE 0.06
E1P2 UNSAFE 0.36
E1P3 UNSAFE 0.50
E1P4 UNSAFE 0.35

E2 6 13 28 E2P1 SAFE 0.72
E2P2 UNSAFE 0.88
E2P3 UNSAFE 1.01
E2P4 UNSAFE 0.83

E3 4 14 13 E3P1 SAFE 0.05
E3P2 UNSAFE 0.06

E4 9 11 21 E4P1 SAFE 0.12
E4P2 UNSAFE 0.13

E5 6 17 34 E5P1 SAFE 4.11
E5P2 UNSAFE 0.17

E6 2 7 15 E6P1 SAFE 0.04
E6P2 UNSAFE 0.08

E7 2 28 38 E7P1 SAFE 1.00
E7P2 UNSAFE 0.20

E8 3 20 19 E8P1 SAFE 0.70
E8P2 UNSAFE 0.15

Table 1: Experimental results. The size of the
input system is reflected by columns #(AC),
#(AV), #(T), indicating the number of artifact
components, artifact variables, and transitions.

model checker, making our approach fully operational.
From the foundational point of view, we plan to use

the present contribution as the starting point for a full
line of research dedicated to SMT-based techniques for
the effective verification of data-aware processes, con-
sidering richer forms of verification going beyond safety,
and richer classes of artifact systems incorporating con-
crete data types and arithmetic operations.

From the practical point of view, we intend to start
from the encouraging results reported here, and ac-
count for an extensive experimental evaluation of our
approach, using the VERIFAS system as a baseline. A
natural next step is then to study how well-established
techniques for SMT-based model checking can be used
to speed up the verification of artifact systems.

Finally, we plan to tackle more conventional process
modeling notations, in particular data-aware extensions
of the de-facto standard BPMN.

http://users.mat.unimi.it/users/ghilardi/mcmt/

10. REFERENCES
[1] P. A. Abdulla, C. Aiswarya, M. F.and M. Montali

Atig, and O. Rezine. Recency-bounded
verification of dynamic database-driven systems.
In Proc. PODS, 2016.

[2] F. Alberti, A. Armando, and S. Ranise. ASASP:
automated symbolic analysis of security policies.
In Proc. CADE, 2011.

[3] F. Alberti, R. Bruttomesso, S. Ghilardi,
S. Ranise, and N. Sharygina. SAFARI:
SMT-based abstraction for arrays with
interpolants. In Proc. CAV, 2012.

[4] F. Alberti, R. Bruttomesso, S. Ghilardi,
S. Ranise, and N. Sharygina. An extension of lazy
abstraction with interpolation for programs with
arrays. Form. Methods Syst. Des., 45(1), 2014.

[5] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and
G. P. Rossi. Brief announcement: Automated
support for the design and validation of fault
tolerant parameterized systems - A case study. In
Proc. DISC, 2010.

[6] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and
G. P. Rossi. Universal guards, relativization of
quantifiers, and failure models in model checking
modulo theories. JSAT, 8(1/2), 2012.

[7] F. Alberti, S. Ghilardi, and N. Sharygina.
Booster: An acceleration-based verification frame-
work for array programs. In Proc. ATVA, 2014.

[8] F. Alberti, S. Ghilardi, and N. Sharygina. A
framework for the verification of parameterized in-
finite-state systems. Fund. Inform., 150(1), 2017.

[9] F. Baader and T. Nipkow. Term Rewriting and
All That. Cambridge University Press, 1998.

[10] B. Bagheri Hariri, D. Calvanese, G. De Giacomo,
A. Deutsch, and M. Montali. Verification of
relational data-centric dynamic systems with
external services. In Proc. PODS, 2013.

[11] F. Belardinelli, A. Lomuscio, and F. Patrizi. An
abstraction technique for the verification of
artifact-centric systems. In Proc. KR, 2012.

[12] M. Bojańczyk, L. Segoufin, and S. Toruńczyk.
Verification of database-driven systems via
amalgamation. In Proc. PODS, 2013.

[13] A. R. Bradley and Z. Manna. The calculus of
computation - decision procedures with
applications to verification. Springer, 2007.

[14] D. Bruschi, A. Di Pasquale, S. Ghilardi, A. Lanzi,
and E. Pagani. Formal verification of ARP (ad-
dress resolution protocol) through SMT-based
model checking - A case study. In Proc. IFM, 2017.

[15] R. Bruttomesso, A. Carioni, S. Ghilardi, and
S. Ranise. Automated analysis of parametric
timing-based mutual exclusion algorithms. In
Proc. NFM, 2012.

[16] D. Calvanese, G. De Giacomo, and M. Montali.
Foundations of data aware process analysis: A
database theory perspective. In Proc. PODS, 2013.

[17] D. Calvanese, G. De Giacomo, M. Montali, and
F. Patrizi. First-order mu-calculus over generic

transition systems and applications to the
situation calculus. Inf. and Comp., 2017.

[18] D. Calvanese, S. Ghilardi, A. Gianola,
M. Montali, and A. Rivkin. Quantifier elimination
for database driven verification. Technical Report
arXiv:1806.09686, arXiv.org, 2018.

[19] A. Carioni, S. Ghilardi, and S. Ranise. MCMT in
the land of parametrized timed automata. In
Proc. VERIFY, 2010.

[20] A. Carioni, S. Ghilardi, and S. Ranise. Automated
termination in model-checking modulo theories.
Int. J. Found. Comput. Sci., 24(2), 2013.

[21] C.-C. Chang and J. H. Keisler. Model Theory.
North-Holland Publishing Co., 1990.

[22] S. Conchon, A. Goel, S. Krstic, A. Mebsout, and
F. Zaïdi. Cubicle: A parallel SMT-based model
checker for parameterized systems - Tool paper.
In Proc. CAV, 2012.

[23] E. Damaggio, A. Deutsch, and V. Vianu. Artifact
systems with data dependencies and arithmetic.
ACM TODS, 37(3), 2012.

[24] E. Damaggio, R. Hull, and R. Vaculín. On the
equivalence of incremental and fixpoint semantics
for business artifacts with Guard-Stage-Milestone
lifecycles. In Proc. BPM, 2011.

[25] G. Delzanno, J. Esparza, and A. Podelski.
Constraint-based analysis of broadcast protocols.
In Proc. CSL, 1999.

[26] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu.
Automatic verification of data-centric business
processes. In Proc. ICDT, 2009.

[27] A. Deutsch, Y. Li, and V. Vianu. Verification of hi-
erarchical artifact systems. In Proc. PODS, 2016.

[28] M. Dumas. On the convergence of data and
process engineering. In Proc. ADBIS, 2011.

[29] B. Dutertre and L. De Moura. The YICES SMT
solver. Technical report, SRI International, 2006.

[30] J. Esparza, A. Finkel, and R. Mayr. On the verifi-
cation of broadcast protocols. In Proc. LICS, 1999.

[31] S. Ghilardi, E. Nicolini, S. Ranise, and
D. Zucchelli. Towards SMT model checking of
array-based systems. In Proc. IJCAR, 2008.

[32] S. Ghilardi and S. Ranise. Backward reachability
of array-based systems by SMT solving:
Termination and invariant synthesis. Log.
Methods Comput. Sci., 6(4), 2010.

[33] S. Ghilardi and S. Ranise. MCMT: A model
checker modulo theories. In Proc. IJCAR, 2010.

[34] R. Hull. Artifact-centric business process models:
Brief survey of research results and challenges. In
Proc. OTM, 2008.

[35] J. B. Kruskal. Well-quasi-ordering, the Tree
Theorem, and Vazsonyi’s conjecture. Trans.
Amer. Math. Soc., 95, 1960.

[36] V. Künzle, B. Weber, and M Reichert.
Object-aware business processes: Fundamental
requirements and their support in existing
approaches. Int. J. of Information System

Modeling and Design, 2(2), 2011.
[37] Y. Li, A. Deutsch, and V. Vianu. VERIFAS: A

practical verifier for artifact systems. PVLDB,
11(3), 2017.

[38] A. Meyer, S. Smirnov, and M. Weske. Data in
business processes. Technical Report 50,
Hasso-Plattner-Institut for IT Systems
Engineering, Universität Potsdam, 2011.

[39] M. Reichert. Process and data: Two sides of the
same coin? In Proc. OTM, 2012.

[40] C. Richardson. Warning: Don’t assume your
business processes use master data. In Proc. BPM,
2010.

[41] A. Robinson. On the metamathematics of algebra.
North-Holland Publishing Co., 1951.

[42] S. Schmitz and P. Schnoebelen. The power of
well-structured systems. In Proc. CONCUR, 2013.

[43] Bruce Silver. BPMN Method and Style.
Cody-Cassidy, 2nd edition, 2011.

[44] V. Vianu. Automatic verification of
database-driven systems: a new frontier. In
Proc. ICDT, 2009.

[45] William H. Wheeler. Model-companions and
definability in existentially complete structures.
Israel J. Math., 25(3-4), 1976.

UserId userName

EmpId empName

CompInId who
what

JobCatId jobCatDescr

String

joIndex

joPDatejoState

joCat

appIndex

appResult

applicant

Score

appScore
appResp

appJobCat

index : joIndex joCat : JobCatId joPDate : String joState : String

JobOffer

index : appIndex appJobCat : JobCatId appResp : EmpId applicant : UserId appScore : Score appResult : String

Application

id : UserId userName : String User

id : EmpId empName : String Employee

id : CompInId who : EmpId what : JobCatId CompetentIn

id : JobCatId jobCatDescr : String JobCategory

Figure 2: On the left: characteristic graph of the human resources DB signature from Example 1,
augmented with the signature of the artifact extension for the job hiring process; value sorts are
shown in pink, basic id sorts in blue, and artifact id sorts in yellow. On the right: relational view
of the DB signature and the corresponding artifact relations; each cell denotes an attribute with its
type, underlined attributes denote primary keys, and directed edges capture foreign keys.

APPENDIX

A. EXAMPLES

In this section, we present two full examples of RAS for which our backward reachability technique terminates.
In particular, they are meant to highlight the expressiveness of our approach, even in presence of the restrictions
imposed by Theorems 3 and 4 towards decidability of reachability. When writing transition formulae in the examples,
we make the following assumption: when an artifact variable or component is not mentioned at all in a transition,
it is meant that is updated identically; if it is mentioned, the relevant update function in the transition will specify
how it is updated.16

A.1 Job Hiring Process

We present a RAS Shr capturing a job hiring process where multiple job categories may be turned into actual
job offers, each one receiving many applications from registered users. Such applications are then evaluated, finally
deciding which are accepted and which are rejected. The example is inspired by the job hiring process presented in
[43] to show the intrinsic difficulties of capturing real-life processes with many-to-many interacting business entities
using conventional process modeling notations (such as BPMN).

As for the read-only DB, Shr works over the DB schema of Example 1, extended with a further value sort Score
used to score the applications sent for job offerings. Score contains 102 different values, intuitively corresponding
to the integer numbers from −1 to 100 (included), where −1 denotes that the application is considered to be not
eligible, while a score between 0 and 100 indicates the actual score assigned after evaluating the application. For
the sake of readability, we make use of the usual integer comparison predicates to compare variables of type Score.
This is simply syntactic sugar and does not require the introduction of rigid predicates in our framework. In fact,
given two variables x and y of type Score, x < y is a shortcut for the finitary disjunction testing that x is one of the
scores that are “less than” y (similarly for the other comparison predicates).

As for the working memory, Shr consists of three artifacts: a single-instance job hiring artifact tracking the three
main phases of the overall process, and two multi-instance artifacts accounting for the evolution of job offers, and
that of corresponding user applications. The job hiring artifact simply requires a dedicated pState variable to store
the current process state. The job offer and user application multi-instance artifacts are instead modeled by enriching
the DB signature Σhr of the read-only database of human resources. In particular, an artifact extension is added
containing two artifact sorts joIndex and appIndex used to respectively index (i.e., “internally” identify) job offers
and applications. The management of job offers and applications is then modeled by a full-fledged artifact setting
that adopts:
• artifact components with domains joIndex and appIndex to capture the artifact relations storing multiple in-

stances of job offers and applications;
• individual variables used as temporary memory to manipulate the artifact relations.

The actual components of such an artifact setting will be introduced when needed.
We now describe how the process works, step by step. Initially, hiring is disabled, which is captured by initially

setting the pState variable to undef. A transition of the process from disabled to enabled may occur provided that

16Notice that non-deterministic updates can be formalized using the existential quantified variables in the transition.

the read-only HR DB contains at least one registered user (who, in turn, may decide to apply for job offers created
during this phase). Technically, we introduce a dedicated artifact variable uId initialized to undef, and used to
load the identifier of such a registered user, if (s)he exists. The enablement task is then captured by the following
transition formula:

∃y : UserId
(

pState = undef∧ y 6= undef ∧ pState′ = enabled∧ uId′ = y
)

We now focus on the creation of a job offer. When the overall hiring process is enabled, some job categories
present in the read-only DB may be published into a corresponding job offer, consequently becoming ready to receive
applications. This is done in two steps. In the first step, we transfer the id of the job category to be published to
the artifact variable jId, and the string representing the publishing date to the artifact variable pubDate. Thus, jId
is filled with the identifier of a job category picked from JobCatId (modeling a nondeterministic choice of category),
while pubDate is filled with a String (modeling a user input where one of the infinitely many strings is injected into
pubDate).

In addition, the transition interacts with a further artifact variable pubState capturing the publishing state of
offers, and consequently used to synchronize the two steps for publishing a job offer. In particular, this first step
can be executed only if pubState is not in state publishing, and has the effect of setting it to such a value, thus
preventing the first step to be executed twice in a row (which would actually overwrite what has been stored in jId
and pubDate). Technically, we have:

∃j:JobCatId, d:String

(

pState = enabled∧ pubState 6= publishing∧ j 6= undef

∧ pState′ = enabled∧ pubState′ = publishing∧ jId ′ = j ∧ pubDate′ = d

)

The second step consists in transferring the content of these three variables into corresponding artifact components
that keep track of all active job offers, at the same time resetting the content of the artifact variables to undef.
This is done by introducing three function variables with domain joIndex, respectively keeping track of the category,
publishing date, and state of job offers:

joCat : joIndex −→ JobCatId
joPDate : joIndex −→ String
joState : joIndex −→ String

With these artifact components at hand, the second step is then realized as follows:

∃i:joIndex

pState = enabled∧ pubState = publishing∧ joPDate[i] = undef∧ joCat [i] = undef∧ joState[i] = undef

∧ aState′ = undef∧ pState′ = enabled∧ pubState′ = published

∧ joCat ′ = λj.

(

if j = i then jId
else if joCat [j] = jId then undef

else joCat [j]

)

∧ joPDate′ = λj.

(

if j = i then pubDate
else if joCat [j] = jId then undef

else joPDate[j]

)

∧ joState′ = λj.

(

if j = i then open
else if joCat [j] = jId then undef

else joState[j]

)

∧ uId′ = undef ∧ eId ′ = undef ∧ jId ′ = undef∧ pubDate′ = undef ∧ cId ′ = undef

The “if-then-else” pattern is used to create an entry for the job offer artifact relation containing the information
stored into the artifact variables populated in the first step, at the same time making sure that only one entry exists
for a given job category. This is done by picking a job offer index i that is not already pointing to an actual job
offer, i.e., such that the i-th element of joCat is undef. Then, the transition updates the whole content of the three
artifact components joCat , joPDate, and joState as follows:
• The i-th entry of such variables is respectively assigned to the job category stored in JobCatId, the string stored

in pubDate, and the constant open (signifying that this entry is ready to receive applications).
• All other entries are kept unaltered, with the exception of a possibly existing entry j with j 6= i that points to the

same job category contained in JobCatId. If such an entry j exists, its content is reset, by assigning to the j-th
component of all three artifact components the value undef. Obviously, other strategies to resolve this possible
conflict can be seamlessly captured in our framework.

A similar conflict resolution strategy will be used in the other transitions of this example.
We now focus on the evolution of applications to job offers. Each application consists of a job category, the identifier

of the applicant user, the identifier of an employee from human resources who is responsible for the application, the
score assigned to the application, and the application final result (indicating whether the application is among the
winners or the losers for the job offer). These five information types are encapsulated into five dedicated function

variables with domain appIndex, collectively realizing the application artifact relation:

appJobCat : appIndex −→ JobCatId
applicant : appIndex −→ UserId
appResp : appIndex −→ EmpId
appScore : appIndex −→ Score
appResult : appIndex −→ String

With these function variables at hand, we discuss the insertion of an application into the system for an open
job offer. This is again managed in multiple steps, first loading the necessary information into dedicated artifact
variables, and finally transferring them into the function variables that collectively realize the application artifact
relation. To synchronize these multiple steps and define which step is applicable in a given state, we make use of a
string artifact variable called aState. The first step to insert an application is executed when aState is undef, and
has the effect of loading into jId the identifier of a job category that has a corresponding open job offer, at the same
time putting aState in state joSelected.

∃i:joIndex

pState = enabled∧ aState = undef ∧ joCat [i] 6= undef ∧ joState[i] = open

∧ pState′ = enabled∧ aState′ = joSelected∧ jId ′ = joCat [i] ∧ joCat ′ = joCat
∧ uId′ = undef ∧ eId ′ = undef ∧ jId ′ = undef∧ pubDate′ = undef ∧ cId ′ = undef

The last row of the transition resets the content of all artifact variables, cleaning the working memory for the
forthcoming steps (avoiding that stale values are present there). This is also useful from the technical point of view,
as it guarantees that the transition is strongly local (cf. Section 7.1, and the discussion in Appendix F.1).

The second step has a twofold purpose: picking the identifier of the user who wants to submit an application
for the selected job offer, and assigning to its application an employee of human resources who is competent in the
category of the job offer. This also results in an update of variable aState:

∃u:UserId, e:EmpId, c:CompInId
(

pState = enabled∧ aState = joSelected∧ who(c) = e ∧ what(c) = jId ∧ jId 6= undef ∧ u 6= undef∧ c 6= undef

∧ pState′ = enabled∧ aState′ = received∧ jId ′ = jId ∧ uId ′ = u ∧ eId ′ = e ∧ cId ′ = c

)

The last step transfers the application data into the application artifact relation, making sure that no two appli-
cations exist for the same user and the same job category. The transfer is done by assigning the artifact variables to
corresponding components of the application artifact relation, at the same resetting all application-related artifact
variables to undef (including aState, so that new applications can be inserted). For the insertion, a “free” index
(i.e., an index pointing to an undefined applicant, with an undefined job category and an undefined responsible) is
picked. The newly inserted application gets a default score of -1 (thus initializing it to “not eligible”), while the
final result is undef:

∃i:appIndex

pState = enabled∧ aState = received
∧ appJobCat [i] = undef ∧ applicant [i] = undef ∧ appResp[i] = undef

∧pState′ = enabled∧ aState′ = undef

∧ appJobCat ′ = λj.

(

if j = i then jId
else if (applicant [j] = uId ∧ appResp[j] = eId) then undef

else appJobCat [j]

)

∧ applicant ′ = λj.

(

if j = i then uId
else if (applicant [j] = uId ∧ appResp[j] = eId) then undef

else applicant [j]

)

∧ appResp′ = λj.

(

if j = i then eId
else if (applicant [j] = uId ∧ appResp[j] = eId) then undef

else appResp[j]

)

∧ appScore′ = λj.

(

if j = i then -1
else if (applicant [j] = uId ∧ appResp[j] = eId) then undef

else appScore[j]

)

∧ appResult ′ = λj.

(

if j = i ∨ (applicant [j] = uId ∧ appResp[j] = eId) then undef
else appResult[j]

)

∧ uId′ = undef∧ eId ′ = undef ∧ jId ′ = undef∧ pubDate′ = undef∧ cId ′ = undef

Each single application that is currently considered as not eligible can be made eligible by carrying out an evaluation
that assigns a proper score to it. This is managed by the following transition:

∃i:appIndex, s:Score

(

pState = enabled∧ applicant [i] 6= undef∧ appScore[i] = -1 ∧ s ≥ 0
∧ pState′ = enabled∧ appScore′[i] = s

)

Evaluations are only possible as long as the process is in the enabled state. The process moves from enabled to
final once the deadline for receiving applications to job offers is actually reached. This event is captured with pure
nondeterminism, and has the additional bulk effect of turning all open job offers to closed:

pState = enabled∧ pState′ = final∧ joState′ = λj.

(

if joState[j] = open then closed
else joState[j]

)

Finally, we consider the determination of winners and losers, which is carried out when the overall hiring process
moves from final to notified. This is captured by the following bulk transition, which declares all applications with
a score above 80 as winning, and all the others as losing:

pState = final∧ pState′ = notified∧ appResult ′ = λj.

(

if appScore[j] > 80 then winner
else loser

)

We close the example with the following key observation. All transitions of the hiring process are, in their current
form, strongly local, with the exception of those operating over artifact relations in a way that ensures no repeated
entries are inserted. Such transitions can be turned into strongly local ones if repetitions in the artifact relations are
allowed. That is, multiple identical job offers and applications can be inserted in the corresponding relations, using
different indexes. This is the strategy adopted in Example 4 in the main text of the paper. This approach realizes
a sort of multiset semantics for artifact relations. The impact of this variant to verification of safety properties is
discussed in Appendix F.2.

A.2 Flight Management Process

CityId

FlightId

PassengerIndex FligthIndex

CityIndex

destination

overbookedregdPassenger

safeCity

Figure 3: A characteristic graph of the flight management process, where blue and yellow boxes
respectively represent basic and artifact sorts.

In this section we consider a simple RAS that falls in the scope of the decidability result described in Section 7.
Specifically, this example has a tree-like artifact setting (see Figure 3), thus assuring that, when solving the safety
problem for it, the backward search algorithm is guaranteed to terminate. Note, however, that the termination result
adopted here is the one of Theorem 4 due to the non-locality of certain transitions, as explained in detail below.

The flight management process represents a simplified version of a flight management system adopted by an
airline. To prepare a flight, the company picks a corresponding destination (that meets the aviation safety compliance
indications) and consequently reports on a number of passengers that are going to attend the flight. Then, an airport
dispatcher may pick a manned flight and put it in the airports flight plan. In case the flight destination becomes
unsafe (e.g., it was stroke by a hurricane or the hosting airport had been seized by terrorists), the dispatcher uses
the system to inform the airline about this condition. In turn, the airline notifies all the passengers of the affected
destination about the contingency, and temporary cancels their flights.

To formalize these different aspects, we make use of a DB signature Σfm that consists of: (i) two id sorts, used to
identify flights and cities; (ii) one function symbol destination : FlightId −→ CityId mapping flight identifiers to their
corresponding destinations (i.e., city identifiers). Note that, in a classical relational model (cf. Section 4.1), our
signature would contain two relations: one binary RFlightId that defines flights and their destinations, and another
unary RCityId identifying cities, that are referenced by RFlightId using destination.

We assume that the read-only flight management database contains data about at least one flight and one city. To
start the process, one needs at least one city to meet the aviation safety compliances. It is assumed that, initially,
all the cities are unsafe. An airport dispatcher, at once, may change the safety status only of one city.

We model this action by performing two consequent actions. First, we select the city identifier and store it in the
designated artifact variable safeCitytId :

∃c:CityId
(

c 6= undef∧ safeCitytId = undef∧ safeCitytId ′ = c
)

Then, we place the extracted city identifier into a unary artifact relation safeCity : CityIndex −→ CityId, that is used

to represent safe cities and where CityIndex is its artifact sort.

∃i:CityIndex

safeCity[i] = undef∧ safeCitytId 6= undef∧ safeCitytId ′ = undef

∧ safeCity ′ = λj.

(

if j = i then safeCitytId
else if safeCity[j] = safeCitytId then undef

else safeCity[j]

)

Note that two previous transitions can be rewritten as a unique one, hence showing a more compact way of
specifying RAS transitions. This, in turn, can augment the performance of the verifier while working with large-
scale cases. The unified transition actually looks as follows:

∃c:CityId, ∃i:CityIndex

c 6= undef∧ safeCity[i] = undef

∧ safeCity′ = λj.

(

if j = i then c
else if safeCity[j] = c then undef

else safeCity[j]

)

Then, to register passengers with booked tickets on a flight, the airline needs to make sure that a corresponding
flight destination is actually safe. To perform the passenger registration, the airline selects a flight identifier that is
assigned to the route and uses it to populate entries in an unary artifact relation regdPassenger : PassengerIndex −→
FlightId. Note that there may be more than one passenger taking the flight, and therefore, more than one entry in
regdPassenger with the same flight identifier.

∃i:CityIndex, f :FlightId, p:PassengerIndex

f 6= undef∧ destination(f) = safeCity[i] ∧ regdPassenger [p] = undef

∧ regdPassenger ′ = λj.

(

if j = p then f
else regdPassenger [j]

)

We also assume that the airline owns aircraft of one type that can contain no more than k passengers. In case
there were more than k passengers registered on the flight, the airline receives a notification about its overbooking
and temporary suspends all passenger registrations associated to this flight. This is modelled by checking whether
there are at least k + 1 entries in regdPassenger . If so, the flight identifier is added to a unary artifact relation
overbooked : FligthIndex −→ FlightId and all the passenger registrations in regdPassenger that reference this flight
identifier are nullified by updating unboundedly many entries in the corresponding artifact relation:17

∃p1:PassengerIndex, . . . pk+1:PassengerIndex,m:FligthIndex

∧

i,i′∈{1,...,k+1},i6=i′ (pi 6= pi′ ∧ regdPassenger [pi] 6= undef∧ regdPassenger [pi] = regdPassenger [pi′])
∧ overbooked [m] = undef

∧ regdPassenger ′ = λj.

(

if regdPassenger [j] = regdPassenger [p1] then undef
else regdPassenger [j]

)

∧ overbooked ′[m] = regdPassenger [p1]

Notice that this transition is not local, since its guard contains literals of the form regdPassenger [pi] =
regdPassenger [pi′] (with pi 6= pi′), which involve more than one element of one artifact sort.

In case of any contingency, the airport dispatcher may change the city status from safe to unsafe. To do it, we
first select one of the safe cities, make it unsafe (i.e., remove it from safeCity relation) and store its identifier in the
artifact variable unsafeCityId :

∃i:CityIndex
(

unsafeCityId = undef ∧ safeCity[i] 6= undef∧ unsafeCityId ′ = safeCity[i] ∧ safeCity ′[i] = undef
)

Then, we use the remembered city identifier to cancel all the passenger registrations for flights that use this city
as their destination:18

unsafeCityId 6= undef ∧ unsafeCityId ′ = undef

∧ regdPassenger ′ = λj.

(

if destination(regdPassenger [j]) = unsafeCityId then undef
else regdPassenger [j]

)

Also in this case, we can shrink the transitions into a single transition:

∃i:CityIndex

(

safeCity[i] 6= undef∧ regdPassenger ′ = λj.

(

if destination(regdPassenger [j]) = safeCity[i] then undef
else regdPassenger [j]

))

However, as in the previous case, the transition turns out to be not local. Specifically, it is due to the literal

17For simplicity of presentation, we simply remove such data from the artifact relation. In a real setting, this information
would actually be transferred to a dedicated, historical table, so as to reconstruct the status of past, overbooked flights.

18Similarly to the previous case, the corresponding transition performs the intended action by updating unboundedly many
entries in the artifact relation.

destination(regdPassenger [j]) = safeCity[i] that involves more than one element with different artifact sorts.

B. PROOFS AND COMPLEMENTS FOR SECTION 4

We fix a signature Σ and a universal theory T as in Definition 1.
Observe that if Σ is acyclic, there are only finitely many terms involving a single variable x: in fact, there are as

many terms as paths in G(Σ) starting from the sort of x. If kΣ is the maximum number of terms involving a single
variable, then (since all function symbols are unary) there are at most kn

Σ terms involving n variables.

Proposition 1. T has the finite model property in case Σ is acyclic.

Proof. If T := ∅, then congruence closure ensures that the finite model property holds and decides constraint
satisfiability in time O(n log n) [13].

Otherwise, we reduce the argument to the Herbrand Theorem. Indeed, suppose to have a set Φ of universal
formulae. Herbrand Theorem states that Φ has a model iff the set of ground instances of Φ has a model. These
ground instances are finitely many by acyclicity, so we can reduce to the case where T is empty. �

Remark 2. If T is finite, Proposition 1 ensures decidability of constraint satisfiability. In order to obtain a decision
procedure, it is sufficient to instantiate the axioms of T and the axioms of equality (reflexivity, transitivity, symmetry,
congruence) and to use a SAT-solver to decide constraint satisfiability. Alternatively, one can decide constraint
satisfiability via congruence closure [13] and avoid instantiating the equality axioms. ⊳

Remark 3. Acyclity is a strong condition, often too strong. However, some condition must be imposed (otherwise
we have undecidability, and then failure of finite model property, by reduction to word problem for finite presentations
of monoids). In fact, the empty theory and the theory axiomatized by axiom 1 both have the finite model property
even without acyciclity assumptions. ⊳

We recall some basic definitions and notions from logic and model theory. We focus on the definitions of diagram,
embedding, substructure and amalgamation.

We adopt the usual first-order syntactic notions of signature, term, atom, (ground) formula, sentence, and so on.
Let Σ be a first-order signature. The signature obtained from Σ by adding to it a set a of new constants (i.e.,

0-ary function symbols) is denoted by Σa. We indicate by |A| the support of a Σ-structure A: this is the disjoint
union of the sets SA, varying S among the sort symbols of A. Analogously, given a Σ-structure A, the signature
Σ can be expanded to a new signature Σ|A| := Σ ∪ {ā | a ∈ |A|} by adding a set of new constants ā (the name
for a), one for each element a in A, with the convention that two distinct elements are denoted by different "name"
constants. A can be expanded to a Σ|A|-structure A′ := (A, a)a∈|A| just interpreting the additional costants over the
corresponding elements. From now on, when the meaning is clear from the context, we will freely use the notation
A and A′ interchangeably: in particular, given a Σ-structure M and a Σ-formula φ(x) with free variables that are
all in x, we will write, by abuse of notation, A |= φ(a) instead of A′ |= φ(ā).

A Σ-homomorphism (or, simply, a homomorphism) between two Σ-structures M and N is any mapping µ :
|M| −→ |N| among the support sets |M| of M and |N | of N satisfying the condition

M |= ϕ ⇒ N |= ϕ (10)

for all Σ|M|-atoms ϕ (hereM is regarded as a Σ|M|-structure, by interpreting each additional constant a ∈ |M| into
itself and N is regarded as a Σ|M|-structure by interpreting each additional constant a ∈ |M| into µ(a)). In case
condition (10) holds for all Σ|M|-literals, the homomorphism µ is said to be an embedding and if it holds for all first
order formulae, the embedding µ is said to be elementary. Notice the following facts:

(a) since we have equality in the signature, an embedding is an injective function;

(b) an embedding µ : M −→ N must be an algebraic homomorphism, that is for every n-ary function symbol f
and for every m1, ...,mn in |M|, we must have fN (µ(m1), ..., µ(mn)) = µ(fM(m1, ...,mn));

(c) for an n-ary predicate symbol P we must have (m1, ...,mn) ∈ PM iff (µ(m1), ..., µ(mn)) ∈ PN .

It is easily seen that an embedding µ : M −→ N can be equivalently defined as a map µ : |M| −→ |N| satisfying
the conditions (a)-(b)-(c) above. If µ : M −→ N is an embedding which is just the identity inclusion |M| ⊆ |N |,
we say that M is a substructure of N or that N is an extension of M. A Σ-structure M is said to be generated by
a set X included in its support |M| iff there are no proper substructures ofM including X .

The notion of substructure can be equivalently defined as follows: given a Σ-structure N and a Σ-structure M
such that |M| ⊆ |N |, we say that M is a Σ-substructure of N if:

• for every function symbol f inf Σ, the interpretation of f in M (denoted using fM) is the restriction of the
interpretation of f in N to |M| (i.e. fM(m) = fN (m) for every m in |M|); this fact implies that a substructure
M must be a subset of N which is closed under the application of fN .

• for every relation symbol P in Σ and every tuple (m1, ...,mn) ∈ |M|n, (m1, ...,mn) ∈ PM iff (m1, ...,mn) ∈ PN ,
which means that the relation PM is the restriction of PN to the support ofM.

We recall that a substructure preserves and reflects validity of ground formulae, in the following sense: given a
Σ-substructure A1 of a Σ-structure A2, a ground Σ|A1|-sentence θ is true in A1 iff θ is true in A2.

Let A be a Σ-structure. The diagram of A, denoted by ∆Σ(A), is defined as the set of ground Σ|A|-literals (i.e.
atomic formulae and negations of atomic formulae) that are true in A. For the sake of simplicity, once again by
abuse of notation, we will freely say that ∆Σ(A) is the set of Σ|A|-literals which are true in A.

An easy but nevertheless important basic result, called Robinson Diagram Lemma [21], says that, given any Σ-
structure B, the embeddings µ : A −→ B are in bijective correspondence with expansions of B to Σ|A|-structures
which are models of ∆Σ(A). The expansions and the embeddings are related in the obvious way: ā is interpreted as
µ(a).

Amalgamation is a classical algebraic concept. We give the formal definition of this notion.

Definition 5 (Amalgamation). A theory T has the amalgamation property if for every couple of embeddings
µ1 : M0 −→ M1, µ2 : M0 −→ M2 among models of T , there exists a model M of T endowed with embeddings
ν1 :M1 −→M and ν2 :M2 −→M such that ν1 ◦ µ1 = ν2 ◦ µ2

M

M1 M2

M0

ν2ν1

µ1 µ2

⊳

The triple (M, µ1, µ2) (or, by abuse, M itself) is said to be a T -amalgama of M1,M2 overM0

The following Lemma gives a useful folklore technique for finding model completions:

Lemma 1. Suppose that for every primitive Σ-formula ∃xφ(x, y) it is possible to find a quantifier-free formula ψ(y)
such that

(i) T |= ∀x∀y (φ(x, y)→ ψ(y));

(ii) for every model M of T , for every tuple of elements a from the support of M such that M |= ψ(a) it is possible
to find another model N of T such that M embeds into N and N |= ∃xφ(x, a).

Then T has a model completion T ∗ axiomatized by the infinitely many sentences 19

∀y (ψ(y)→ ∃xφ(x, y)) . (11)

⊳

Proof. From (i) and (11) we clearly get that T ⋆ admits quantifier elimination: in fact, in order to prove that
a theory enjoys quantifier elimination, it is sufficient to teliminate quantifiers from primitive formulae (then the
quantifier elimination for all formulae can be easily shown by an induction over their complexity). This is exactly
what is guaranteed by (i) and (11).

Let M be a model of T . We show (by using a chain argument) that there exists a model M′ of T ⋆ such that
M embeds into M′. For every primitive formula ∃xφ(x, y), consider the set {(a, ∃xφ(x, a))} such that M |=
ψ(a) (where ψ is related to φ as in (i)). By Zermelo’s Theorem, the set {(a, ∃xφ(x, a))} can be well-ordered: let
{(ai, ∃xφi(x, ai))}i∈I be such a well-ordered set (where I is an ordinal). By transfinite induction on this well-order,
we define M0 := M and, for each i ∈ I, Mi+1 as the extension of Mi such that Mi+1 |= ∃xφ(x, y), which exists
for (ii) sinceMi |= ψ(a) (remember that validity of ground formulae is preserved passing through substructures and
superstructures, and M0 |= ψ(a)).

Now we take the chain union M1 :=
⋃

i∈IMi: since T is universal, M1 is again a model of T , and it is

possible to construct an analogous chain M2 as done above, starting from M1 instead of M. Clearly, we get
M0 :=M⊆M1 ⊆M2 by construction. At this point, we iterate the same argument countably many times, so as
to define a new chain of models of T :

M0 :=M⊆M1 ⊆ ... ⊆Mn ⊆ ...

DefiningM′ :=
⋃

nM
n, we trivially get thatM′ is a model of T such thatM⊆M′ and satisfies all the sentences

of type (11). The last fact can be shown using the following finiteness argument.
Fix φ, ψ as in (11). For every tuple a′ ∈ M′ such that M′ |= ψ(a′), by definition of M′ there exists a natural

number k such that a′ ∈Mk: since ψ(a′) is a ground formula, we get that alsoMk |= ψ(a′). Therefore, we consider

19Notice that our T is assumed to be universal according to Definition 1, whereas T ∗ turns out to be universal-existential.

the step k of the countable chain: there, we have that the pair (a′, ψ(a′)) appears in the enumeration given by
the well-ordered set {(ai, ∃xφi(x, ai))}i∈I (for such ordinal I) such that Mk |= ψi(a). Hence, by construction and
since ψ(a′) is a ground formula, we have that there exists a j ∈ I such that Mk

j |= ψ(a′) and Mk
j+1 |= ∃xφ(x, a′).

In conclusion, since the existential formulae are preserved passing to extensions, we obtain M′ |= ∃xφ(x, a′), as
wanted. �

Proposition 2. T has a model completion in case it is axiomatized by universal one-variable formulae and Σ is
acyclic.

Proof. We freely take inspiration from an analogous result in [45]. We preliminarly show that T is amalgamable.
Then, for a suitable choice of ψ suggested by the acyclicity assumption, the amalgamation property will be used to
prove the validy of the condition (ii) of Lemma 1: this fact (together with condition (i)) yields that T has a model
completion which is axiomatized by the infinitely many sentences (11).

Let M1 and M2 two models of T with a submodel M0 of T in common (we suppose for simplicity that |M1| ∩
|M2| = |M0|). We define a T -amalgamM ofM1,M2 overM0 as follows (we use in an essential way the fact that
Σ contains only unary function symbols). Let the support of M be the set-theoretic union of the supports of M1

and M2, i.e. |M| := |M1| ∪ |M2|. M has a natural Σ-structure inherited by the Σ-structures M1 and M2: for
every function symbol f in Σ, we define, for each mi ∈ |Mi|(i = 1, 2), fM(mi) := fM1(mi), i.e. the interpretation
of f inM is the restriction of the interpretation of f inMi for every element mi ∈ |Mi|. This is well-defined since,
for every a ∈ |M1| ∩ |M2| = |M0|, we have that fM(a) := fM1(a) = fM0(a) = fM2(a). It is clear that M1 and
M2 are substructures of M, and their inclusions agree on M0.

We show that the Σ-structureM, as defined above, is a model of T . By hypothesis, T is axiomatized by universal
one-variable formulae: so, we can consider T as a theory formed by axioms φ which are universal closures of clauses
with just one variable, i.e. φ := ∀x(A1(x) ∧ ... ∧ An(x) → B1(x) ∨ ... ∨ Bm(x)), where Aj and Bk (j = 1, ..., n and
k = 1, ...,m) are atoms.

We show that M satisfies all such formulae φ. In order to do that, suppose that, for every a ∈ |M|, M |= Aj(a)
for all j = 1, ..., n. If a ∈ |Mi|, then M |= Aj(a) implies Mi |= Aj(a), since Aj(a) is a ground formula. Since Mi

is model of T and so Mi |= φ, we get that Mi |= Bk(a) for some k = 1, ...,m, which means that M |= Bk(a), since
Bk(a) is a ground formula. Thus, M |= φ for every axiom φ of T , i.e. M |= T and, hence, M is a T -amalgam of
M1,M2 overM0, as wanted

Now, given a primitive formula ∃xφ(x, y), we find a suitable ψ such that the hypothesis of Lemma 1 holds. We
define ψ(y) as the conjunction of the set of all quantifier-free χ(y)-formulae such that φ(x, y) → χ(y) is a logical
consequences of T (they are finitely many - up to T -equivalence - because Σ is acyclic). By definition, clearly we
have that (i) of Lemma 1 holds.

We show that also condition (ii) is satisfied. Let M be a model of T such that M |= ψ(a) for some tuple of
elements a from the support of M. Then, consider the Σ-substructure M[a] of M generated by the elements a:
this substructure is finite (since Σ is acyclic), it is a model of T and we trivially have that M[a] |= ψ(a), since
ψ(a) is a ground formula. In order to prove that there exists an extension N ′ of M[a] such that N |= ∃xφ(x, a),
it is sufficient to prove (by the Robinson Diagram Lemma) that the Σ|M[a]|∪{e}-theory ∆(M[a]) ∪ {φ(e, a)} is T -
consistent. For reduction to absurdity, suppose that the last theory is T -inconsistent. Then, there are finitely
many literals l1(a), ..., lm(a) from ∆(M[a]) (remember that ∆(M[a]) is a finite set of literals since M[a] is a finite
structure) such that φ(e, a) |=T ¬(l1(a) ∧ ... ∧ lm(a)). Therefore, defining A(a) := l1(a) ∧ ... ∧ lm(a), we get that
φ(e, a) |=T ¬A(a), which implies that ¬A(a) is one of the χ(y)-formulae appearing in ψ(a). Since M[a] |= ψ(a),
we also have that M[a] |= ¬A(a), which is a contraddiction: in fact, by definition of diagram, M[a] |= A(a) must
hold. Hence, there exists an extension N ′ of M[a] such that N ′ |= ∃xφ(x, a). Now, by amalgamation property,
there exists a T -amalgam N of M and N ′ over M[a]: clearly, N is an extension of M and, since N ′ →֒ N and
N ′ |= ∃xφ(x, a), also N |= ∃xφ(x, a) holds, as required.

Remark 4. The proof of Proposition 2 gives an algorithm for quantifier elimination in the model completion. The
algorithm works as follows (see the formula (11)): to eliminate the quantifier x from ∃xφ(x, y) take the conjunction
of the clauses χ(y) implied by φ(x, y). This algorithm is not practical: better algorithms can be obtained by using

Knuth-Bendix procedure, as we shall show in the forthcoming paper [18]. ⊳

C. PROOFS AND COMPLEMENTS FOR SECTION 5

In this section we present Theorems 5 and 6 that constitute the proof of Theorem 1 from Section 5.

Theorem 5. Let 〈Σ, T 〉 be a DB schema. Then, for any a simple artifact system like in Definition 3 S with 〈Σ, T 〉
as its DB schema, backward search algorithm is effective and partially correct for solving safety problems for S. If,
in addition, Σ is acyclic, backward search terminates and decides safety problems for S. ⊳

Proof. recall formula (3)

ι(x0) ∧ τ(x0, x1) ∧ · · · ∧ τ(xk−1, xk) ∧ υ(xk) .

By definition, S is unsafe iff for some n, the formula (3) is satisfiable in a DB-instance of 〈Σ, T 〉. Thanks to
Assumption 1, T has the finite model property and consequently, as (3) is an existential Σ-formula, S is unsafe iff
for some n, formula (3) is satisfiable in a model of T ; furthermore, again by Assumption 1, S is unsafe iff for some
n, formula (3) is satisfiable in a model of T ∗. Thus, we shall concentrate on satisfiability in models of T ∗ in order
to prove the Theorem.

Let us call Bn (resp. φn) the status of the variable B (resp. φ) after n executions in line 4 (resp. line 6) of
Algorithm 1. Notice that we have T ∗ |= φj+1 ↔ Pre(τ, φj) for all j and that

T |= Bn ↔
∨

0≤j<n

φj (12)

is an invariant of the algorithm.
Since we are considering satisfiability in models of T ∗, we can apply quantifier elimination and so the satisfiability

of (3) is equivalent to the satisfiability of ι ∧ φn: this is a quantifier-free formula (because in line 6 of Algorithm 1),
whose satisfiability (wrt T or equivalently wrt T ∗)20 is decidable by Assumption 1, so if Algorithm 1 terminates
with an unsafe outcome, then S is really unsafe.

Now consider the satisfiability test in line 2. This is again a satisfiability test for a quantifier-free formula, thus it
is decidable. In case of a safe outcome, we have that T |= φn → Bn; this means that, if we could continue executing
the loop of Algorithm 1, we would nevertheless get T ∗ |= Bm ↔ Bn for all m ≥ n.21 This would entail that ι ∧ φm

is always unsatisfiable (because of (12) and because ι ∧ φj was unsatisfiable for all j < n), which is the same (as
remarked above) as saying that all formulae (3) are unsatisfiable. Thus S is safe.

In case Σ is acyclic, there are only finitely many quantifier-free formulae (in which the finite set of variables x
occur), so it is evident that the algorithm must terminate: because of (12), the unsatisfiability test of Line 2 must
eventually succeed, if the unsatisfiability test of Line 3 never does so. �

For complexity questions, we have the following result:

Theorem 6. Let Σ be an acyclic DB signature and 〈Σ, T 〉 a DB schema built on top of it. Then, for every SAS
S = 〈Σ, T, x, ι, τ〉, deciding safety problems for S is in PSPACE in the size of x, of ι and of τ . ⊳

Proof. We need to modify Algorithm 1 (we make it nondeterministic and use Savitch’s Theorem saying that
PSPACE = NPSPACE).

Since Σ is acyclic, there are only finitely many terms involving a single variable, let this number be kΣ (we consider
T,Σ and hence kΣ constant for our problems). Then, since all function symbols are unary, it is clear that we have

at most 2O(n2) conjunctions of sets of literals involving at most n variables and that if the system is unsafe, unsafety

can be detected with a run whose length is at most 2O(n2). Thus we introduce a counter to be incremented during
the main loop (lines 2-6) of Algorithm 1. The fixpoint test in line 2 is removed and loop is executed only until the
maximum length of an unsafe run is not exceeded (notice that an exponential counter requires polynomial space).

Inside the loop, line 4 is removed (we do not need anymore the variable B) and line 6 is modified as follows. We
replace line 6 of the algorithm by

6′. φ←− α(x);

where α is a non-deterministically chosen conjunction of literals implying QE(T ∗, φ). Notice that to check the latter,
there is no need to compute QE(T ∗, φ): recalling the proof of Proposition 2 and Remark 4 it is sufficient to check
that T |= α→ C holds for every clause C(x) such that T |= φ→ C.

The algorithm is now in PSPACE, because all the satisfiability tests we need are, as a consequence of the proof
of Proposition 1, in NP: all such tests are reducible to T -satisfiability tests for quantifier-free Σ-formulae involving
the variables x and the additional (skolemized) quantified variables occurring in the transitions 22. In fact, all these
satisfiability tests are applied to formulae whose length is polynomial in the size of x, of ι and of τ . �

20T -satisfiability and T ∗-satisfiability are equivalent, by the definition of T ∗, as far as existential (in particular, quantifier-free)
formulae are concerned.

21 In more detail: recall the invariant (12) and that T ∗ |= φj+1 ↔ P re(τ, φj) holds for all j. Thus, from T |= φn → Bn, we
get T |= φn+1 → P re(τ, Bn); since P re commutes with disjunctions, we have T ∗ |= P re(τ, Bn) ↔

∨

1≤j≤n
φj . Now (using

T |= φn → Bn again), we get T ∗ |= φn+1 → Bn, that is T ∗ |= Bn+1 ↔ Bn. Since then T ∗ |= φn+1 → Bn+1, we can repeat
the argument for all m ≥ n.

22 For the test in line 3, we just need replace in φ the x by their values given by ι, conjoin the result with all the ground
instances of the axioms of T and finally decide satisfiability with congruence closure algorithm of a polynomial size ground
conjunction of literals.

D. PROOFS FROM SECTION 6

The technique used for proving Theorem 2 is similar to that used in [20] (but here we have to face some additional
complications, due to the fact that our quantifier elimination is not directly available, it is only indirectly available
via model completions).

When introducing our transition formulae in (2), (6) we made use of definable extensions and also of some function
definitions via λ-abstraction. We already observed that such uses are due to notational convenience and do not really
go beyond first-order logic. We are clarifying one more point now, before going into formal proofs. The lambda-
abstraction definitions in (6) will make the proof of Lemma 2 below smooth. Recall that an expression like

b = λy.F (y, z)

can be seen as a mere abbreviation of ∀y b(y) = F (y, z). However, the use of such abbreviation makes clear that
e.g. a formula like

∃b (b = λy.F (y, z) ∧ φ(z, b))

is equivalent to

φ(z, λy.F (y, z)/b) . (13)

Since our φ(z, b) is in fact a first-order formula, our b can occur in it only in terms like b(t), so that in (13) all
occurrences of λ can be eliminated by the so-called β-conversion: replace λyF (y, z)(t) by F (t, z). Thus, in the end,
either we use definable extensions or definitions via lambda abstractions, the formulae we manipulate can always be
converted into plain first-order Σ- or Σext-formulae.

Let us call extended state formulae the formulae of the kind ∃e φ(e, x, a), where φ is quantifier-free and the e are
individual variables of both artifact and basic sorts.

Lemma 2. The preimage of an extended state formula is logically equivalent to an extended state formula. ⊳

Proof. We manipulate the formula

∃x′ ∃a′ (τ(x, a, x′, a′) ∧ ∃e φ(e, x′, a′)) (14)

up to logical equivalence, where τ is given by23

∃e0 (γ(e0, x, a) ∧ x′ = F (e0, x, a) ∧ a′ = λy.G(y, e0, x, a)) (15)

(here we used plain equality for conjunctions of equalities, e.g. x′ = F (e0, x, a) stands for
∧

i x
′
i = Fi(e, x, a)).

Repeated substitutions show that (14) is equivalent to

∃e ∃e0 (γ(e0, x, a) ∧ φ(e, F (e0, x, a)/x′, λy.G(y, e0, x, a)/a′)) (16)

which is an extended state formula. �

Lemma 3. For every extended state formula there is a state formula equivalent to it in all Σext-models of T ∗. ⊳

Proof. Let ∃e∃y φ(e, y, x, a), be an extended state formula, where φ is quantifier-free, the e are variables whose
sort is an artifact sort and the y are variables whose sort is a basic sort.

Now observe that, according to our definitions, the artifact components have an artifact sort as source sort and a
basic sort as target sort; since equality is the only predicate, the literals in φ can be divided into equalities/inequalities
between variables from e and literals where the e can only occur as arguments of an artifact component. Let a[e] be
the tuple of the terms among the terms of the kind aj [es] which are well-typed; using disjunctive normal forms, our
extended state formula can be written as a disjunction of formulae of the kind

∃e∃y (φ1(e) ∧ φ2(y, x, a[e]/z)) (17)

where φ1 is a conjunction of equalities/inequalities, φ2(y, x, z) is a quantifier-free Σ-formula and φ2(y, x, a[e]/z) is
obtained from φ2 by replacing the variables z by the terms a[e]. Moving inside the existential quantifiers y, we can
rewrite (17) to

∃e (φ1(e) ∧ ∃y φ2(y, x, a[e]/z)) (18)

Since T ∗ has quantifier elimination, we have that there is ψ(x, z) which is equivalent to ∃y φ2(y, x, z)) in all models
of T ∗; thus in all Σext-models of T ∗, the formula (18) is equivalent to

∃e (φ1(e) ∧ ψ(x, a[e]/z))

which is a state formula. �

We underline that Lemmas 2 and 3 both give an explicit effective procedure for computing equivalent (extended)
state formulae. Used one after the other, such procedures extends the procedure QE(T ∗, φ) in line 6 of Algorithm 1

23Actually, τ is a disjunction of such formulae, but it easily seen that disjunction can be accommodated by moving existential
quantifiers back-and-forth through them.

to (non simple) artifact systems. Thanks to such procedure, the only formulae we need to test for satisfiability in
lines 2 and 3 of the backward reachability algorithm are the ∃∀-formulae introduced below.

Let us call ∃∀-formulae the formulae of the kind

∃e ∀i φ(e, i, x, a) (19)

where the variables e, i are variables whose sort is an artifact sort and φ is quantifier-free. The crucial point for the
following lemma to hold is that the universally quantified variables in ∃∀-formulae are all of artifact sorts:

Lemma 4. The satisfiability of a ∃∀-formula in a Σext-model of T is decidable; moreover, a ∃∀-formula is satisfiable
in a Σext-model of T iff it is satisfiable in a DB-instance of 〈Σext, T 〉 iff it is satisfiable in a Σext-model of T ∗. ⊳

Proof. First of all, notice that a ∃∀-formula (19) is equivalent to a disjunction of formulae of the kind

∃e (Diff(e) ∧ ∀i φ(e, i, x, a)) (20)

where Diff(e) says that any two variables of the same sort from the e are distinct (to this aim, it is sufficient to guess
a partition and to keep, via a substitution, only one element for each equivalence class).24 So we can freely assume
that ∃∀-formulae are all of the kind (20).

Now, by the way Σext is built, the only atoms occurring in φ whose arguments involve terms of artifact sorts are
of the kind es = ej , so all such atoms can be replaced either by ⊤ or by ⊥ (depending on whether we have s = j
or not). So we can assume that there are no such atoms in φ and as a result, the variables e, i can only occur as
arguments of the a.

Let us consider now the set of all (sort-matching) substitutions σ mapping the i to the e. The formula (20) is
satisfiable (respectively: in a Σext-model of T , in a DB-instance of 〈Σext, T 〉, in a Σext-model of T ∗) iff so it is the
formula

∃e (Diff(e) ∧
∧

σ

φ(e, iσ, x, a)) (21)

(here iσ means the componentwise application of σ to the i): this is because, if (21) is satisfiable in M, then we
can take as M′ the same Σext-structure as M, but with the interpretation of the artifact sorts restricted only to
the elements named by the e and get in this way a Σext-structure M′ satisfying (20) (notice that M′ is still a
DB-instance of 〈Σext, T 〉 or a Σext-model of T ∗, if so was M). Thus, we can freely concentrate on the satisfiability
problem of formulae of the kind (21) only.

Let now a[e] be the tuple of the terms among the terms of the kind aj [es] which are well-typed. Since in (21) the
e can only occur as arguments of the artifact components, as observed above, the formula (21) is in fact of the kind

∃e (Diff(e) ∧ ψ(x, a[e]/z)) (22)

where ψ(x, z) is a quantifier-free Σ-formula and ψ(x, a[e]/z) is obtained from ψ by replacing the variables z by the
terms a[e] (notice that the z are of basic sorts because the target sorts of the artifact components are basic sorts).

It is now evident that (22) is satisfiable (respectively: in a Σext-model of T , in a DB-instance of 〈Σext, T 〉, in a
Σext-model of T ∗) iff the formula

ψ(x, z) (23)

is satisfiable (respectively: in a Σ-model of T , in a DB-instance of 〈Σ, T 〉, in a Σ-model of T ∗). In fact, if we are
given a Σ-structure M and an assignment satisfying (23), we can easily expand M to a Σext-structure by taking
the e’s themselves as the elements of the interpretation of the artifact sorts; in the so-expanded Σext-structure, we
can interpret the artifact components a by taking the a[e] to be the elements assigned to the z in the satisfying
assignment for (23).

Thanks to Assumption 1, the satisfiability of (23) in a Σ-model of T , in a DB-instance of 〈Σ, T 〉, or in a Σ-model
of T ∗ are all equivalent and decidable. �

The instantiation algorithm of Lemma 4 can be used to discharge the satisfiability tests in lines 2 and 3 of Algorithm 1
because the conjunction of a state formula and of the negation of a state formula is a ∃∀-formula (notice that ι is
itself the negation of a state formula, according to (4)).

Theorem 2 The backward search algorithm (cf. Algorithm 1), applied to artifact systems, is effective and partially
correct.

Proof. Recall that S is unsafe iff there is no DB-instanceM of 〈Σext, T 〉, no k ≥ 0 and no assignment inM to the
variables x0, a0 . . . , xk, ak such that the formula (7)

ι(x0, a0) ∧ τ(x0, a0, x1, a1) ∧ · · · ∧ τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)

is true inM. It is sufficient to show that this is equivalent to saying that there is no Σext-modelM of T ∗, no k ≥ 0
24In the MCMT implementation, state formulae are always maintained so that all existential variables occurring in them are
differentiated, so that there is no need of this expensive computation step.

and no assignment in M to the variables x0, a0 . . . , xk, ak such that (7) is true in M (once this is shown, the proof
goes in the same way as the proof of Theorem 1).

Now, the formula (7) is satisfiable in a Σext-structure M under a suitable assignment iff the formula

ι(x0, a0) ∧ ∃a1∃x1(τ(x0, a0, x1, a1) ∧ · · ·

· · · ∧ ∃ak∃xk(τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)) · · ·)

is satisfiable in M under a suitable assignment; by Lemma 2, the latter is equivalent to a formula of the kind

ι(x, a) ∧ ∃e ∃z φ(e, z, x, a) (24)

where ∃e∃z φ(e, z, x, a) is an extended state formula (thus φ is quantifier-free, the e are variables of artifact sorts
and the z are variables of basic sorts - we renamed x0, a0 as x, a). However the satisfiability of (24) is the same as
the satisfiability of ∃e (ι(x, a) ∧ φ(e, z, x, a)); the latter, in view of (4), is a ∃∀-formula and so Lemma 4 applies and
shows that its satisfiability in a DB-instance of 〈Σext, T 〉 is the same as its satisfiability in a Σext-model of T ∗. �

E. PROOFS FROM SECTION 7

We begin by recalling some basic facts about wqo’s. Recall that a well-quasi-order (wqo) is a set W endowed with
a reflexive-transitive relation ≤ having the following property: for every infinite succession

w0, w1, . . . , wi, . . .

of elements from W there are i, j such that i < j and wi ≤ wj .
The fundamental result about wqo’s is the following result, which is a consequence of the well-known Kruskal’s

Tree Theorem [35]:

Theorem 7. If (W,≤) is a wqo, then so is the partial order of the finite lists over W , ordered by componentwise
subword comparison (i.e. w ≤ w′ iff there is a subword w0 of w′ of the same length as w, such that the i-th entry of
w is less or equal to - in the sense of (W,≤) - the i-th entry of w0, for all i = 0, . . . |w|). ⊳

Various wqo’s can be recognized by applying the above Theorem; in particular, the Theorem implies that the
cartesian product of wqos is a wqo. As an application, notice that N is a wqo, hence the following Corollary (known
as Dikson Lemma) follows:

Corollary 1. The cartesian product of k-copies of N (and also of N ∪ {∞}), with componentwise ordering, is a
wqo. ⊳

Let us now turn to the terminology introduced in Subsection 7.1 and in particular to the numbers
k1(M), . . . , kN (M) ∈ N ∪ {∞} counting the numbers of elements generating (as singletons) the cyclic substruc-
tures C1, . . . , CN , respectively (we assume the acyclicity of Σ and consequently also of Σ̃).

Lemma 5. Let M,N be Σ̃-structures. If the inequalities

k1(M) ≤ k1(N), . . . , kN (M) ≤ kN (N)

hold, then all local formulae true in M are also true in N . ⊳

Proof. Notice that local formulae (viewed in Σ̃) are sentences, because they do not have free variable occurrences -
the a, x are now constant function symbols and individual constants, respectively. The proof of the Lemma is fairly
obvious: notice that, once we assigned some α(ei) inM to the variable ei, the truth of a formula like φ(ei, x, a) under
such an assignment depends only on the Σ̃-substructure generated by α(ei), because φ is quantifier-free and ei is the

only Σ̃-variable occurring in it. In fact, if a local state formula ∃e1 · · · ∃ek

(

δ(e1, . . . , ek) ∧
∧k

i=1 φi(ei, x, a)
)

is true in

M, then there exist elements ē1, · · · , ēn (in the interpretation of some artifact sorts), each of which makes φi true.
Hence, φi is also true in the corresponding cyclic structure generated by ēi. Since k1(M) ≤ k1(N), . . . , kN (M) ≤
kN (N) hold, then also in N there are at least as many elements in the interpretation of artifact sorts as there are

in M that validate all the φi . Thus, we get that ∃e1 · · · ∃ek

(

δ(e1, . . . , ek) ∧
∧k

i=1 φi(ei, x, a)
)

is true also in N , as

wanted. �

Theorem 3 If Σ is acyclic, the backward search algorithm (cf. Algorithm 1) terminates when applied to a local safety
formula in an artifact transition system, whose transition formula is a disjunction of local transition formulae.

Proof. Suppose the algorithm does not terminate. Then the fixpoint test of Line 2 fails infinitely often. Recalling
that the T -equivalence of Bn and of

∨

0≤j<n φj is an invariant of the algorithm (here φn, Bn are the status of the

variables φ,B after n execution of the main loop), this means that there are models

M0,M1, . . . ,Mi, . . .

such that for all i, we have that Mi |= φi and Mi 6|= φj (all j < i). But the φi are all local formulae, so
considering the tuple of cardinals k1(Mi), . . . , kN (Mi) and Lemma 5, we get a contradiction, in view of Dikson
Lemma. This is because, by Dikson Lemma, (N ∪ {∞})N is a wqo, so there exist i, j such that j < i and
k1(Mj) ≤ k1(Mi), . . . , kN (Mj) ≤ kN (Mi). Using Lemma 5, we get that φj , which is local and true in Mj , is also
true in Mi, which is a contradiction. �

The proof of Theorem 4 is more complex, but follows a similar schema25. If (W,≤) is a partial order, we consider
the set M(W) of finite multisets of W as a partial order in the following way:26 say that M ≤ N holds iff there is
an injection p : M −→ N such that m ≤ p(m) holds for all m ∈M (of course, the notion of an injection should take
care of multiplicities: p should associate to every occurrence of m an occurrence p(m) of an element of N so that
different elements/different occurrences are associated to different elements/different occurrences).

Corollary 2. If (W,≤) is a wqo, then so is (M(W),≤) as defined above. ⊳

Proof. This is due to the fact that one can convert a multiset M to a list L(M) so that if L(M) ≤ L(N) holds,
then also M ≤ N holds (such a conversion L can be obtained by ordering the occurrences of elements in M in any
arbitrarily chosen way). �

We assume that the graph G(Σ̃) associated to Σ̃ is a tree (the generalization to the case where such a graph is
a forest is trivial). This means in particular that each sort is the domain of at most one function symbol and that
there just one sort which is not the domain of any function symbol (let us call it the root sort of Σ̃ and let us denote
it with Sr).

By induction on the height27 of a sort S in the above graph, we define a wqo w(S) (in the definition we use the
fact the cartesian product of wqo’s is a wqo and Corollary 2). Let S1, . . . , Sn be the sons of S in the tree; put

w(S) := M(w(S1))× · · · ×M(w(Sn)) (25)

(thus, if S is a leaf, w(S) is the trivial one-element wqo - its only element is the empty tuple).
Let now M be a finite Σ̃-structure; we indicate with SM the interpretation in M of the sort S (it is a finite set).

For a ∈ SM, we define the multiset MM(a) ∈ w(S), again by induction on the height of S. Suppose that S1, . . . , Sn

are the sons of S and that the arc from Si to S is labeled by the function symbol fi; then we put

MM(a) := 〈{MM(b1) | b1 ∈ S
M
1 and fM

1 (b1) = a}, . . .

. . . , {MM(bn) | bn ∈ S
M
n and fM

n (bn) = a}〉

where fM
i (i = 1, . . . , n) is the interpretation of the symbol fi in M.

Moreover, for every sort S, we let

MM(S) := {MM(a) | a ∈ SM} . (26)

Finally, we define

M(M) := MM(Sr) . (27)

For termination, the relevant Lemma is the following:

Lemma 6. Given two finite models M and N , we have that if M(M) ≤M(N), then M embeds into N . ⊳

Proof. Again, we make an induction on the height of S, proving the claim for the subsignature of Σ̃ having S as
a root (let us call this the S-subsignature).

LetM be a model over the S-subsignature. For every a ∈ SM, and for every fi : Si −→ S, if we restrictM to the
elements in the fi-fibers of a, we get a modelMfi,a for the Si-subsignature (an element c ∈ S̃M is in the fi-fiber of

a if, taking the term t corresponding to the composition of the functions symbols going from S̃ to Si, we have that
fM

i (tM(c)) = a). In addition, if MM(a) = (M1, . . . ,Mn), then Mi = M(Mfi,a) by definition. Finally, observe that
the restriction ofM to the Si-subsignature is the disjoint union of the fi-fibers models Mfi,a, varying a ∈ SM.

Suppose now that M,N are models over the S-subsignature such that M(M) ≤ M(N); this means that we
can find an injective map µ mapping SM into SN so that MM(a) ≤ MN (µ(a)). If MM(a) = (M1, . . . ,Mn) and
MN (µ(a)) = (N1, . . . , Nn), we then have that Mi ≤ Ni for every i = 1, . . . , n. Considering that, as noticed above,
Mi =Mfi,a and Ni = Nfi,µ(a), by induction hypothesis, we have embeddings νi,a for the fi-fibers models of a and

µ(a) (for every a ∈ SM and i = 1, . . . , n). Glueing these embeddings to the disjoint union (varying i, a) and adding
them µ as S-component, we get the desired embedding of M into N . �

25For simplicity, we give the argument for the case where we do not have constants and artifact variables (footnote 28 shows
how to extend the argument to the general case).

26This is not the canonical ordering used for multisets, see eg [9].
27This is defined as the length of the longest path from S to a leaf.

Proposition 3. If Σ̃ is tree-like, then the finite Σ̃-structures are a wqo with respect to the embeddability quasi-order.⊳

Proof. An immediate consequence of the previous lemma. �

Theorem 4 The backward search algorithm (cf. Algorithm 1) terminates when applied to an artifact transition
system whose artifact setting is tree-like.

Proof. Similarly to the proof of Theorem 3, suppose the algorithm does not terminate. Then the fixpoint test of
Line 2 fails infinitely often. Recalling that the T -equivalence of Bn and of

∨

0≤j<n φj is an invariant of the algorithm

(here φn, Bn are the status of the variables φ,B after n execution of the main loop), this means that there are models

M0,M1, . . . ,Mi, . . .

such that for all i, we have that Mi |= φi and Mi 6|= φj (all j < i). The models can be taken to be all finite, by

Lemma 4. But the φi are all existential sentences in Σ̃, so this is incompatible to the fact that, by Proposition 3,
there are j < i with Mj embeddable into Mi.

28
�

F. COMPLEMENTS FOR SECTION 7

Fix an acyclic signature Σ and an artifact setting (x, a) over it. In this section we analyze in our setting the
transition formulae studied in [37]29 (deletion, insertion and propagation updates). In addition, we discuss some
modifications of the previous transitions and introduce new kinds of updates (like bulk updates). We prove that all
these transitions are strongly local transitions.

F.1 Deletion updates

We want to remove a tuple t := (t1, ..., tm) from an m-ary artifact relation R and assign the values t1, ..., tm to some
of the artifact variables (let x := x1, x2, where x1 := (xi1

, ..., xim
) are the variables where we want to transfer the

tuple t). This operation has to be applied only if the current artifact variables x satisfy the pre-condition π(x1, x2)
and the updated artifact variables x′ := x′

1, x
′
2 satisfy the post-condition ψ(x′

1, x
′
2) (π and ψ are quantifier-free

formulae). The variables x2 are not propagated, i.e. they are non deterministically reassigned. Let r := r1, ..., rm

be the artifact components of R. Such an update can be formalized in a symbolic way as follows:

∃d∃e

(

π(x1, x2) ∧ ψ(x′
1, x

′
2) ∧ r1[e] 6= undef ∧ ...

∧ rn[e] 6= undef ∧ (x′
1 := r[e] ∧ x′

2 := d ∧ s′ := s ∧
∧ r′ := λj.(if j = e then undef else r[j]))

)

(28)

where s are the artifact components of the artifact relations different from R. Notice that the d are non determinis-
tically produced values for the updated x′

2. In the terminology of [37], notice that no artifact variable is propagated
in a deletion update.

Notice that in place of the condition r1[e] 6= undef ∧ ... ∧ rn[e] 6= undef one can consider the modified deletion
update that is fired only if some (and not all) artifact components are not undef, or even the case when the transition
is fired if at least one artifact component is not undef: the latter case can be expressed using a disjunction of
transitions τi that, instead of r1[e] 6= undef∧...∧ rn[e] 6= undef, involve only the literal ri[e] 6= undef (for i = 1, ..., n).
These modified deletion updates can be proved to be strongly local transitions by using trivial adaptations of the
arguments shown below.

The formula (28) is not in the format (6) but can be easily converted into it as follows:

∃d∃e

(

π(x1, x2) ∧ ψ(r[e], d) ∧ r1[e] 6= undef ∧ ...
∧ rn[e] 6= undef ∧ (x′

1 := r[e] ∧ x′
2 := d ∧ s′ := s ∧

∧ r′ := λj.(if j = e then undef else r[j]))

)

(29)

We prove that the preimage along (29) of a strongly local formula is strongly local. Consider a strongly local
formula

K := ψ′(x) ∧ ∃e

Diff(e) ∧
∧

er∈e

φer
(r[er]) ∧Θ

28 The following observation shows how to extend the proof to the case where we have constants and artifact variables. Recall
that in Σ̃ the artifact variables are seen as constants, so we need to consider only the case of constants. Let Σ̃+ be Σ̃ where
each constant symbol c of sort S is replaced by a new sort Sc and a new function symbol fc : Sc −→ S. Now every model
M of Σ̃ can be transformed into a model M+ of Σ̃+ by interpreting Sc as a singleton set {∗} and fc as the map sending
∗ to cM. This transformation has the following property: Σ̃-embeddings of M into N are in bijective correspondence with
Σ̃+-embeddings of M+ into N +. Since Σ̃+ is still tree-like and does not have constant symbols, this shows that Theorem 4
holds for Σ̃ too.

29For simplicity, since we are not considering hierarchical aspects, we assume that there is no input variable in the sense of
[37]

where Θ is a formula involving the artifact components s (which are not updated) such that no er occurs in it.

Remark 5. Notice that equality is the only predicate, so a quantifier-free formula φ(e, a) involving a single variable
e must be obtained from atoms of the kind b[e] = b′[e] (for b, b′ ∈ a) by applying the Boolean connectives only:
this is why we usually display such a formula as φ(a[e]). In addition, since the source sorts of the different artifact
relations are different, we cannot employ the same variable as argument of artifact components of different artifact
relations: in other words, we cannot employ the same variable e in terms like ri[e] and sj [e], in case ri and sj are
components of two different artifact relation R and S (because e must have either type R or type S). Thus, the
quantifier-free subformula φi(a[ei]) in a local formula involving only the variable ei must be of the kind φi(r[ei]),
for some artifact relation R (here r are the artifact components of R). These observations will be often used in the
sequel. ⊳

We compute the preimage Pre(29,K)

∃d∃e, e∃x′
1, x

′
2 ∃r

′

π(x1, x2) ∧ ψ(r[e], d) ∧ ψ′(x′
1, x

′
2) ∧

∧ x′
1 := r[e] ∧ x′

2 := d ∧ Diff(e) ∧
∧

er∈e φer
(r′[er]) ∧

∧ r′ := λj.(if j = e then undef else r[j]) ∧Θ

which can be rewritten as a disjunction of the following formulae:

• ∃d∃e, e

(

Diff(e, e) ∧ π(x1, x2) ∧ ψ(r[e], d) ∧
∧ ψ′(r[e], d) ∧

∧

er∈e φer
(r[er]) ∧ Θ

)

covering the case where e is different from all ej ∈ e

• ∃d∃e

(

Diff(e) ∧ π(x1, x2) ∧ ψ(r[ej], d) ∧ ψ′(r[ej], d) ∧
∧
∧

er∈e,er 6=ej
φer

(r[er]) ∧ φej
(undef) ∧Θ

)

covering the case where e = ej , for some ej ∈ e

We can now move the existential quantifier ∃d in front of ψ∧ψ′. We eliminate the quantifiers (applying the quan-
tifier elimination procedure for T ⋆) from the subformula ∃d (ψ(r[e], d) ∧ ψ′(r[e], d)) (or ∃d (ψ(r[e], d) ∧ ψ′(r[e], d)),
resp.) obtaining a formula of the kind θ(r[e]) (or θ(r[ej]).

The final result is the disjunction of the formulae

• ∃e, e
(

Diff(e, e) ∧ π(x1, x2) ∧ θ(r[e]) ∧
∧

er∈e φer
(r[er]) ∧ Θ

)

• ∃d∃e

(

Diff(e) ∧ π(x1, x2) ∧ θ(r[ej]) ∧
∧
∧

er∈e,er 6=ej
φer

(r[er]) ∧ φej
(undef) ∧ Θ

)

which is a strongly local formula.
Analogous arguments show that:

(i) transitions like Formula (28), where the literals r1[e] 6= undef ∧ ... ∧ rn[e] 6= undef are replaced with a generic
constraint χ(r[e]);

(ii) transitions that remove a tuple from an artifact relation (without transferring its values to the corresponding
artifact variables);

(iii) transitions that copy the the content of a tuple contained in an artifact relation to some artifact variables,
non-deterministically reassigning the values of the other artifact variables;

(iv) transitions that combine (i) and (iii)

are also strongly local.

Remark 6. Notice that deletion updates with the propagation of some artifact variables x1 (which are not allowed
in [37] and in [27]) are not strongly local, since the preimage of a strongly local formula can produce formulae of
the form ψ(r[e], x1). This preimage is still local: however, the preimage of a local state formula through a deletion
update can generate formulae of the form ψ(r[e], r[e′]), with e 6= e′, destroying locality. Hence, the safety problem
for a RAS equipped containing deletion updates with propagation in its transitions, is not guaranteed to terminate.
⊳

F.2 Insertion updates

We want to insert a tuple of values t := (t1, ..., tm) from the artifact variables x1 := (xi1
, ..., xim

) (let x := x1, x2
as above) into an m-ary artifact relation R. This operation has to be applied only if the current artifact variables x
satisfy the pre-condition π(x1, x2) and the updated artifact variables x′ := x′

1, x
′
2 satisfy the post-condition ψ(x′

1, x
′
2).

The variables x are all not propagated, i.e. they are non deterministically reassigned. Let r := r1, ..., rm be the
artifact components of R. Such an update can be formalized in a symbolic way as follows:

∃d1, d2 ∃e

(

π(x1, x2) ∧ ψ(x′
1, x

′
2) ∧ r[e] = undef

∧ (x′
1 := d1 ∧ x′

2 := d2 ∧ s′ := s ∧
∧ r′ := λj.(if j = e then x1 else r[j]))

)

(30)

where s are the artifact components of the artifact relations different from R. Notice that d1, d2 are non deter-
ministically produced values for the updated x′

1, x
′
2. In the terminology of [37], notice that no artifact variable is

propagated in a insertion update. Notice that the following arguments remain the same even if r[e] = undef is
replaced with a conjunction of some literals of the form rj [e] = undef, for some j = 1, ...,m, or even if r[e] = undef
is replaced with a generic constraint χ(r[e]).

In this transition, the insertion of the same content in correspondence to different entries is allowed. If we want
to avoid this kind of multiple insertions, the update r′ must be modified as follows:

r′ := λj.

(

if j = e then x1 else
(if r[j] = x1 then undef else r[j])

)

The formula (30) is not in the format (6) but can be easily converted into it as follows:

∃d1, d2 ∃e

(

π(x1, x2) ∧ ψ(d1, d2) ∧ r[e] = undef
∧ (x′

1 := d1 ∧ x′
2 := d2 ∧ s′ := s ∧

∧ r′ := λj.(if j = e then x1 else r[j]))

)

(31)

We prove that the preimage along (31) of a strongly local formula is strongly local. Consider a strongly local
formula

K := ψ′(x) ∧ ∃e

Diff(e) ∧
∧

er∈e

φer
(r[er]) ∧Θ

where Θ is a formula involving the artifact relations s (which are not updated) such that no er occurs in it.
We compute the preimage Pre(31,K)

∃d1, d2 ∃e, e∃x
′
1, x

′
2 ∃r

′

π(x1, x2) ∧ ψ(d1, d2) ∧ ψ′(x′
1, x

′
2) ∧ r[e] = undef

∧ x′
1 := d1 ∧ x′

2 := d2 ∧ Diff(e) ∧
∧

er∈e φer
(r′[er]) ∧

∧ r′ := λj.(if j = e1 then x1 else r[j]) ∧Θ)

which can be rewritten as a disjunction of the following formulae:

• ∃d1, d2 ∃e, e

(

Diff(e, e) ∧ π(x1, x2) ∧ ψ(d1, d2) ∧ ψ′(d1, d2)
∧ r[e] = undef ∧

∧

er∈e φer
(r[er]) ∧ Θ

)

covering the case where e is different from all ej ∈ e

• ∃d1, d2 ∃e

(

Diff(e) ∧ π(x1, x2) ∧ ψ(d1, d2) ∧ ψ′(d1, d2) ∧
∧ r[e] = undef ∧

∧

er∈e,er 6=ej
φer

(r[er]) ∧ φej
(x1) ∧ Θ

)

covering the case where e = ej , for some ej ∈ e.

We can move the existential quantifiers ∃d1, d2 in front of ψ∧ψ′. We eliminate the quantifiers (applying the quan-
tifier elimination procedure for T ⋆) from the subformula ∃d1d2 (ψ(d1, d2) ∧ ψ′(d1, d2)) obtaining a ground formula
θ.

The final result is a disjunction of formulae fo the kind

• ∃e, e
(

Diff(e, e) ∧ π(x1, x2) ∧ r[e] = undef ∧ θ ∧
∧

er∈e φer
(r[er]) ∧ Θ

)

• ∃e
(

Diff(e) ∧ π(x1, x2) ∧ φej
(x1) ∧ r[e] = undef ∧ θ ∧

∧

er∈e,er 6=ej
φer

(r[er]) ∧ Θ
)

which is a strongly local formula.
Analogous arguments show that transitions that insert a tuple of values t := (t1, ..., tm) (where the values tj are

taken from the content of the artifact variables x1 := (xi1
, ..., xim

) or are constants) into an m-ary artifact relation
R are also strongly local. Notice that the transition introduced in Example 4:

∃i:appIndex

pState = enabled ∧ aState = received

∧ applicant[i] = undef

∧ pState′ = enabled ∧ aState′ = undef ∧ cId′ = undef

∧ appJobCat ′ = λj. (if j = i then jId else appJobCat[j])
∧ applicant ′ = λj. (if j = i then uId else applicant[j])
∧ appResp′ = λj. (if j = i then eId else appResp[j])
∧ appScore′ = λj. (if j = i then -1 else appScore[j])
∧ appResult′ = λj. (if j = i then undef else appResult[j])
∧ jId′ = undef ∧ uId′ = undef ∧ eId′ = undef

presents the described format.
We close this section with an important remark. In Appendix A.1, we have seen that to forbid the insertion at

different indexes of multiple identical tuples in an artifact relation, transitions break the strong locality requirement.
A way to restore locality is to simply admit such repeated insertions. Notably, if one focuses on the fragment of
strongly local RAS that coincides with the model in [27, 37], it can be shown, exactly reconstructing the same line
of reasoning from [27], that verification problems (in the restricted common fragment) for artifact systems working
over sets (i.e., insertions are performed over working memory without possible repetitions) and those working over
multisets, are indeed equivalent.

F.3 Propagation updates

We want to propagate a tuple t := (t1, ..., tm) of values contained in the artifact variables x1 := (xi1
, ..., xim

) (let
x := x1, x2) to the corresponding updated artifact variables x′

1. This operation has to be applied only if the current
artifact variables x satisfy the pre-condition π(x1, x2) and the updated artifact variables x′ := x′

1, x
′
2 satisfy the

post-condition ψ(x′
1, x

′
2). Notice that in this transition no update of artifact component is involved.

Such an update can be formalized in a symbolic way as follows:

∃d (π(x1, x2) ∧ ψ(x′
1, x

′
2) ∧ (x′

1 := x1 ∧ x′
2 := d ∧ s′ := s)) (32)

where s stands for all the artifact components. Notice that the d are non deterministically produced values for the
updated x′

2. In the terminology of [37], notice that the artifact variables x1 are propagated.
The formula (30) is not in the format (6) but can be easily converted into it as follows:

∃d (π(x1, x2) ∧ ψ(x1, d) ∧ (x′
1 := x1 ∧ x′

2 := d ∧ s′ := s)) (33)

We prove that the preimage along (33) of a strongly local formula is strongly local. Consider a strongly local
formula

K := ψ′(x) ∧ ∃e (Diff(e) ∧Θ)

where Θ is a formula involving the all artifact relations s (which are not modified in a propagation update), such
that K fits the format of (9).

We compute the preimage Pre(32,K)

∃d∃x′
1, x

′
2

(

π(x1, x2) ∧ ψ(x1, d) ∧ ψ′(x1, x
′
2) ∧

∧ x′
1 := x1 ∧ x′

2 := d ∧ Diff(e) ∧ Θ

)

which can be rewritten as follows:

∃d∃e

(

Diff(e) ∧ π(x1, x2) ∧ ψ(x1, d) ∧
∧ ψ′(x1, d) ∧ Θ

)

We can move the existential quantifier ∃d in front of ψ ∧ψ′. We eliminate the quantifiers (applying the quantifier
elimination procedure for T ⋆) from the subformula ∃d(ψ(x1, d) ∧ ψ′(x1d)) obtaining a formula of the kind θ(x1).

The final result is

∃e (Diff(e) ∧ π(x1, x2) ∧ θ(x1) ∧ Θ)

which is a strongly local formula.
Consider a transition that inserts constants or a non-deterministically generated new value d′ (or a tuple of new

values d′) into an artifact component ri (or more than one) of an m-ary artifact relation r, propagating all the other
components and the artifact variables x1 (with x := x1, x2). Formally, this transition can be written in the following
way:

∃d, d′ ∃e

(

π(x1, x2) ∧ ψ(x′
1, x

′
2) ∧ χ1(d′) ∧ χ2(r[e]) ∧

∧ (x′
1 := x1 ∧ x′

2 := d ∧ r′
i = λj.(if j = e then d′ else r[j]) ∧ s′ := s)

)

(34)

where s stands for all the artifact components different from ri, and χ1 and χ2 are quantifier-free formulae. Notice
that the d are non deterministically produced values for the updated x′

2. In the terminology of [37], notice that the
artifact variables x1 are propagated.

The formula (34) is not in the format (6) but can be easily converted into it as follows:

∃d, d′ ∃e

(

π(x1, x2) ∧ ψ(x1, d) ∧ χ1(d′) ∧ χ2(r[e]) ∧
∧ (x′

1 := x1 ∧ x′
2 := d ∧ r′

i = λj.(if j = e then d′ else r[j]) ∧ s′ := s)

)

(35)

Since d′ does not occur in literals involving artifact variables, arguments analogous to the previous ones show that
this transition is strongly local.

Notice that the transition (described in Example 4):

∃i:joIndex, s:Score

pState = enabled
∧ applicant [i] 6= undef ∧ appScore[i] = -1 ∧ s ≥ 0
∧ pState′ = enabled∧ appScore′[i] = s

that assesses a Score to an applicant presents the structure of (35), so it is a strongly local transition. The same
conclusion holds for the transition:

∃u:UserId, j:JobCatId, e:EmpId, c:CompInId

pState = enabled ∧ aState = undef

∧ u 6= undef ∧ j 6= undef ∧ e 6= undef ∧ c 6= undef

∧ who(c) = e ∧ what(c) = j

∧ pState′ = enabled ∧ aState′ = received

∧ uId′ = u ∧ jId′ = j ∧ eId ′ = e ∧ cId′ = c

presented in Example 4.

F.4 Bulk update

We want to unboundedly (bulk) update one (or more than one) artifact component(s) ri of one (or more than
one) artifact relation(s) r: if some conditions over the artifacts are satisfied for some entries, a global update that
involves all those entries (inserting some constant c1) is fired. In our symbolic formalism, we write:

∃d

(

π(x1, x2) ∧ ψ(x′
1, x

′
2) ∧ (x′

1 := x1 ∧ x′
2 := d ∧ s′ := s ∧

∧ r′
1 := r1 ∧ ... ∧ r′

i := λj.(if κ1(r[j]) then c1 else ri[j])) ∧ ... ∧ r′
n := rn)

)

(36)

where r are the artifact components of an artifact relation R, s are the remaining artifact components, κ1 is a
quantifier-free formula30, c1 is a constant. The artifact component ri is updated in a global, unbounded way: we
call this kind of update "bulk update".

The formula (36) is not in the format (6) but can be easily converted into it as follows:

∃d

(

π(x1, x2) ∧ ψ(x1, d) ∧ (x′
1 := x1 ∧ x′

2 := d ∧ s′ := s ∧
∧ r′

1 := r1 ∧ ... ∧ r′
i := λj.(if κ1(r[j]) then c1 else ri[j])) ∧ ... ∧ r′

n := rn)

)

(37)

We prove that the preimage along (37) of a strongly local formula is strongly local. Consider a strongly local
formula

K := ψ′(x) ∧ ∃e

Diff(e) ∧
∧

er∈e

φer
(r[er]) ∧Θ

where Θ is a formula involving the artifact relations s (which are not updated) such that no er occurs in it.
We compute the preimage Pre(37,K)

∃d ∃e

(

Diff(e) ∧ π(x1, x2) ∧ ψ(x1, d) ∧ ψ′(x1, d) ∧ (x′
1 := x1 ∧ x′

2 := d ∧ s′ := s ∧
∧

er∈e φer
(r′[er]) ∧ Θ ∧ r′

1 := r1 ∧ ... ∧ r′
i := λj.(if κ1(r[j]) then c1 else ri[j])) ∧ ... ∧ r′

n := rn)

)

(38)

which can be rewritten as a disjunction of the following formulae indexed by a function f that associates to every
er a boolean value in 0, 1:

∃d, ∃e

(

Diff(e) ∧ π(x1, x2) ∧ ψ(x1, d) ∧ ψ′(x1, d) ∧
∧

er∈e(ǫf (er)κ1(r[er]) ∧ φ(r1[er], ...δf (er), ..., rn[er])) ∧ Θ

)

(39)

where ǫf (er) := ¬ if f(er) = 0, otherwise ǫf (er) := ∅, and δf (er) := c1 if f(er) = 0, otherwise δf (er) := ri[er].
We can conclude as above (cf. propagation updates), by eliminating the existentially quantified variable d, that

this formula is strongly local.
Notice that the previous arguments remain the same if r′

i := λj.(if κ1(r[j]) then c1 else ri[j])) in Formula (36) is
replaced by r′

i := λj.(if κ1(r[j]) then c1 else c2), with c2 a constant. Even in this case, the modified bulk transition
is strongly local.

30From the computations below, it is clear that strong locality holds also in case κ1 depends also on the variables x, on the
condition that κ1(x, r[j]) has the form h0(x) ∧ h1(r[j]), with h0 and h1 quantifier-free formulae

Example #(AC) #(AV) #(T)

E1 JobHiring 9 18 15
E2 Acquisition-following-RFQ 6 13 28
E3 Book-Writing-and-Publishing 4 14 13
E4 Customer-Quotation-Request 9 11 21
E5 Patient-Treatment-Collaboration 6 17 34
E6 Property-and-Casualty-Insurance-Claim-Processing 2 7 15
E7 Amazon-Fulfillment 2 28 38
E8 Incident-Management-as-Collaboration 3 20 19

Table 2: Summary of the experimental examples

Example Property Result Time #(N) depth #(SMT-calls)

E1 E1P1 SAFE 0.06 3 3 1238
E1P2 UNSAFE 0.36 46 10 2371
E1P3 UNSAFE 0.50 62 11 2867
E1P4 UNSAFE 0.35 42 10 2237

E2 E2P1 SAFE 0.72 50 9 3156
E2P2 UNSAFE 0.88 87 10 4238
E2P3 UNSAFE 1.01 92 9 4811
E2P4 UNSAFE 0.83 80 9 4254

E3 E3P1 SAFE 0.05 1 1 700
E3P2 UNSAFE 0.06 14 3 899

E4 E4P1 SAFE 0.12 14 6 1460
E4P2 UNSAFE 0.13 18 8 1525

E5 E5P1 SAFE 4.11 57 9 5618
E5P2 UNSAFE 0.17 13 3 2806

E6 E6P1 SAFE 0.04 7 4 512
E6P2 UNSAFE 0.08 28 10 902

E7 E7P1 SAFE 1.00 43 7 5281
E7P2 UNSAFE 0.20 7 4 3412

E8 E8P1 SAFE 0.70 77 11 3720
E8P2 UNSAFE 0.15 25 7 1652

Table 3: Experimental results for safety properties

Analogous arguments show that transitions involving more than one artifact relations which are updated like ri

are also strongly local.
The transition introduced in Example 4

pState = final ∧ pState′ = notified

∧ appResult′ = λj.

(

if appScore[j] > 80 then winner

else loser

)

is a bulk update transition in the format described in this subsection, so it is a strongly local transition.

G. EXPERIMENTS

We base our experimental evaluation on the already existing benchmark provided in [37], that samples
32 real-world BPMN workflows published at the official BPM website (http://www.bpmn.org/). Specifi-
cally, inspired by the specification approach adopted by the authors of [37] in their experimental setup
(https://github.com/oi02lyl/has-verifier), we select seven examples of varying complexity (see Ta-
ble 2) and provide their faithful encoding31 in the array-based specification using MCMT version 2.8
(http://users.mat.unimi.it/users/ghilardi/mcmt/). Moreover, we enrich our experimental set with an ex-
tended version of the running example from Appendix A.1. Each example has been checked against at least one safe
and one unsafe conditions. Experiments were performed on a machine with Ubuntu 16.04, 2.6 GHz Intel Core i7
and 16 GB RAM.

31Our encoding considers semantics of the framework studied in [37].

http://www.bpmn.org/
https://github.com/oi02lyl/has-verifier
http://users.mat.unimi.it/users/ghilardi/mcmt/

Here #(AV), #(AC) and #(T) represent, respectively, the number of artifact variables, artifact components and
transitions used in the example specification, while Time is the mcmt execution time. The most critical measures
are #(N), depth and #(SMT-calls) that respectively define the number of nodes and the depth of the tree used
for the backward reachability procedure adopted by mcmt, and the number of the SMT-solver calls. Indeed, mcmt
computes the iterated preimages of the formula describing the unsafe states along the various transitions. Such
computation produces a tree, whose nodes are labelled by formulae describing sets of states that can reach an unsafe
state and whose arcs are labelled by a transition. In other words, an arc t : φ→ ψ means that φ is equal to Pre(t, ψ).
The tool applies forward and backward simplification strategies, so that whenever a node φ is deleted, this means
that φ entails the disjunction of the remaining (non deleted) nodes. All nodes (both deleted and undeleted) can
be visualized via the available online options (it is also possible to produce a Latex file containing their detailed
description)

To stress test our encoding, we came up with a few formulae describing unsafe configurations (sets of “bad”
states), that is, the configurations that the system should not incur throughout its execution. Property references
encodings of examples endowed with specific (un)safety properties done in mcmt, whereas Result shows their
verification outcome that can be of the two following types: SAFE and UNSAFE. The mcmt tool returns SAFE, if the
undesirable property it was asked to verify represents a configuration that the system cannot reach. At the same
time, the result is UNSAFE if there exists a path of the system execution that reaches “bad” states. One can see, for
example, that the job hiring RAS has been proved by mcmt to be SAFE w.r.t. the property defined in Example 5.
The details about the successfully completed verification task can be seen in the first row of Table 3: the tool
constructed a tree with 3 nodes and a depth of 3, and returned SAFE in 0.06 seconds. For the same job hiring RAS,
if we slightly modify the safe condition discussed in Example 5 by removing, for instance, the check that a selected
applicant is not a winning one, we obtain a description (see below) of a configuration in which it is still the case
that an applicant could win:

∃i:appIndex (pState = notified∧ applicant [i] 6= undef∧ appResult[i] 6= loser)

In this case, the job hiring process analyzed against the devised property is evaluated as UNSAFE by the tool (see
E1P3 row in Table 3). When checking safety properties, mcmt also allows to access an unsafe path of a given
example in case the verification result is UNSAFE.

To conclude, we would like to point out that seemingly high number of SMT solver calls in #(SMT-calls)
against relatively small execution time demonstrates that mcmt could be considered as a promising tool supporting
the presented line of research. This is due to the following two reasons. On the one hand, the SMT technology
underlying solvers like Yices [29] is quite mature and impressively well-performing. On the other hand, the backward
reachability algorithm generates proof obligations which are relatively easy to be analyzed as (un)satisfiable by the
solver.

	1 Introduction
	2 Preliminaries
	3 Artifact Systems
	4 Read-only Database Schemas
	4.1 Relational View of DB Schemas
	4.2 Formal Properties of DB Schemas
	4.2.1 Finite model property
	4.2.2 Quantifier elimination

	5 Simple Artifact Systems
	6 Relational Artifact Systems
	7 Termination Results for RASs
	7.1 Termination with Local Updates
	7.2 Termination with tree-like signatures

	8 First experiments
	9 Conclusion
	10 References
	A Examples
	A.1 Job Hiring Process
	A.2 Flight Management Process

	B Proofs and Complements for Section 4
	C Proofs and Complements for Section 5
	D Proofs from Section 6
	E Proofs from Section 7
	F Complements for Section 7
	F.1 Deletion updates
	F.2 Insertion updates
	F.3 Propagation updates
	F.4 Bulk update

	G Experiments

