1509.08979v1 [cs.DB] 30 Sep 2015

arXiv

Node Selection Query Languages for Trees

Diego Calvanese
Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

Giuseppe De Giacomo, Maurizio Lenzerini
Dip. di Informatica, Automatica e Gestionale
Sapienza Universita di Roma, Italy

Moshe Y. Vardi
Dept. of Computer Science
Rice University, Houston, U.S.A.

Abstract

The study of node selection query languages for (finite) trees has been a major topic in the recent
research on query languages for Web documents. On one hand, there has been an extensive study of
XPath and its various extensions. On the other hand, query languages based on classical logics, such
as first-order logic (FO) or Monadic Second-Order Logic (MSO), have been considered. Results in
this area typically relate an XPath-based language to a classical logic. What has yet to emerge is an
XPath-related language that is as expressive as MSO, and at the same time enjoys the computational
properties of XPath, which are linear time query evaluation and exponential time query-containment
test. In this paper we propose uXPath, which is the alternation-free fragment of XPath extended with
fixpoint operators. Using two-way alternating automata, we show that this language does combine
desired expressiveness and computational properties, placing it as an attractive candidate for the
definite node-selection query language for trees.

Keywords: tree-structured data, XML databases, fixpoint logics, query evaluation, query containment,
weak alternating tree automata

1 Introduction

XMIB is the standard language for Web documents supporting semistructured data. From the conceptual
point of view, an XML document can be seen as a finite node-labeled tree, and several formalisms have
been proposed as query languages over XML documents considered as finite trees.

Broadly speaking, there are two main classes of such languages, those focusing on selecting a set
of nodes based on structural properties of the tree [55], [72], and those where the mechanisms for the
selection of the result also take into account node attributes and their associated values taken from a
specified domain [8] [7, 1T}, 25] [57, [41]. We focus here on the former class of queries, which we call node
selection queries. Many of such formalisms come from the tradition of modal logics, similarly to the most
expressive languages of the Description Logics family [4], based on the correspondence between the tree
edges and the accessibility relation used in the interpretation strcutures of modal logics. XPath [20] is a
notable example of these formalisms, and, in this sense, it can also be seen as an expressive Description
Logic over finite trees. Relevant extensions of XPath are inspired by the family of Propositional Dynamic
Logic (PDL) [59]. For example, RXPath is the extension of XPath with binary relations specified through
regular expression, used to formulate expressive navigational patterns over XML documents [I7]. Here,
the correspondence is between programs of PDL and paths in the tree.

A main line of research on node selection queries has been on identifying nice computational properties
of XPath, and studying extensions of such language that still enjoy these properties. An important feature
of XPath is the tractability of query evaluation in data complexity, i.e., with respect to the size of the
input tree. In fact, queries in the navigational core CoreXPath can be evaluated in time that is linear in

Thttp://www.w3.org/TR/REC-xml/

http://www.w3.org/TR/REC-xml/

both the size of the query and the size of the input tree [35, ©]. This property is enjoyed also by various
extensions of XPath, including RXPath [50]. Another nice computational property of XPath is that
checking query containment, which is the basic task for static analysis of queries, is in EXPTIME [56, [63].
This property holds also for RXPath [69] 7], and other extensions of XPath [68].

Another line of research focused on expressive power. Marx has shown that XPath is expressively
equivalent to FO?, the 2-variable fragment of first-order logic, while CXPath, which is the extension of
XPath with conditional axis relations, is expressively equivalent to full FO [50} [51]. Regular extensions of
XPath are expressively equivalent to extensions of FO with transitive closure [67, [69]. Another classical
logic is Monadic Second-Order Logic (MSO). This logic is more expressive than FO and its extensions
by transitive closure [48 67, [69]. In fact, it has been argued that MSO has the right expressiveness
required for Web information extraction and hence can serve as a yardstick for evaluating and comparing
wrappers [34]. Various logics are known to have the same expressive power as MSO, cf. [48], but so far
no natural extension of XPath that is expressively equivalent to MSO and enjoys the nice computational
properties of XPath has been identified.

A further line of research focuses on the relationship between query languages for finite trees and
tree automata [49, 54 [64]. Various automata models have been proposed. Among the cleanest models is
that of node-selecting tree automata, which are automata on finite trees, augmented with node selecting
states [55] [30]. What has been missing in this line of inquiry is an automaton model that can be used
both for testing query containment and for query evaluation [64].

Some progress on the automata-theoretic front was recently reported in [I7], where a comprehensive
automata-theoretic framework for both evaluating and reasoning about RXPath was developed. The
framework is based on two-way weak alternating tree automata, denoted 2WATAs [44], but specialized
for finite trees, and enables one to derive both a linear-time algorithm for query evaluation and an
exponential-time algorithm for testing query containment.

The goal of this paper is to introduce a declarative query language, namely uXPathEl, based on XPath
enriched with alternation-free fixpoint operators, which preserves these nice computational properties.
The significance of this extension is due to a further key result of this paper, which shows that on
finite trees alternation-free fixpoint operators are sufficient to capture all of MSO, which is considered
to be the benchmark query language on tree-structured data. Alternation freedom implies that the
least and greatest fixpoint operators do not interact, and is known to yield computationally amenable
logics [14, [44]. It is also known that unfettered interaction between least and greatest fixpoint operators
results in formulas that are very difficult for people to comprehend, cf. [42].

Fixpoint operators have been studied in the p-calculus, interpreted over arbitrary structures [42],
which by the tree-model property of this logic, can be restricted to be interpreted over infinite trees.
It is known that, to obtain the full expressive power of MSO on infinite trees, arbitrary alternations of
fixpoints are required in the p-calculus (see, e.g., [36]). Forms of p-calculus have also been considered in
Description Logics [24] 61], 43], [I0], again interpreted over infinite trees. In this context, the present work
can provide the foundations for a description logic tailored towards acyclic finite (a.k.a. well-founded)
frame structures. In this sense, the present work overcomes [I5], where an explicit well-foundedness
construct was used to capture XML in description logics.

In a finite-tree setting, extending XPath with forms of fixpoint operators, has been studied earlier [2]
67, 48] [32] [31]. While for arbitrary fixpoints the resulting query language is equivalent to MSO and has
an exponential-time containment test, it is not known to have a linear-time evaluation algorithm. In
contrast, as pXPath is alternation free it is closely related to a stratified version of Monadic Datalog
proposed as a query language for finite trees in [34, B0], which enjoys linear-time evaluation. Note,
however, that the complexity of containment of stratified Monadic Datalog is unknown.

We prove here that there is a very direct correspondence between puXPath and 2WATAs. Specifically,
there are effective translations from pXPath queries to 2WATAs and from 2WATAs to uXPath. We show
that this yields the nice computational properties for yXPath. We then prove the equivalence of 2WATAs
to node-selecting tree automata (NSTA), shown to be expressively equivalent to MSO [30]. On the one
hand, we have an exponential translation from 2WATAs to NSTAs. On the other hand, we have a linear
translation from NSTAs to 2WATAs. This yields the expressive equivalence of pXPath to MSO.

It is worth noting that the automata-theoretic approach of 2WATAs is based on techniques developed
in the context of program logics [44] [71]. Here, however, we leverage the fact that we are dealing with
finite trees, rather than infinite trees that are usually used in the program-logics context. Indeed, the
automata-theoretic techniques used in reasoning about infinite trees are notoriously difficult [62], [66] and

2An earlier version of this paper has been published in the Proceedings of the 24th AAAI Conference on Artificial
Intelligence (AAAI 2010) [18].

have resisted efficient implementation. The restriction to finite trees here enables one to obtain a much
more feasible algorithmic approach. In particular, one can make use of symbolic techniques, at the base
of modern model checking tools [I4], for effectively querying and verifying XML documents. It is worth
noting that while 2WATAs run over finite trees they are allowed to have infinite runs. This separates
2WATASs from the alternating finite-tree automata used elsewhere [23] [65].

The paper is organized as follows. In Section[2] we present syntax and semantics of pXPath, as well as
examples of queries expressed in this language. In Sections [3| and [4] we show how to make use of two-way
automata over finite trees as a formal tool for addressing query evalation and query containemnt in the
context of pXPath. More specifically, in Section [3] we introduce the class of two-way weak alternating tree
automata, and devise mutual translation between them and pXPath queries, and in Section [we provide
algorithms for deciding the acceptance and non-emptiness problems for 2WATAs. In Section[5] we exploit
the correspondence between two-way weak alternating tree automata and pXPath to illustrate the main
characteristics of uXPath as a query language over finite trees. Section [6] deals with the expressive power
of uXPath, by establishing the relationship between two-way weak alternating tree automata and MSO.
Finally, Section [7] concludes the paper.

2 The Query Language yXPath

In this paper we are concerned with query languages over tree-structured data, which is customary in
the XML setting [50, 5I]. More precisely, we consider databases as finite sibling-trees, which are tree
structures whose nodes are linked to each other by two relations: the child relation, connecting each
node with its children in the tree; and the immediate-right-sibling relation, connecting each node with its
sibling immediately to the right in the tree. Such a relation models the order between the children of the
node in an XML documents. Each node of the sibling tree is labeled by (possibly many) elements of a
set 3 of atomic propositions that represent either XML tags or XML attribute-value pairs. Observe that
in general sibling trees are more general than XML documents since they would allow the same node to
be labeled by several tags.

Formally, a (finite) tree is a complete prefix-closed non-empty (finite) set of words over N, i.e., the set
of positive natural numbers. In other words, a (finite) tree is a (finite) set of words A C N* such that if
x-i € A, where € N* and ¢ € N, then also x € A, and if ¢ > 1, then also x-(i—1) € A. The elements of
A are called nodes, the empty word ¢ is the root of A, and for every x € A, the nodes z-i, with i € N,
are the successors of x. By convention we take -0 = x, and x-i-—1 = z. The branching degree d(x) of a
node z denotes the number of successors of x. If the branching degree of all nodes of a tree is bounded by
k, we say that the tree is ranked and has branching degree k. In particular, if the branching degree is 2,
we say that the tree is binary. Instead, if the number of successors of the nodes is a priori unbounded,
we say that the tree is unranked. In contrast, ranked trees have a bound on the number of successors of
nodes; in particular, for binary trees the bound is 2. A (finite) labeled tree over an alphabet £ of labels
is a pair T = (AT, ¢T), where AT is a (finite) tree and the labeling /7 : AT — £ is a mapping assigning
to each node z € AT a label T (z) in L.

A sibling tree T is a finite labeled unranked tree each of whose nodes is labeled with a set of atomic
propositions in an alphabet ¥, i.e., £ = 2¥. Given A € ¥, we denote by AT the set of nodes = of A” such
that A € ¢T(x). It is customary to denote a sibling tree T by (AT,-T). On sibling trees, two auxiliary
binary relations between nodes, and their inverses are defined:

child” = {(z,21) | 2,271 € AT}
(child)T = {(24,2) | 2,21 € AT}
right” = {(zi,2:(i+1)) | 23, 2-(i+1) € AT}
(right)T = {(2:(i+1),249) | 24,2 (i+1) € AT}

The relations child and right are called azes.

One of the core languages used to query tree-structured data is XPath, whose definition we briefly
recall here. An XPath node expression @ is defined by the following syntax, which is inspired by Propo-
sitional Dynamic Logic (PDL) [29, [3] [17]:

o — Al=ploiAga |1V | (Ple | [Ple
P — child | right | child™ | right™

where A denotes an atomic proposition belonging to an alphabet X, child and right denote the main
atomic relations between nodes in a tree, usually called axis relations. The expressions child™ and right™

denote their inverses, which in fact correspond to the other two standard XPath axes parent and left,
respectively. Intuitively, a node expression is a formula specifying a property of nodes, where an atomic
proposition A asserts that the node is labeled with A, negation, conjunction, and disjunction have the
usual meaning, (P)y, where P is one of the axes, denotes that the node is connected via P with a
node satisfying ¢, and [P]p asserts that all nodes connected via P satisfy ¢. We also adopt the usual
abbreviations for booleans, i.e., true, false, and p; — ©s.

The query language studied in this paper, called pXPath is an extension of XPath with a mechanism
for defining sets of nodes by means of explicit fixpoint operators over systems of equations. puXPath is
essentially the Alternation-Free pu-Calculus, where the syntax allows for the fixpoints to be defined over
vectors of variables [2§].

To define pXPath queries, we consider a set X of variables, disjoint from the alphabet X. An equation
has the form

X =0

where X € X, and ¢ is an XPath node expression having as atomic propositions symbols from >UX. We
call the left-hand side of the equation its head, and the right-hand side its body. A set of equations can be
considered as mutual fixpoint equations, which can have multiple solutions in general. We are actually
interested in two particular solutions: the smallest one, i.e., the least fixpoint (lfp), and the greatest
one, i.e., the greatest fixpoint (gfp), both of which are guaranteed to exist under a suitable syntactic
monotonicity condition to be defined below. Given a set of equations

{Xl iw17°"7Xni90n}7

where we have one equation with X; in the head, for 1 < ¢ < n, a fixpoint block has the form
fp{Xl = Py 7Xn = Qan}a where

e fp is either Ifp or gfp, denoting respectively the least fixpoint and the greatest fixpoint of the set of
equations, and

e each variable X;, for 1 <14 < n, appears positively in ¢;, for 1 <i < n (see [42]).

We say that the variables X,..., X,, are defined in the fixpoint block fp{X;1 = p1,..., X, = @n}.

A pXPath query has the form X : F, where X € X and F is a set of fixpoint blocks such that:

e X is a variable defined in F;

e the sets of variables defined in different fixpoint blocks in F are mutually disjoint;

e for each fixpoint block F' € F, each variable X defined in F' appears only positively in the bodies
of equations in F' (syntactic monotonicity);
there exists a partial order < on the fixpoint blocks in F such that, for each F; € F, the bodies of
equations in F; contain only variables defined in fixpoint blocks F; € F with F; < F;.

The meaning of a query ¢ of the form X : F is based on the fact that, when evaluated over a tree T,
F assigns to each variable defined in it a set of nodes of 7', and that ¢ returns as result the set assigned
to X. We intuitively explain the mechanism behind the assignment of F to its variables. We choose
partial order < on the fixpoint blocks in F respecting the conditions above, and we operate one block of
equations at a time according to <. For each fixpoint block, we compute the solution of the corresponding
equations, obviously taking into account the type of fixpoint, and using the assignments for the variables
already computed for previous blocks. We come back to the formal semantics below, and first give some
examples of uXPath queries.

The following query computes the nodes reaching a red node on all child-paths (possibly of length 0),
exploiting the encoding of transitive closure by means of a least fixpoint:

X : {lfp{X = red V [child]X}}.

As another example, to obtain the nodes all of whose descendants (including the node itself) are not
simultaneously red and blue, we can write the query:

X : {gfp{X = (red — —blue) A [child] X} }.

Notice that such nodes are those that do not have descendant that are simultaneously red and blue.
The latter set of nodes is characterized by a least fixpoint, and therefore query ¢ can also be considered
as the negation of such least fixpoint.

AT = AT

p)
XT p(X), if X is defined in F;
e, if X is defined in some F; < F; and X/€ € (F;)]

K ol = o

P1 A\ P2 P2

P1 \/902)2 (¢)% U (2)%

(P)p)79 ={z]37". (z,z)EPT/\z E(pp}

[Ple), ={z |V .(=, ’)EPT—>Z EcpT}

|fp{X1 O1y-ees Xn }) —{Xl/gl,...,Xn/gﬁ},
gfp{X1 =¢1,..., Xn })z ={X1/&1,..., Xn/E},

Figure 1: Semantics of the pXPath formulas in fixpoint block F;

We now illustrate an example where both a least and a greatest fixpoint block are used in the same
query. Indeed, to compute red nodes all of whose red descendants have only blue children and all of
whose blue descendants have at least a red child, we can use the following query:

X : {gfp{Xo = (red — [child]blue) A
(blue — (child)red) A [child] X} },
|fp{X1 =red A Xo}

Notice that in the above query, the only partial order coherent with the conditions of yXPath given above
is the one where the greatest fixpoint block precedes the least fixpoint block.

Notice also that in the above query we could have used the greatest fixpoint in the second block instead
of the least fixpoint. Indeed, it is easy to see that, whenever a set of equations in non-recursive, least and
greatest fixpoints have the same meaning, since they both characterize the obvious single solution of the
systems of equations.

Now, suppose that we want to denote the red nodes all of whose red descendants reach blue nodes
on all child-paths, and all of whose blue descendants reach red nodes on at least one child-path. The
resulting query is the following, where we have written the fixpoint blocks according to a partial order
coherent with the conditions of puXPath:

X3 : {Ifp{Xo = blue V [child] X},
|fp{X1 =redV <Chl|d>X1},
gfp{XQ = (red — Xo) AN (blue — Xl) A [Chl'd]XQ},
|fp{X3 =red A XQ}}

Finally, to denote the nodes having a red sibling that follows it in the sequence of right siblings, and
such that all siblings along such sequence have a blue descendant, we can use the following query:

X : {H:p{XO =X A (red V (right)Xo),
X1 = blue V <Chl|d>X1}}

The formal semantics of uXPath is defined by considering sibling trees as interpretation structures.
To specify the semantics of equations, we introduce second order variable assignments. A (second order)
variable assignment p on a tree T = (AT,.T) is a mapping that assigns to variables of X’ sets of nodes
in AT. To specify the semantics of a uXPath query X : F relative to a sibling tree 7' and a variable
assignment p, we consider a partial order < of the fixpoint blocks in F, and proceed by induction on
<. Consider now the induction step dealing with the fixpoint block F; € F. The role of this step is to
provide the semantics of F; in terms of a variable assignment {X; /&1, ..., X,,/E,}, where X1,..., X, are
all the variables defined in F; and &4,...,&, are the sets of nodes of T associated to such variables by
the assignment. The semantics of Fj, denoted FT ,» is specified as shown in Figure (1} where:

e The semantics of A, =, 1 A @2, 1 V @2, (P)p, and [P]e is the usual one.

e The semantics of a variable X depends on whether X is defined in F; or not. In the former case, it
is simply given by the variable assignment p; otherwise, it is determined by the variable assignment
of block Fj in which X is defined. Observe that F; precedes F; in the partial order <.

e The semantics of a least fixpoint block Ifp{X; = ¢1,...,X,, = ¢,} is the variable assignment
{X1/EY, ..., X, /ELY, where (EL,... EF) is the intersection of all solutions of the fixpoint block,
where each solution is an n-tuple of sets of nodes of T', and the intersection is done component-wise.
Formally:

(€ 88) = (W(Eree) &= (0)1x, ey s8] 2 En = (O0)p(xs 8 X 201

where p[X1/&1,...,Xn/En] denotes the variable assignment identical to p, except that it assigns to
X; the value &;, for 1 < i < n. Note that, due to syntactic monotonicity, (£f,...,EF) is itself a
solution of the fixpoint block, and indeed the smallest one.

e The semantics of a greatest fixpoint block gfp{X; = ¢1,...,X,, = ¢, } is the variable assignment
{X1/&Y,..., X, /E}, where (EF,...,EY) is the union of all solutions of the fixpoint block, i.e.:

r¥'n

(&7, 76‘7’;) = U{(gh) l &= (@1)Z[X1/51,...,Xn/5n]7 oy &n = ((Pn)f[xl/fl,..‘,Xn/Sn]}

Again note that, due to syntactic monotonicity, (€7, ..., &) is itself a solution of the fixpoint block,
and in this case the largest one.

Finally, the semantics of a pXPath query X : F over a sibling tree T is the set £ C AT of nodes of T
that the fixpoint block F' € F defining X assigns to X in 7. We denote such set £ as (X : F)T. Notice
that, since all second-order variables appearing in F are assigned values in the fixpoint block in which
they are defined, we can omit from (X : F)f the second order variables assignment p, and denote it as
(X : F)T.

We observe that, through the use of fixpoints, we can actually capture RXPath queries [50} [51], whose
node expressions are formed by means of regular expressions over the XPath axes, namely:

P—)Chlldlrlght‘tp?|P1,P2‘P1UP2|P*|P_

Indeed, node expression of the form (P)¢ and [P]¢ with complex P can be considered as abbreviations
[42]. First of all, we notice that in expressions of the form P~, we can apply recursively the following
equivalences to push the inverse operator ~ inside RXPath expressions, until it is applied to XPath axes
only:

()™ = ¢?
(P)~ = PyiPp
(P1UP2)7 = Pl_UP2_
(P = (P

Also, considering that ¢1 V@ = =(—¢1 A—ps), and [Pl = —(P)—p, we can assume w.l.0.g., that RXPath
queries are formed as follows:

g — Al=pleiAea| (Ply
P — child | right | child™ | right™ | 7 | P1; Py | PLU Py | P*

Then, we can transform an arbitrary RXPath query ¢ into the pXPath query X, : F, where F is a set
of fixpoint blocks constructed by inductively decomposing ¢. Formally, we let F = 7(y), where 7(¢) is
defined by induction on ¢ as follows:

T(4) = {ifp{Xa = A}}

(=) = {lfp{X-p =X} UT(¢)
7—(901 A 902) = {lfp{tile = X<P1 A tiz}} U 7—(501) U 7—(302)
T((P)¢') = {ifpn((P)¢")}Un(P)UT(¥)

where the function 7,(-), which is defined over formulas of the form (P)¢’, returns a set of fixpoint
equations, and the function 7(-), which is defined over path expressions P, returns the set of fixpoint
blocks corresponding to the node formulas appearing in the tests in P. Specifically, 7,((P)¢’) is defined
by induction on the structure of the path expression P as follows:

)9) = AX(ais)pr = (azis) X1}, for azis € {child, right, child™, right™ }
) = (X = Xo A X}
(P Pa)¢’) = {X(pipoyer = X(py)(Poyer U Tp((PL(P2)¢") U Tp((P2)¢)
((PLUP) ") = {X(pupye = X(Piyo V X(poyer } UTp((P1)¢") UTp((P2)¢)
') = {X(P*W/ =Xy V <P>X(P*)W} U Tp(<P>30/)

Note that 7, decomposes inductively only the path expression inside the first (-) formula. Hence, the
uXPath formula 7(¢) is linear in the size of the RXPath formula .
For example (right*) A can be expressed as

X {lfp{X = AV (right) X } }.
Instead, [right*]A, which is equivalent to —(right*)—A, can be expressed as

X {Ifp{X = -X1}, (1)
Ifp{X1 = —AV (right) X1 }},

which in turn is equivalent to
X : {efp{X = AN [child]X}}.

Observe that the form of equation resembles the encoding of the corresponding RXPath formula into
stratified Monadic Datalog [34].

Considering the above encoding, we can actually extend pXPath by allowing as syntactic sugar the
use of regular expressions over the axis relations, i.e., instead of axes only, we can allow path expressions
of the form

P—)Chlldlrlght‘<p7|P1,P2‘P1UP2|P*|P_

Finally, we observe that sibling trees are unranked, but in fact this is not really a crucial feature.
Indeed, we can move to binary sibling trees by considering an additional axis fchild, connecting each node
to its first child only, interpreted as

fchild? = {(z,21) | 2,21 € AT},

Using fchild, we can thus re-express the child axis as fchild; right*. In the following, we will focus on
wXPath queries that use only the fchild and right axis relations, and are evaluated over binary sibling
trees.

3 2WATAs and their Relationship to yXPath

We consider now two-way automata over finite trees and use them as a formal tool to address the problems
about pXPath in which we are interested in this paper. Specifically, after having introduced the class of
two-way weak alternating tree automata (2WATAs), we establish a tight relationship between them and
uXPath by devising mutual translations between the two formalisms.

3.1 Two-way Weak Alternating Tree Automata

We consider a variant of two-way alternating automata [65] (see also [54] 21]) that run, possibly infinitely,
on finite labeled trees (Note that typically, infinite runs of automata are considered in the context of infi-
nite input structures [36], whereas here we consider possibly infinite runs over finite structures.) Specifi-
cally, alternating tree automata generalize nondeterministic tree automata, and two-way tree automata
generalize ordinary tree automata by being allowed to traverse the tree both upwards and downwards.
Formally, let B¥(I) be the set of positive Boolean formulae over a set I, built inductively by applying A
and V starting from true, false, and elements of I. For a set J C I and a formula ¢ € BT (I), we say
that J satisfies ¢ if assigning true to the elements in J and false to those in I\ J, makes ¢ true. We
make use of [—1..k] to denote {—1,0,1,...,k}, where k is a positive integer. A two-way weak alternating
tree automaton (2WATA) running over labeled trees all of whose nodes have at most k successors, is a
tuple A = (L, S, sg,d, @), where L is the alphabet of tree labels, S is a finite set of states, sy € S is the
initial state, 6 : S x £ — BT ([-1..k] x S) is the transition function, and « is the acceptance condition
discussed below.

The transition function maps a state s € S and an input label a € £ to a positive Boolean formula
over [—1..k] x S. Intuitively, if §(s,a) = ¢, then each pair (¢, s’) appearing in ¢ corresponds to a new
copy of the automaton going to the direction suggested by ¢’ and starting in state s’. For example, if
k=2 and §(s1,a) = ((1,82) A (1,83)) V ((—1,s1) A (0,s3)), when the automaton is in the state s; and
is reading the node z labeled by a, it proceeds either by sending off two copies, in the states s, and
sz respectively, to the first successor of x (i.e., z-1), or by sending off one copy in the state s; to the
predecessor of z (i.e., x-—1) and one copy in the state s3 to z itself (i.e., z-0).

A run of a 2WATA is obtained by resolving all existential choices. The universal choices are left,
which gives us a tree. Because we are considering two-way automata, runs can start at arbitrary tree
nodes, and need not start at the root. Formally, a run of a 2WATA A over a labeled tree T = (AT (T)
from a node zg € AT is, in general, an infinite AT x S-labeled tree R = (A", ¢®) satisfying:

1. ¢ € AP and (E(g) = (w0, s0).

2. Let (®(r) = (x,5) and (s,¢T(x)) = ¢. Then there is a (possibly empty) set S =
{(c1,51),---,(cnysn)} C [—1..k] x S such that S satisfies ¢, and for each i € {1,...,n}, we have
that i € AR z-c; € AT, and (%(r-i) = (2-¢;, 8;). In particular, this means that if ¢ is true then
r need not have successors, and ¢ cannot be false.

Intuitively, a run R keeps track of all transitions that the 2WATA A performs on a labeled input tree 7"
a node r of R labeled by (z, s) describes a copy of A that is in the state s and is reading the node = of T'.
The successors of r in the run represent the transitions made by the multiple copies of A that are being
sent off either upwards to the predecessor of x, downwards to one of the successors of x, or to x itself.

2WATASs are called “weak” due to the specific form of the acceptance condition, given in the form of
a set a C S [44]. Specifically, there exists a partition of S into disjoint sets, S;, such that for each set S;,
either S; C «, in which case S; is an accepting set, or S; N« = (b, in which case S; is a rejecting set. In
addition, there exists a partial order < on the collection of the S;’s such that, for each s € S; and s’ € S;
for which s’ occurs in (s, a), for some a € £, we have S; < S;. Thus, transitions from a state in .S; lead
to states in either the same S; or a lower one. It follows that every infinite path of a run of a 2WATA
ultimately gets “trapped” within some S;. The path is accepting if and only if S; is an accepting set. A
run (7., 7) is accepting if all its infinite paths are accepting. A node z is selected by a 2WATA A from a
labeled tree T if there exists an accepting run of A over T from .

3.2 Binary Trees and Sibling Trees

As mentioned before, we assume that uXPath queries are expressed over binary sibling trees, where the
left successor of a node corresponds to the fchild axis, and the right successor corresponds to the right
axis. To ensure that generic binary trees (i.e., trees of branching degree 2) represent binary sibling trees,
we make use of special propositions ifc, irs, hfc, hrs. The proposition ifc (resp., irs) is used to keep
track of whether a node is the first child (resp., is the right sibling) of its predecessor, and hfc (resp.,
hrs) is used to keep track of whether a node has a first child (vesp., has a right sibling). In particular,
we consider binary trees whose nodes are labeled with subsets of ¥ U {ifc, irs, hfc, hrs}. We call such a
tree T = (AT, ¢T) a well-formed binary tree if it satisfies the following conditions:

e For each node z of T, if /T (x) contains hfc, then z-1 is meant to represent the fchild successor of
x and hence ¢ (x-1) contains ifc but not irs. Similarly, if £7(x) contains hrs, then x-2 is meant to
represent the right successor of 2 and hence ¢7 (x-2) contains irs but not ife.

e The label ¢T(g) of the root of T' contains neither ifc, nor drs, nor hrs. In this way, we restrict the
root of T' so as to represent the root of a sibling tree.

Notice that every (binary) sibling tree T trivially induces a well-formed binary tree m,(T) obtained by
simply adding the labels ifc, irs, hfc, hrs in the appropriate nodes.

On the other hand, a well-formed binary tree 7' = (AT, ¢7) induces a sibling tree 74(7T). To define
7s(T) = (ATs,.75), we define, by induction on A” a mapping 7, from AT to words over N as follows:

o mi(e) =

o if hfc € (T (¢), then 74(1) = 1;

o if hfc € /T (x) and 7,(x) = z-n, with z € N* and n € N, then 7,(2-1) = z-n-1;

o if hrs € /T (x) and 74(z) = 2-n, with 2 € N* and n € N, then 7,(2-2) = z-(n+1).

Then, we take ATs to be the range of 7,, and we define the interpretation function -7* as follows: for

each A € %, we define AT = {m,(x) € AT | A € {T(z)}. Note that the mapping 7, ignores irrelevant
parts of the binary tree, e.g., if the label of a node x does not contain hfc, even if x has a 1-successor,
such a node is not included in the sibling tree.

if ¢ € CL(p) then nnf(—) € CL(p), if 9 is not of the form —v)’
it p € CL(p) then ¢ € CL(yp)

if 1 A ha € CL(¢p) then 1, 2 € CL(p)

if 1 V 1hy € CL(¢p) then 1, P2 € CL(p)

if (P)y € CL(p) then ¢ € CL(yp), for P € {fchild, right, fchild~, right™ }
if [P]yp € CL(yp) then ¢ € CL(yp), for P € {fchild, right, fchild™, right™ }

Figure 2: Closure of uXPath expressions

3.3 From pXPath to 2WATAs

We show now how to construct (i) from each pXPath query ¢ (over binary sibling trees) a 2WATA A,
whose number of states is linear in |p| and that selects from a tree T' precisely the nodes in ¢, and
(ii) from each 2WATA A a pXPath query @a of size linear in the number of states of A that, when
evaluated over a tree T, returns precisely the nodes selected by A from T.

In order to translate uXPath to 2WATAs, we need to make use of a notion of syntactic closure, similar
to that of Fisher-Ladner closure of a formula of PDL [29]. The syntactic closure CL(X : F) of a uXPath
query X : F is defined as {ifc, irs, hfc, hrs} U CL(F), where CL(F) is defined as follows: for each equation
X = ¢ in some fixpoint block in F, {X, nnf(p)} C CL(F), where nnf(¢) denotes the negation normal
form of 1, and then we close the set under sub-expressions (in negation normal form), by inductively
applying the rules in Figure [2| It is easy to see that, for a uXPath query g, the cardinality of CL(q) is
linear in the length of q.

Let ¢ = Xo : F be a uXPath query. We show how to construct a 2WATA A, that, when run over a
well-formed binary tree T, selects exactly the nodes in ¢7. The 2WATA A, = (£, S, 84,94,) is defined
as follows.

e The alphabet is £ = 2=V{deirs.hfe.hrst - Thig corresponds to labeling each node of the tree with
a truth assignment to the atomic propositions, including the special ones that encode information
about the predecessor node and about whether the children are significant.

o The set of states is S; = CL(q). Intuitively, when the automaton is in a state ¢ € CL(q) and visits
a node x of the tree, it checks that the node expression ¢ holds in z.

e The initial state is s, = Xj.
e The transition function J, is defined as follows:

1. For each A\ € L, and each o € ¥ U {ife, irs, hfe, hrs},
true, ifoe
false, if o ¢ A

true, ifo ¢ A
false, ifo e\

dq(o,N) =

dg(mo,A) =

Such transitions check the truth value of atomic propositions, and of their negations in the
current node of the tree, by simply checking whether the node label contains the proposition
or not.

2. For each A € £ and each formula ¥ € CL(g), the automaton inductively decomposes ¢ and
moves to appropriate states to check the sub-expressions as follows:

dq(P1 Npa, A) = (0,401) A (0,%)2)
Oq(h1 Vo, A) = (0,91) V (0,92)
dq((fehild)yp,) = (0, hfe) A (1,9)
I, ((rightyyy, A) = (0, hrs) A (2,7)
8q((fehild ™)y, N) = (0,4fc) A (—1,9)
S,(lright Y0,) = (0, irs) A (—1,)
dq([fehild]yp, A) = (0, -hfe) Vv (1,9)
dq([right]yy,) = (0,=hrs) V (2,9)
dg([fehild™], N) = (0,—ife) vV (—1,v)
dq([right™]¥,A) = (0,—irs) V (—1,9)

3. Let X = ¢ be an equation in one of the blocks of F. Then, for each A € L, we have
9q(X,A) = (0,¢).

e To define the weakness partition of A,, we partition the expressions in CL(g) according to the
partial order on the fixpoint blocks in F. Namely, we have one element of the partition for each
fixpoint block F' € F. Such an element is formed by all expressions (including variables) in CL(q)
in which at least one variable defined in F' occurs and no variable defined in a fixpoint block F”
with F < F’ occurs. In addition, there is one element of the partition consisting of all expressions
in which no variable occurs. Then the acceptance condition oy is the union of all elements of the
partition corresponding to a greatest fixpoint block. Observe that the partial order on the fixpoint
blocks in F guarantees that the transitions of A, satisfy the weakness condition. In particular, each
element of the weakness partition is either contained in o, or disjoint from c,. This guarantees
that an accepting run cannot get trapped in a state corresponding to a least fixpoint block, while
it is allowed to stay forever in a state corresponding to a greatest fixpoint block.

Theorem 1 Let q be a uXPath query. Then:
1. The number of states of the corresponding 2WATA A, is linear in the size of q.

2. For every binary sibling tree T, a node x of T is in q* iff A, selects x from the well-formed binary
tree mp(T') induced by T.

Proof. Ttem 1 follows immediately from the fact that the size of CL(q) is linear in the size of q. We
turn to item 2. In the proof, we blur the distinction between T and 7, (7T'), denoting it simply as T', since
the two trees are identical, except for the additional labels in m,(T), which are considered by A, but
ignored by q.

Let ¢ = X : F. We show by simultaneous induction on the structure of F and on the nesting of
fixpoint blocks, that for every expression ¢ € CL(F) and for every node « of T, we have that A,, when
started in state 1, selects = from 7T if and only if x € 7.

e Indeed, when % is an atomic proposition, then the claim follows immediately by making use of the
transitions in item 1 of the definition of §.

e When ¥ = 11 A or ¢ = 11 V 2, the claim follows by inductive hypothesis, making use of the
first two transitions in item 2.

e When ¢ = (fchild)t;, the 2WATA checks that x has a first child y = x - 1, and moves to y checking
that y is selected from 7 starting in state 1»;. Then, by induction hypothesis, we have that y € 1{,
and the claim follows.

The cases of ¢ = (right)t, ¥ = (fchild™)41, and 1) = (right™)1); are analogous.

e When ¢ = [fchild]y, the 2WATA checks that either x does not have a first child, or that the first
child y = = - 1 is selected from T starting in state ¥;. Then, by induction hypothesis, we have that
y € ¥I' and the claim follows.

The cases of ¢ = [right]1, ¢ = [fchild™ |y, and ¢ = [right™ |41 are analogous.

e When ¢y = X;, let X7 = 11 be the equation defining X;. Then according to the transitions in
item 3, the 2WATA checks that x is selected from T starting in state 1;. The definition of the
2WATA acceptance condition «, guarantees that, if X; is defined in a least fixpoint block then
an accepting run cannot get trapped in the element S; of the weakness partition containing Xj;
instead, if X is defined in a greatest fixpoint block then an accepting run is allowed to stay forever
in Si~
We consider only the least fixpoint case; the greatest fixpoint case is similar. If there is an accepting
run, it will go through states in S; (including X;) only a finite number of times, and on each of
its paths it will get to a node y in a state £ € S;, where S strictly precedes 5, i.e., with S; < §;
and S; # S;. By induction on the nesting of fixpoint blocks (corresponding to the elements of the
state partition), we have that A,, when started in state &, selects y from T if and only if y € ¢7.
Then, since the automaton state X; is not contained in a4, the acceptance condition ensures that
the transition in item 3 is applied only a finite number of times, and considering the least fixpoint
semantics, by structural induction we get that z € X{ .

10

For the other direction, we show that, if x € X{, then A, has an accepting run R = (AR ¢7)
witnessing that z is selected from T starting in state X;. We can define the run R by exploiting the
equation X7 = 11 to make the transition according to item 3, and following structural induction
to decompose formulas, ensuring that, for all nodes y € Af with ¢%(y) = (2/,%') we have that
2/ € 'T. In particular, we resolve the nondeterminism coming from disjunctions in the transition
function of A, (in turn coming from disjunctions in ¢) by choosing the disjunct that is satisfied in
the node of 7. Consider a node y € A, with ¢%(y) = (2/, X;). We say that y is an escape node if
2" € X{ because 2’ € ¢T) where € is a subformula of ¥ in which X; does not appear. Since X is
defined by a least fixpoint, all the nodes y € AF with ¢F(y) = (2, X;) eventually reach an escape
node. Hence, the run (A%, (%) does not loop on X1, and hence does not violate the acceptance
condition.

The claim then follows since the initial state of A, is q. O

We observe that, although the number of states of A, is linear in the size of ¢, the alphabet of A,
is the powerset of that of ¢, and hence the transition function and the entire A, is exponential in the
size of q. However, as we will show later, this does not affect the complexity of query evaluation, query
containment, and more in general reasoning over queries.

3.4 From 2WATAs to uXPath

We show now how to convert 2WATAs into puXPath queries while preserving the set of nodes selected
from (well formed) binary trees.
Consider a 2WATA A = (L, S, 50,6,), where £ = 2=V{ifeirshfehrst - and let S = UF_|S; be the
weakness partition of A. We define a translation m as follows.
e For a positive Boolean formula f € BT ([—1..2] x S), we define a pXPath node expression m(f)
inductively as follows:

w(false) = false m(true) = true

7m((1,s)) = (fchild)s 7((2,8)) = (right)s

©((0,s)) = s m((=1,s)) = (ife A (fchild™)s) V (irs A (right™)s)
m(f1 A f2) = 7(f1) A(f2) m(f1V f2) = 7(f1) v n(f2)

e For each state s € S, we define a pXPath equation m(s) as follows:

s = Vaee(AR((s,0)),

where \ = (Agera) A (/\ae(g\)\) —a).
e For each element S; of the weakness partition, we define a puXPath fixpoint block as follows:

(S;) = gfp{n(s) | s € Si}, ifS; Ca
VT \ip{n(s) | se S}, i Sina=0

e Finally, we define the pXPath query m(A) as:
W(A) = So: {W(Sl)a s 77T(Sk)}'
Theorem 2 Let A be a 2WATA. Then:

1. The length of the uXPath query w(A) corresponding to A is linear in the size of A.

2. For every binary sibling tree T, we have that A selects a node x from m,(T) iff z is in (7(A))T.

Proo