
Node Selection Query Languages for Trees

Diego Calvanese
Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

Giuseppe De Giacomo, Maurizio Lenzerini
Dip. di Informatica, Automatica e Gestionale

Sapienza Università di Roma, Italy

Moshe Y. Vardi
Dept. of Computer Science

Rice University, Houston, U.S.A.

Abstract

The study of node selection query languages for (finite) trees has been a major topic in the recent
research on query languages for Web documents. On one hand, there has been an extensive study of
XPath and its various extensions. On the other hand, query languages based on classical logics, such
as first-order logic (FO) or Monadic Second-Order Logic (MSO), have been considered. Results in
this area typically relate an XPath-based language to a classical logic. What has yet to emerge is an
XPath-related language that is as expressive as MSO, and at the same time enjoys the computational
properties of XPath, which are linear time query evaluation and exponential time query-containment
test. In this paper we propose µXPath, which is the alternation-free fragment of XPath extended with
fixpoint operators. Using two-way alternating automata, we show that this language does combine
desired expressiveness and computational properties, placing it as an attractive candidate for the
definite node-selection query language for trees.

Keywords: tree-structured data, XML databases, fixpoint logics, query evaluation, query containment,
weak alternating tree automata

1 Introduction

XML1 is the standard language for Web documents supporting semistructured data. From the conceptual
point of view, an XML document can be seen as a finite node-labeled tree, and several formalisms have
been proposed as query languages over XML documents considered as finite trees.

Broadly speaking, there are two main classes of such languages, those focusing on selecting a set
of nodes based on structural properties of the tree [55, 72], and those where the mechanisms for the
selection of the result also take into account node attributes and their associated values taken from a
specified domain [8, 7, 11, 25, 57, 41]. We focus here on the former class of queries, which we call node
selection queries. Many of such formalisms come from the tradition of modal logics, similarly to the most
expressive languages of the Description Logics family [4], based on the correspondence between the tree
edges and the accessibility relation used in the interpretation strcutures of modal logics. XPath [20] is a
notable example of these formalisms, and, in this sense, it can also be seen as an expressive Description
Logic over finite trees. Relevant extensions of XPath are inspired by the family of Propositional Dynamic
Logic (PDL) [59]. For example, RXPath is the extension of XPath with binary relations specified through
regular expression, used to formulate expressive navigational patterns over XML documents [17]. Here,
the correspondence is between programs of PDL and paths in the tree.

A main line of research on node selection queries has been on identifying nice computational properties
of XPath, and studying extensions of such language that still enjoy these properties. An important feature
of XPath is the tractability of query evaluation in data complexity, i.e., with respect to the size of the
input tree. In fact, queries in the navigational core CoreXPath can be evaluated in time that is linear in

1http://www.w3.org/TR/REC-xml/

1

ar
X

iv
:1

50
9.

08
97

9v
1

 [
cs

.D
B

]
 3

0
Se

p
20

15

http://www.w3.org/TR/REC-xml/

both the size of the query and the size of the input tree [35, 9]. This property is enjoyed also by various
extensions of XPath, including RXPath [50]. Another nice computational property of XPath is that
checking query containment, which is the basic task for static analysis of queries, is in ExpTime [56, 63].
This property holds also for RXPath [69, 17], and other extensions of XPath [68].

Another line of research focused on expressive power. Marx has shown that XPath is expressively
equivalent to FO2, the 2-variable fragment of first-order logic, while CXPath, which is the extension of
XPath with conditional axis relations, is expressively equivalent to full FO [50, 51]. Regular extensions of
XPath are expressively equivalent to extensions of FO with transitive closure [67, 69]. Another classical
logic is Monadic Second-Order Logic (MSO). This logic is more expressive than FO and its extensions
by transitive closure [48, 67, 69]. In fact, it has been argued that MSO has the right expressiveness
required for Web information extraction and hence can serve as a yardstick for evaluating and comparing
wrappers [34]. Various logics are known to have the same expressive power as MSO, cf. [48], but so far
no natural extension of XPath that is expressively equivalent to MSO and enjoys the nice computational
properties of XPath has been identified.

A further line of research focuses on the relationship between query languages for finite trees and
tree automata [49, 54, 64]. Various automata models have been proposed. Among the cleanest models is
that of node-selecting tree automata, which are automata on finite trees, augmented with node selecting
states [55, 30]. What has been missing in this line of inquiry is an automaton model that can be used
both for testing query containment and for query evaluation [64].

Some progress on the automata-theoretic front was recently reported in [17], where a comprehensive
automata-theoretic framework for both evaluating and reasoning about RXPath was developed. The
framework is based on two-way weak alternating tree automata, denoted 2WATAs [44], but specialized
for finite trees, and enables one to derive both a linear-time algorithm for query evaluation and an
exponential-time algorithm for testing query containment.

The goal of this paper is to introduce a declarative query language, namely µXPath2, based on XPath
enriched with alternation-free fixpoint operators, which preserves these nice computational properties.
The significance of this extension is due to a further key result of this paper, which shows that on
finite trees alternation-free fixpoint operators are sufficient to capture all of MSO, which is considered
to be the benchmark query language on tree-structured data. Alternation freedom implies that the
least and greatest fixpoint operators do not interact, and is known to yield computationally amenable
logics [14, 44]. It is also known that unfettered interaction between least and greatest fixpoint operators
results in formulas that are very difficult for people to comprehend, cf. [42].

Fixpoint operators have been studied in the µ-calculus, interpreted over arbitrary structures [42],
which by the tree-model property of this logic, can be restricted to be interpreted over infinite trees.
It is known that, to obtain the full expressive power of MSO on infinite trees, arbitrary alternations of
fixpoints are required in the µ-calculus (see, e.g., [36]). Forms of µ-calculus have also been considered in
Description Logics [24, 61, 43, 10], again interpreted over infinite trees. In this context, the present work
can provide the foundations for a description logic tailored towards acyclic finite (a.k.a. well-founded)
frame structures. In this sense, the present work overcomes [15], where an explicit well-foundedness
construct was used to capture XML in description logics.

In a finite-tree setting, extending XPath with forms of fixpoint operators, has been studied earlier [2,
67, 48, 32, 31]. While for arbitrary fixpoints the resulting query language is equivalent to MSO and has
an exponential-time containment test, it is not known to have a linear-time evaluation algorithm. In
contrast, as µXPath is alternation free it is closely related to a stratified version of Monadic Datalog
proposed as a query language for finite trees in [34, 30], which enjoys linear-time evaluation. Note,
however, that the complexity of containment of stratified Monadic Datalog is unknown.

We prove here that there is a very direct correspondence between µXPath and 2WATAs. Specifically,
there are effective translations from µXPath queries to 2WATAs and from 2WATAs to µXPath. We show
that this yields the nice computational properties for µXPath. We then prove the equivalence of 2WATAs
to node-selecting tree automata (NSTA), shown to be expressively equivalent to MSO [30]. On the one
hand, we have an exponential translation from 2WATAs to NSTAs. On the other hand, we have a linear
translation from NSTAs to 2WATAs. This yields the expressive equivalence of µXPath to MSO.

It is worth noting that the automata-theoretic approach of 2WATAs is based on techniques developed
in the context of program logics [44, 71]. Here, however, we leverage the fact that we are dealing with
finite trees, rather than infinite trees that are usually used in the program-logics context. Indeed, the
automata-theoretic techniques used in reasoning about infinite trees are notoriously difficult [62, 66] and

2An earlier version of this paper has been published in the Proceedings of the 24th AAAI Conference on Artificial
Intelligence (AAAI 2010) [18].

2

have resisted efficient implementation. The restriction to finite trees here enables one to obtain a much
more feasible algorithmic approach. In particular, one can make use of symbolic techniques, at the base
of modern model checking tools [14], for effectively querying and verifying XML documents. It is worth
noting that while 2WATAs run over finite trees they are allowed to have infinite runs. This separates
2WATAs from the alternating finite-tree automata used elsewhere [23, 65].

The paper is organized as follows. In Section 2 we present syntax and semantics of µXPath, as well as
examples of queries expressed in this language. In Sections 3 and 4 we show how to make use of two-way
automata over finite trees as a formal tool for addressing query evalation and query containemnt in the
context of µXPath. More specifically, in Section 3 we introduce the class of two-way weak alternating tree
automata, and devise mutual translation between them and µXPath queries, and in Section 4 we provide
algorithms for deciding the acceptance and non-emptiness problems for 2WATAs. In Section 5 we exploit
the correspondence between two-way weak alternating tree automata and µXPath to illustrate the main
characteristics of µXPath as a query language over finite trees. Section 6 deals with the expressive power
of µXPath, by establishing the relationship between two-way weak alternating tree automata and MSO.
Finally, Section 7 concludes the paper.

2 The Query Language µXPath

In this paper we are concerned with query languages over tree-structured data, which is customary in
the XML setting [50, 51]. More precisely, we consider databases as finite sibling-trees, which are tree
structures whose nodes are linked to each other by two relations: the child relation, connecting each
node with its children in the tree; and the immediate-right-sibling relation, connecting each node with its
sibling immediately to the right in the tree. Such a relation models the order between the children of the
node in an XML documents. Each node of the sibling tree is labeled by (possibly many) elements of a
set Σ of atomic propositions that represent either XML tags or XML attribute-value pairs. Observe that
in general sibling trees are more general than XML documents since they would allow the same node to
be labeled by several tags.

Formally, a (finite) tree is a complete prefix-closed non-empty (finite) set of words over N, i.e., the set
of positive natural numbers. In other words, a (finite) tree is a (finite) set of words ∆ ⊆ N∗, such that if
x·i ∈ ∆, where x ∈ N∗ and i ∈ N, then also x ∈ ∆, and if i > 1, then also x·(i−1) ∈ ∆. The elements of
∆ are called nodes, the empty word ε is the root of ∆, and for every x ∈ ∆, the nodes x·i, with i ∈ N,
are the successors of x. By convention we take x·0 = x, and x·i·−1 = x. The branching degree d(x) of a
node x denotes the number of successors of x. If the branching degree of all nodes of a tree is bounded by
k, we say that the tree is ranked and has branching degree k. In particular, if the branching degree is 2,
we say that the tree is binary. Instead, if the number of successors of the nodes is a priori unbounded,
we say that the tree is unranked. In contrast, ranked trees have a bound on the number of successors of
nodes; in particular, for binary trees the bound is 2. A (finite) labeled tree over an alphabet L of labels
is a pair T = (∆T , `T), where ∆T is a (finite) tree and the labeling `T : ∆T → L is a mapping assigning
to each node x ∈ ∆T a label `T (x) in L.

A sibling tree T is a finite labeled unranked tree each of whose nodes is labeled with a set of atomic
propositions in an alphabet Σ, i.e., L = 2Σ. Given A ∈ Σ, we denote by AT the set of nodes x of ∆T such
that A ∈ `T (x). It is customary to denote a sibling tree T by (∆T , ·T). On sibling trees, two auxiliary
binary relations between nodes, and their inverses are defined:

childT = {(z, z·i) | z, z·i ∈ ∆T }
(child−)T = {(z·i, z) | z, z·i ∈ ∆T }
rightT = {(z·i, z·(i+1)) | z·i, z·(i+1) ∈ ∆T }
(right−)T = {(z·(i+1), z·i) | z·i, z·(i+1) ∈ ∆T }

The relations child and right are called axes.

One of the core languages used to query tree-structured data is XPath, whose definition we briefly
recall here. An XPath node expression ϕ is defined by the following syntax, which is inspired by Propo-
sitional Dynamic Logic (PDL) [29, 3, 17]:

ϕ −→ A | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈P 〉ϕ | [P]ϕ

P −→ child | right | child− | right−

where A denotes an atomic proposition belonging to an alphabet Σ, child and right denote the main
atomic relations between nodes in a tree, usually called axis relations. The expressions child− and right−

3

denote their inverses, which in fact correspond to the other two standard XPath axes parent and left,
respectively. Intuitively, a node expression is a formula specifying a property of nodes, where an atomic
proposition A asserts that the node is labeled with A, negation, conjunction, and disjunction have the
usual meaning, 〈P 〉ϕ, where P is one of the axes, denotes that the node is connected via P with a
node satisfying ϕ, and [P]ϕ asserts that all nodes connected via P satisfy ϕ. We also adopt the usual
abbreviations for booleans, i.e., true, false, and ϕ1 → ϕ2.

The query language studied in this paper, called µXPath is an extension of XPath with a mechanism
for defining sets of nodes by means of explicit fixpoint operators over systems of equations. µXPath is
essentially the Alternation-Free µ-Calculus, where the syntax allows for the fixpoints to be defined over
vectors of variables [28].

To define µXPath queries, we consider a set X of variables, disjoint from the alphabet Σ. An equation
has the form

X
.
= ϕ

where X ∈ X , and ϕ is an XPath node expression having as atomic propositions symbols from Σ∪X . We
call the left-hand side of the equation its head, and the right-hand side its body. A set of equations can be
considered as mutual fixpoint equations, which can have multiple solutions in general. We are actually
interested in two particular solutions: the smallest one, i.e., the least fixpoint (lfp), and the greatest
one, i.e., the greatest fixpoint (gfp), both of which are guaranteed to exist under a suitable syntactic
monotonicity condition to be defined below. Given a set of equations

{X1
.
= ϕ1, . . . , Xn

.
= ϕn},

where we have one equation with Xi in the head, for 1 ≤ i ≤ n, a fixpoint block has the form
fp{X1

.
= ϕ1, . . . , Xn

.
= ϕn}, where

• fp is either lfp or gfp, denoting respectively the least fixpoint and the greatest fixpoint of the set of
equations, and

• each variable Xi, for 1 ≤ i ≤ n, appears positively in ϕi, for 1 ≤ i ≤ n (see [42]).

We say that the variables X1, . . . , Xn are defined in the fixpoint block fp{X1
.
= ϕ1, . . . , Xn

.
= ϕn}.

A µXPath query has the form X : F , where X ∈ X and F is a set of fixpoint blocks such that:
• X is a variable defined in F ;
• the sets of variables defined in different fixpoint blocks in F are mutually disjoint;
• for each fixpoint block F ∈ F , each variable X defined in F appears only positively in the bodies

of equations in F (syntactic monotonicity);
• there exists a partial order � on the fixpoint blocks in F such that, for each Fi ∈ F , the bodies of

equations in Fi contain only variables defined in fixpoint blocks Fj ∈ F with Fj � Fi.
The meaning of a query q of the form X : F is based on the fact that, when evaluated over a tree T ,

F assigns to each variable defined in it a set of nodes of T , and that q returns as result the set assigned
to X. We intuitively explain the mechanism behind the assignment of F to its variables. We choose
partial order � on the fixpoint blocks in F respecting the conditions above, and we operate one block of
equations at a time according to �. For each fixpoint block, we compute the solution of the corresponding
equations, obviously taking into account the type of fixpoint, and using the assignments for the variables
already computed for previous blocks. We come back to the formal semantics below, and first give some
examples of µXPath queries.

The following query computes the nodes reaching a red node on all child-paths (possibly of length 0),
exploiting the encoding of transitive closure by means of a least fixpoint:

X : {lfp{X .
= red ∨ [child]X}}.

As another example, to obtain the nodes all of whose descendants (including the node itself) are not
simultaneously red and blue, we can write the query:

X : {gfp{X .
= (red→ ¬blue) ∧ [child]X}}.

Notice that such nodes are those that do not have descendant that are simultaneously red and blue.
The latter set of nodes is characterized by a least fixpoint, and therefore query q can also be considered
as the negation of such least fixpoint.

4

ATρ = AT ,

XT
ρ =

{
ρ(X), if X is defined in Fi

E , if X is defined in some Fj � Fi and X/E ∈ (Fj)
T
ρ

(¬ϕ)Tρ = ∆T \ ϕTρ ,
(ϕ1 ∧ ϕ2)Tρ = (ϕ1)Tρ ∩ (ϕ2)Tρ ,
(ϕ1 ∨ ϕ2)Tρ = (ϕ1)Tρ ∪ (ϕ2)Tρ ,
(〈P 〉ϕ)Tρ = {z | ∃z′.(z, z′) ∈ PT ∧ z′ ∈ ϕTρ },
([P]ϕ)Tρ = {z | ∀z′.(z, z′) ∈ PT → z′ ∈ ϕTρ },
(lfp{X1

.
= ϕ1, . . . , Xn

.
= ϕn})Tρ = {X1/Eµ1 , . . . , Xn/Eµn},

(gfp{X1
.
= ϕ1, . . . , Xn

.
= ϕn})Tρ = {X1/Eν1 , . . . , Xn/Eνn},

Figure 1: Semantics of the µXPath formulas in fixpoint block Fi

We now illustrate an example where both a least and a greatest fixpoint block are used in the same
query. Indeed, to compute red nodes all of whose red descendants have only blue children and all of
whose blue descendants have at least a red child, we can use the following query:

X1 : {gfp{X0
.
= (red→ [child]blue) ∧

(blue→ 〈child〉red) ∧ [child]X0}},
lfp{X1

.
= red ∧X0}

Notice that in the above query, the only partial order coherent with the conditions of µXPath given above
is the one where the greatest fixpoint block precedes the least fixpoint block.

Notice also that in the above query we could have used the greatest fixpoint in the second block instead
of the least fixpoint. Indeed, it is easy to see that, whenever a set of equations in non-recursive, least and
greatest fixpoints have the same meaning, since they both characterize the obvious single solution of the
systems of equations.

Now, suppose that we want to denote the red nodes all of whose red descendants reach blue nodes
on all child-paths, and all of whose blue descendants reach red nodes on at least one child-path. The
resulting query is the following, where we have written the fixpoint blocks according to a partial order
coherent with the conditions of µXPath:

X3 : {lfp{X0
.
= blue ∨ [child]X0},

lfp{X1
.
= red ∨ 〈child〉X1},

gfp{X2
.
= (red→ X0) ∧ (blue→ X1) ∧ [child]X2},

lfp{X3
.
= red ∧X2}}

Finally, to denote the nodes having a red sibling that follows it in the sequence of right siblings, and
such that all siblings along such sequence have a blue descendant, we can use the following query:

X0 : {lfp{X0
.
= X1 ∧ (red ∨ 〈right〉X0),

X1
.
= blue ∨ 〈child〉X1}}

The formal semantics of µXPath is defined by considering sibling trees as interpretation structures.
To specify the semantics of equations, we introduce second order variable assignments. A (second order)
variable assignment ρ on a tree T = (∆T , ·T) is a mapping that assigns to variables of X sets of nodes
in ∆T . To specify the semantics of a µXPath query X : F relative to a sibling tree T and a variable
assignment ρ, we consider a partial order � of the fixpoint blocks in F , and proceed by induction on
�. Consider now the induction step dealing with the fixpoint block Fi ∈ F . The role of this step is to
provide the semantics of Fi in terms of a variable assignment {X1/E1, . . . , Xn/En}, where X1, . . . , Xn are
all the variables defined in Fi and E1, . . . , En are the sets of nodes of T associated to such variables by
the assignment. The semantics of Fi, denoted Fi

T
ρ , is specified as shown in Figure 1, where:

• The semantics of A, ¬ϕ, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, 〈P 〉ϕ, and [P]ϕ is the usual one.

• The semantics of a variable X depends on whether X is defined in Fi or not. In the former case, it
is simply given by the variable assignment ρ; otherwise, it is determined by the variable assignment
of block Fj in which X is defined. Observe that Fj precedes Fi in the partial order �.

5

• The semantics of a least fixpoint block lfp{X1
.
= ϕ1, . . . , Xn

.
= ϕn} is the variable assignment

{X1/Eµ1 , . . . , Xn/Eµn}, where (Eµ1 , . . . , Eµn) is the intersection of all solutions of the fixpoint block,
where each solution is an n-tuple of sets of nodes of T , and the intersection is done component-wise.
Formally:

(Eµ1 , . . . , Eµn) =
⋂
{(E1, . . . , En) | E1 = (ϕ1)Tρ[X1/E1,...,Xn/En], . . . , En = (ϕn)Tρ[X1/E1,...,Xn/En]},

where ρ[X1/E1, . . . , Xn/En] denotes the variable assignment identical to ρ, except that it assigns to
Xi the value Ei, for 1 ≤ i ≤ n. Note that, due to syntactic monotonicity, (Eµ1 , . . . , Eµn) is itself a
solution of the fixpoint block, and indeed the smallest one.

• The semantics of a greatest fixpoint block gfp{X1
.
= ϕ1, . . . , Xn

.
= ϕn} is the variable assignment

{X1/Eν1 , . . . , Xn/Eνn}, where (Eν1 , . . . , Eνn) is the union of all solutions of the fixpoint block, i.e.:

(Eν1 , . . . , Eνn) =
⋃
{(E1, . . . , En) | E1 = (ϕ1)Tρ[X1/E1,...,Xn/En], . . . , En = (ϕn)Tρ[X1/E1,...,Xn/En]}

Again note that, due to syntactic monotonicity, (Eν1 , . . . , Eνn) is itself a solution of the fixpoint block,
and in this case the largest one.

Finally, the semantics of a µXPath query X : F over a sibling tree T is the set E ⊆ ∆T of nodes of T
that the fixpoint block F ∈ F defining X assigns to X in T . We denote such set E as (X : F)T . Notice
that, since all second-order variables appearing in F are assigned values in the fixpoint block in which
they are defined, we can omit from (X : F)Tρ the second order variables assignment ρ, and denote it as

(X : F)T .

We observe that, through the use of fixpoints, we can actually capture RXPath queries [50, 51], whose
node expressions are formed by means of regular expressions over the XPath axes, namely:

P −→ child | right | ϕ? | P1;P2 | P1 ∪ P2 | P ∗ | P−

Indeed, node expression of the form 〈P 〉φ and [P]φ with complex P can be considered as abbreviations
[42]. First of all, we notice that in expressions of the form P−, we can apply recursively the following
equivalences to push the inverse operator − inside RXPath expressions, until it is applied to XPath axes
only:

(ϕ?)− = ϕ?
(P1;P2)− = P−2 ;P−1

(P1 ∪ P2)− = P−1 ∪ P
−
2

(P ∗)− = (P−)∗

Also, considering that ϕ1∨ϕ2 ≡ ¬(¬ϕ1∧¬ϕ2), and [P]ϕ ≡ ¬〈P 〉¬ϕ, we can assume w.l.o.g., that RXPath
queries are formed as follows:

ϕ −→ A | ¬ϕ | ϕ1 ∧ ϕ2 | 〈P 〉ϕ
P −→ child | right | child− | right− | ϕ? | P1;P2 | P1 ∪ P2 | P ∗

Then, we can transform an arbitrary RXPath query ϕ into the µXPath query Xϕ : F , where F is a set
of fixpoint blocks constructed by inductively decomposing ϕ. Formally, we let F = τ(ϕ), where τ(ϕ) is
defined by induction on ϕ as follows:

τ(A) = {lfp{XA
.
= A}}

τ(¬ϕ′) = {lfp{X¬ϕ′
.
= ¬Xϕ′}} ∪ τ(ϕ′)

τ(ϕ1 ∧ ϕ2) = {lfp{Xϕ1∧ϕ2

.
= Xϕ1

∧Xϕ2
}} ∪ τ(ϕ1) ∪ τ(ϕ2)

τ(〈P 〉ϕ′) = {lfp τp(〈P 〉ϕ′)} ∪ τt(P) ∪ τ(ϕ′)

where the function τp(·), which is defined over formulas of the form 〈P 〉ϕ′, returns a set of fixpoint
equations, and the function τt(·), which is defined over path expressions P , returns the set of fixpoint
blocks corresponding to the node formulas appearing in the tests in P . Specifically, τp(〈P 〉ϕ′) is defined
by induction on the structure of the path expression P as follows:

τp(〈axis〉ϕ′) = {X〈axis〉ϕ′
.
= 〈axis〉Xϕ′}, for axis ∈ {child, right, child−, right−}

τp(〈ϕ′′?〉ϕ′) = {X〈ϕ′′?〉ϕ′
.
= Xϕ′′ ∧Xϕ′}

τp(〈P1;P2〉ϕ′) = {X〈P1;P2〉ϕ′
.
= X〈P1〉〈P2〉ϕ′} ∪ τp(〈P1〉〈P2〉ϕ′) ∪ τp(〈P2〉ϕ′)

τp(〈P1 ∪ P2〉ϕ′) = {X〈P1∪P2〉ϕ′
.
= X〈P1〉ϕ′ ∨X〈P2〉ϕ′} ∪ τp(〈P1〉ϕ′) ∪ τp(〈P2〉ϕ′)

τp(〈P ∗〉ϕ′) = {X〈P∗〉ϕ′
.
= Xϕ′ ∨ 〈P 〉X〈P∗〉ϕ′} ∪ τp(〈P 〉ϕ′)

6

Note that τp decomposes inductively only the path expression inside the first 〈·〉 formula. Hence, the
µXPath formula τ(ϕ) is linear in the size of the RXPath formula ϕ.

For example 〈right∗〉A can be expressed as

X : {lfp{X .
= A ∨ 〈right〉X}}.

Instead, [right∗]A, which is equivalent to ¬〈right∗〉¬A, can be expressed as

X : {lfp{X .
= ¬X1},

lfp{X1
.
= ¬A ∨ 〈right〉X1}},

(1)

which in turn is equivalent to
X : {gfp{X .

= A ∧ [child]X}}.

Observe that the form of equation (1) resembles the encoding of the corresponding RXPath formula into
stratified Monadic Datalog [34].

Considering the above encoding, we can actually extend µXPath by allowing as syntactic sugar the
use of regular expressions over the axis relations, i.e., instead of axes only, we can allow path expressions
of the form

P −→ child | right | ϕ? | P1;P2 | P1 ∪ P2 | P ∗ | P−.

Finally, we observe that sibling trees are unranked, but in fact this is not really a crucial feature.
Indeed, we can move to binary sibling trees by considering an additional axis fchild, connecting each node
to its first child only, interpreted as

fchildT = {(z, z·1) | z, z·1 ∈ ∆T }.

Using fchild, we can thus re-express the child axis as fchild; right∗. In the following, we will focus on
µXPath queries that use only the fchild and right axis relations, and are evaluated over binary sibling
trees.

3 2WATAs and their Relationship to µXPath

We consider now two-way automata over finite trees and use them as a formal tool to address the problems
about µXPath in which we are interested in this paper. Specifically, after having introduced the class of
two-way weak alternating tree automata (2WATAs), we establish a tight relationship between them and
µXPath by devising mutual translations between the two formalisms.

3.1 Two-way Weak Alternating Tree Automata

We consider a variant of two-way alternating automata [65] (see also [54, 21]) that run, possibly infinitely,
on finite labeled trees (Note that typically, infinite runs of automata are considered in the context of infi-
nite input structures [36], whereas here we consider possibly infinite runs over finite structures.) Specifi-
cally, alternating tree automata generalize nondeterministic tree automata, and two-way tree automata
generalize ordinary tree automata by being allowed to traverse the tree both upwards and downwards.
Formally, let B+(I) be the set of positive Boolean formulae over a set I, built inductively by applying ∧
and ∨ starting from true, false, and elements of I. For a set J ⊆ I and a formula ϕ ∈ B+(I), we say
that J satisfies ϕ if assigning true to the elements in J and false to those in I \ J , makes ϕ true. We
make use of [−1..k] to denote {−1, 0, 1, . . . , k}, where k is a positive integer. A two-way weak alternating
tree automaton (2WATA) running over labeled trees all of whose nodes have at most k successors, is a
tuple A = (L, S, s0, δ, α), where L is the alphabet of tree labels, S is a finite set of states, s0 ∈ S is the
initial state, δ : S × L → B+([−1..k] × S) is the transition function, and α is the acceptance condition
discussed below.

The transition function maps a state s ∈ S and an input label a ∈ L to a positive Boolean formula
over [−1..k] × S. Intuitively, if δ(s, a) = ϕ, then each pair (c′, s′) appearing in ϕ corresponds to a new
copy of the automaton going to the direction suggested by c′ and starting in state s′. For example, if
k = 2 and δ(s1, a) = ((1, s2) ∧ (1, s3)) ∨ ((−1, s1) ∧ (0, s3)), when the automaton is in the state s1 and
is reading the node x labeled by a, it proceeds either by sending off two copies, in the states s2 and
s3 respectively, to the first successor of x (i.e., x·1), or by sending off one copy in the state s1 to the
predecessor of x (i.e., x·−1) and one copy in the state s3 to x itself (i.e., x·0).

7

A run of a 2WATA is obtained by resolving all existential choices. The universal choices are left,
which gives us a tree. Because we are considering two-way automata, runs can start at arbitrary tree
nodes, and need not start at the root. Formally, a run of a 2WATA A over a labeled tree T = (∆T , `T)
from a node x0 ∈ ∆T is, in general, an infinite ∆T × S-labeled tree R = (∆R, `R) satisfying:

1. ε ∈ ∆R and `R(ε) = (x0, s0).

2. Let `R(r) = (x, s) and δ(s, `T (x)) = ϕ. Then there is a (possibly empty) set S =
{(c1, s1), . . . , (cn, sn)} ⊆ [−1..k] × S such that S satisfies ϕ, and for each i ∈ {1, . . . , n}, we have
that r·i ∈ ∆R, x·ci ∈ ∆T , and `R(r·i) = (x·ci, si). In particular, this means that if ϕ is true then
r need not have successors, and ϕ cannot be false.

Intuitively, a run R keeps track of all transitions that the 2WATA A performs on a labeled input tree T :
a node r of R labeled by (x, s) describes a copy of A that is in the state s and is reading the node x of T .
The successors of r in the run represent the transitions made by the multiple copies of A that are being
sent off either upwards to the predecessor of x, downwards to one of the successors of x, or to x itself.

2WATAs are called “weak” due to the specific form of the acceptance condition, given in the form of
a set α ⊆ S [44]. Specifically, there exists a partition of S into disjoint sets, Si, such that for each set Si,
either Si ⊆ α, in which case Si is an accepting set, or Si ∩ α = ∅, in which case Si is a rejecting set. In
addition, there exists a partial order ≤ on the collection of the Si’s such that, for each s ∈ Si and s′ ∈ Sj
for which s′ occurs in δ(s, a), for some a ∈ L, we have Sj ≤ Si. Thus, transitions from a state in Si lead
to states in either the same Si or a lower one. It follows that every infinite path of a run of a 2WATA
ultimately gets “trapped” within some Si. The path is accepting if and only if Si is an accepting set. A
run (Tr, r) is accepting if all its infinite paths are accepting. A node x is selected by a 2WATA A from a
labeled tree T if there exists an accepting run of A over T from x.

3.2 Binary Trees and Sibling Trees

As mentioned before, we assume that µXPath queries are expressed over binary sibling trees, where the
left successor of a node corresponds to the fchild axis, and the right successor corresponds to the right
axis. To ensure that generic binary trees (i.e., trees of branching degree 2) represent binary sibling trees,
we make use of special propositions ifc, irs, hfc, hrs. The proposition ifc (resp., irs) is used to keep
track of whether a node is the first child (resp., is the right sibling) of its predecessor, and hfc (resp.,
hrs) is used to keep track of whether a node has a first child (resp., has a right sibling). In particular,
we consider binary trees whose nodes are labeled with subsets of Σ ∪ {ifc, irs, hfc, hrs}. We call such a
tree T = (∆T , `T) a well-formed binary tree if it satisfies the following conditions:

• For each node x of T , if `T (x) contains hfc, then x·1 is meant to represent the fchild successor of
x and hence `T (x·1) contains ifc but not irs. Similarly, if `T (x) contains hrs, then x·2 is meant to
represent the right successor of x and hence `T (x·2) contains irs but not ifc.

• The label `T (ε) of the root of T contains neither ifc, nor irs, nor hrs. In this way, we restrict the
root of T so as to represent the root of a sibling tree.

Notice that every (binary) sibling tree T trivially induces a well-formed binary tree πb(T) obtained by
simply adding the labels ifc, irs, hfc, hrs in the appropriate nodes.

On the other hand, a well-formed binary tree T = (∆T , `T) induces a sibling tree πs(T). To define
πs(T) = (∆Ts , ·Ts), we define, by induction on ∆T , a mapping πs from ∆T to words over N as follows:

• πs(ε) = ε;

• if hfc ∈ `T (ε), then πs(1) = 1;

• if hfc ∈ `T (x) and πs(x) = z·n, with z ∈ N∗ and n ∈ N, then πs(x·1) = z·n·1;

• if hrs ∈ `T (x) and πs(x) = z·n, with z ∈ N∗ and n ∈ N, then πs(x·2) = z·(n+1).

Then, we take ∆Ts to be the range of πs, and we define the interpretation function ·Ts as follows: for
each A ∈ Σa, we define ATs = {πs(x) ∈ ∆Ts | A ∈ `T (x)}. Note that the mapping πs ignores irrelevant
parts of the binary tree, e.g., if the label of a node x does not contain hfc, even if x has a 1-successor,
such a node is not included in the sibling tree.

8

if ψ ∈ CL(ϕ) then nnf (¬ψ) ∈ CL(ϕ), if ψ is not of the form ¬ψ′
if ¬ψ ∈ CL(ϕ) then ψ ∈ CL(ϕ)
if ψ1 ∧ ψ2 ∈ CL(ϕ) then ψ1, ψ2 ∈ CL(ϕ)
if ψ1 ∨ ψ2 ∈ CL(ϕ) then ψ1, ψ2 ∈ CL(ϕ)
if 〈P 〉ψ ∈ CL(ϕ) then ψ ∈ CL(ϕ), for P ∈ {fchild, right, fchild−, right−}
if [P]ψ ∈ CL(ϕ) then ψ ∈ CL(ϕ), for P ∈ {fchild, right, fchild−, right−}

Figure 2: Closure of µXPath expressions

3.3 From µXPath to 2WATAs

We show now how to construct (i) from each µXPath query ϕ (over binary sibling trees) a 2WATA Aϕ

whose number of states is linear in |ϕ| and that selects from a tree T precisely the nodes in ϕT , and
(ii) from each 2WATA A a µXPath query ϕA of size linear in the number of states of A that, when
evaluated over a tree T , returns precisely the nodes selected by A from T .

In order to translate µXPath to 2WATAs, we need to make use of a notion of syntactic closure, similar
to that of Fisher-Ladner closure of a formula of PDL [29]. The syntactic closure CL(X : F) of a µXPath
query X : F is defined as {ifc, irs, hfc, hrs}∪CL(F), where CL(F) is defined as follows: for each equation
X

.
= ϕ in some fixpoint block in F , {X,nnf (ϕ)} ⊆ CL(F), where nnf (ψ) denotes the negation normal

form of ψ, and then we close the set under sub-expressions (in negation normal form), by inductively
applying the rules in Figure 2. It is easy to see that, for a µXPath query q, the cardinality of CL(q) is
linear in the length of q.

Let q = X0 : F be a µXPath query. We show how to construct a 2WATA Aq that, when run over a
well-formed binary tree T , selects exactly the nodes in qT . The 2WATA Aq = (L, Sq, sq, δq, αq) is defined
as follows.

• The alphabet is L = 2Σ∪{ifc,irs,hfc,hrs}. This corresponds to labeling each node of the tree with
a truth assignment to the atomic propositions, including the special ones that encode information
about the predecessor node and about whether the children are significant.

• The set of states is Sq = CL(q). Intuitively, when the automaton is in a state ψ ∈ CL(q) and visits
a node x of the tree, it checks that the node expression ψ holds in x.

• The initial state is sq = X0.

• The transition function δq is defined as follows:

1. For each λ ∈ L, and each σ ∈ Σ ∪ {ifc, irs, hfc, hrs},

δq(σ, λ) =

{
true, if σ ∈ λ

false, if σ /∈ λ

δq(¬σ, λ) =

{
true, if σ /∈ λ

false, if σ ∈ λ

Such transitions check the truth value of atomic propositions, and of their negations in the
current node of the tree, by simply checking whether the node label contains the proposition
or not.

2. For each λ ∈ L and each formula ψ ∈ CL(q), the automaton inductively decomposes ψ and
moves to appropriate states to check the sub-expressions as follows:

δq(ψ1 ∧ ψ2, λ) = (0, ψ1) ∧ (0, ψ2)
δq(ψ1 ∨ ψ2, λ) = (0, ψ1) ∨ (0, ψ2)

δq(〈fchild〉ψ, λ) = (0, hfc) ∧ (1, ψ)
δq(〈right〉ψ, λ) = (0, hrs) ∧ (2, ψ)

δq(〈fchild−〉ψ, λ) = (0, ifc) ∧ (−1, ψ)
δq(〈right−〉ψ, λ) = (0, irs) ∧ (−1, ψ)

δq([fchild]ψ, λ) = (0,¬hfc) ∨ (1, ψ)
δq([right]ψ, λ) = (0,¬hrs) ∨ (2, ψ)

δq([fchild
−]ψ, λ) = (0,¬ifc) ∨ (−1, ψ)

δq([right
−]ψ, λ) = (0,¬irs) ∨ (−1, ψ)

9

3. Let X
.
= ϕ be an equation in one of the blocks of F . Then, for each λ ∈ L, we have

δq(X,λ) = (0, ϕ).

• To define the weakness partition of Aq, we partition the expressions in CL(q) according to the
partial order on the fixpoint blocks in F . Namely, we have one element of the partition for each
fixpoint block F ∈ F . Such an element is formed by all expressions (including variables) in CL(q)
in which at least one variable defined in F occurs and no variable defined in a fixpoint block F ′

with F ≺ F ′ occurs. In addition, there is one element of the partition consisting of all expressions
in which no variable occurs. Then the acceptance condition αq is the union of all elements of the
partition corresponding to a greatest fixpoint block. Observe that the partial order on the fixpoint
blocks in F guarantees that the transitions of Aq satisfy the weakness condition. In particular, each
element of the weakness partition is either contained in αq or disjoint from αq. This guarantees
that an accepting run cannot get trapped in a state corresponding to a least fixpoint block, while
it is allowed to stay forever in a state corresponding to a greatest fixpoint block.

Theorem 1 Let q be a µXPath query. Then:

1. The number of states of the corresponding 2WATA Aq is linear in the size of q.

2. For every binary sibling tree T , a node x of T is in qT iff Aq selects x from the well-formed binary
tree πb(T) induced by T .

Proof. Item 1 follows immediately from the fact that the size of CL(q) is linear in the size of q. We
turn to item 2. In the proof, we blur the distinction between T and πb(T), denoting it simply as T , since
the two trees are identical, except for the additional labels in πb(T), which are considered by Aq but
ignored by q.

Let q = X : F . We show by simultaneous induction on the structure of F and on the nesting of
fixpoint blocks, that for every expression ψ ∈ CL(F) and for every node x of T , we have that Aq, when
started in state ψ, selects x from T if and only if x ∈ ψT .

• Indeed, when ψ is an atomic proposition, then the claim follows immediately by making use of the
transitions in item 1 of the definition of δ.

• When ψ = ψ1 ∧ ψ2 or ψ = ψ1 ∨ ψ2, the claim follows by inductive hypothesis, making use of the
first two transitions in item 2.

• When ψ = 〈fchild〉ψ1, the 2WATA checks that x has a first child y = x · 1, and moves to y checking
that y is selected from T starting in state ψ1. Then, by induction hypothesis, we have that y ∈ ψT1 ,
and the claim follows.

The cases of ψ = 〈right〉ψ1, ψ = 〈fchild−〉ψ1, and ψ = 〈right−〉ψ1 are analogous.

• When ψ = [fchild]ψ1, the 2WATA checks that either x does not have a first child, or that the first
child y = x · 1 is selected from T starting in state ψ1. Then, by induction hypothesis, we have that
y ∈ ψT1 , and the claim follows.

The cases of ψ = [right]ψ1, ψ = [fchild−]ψ1, and ψ = [right−]ψ1 are analogous.

• When ψ = X1, let X1
.
= ψ1 be the equation defining X1. Then according to the transitions in

item 3, the 2WATA checks that x is selected from T starting in state ψ1. The definition of the
2WATA acceptance condition αq guarantees that, if X1 is defined in a least fixpoint block then
an accepting run cannot get trapped in the element Si of the weakness partition containing X1;
instead, if X1 is defined in a greatest fixpoint block then an accepting run is allowed to stay forever
in Si.

We consider only the least fixpoint case; the greatest fixpoint case is similar. If there is an accepting
run, it will go through states in Si (including X1) only a finite number of times, and on each of
its paths it will get to a node y in a state ξ ∈ Sj , where Sj strictly precedes Si, i.e., with Sj ≤ Si
and Sj 6= Si. By induction on the nesting of fixpoint blocks (corresponding to the elements of the
state partition), we have that Aq, when started in state ξ, selects y from T if and only if y ∈ ξT .
Then, since the automaton state X1 is not contained in αq, the acceptance condition ensures that
the transition in item 3 is applied only a finite number of times, and considering the least fixpoint
semantics, by structural induction we get that x ∈ XT

1 .

10

For the other direction, we show that, if x ∈ XT
1 , then Aq has an accepting run R = (∆R, `R)

witnessing that x is selected from T starting in state X1. We can define the run R by exploiting the
equation X1

.
= ψ1 to make the transition according to item 3, and following structural induction

to decompose formulas, ensuring that, for all nodes y ∈ ∆R with `R(y) = (x′, ψ′) we have that
x′ ∈ ψ′T . In particular, we resolve the nondeterminism coming from disjunctions in the transition
function of Aq (in turn coming from disjunctions in q) by choosing the disjunct that is satisfied in
the node of T . Consider a node y ∈ ∆R, with `R(y) = (x′, X1). We say that y is an escape node if
x′ ∈ XT

1 because x′ ∈ ξT , where ξ is a subformula of ψ1 in which X1 does not appear. Since X1 is
defined by a least fixpoint, all the nodes y ∈ ∆R with `R(y) = (x′, X1) eventually reach an escape
node. Hence, the run (∆R, `R) does not loop on X1, and hence does not violate the acceptance
condition.

The claim then follows since the initial state of Aq is q.

We observe that, although the number of states of Aq is linear in the size of q, the alphabet of Aq

is the powerset of that of q, and hence the transition function and the entire Aq is exponential in the
size of q. However, as we will show later, this does not affect the complexity of query evaluation, query
containment, and more in general reasoning over queries.

3.4 From 2WATAs to µXPath

We show now how to convert 2WATAs into µXPath queries while preserving the set of nodes selected
from (well formed) binary trees.

Consider a 2WATA A = (L, S, s0, δ, α), where L = 2Σ∪{ifc,irs,hfc,hrs}, and let S = ∪ki=1Si be the
weakness partition of A. We define a translation π as follows.
• For a positive Boolean formula f ∈ B+([−1..2] × S), we define a µXPath node expression π(f)

inductively as follows:

π(false) = false π(true) = true
π((1, s)) = 〈fchild〉s π((2, s)) = 〈right〉s
π((0, s)) = s π((−1, s)) = (ifc ∧ 〈fchild−〉s) ∨ (irs ∧ 〈right−〉s)

π(f1 ∧ f2) = π(f1) ∧ π(f2) π(f1 ∨ f2) = π(f1) ∨ π(f2)

• For each state s ∈ S, we define a µXPath equation π(s) as follows:

s
.
=

∨
λ∈L(λ̃ ∧ π(δ(s, λ))),

where λ̃ = (
∧
a∈λ a) ∧ (

∧
a∈(σ\λ) ¬a).

• For each element Si of the weakness partition, we define a µXPath fixpoint block as follows:

π(Si) =

{
gfp{π(s) | s ∈ Si}, if Si ⊆ α
lfp{π(s) | s ∈ Si}, if Si ∩ α = ∅

• Finally, we define the µXPath query π(A) as:

π(A) = s0 : {π(S1), . . . , π(Sk)}.

Theorem 2 Let A be a 2WATA. Then:

1. The length of the µXPath query π(A) corresponding to A is linear in the size of A.

2. For every binary sibling tree T , we have that A selects a node x from πb(T) iff x is in (π(A))T .

Proof. Item 1 follows immediately from the above construction. We only observe that in defining the
µXPath equations π(s) for a state s ∈ S, we have a disjunction over the label set L, which is exponential
in the number of atomic propositions in Σ. On the other hand, the transition function of the 2WATA
itself needs to deal with the elements of L, and hence is also exponential in the size of Σ.

We turn to item 2. We again ignore the distinction between T and πb(T). Consider a variation of the
construction specified in Section 3.3, in which we replace the transitions for conjunction and disjunction,
respectively with

δq(ψ1 ∧ ψ2, λ) = δq(ψ1) ∧ δq(ψ2)
δq(ψ1 ∨ ψ2, λ) = δq(ψ1) ∨ δq(ψ2)

11

and the transitions δq(X,λ) = (0, ϕ) for an equation X
.
= ϕ with the transitions δq(X,λ) = δq(ϕ). It

is easy to check that the 2WATA obtained in this way is equivalent to the one specified in Section 3.3.
On the other hand, by applying the modified construction to the µXPath query π(A), we obtain a
2WATA Aπ(A) that on well-formed binary trees is equivalent to A. Indeed, for every transition of A,
the construction introduces in Aπ(A) a corresponding transition. Notice that, for an atom of the form
(−1, s) appearing in the right-hand side of a transition of A, we obtain in π(A) a µXPath expression ϕ =
(ifc∧〈fchild−〉s)∨ (irs ∧〈right−〉s). Then we have that δπ(A)(ϕ, λ) = ((0, ifc)∧ (−1, s))∨ (0, irs)∧ (−1, s).
In both cases where λ contains ifc or irs, this expression results in (−1, s), while in the root (where λ
contains neither ifc nor irs) the expression results in false, thus yielding a transition equivalent to the
one resulting from the atom (−1, s) of A. Hence, by Theorem 2, we get the claim.

4 Acceptance and Non-Emptiness for 2WATAs

We provide now computationally optimal algorithms for deciding the acceptance and non-emptiness
problems for 2WATAs.

4.1 The Acceptance Problem

Given a 2WATA A = (L, S, s0, δ, α), a labeled tree T = (∆T , `T), and a node x0 ∈ ∆T , we’d like
to know whether x0 is selected by A from T . This is called the acceptance problem. We follow here
the approach of [44], and solve the acceptance problem by first taking a product A × Tx0 of A and T
from x0. This product is an alternating automaton over a one letter alphabet L0, consisting of a single
letter, say a. This product automaton simulates a run of A on T from x0. The product automaton is
A× Tx0

= (L0, S ×∆T , (s0, x0), δ′, α×∆T), where δ′ is defined as follows:

• δ′((s, x), a) = Θx(δ(s, `T (x))), where Θx is the substitution that replaces a pair (c, t) in δ(s, `T (x))
by the pair (t, x·c) if x·c ∈ ∆T , and by false otherwise.

Note that the size of A× Tx0
is simply the product of the size of A and the size of T , and that the only

elements of L that are used in the construction of A× Tx0
are those that appear among the labels of T .

Note also that A × Tx0
can be viewed as a weak alternating word automaton running over the infinite

word aω, as by taking the product with T we have eliminated all directions. In fact, one can simply view
A× Tx0 as a 2-player infinite game; see [36].

We can now state the relationship between A × Tx0 and A, which is essentially a restatement of
Proposition 3.2 in [44].

Proposition 3 Node x0 is selected by A from T iff A× Tx0
accepts aω.

The advantage of Proposition 3 is that it reduces the acceptance problem to the question of whether
A × Tx0 accepts aω. This problem is referred to in [44] as the “one-letter nonemptiness problem”. It
is shown there that this problem can be solved in time that is linear in the size of A × Tx0

by an
algorithm that imposes an evaluation of and-or trees over a decomposition of the automaton state space
into maximal strongly connected components, and then analyzes these strongly connected components
in a bottom-up fashion. The result in [44] is actually stronger; the algorithm there computes in linear
time the set of states from which the automaton accepts aω, that is, the states that yield acceptance if
chosen as initial states. We therefore obtain the following result about the acceptance problem.

Theorem 4 Given a 2WATA A and a labeled tree T , we can compute the set of nodes selected by A
from T in time that is linear in the product of the sizes of A and T .

Proof. We constructed above the product automaton A × Tx0
= (L0, S ×∆T , (s0, x0), δ′, α ×∆T).

Note that the only place in this automaton where x0 plays a role is in the initial state (s0, x0). That is,
replacing the initial state by (s0, x) for another node x ∈ ∆T gives us the product automaton A×Tx. As
pointed out above, the bottom-up algorithm of [44] actually computes the set of states from which the
automaton accepts aω. Thus, x is selected by A from T iff the state (s0, x) of the product automaton is
accepting. That is, to compute the set of nodes of T selected by A, we construct the product automaton,
compute states from which the automaton accepts, and then select all nodes x such that the automaton
accepts from (s0, x).

Thus, Theorem 4 provides us with a query-evaluation algorithms for 2WATA queries, which is linear
both in the size of the tree and in the size of the automaton.

12

4.2 The Nonemptiness Problem

The nonemptiness problem for 2WATAs consists in determining, for a given 2WATA A whether it selects
the root ε from some tree T . In this case we say that A accepts T . This problem is solved in [71]
for 2WATAs (actually, for a more powerful automata model) over infinite trees, using rather sophisti-
cated automata-theoretic techniques. Here we solve this problem over finite trees, which requires less
sophisticated techniques, and, consequently, is much easier to implement.

In order to decide non-emptiness of 2WATAs, we resort to a conversion to standard one-way
nondeterministic tree automata [22]. A one-way nondeterministic tree automaton (NTA) is a tuple
A = (L, S, s0, δ), analogous to a 2WATA, except that (i) the acceptance condition α is empty and has
been dropped from the tuple, (ii) the directions −1 and 0 are not used in δ and, (iii) for each state
s ∈ S and letter a ∈ L, the positive Boolean formula δ(s, a), when written in DNF, does not contain
a disjunct with two distinct atoms (c, s1) and (c, s2) with the same direction c. In other words, each
disjunct corresponds to sending at most one “subprocess” in each direction. We also allow an NTA to
have a set of initial states, requiring that starting with one initial state must lead to acceptance.

While for 2WATAs we have separate input tree and run tree, for NTAs we can assume that the run
of the automaton over an input tree T = (∆T , `T) is an S-labeled tree R = (∆T , `R), which has the same
underlying tree as T , and thus is finite, but is labeled by states in S. Nonemptiness of NTAs is known
to be decidable [26]. As shown there, the set Acc of states of an NTA that leads to acceptance can be
computed by a simple fixpoint algorithm:

(1) Initially: Acc = ∅.

(2) At each iteration: Acc := Acc∪{s | αAcc |= δ(s, a) for some a ∈ L}, where αX is the truth assignment
that maps (c, s) to true precisely when s ∈ X,

It is known that such an algorithm can be implemented to run in linear time [27]. Thus, to check
nonemptiness we compute Acc and check that it has nonempty intersection with the set of initial states.

It remains to describe the translation of 2WATAs to NTAs. Given a 2WATA A = (L, S, s0, δ, α)
and an input tree T = (∆T , `T) as above, let T = 2S×[−1..k]×S ; that is, an element of T is a set of
transitions of the form (s, i, s′). A strategy for A on T is a mapping τ : ∆T → T . Thus, each label in
a strategy is an edge-[−1..k]-labeled directed graph on S. For each label ζ ⊆ S × [−1..k]× S, we define
state(ζ) = {u | (u, i, v) ∈ ζ}, i.e., state(ζ) is the set of sources in the graph ζ. In addition, we require the
following:

(1) for each node x ∈ ∆T and each state s ∈ state(τ(x)), the set {(c, s′) | (s, c, s′) ∈ τ(x)} satisfies
δ(s, `T (x)) (thus, each label can be viewed as a strategy of satisfying the transition function), and

(2) for each node x ∈ ∆T , and each edge (s, i, s′) ∈ τ(x), we have that s′ ∈ state(τ(x·i)).

A path β in the strategy τ is a maximal sequence (u0, s0), (u1, s1), . . . of pairs from ∆T × S such that
u0 = ε and, for all i ≥ 0, there is some ci ∈ [−1..k] such that (si, ci, si+1) ∈ τ(ui) and ui+1 = ui·ci. Thus,
β is obtained by following transitions in the strategy. The path β is accepting if the path s0, s1, . . . is
accepting. The strategy τ is accepting if all its paths are accepting.

Proposition 5 ([71]) A 2WATA A accepts an input tree T iff A has an accepting strategy for T .

We have thus succeeded in defining a notion of run for alternating automata that will have the same
tree structure as the input tree. We are still facing the problem that paths in a strategy tree can go both
up and down. We need to find a way to restrict attention to uni-directional paths. For this we need an
additional concept.

Let E be the set of relations of the form S × {0, 1} × S. Thus, each element in E is an edge-{0, 1}-
labeled directed graph on S. An annotation for A on T with respect to a strategy τ is a mapping
η : ∆T → 2S×{0,1}×S . Edge labels need not be unique; that is, an annotation can contain both triples
(s, 0, s′) and (s, 1, s′). We require η to satisfy some closure conditions for each node x ∈ ∆T . Intuitively,
these conditions say that η contains all relevant information about finite paths in τ . Thus, an edge
(s, c, s′) describes a path from s to s′, where c = 1 if this path goes through α. The conditions are:

(1) if (s, c, s′) ∈ η(x) and (s′, c′, s′′) ∈ η(x), then (s, c′′, s′′) ∈ η(x) where c′′ = max{c, c′},

(2) if (s, 0, s′) ∈ τ(x) then (s, c, s′) ∈ η(x), where c = 1 if s′ ∈ α and c = 0 otherwise,

13

(3) if y = x·i (for i > 0), (s, i, s′) ∈ τ(x), (s′, c, s′′) ∈ η(y), and (s′′,−1, s′′′) ∈ τ(y), then (s, c′, s′′′) ∈ η(x),
where c′ = 1 if s ∈ α, c = 1, or s′′′ ∈ α, and c′ = 0 otherwise.

(4) if x = y·i (for i > 0), (s,−1, s′) ∈ τ(x), (s′, c, s′′) ∈ η(y), and (s′′, i, s′′′) ∈ τ(y), then (s, c′, s′′′) ∈ η(x),
where c′ = 1 if s′ ∈ α, c = 1, or s′′′ ∈ α, and c′ = 0 otherwise.

The annotation η is accepting if for every node x ∈ ∆T and state s ∈ S, if (s, c, s) ∈ η(x), then c = 1. In
other words, η is accepting if all cycles visit accepting states.

Proposition 6 ([71]) A 2WATA A accepts an input tree T iff A has a strategy τ on T and an accepting
annotation η of τ .

Consider now an annotated tree (∆T , `T , τ, η), where τ is a strategy tree for A on (∆T , `T) and η is
an annotation of τ . We say that (∆T , `T , τ, η) is accepting if η is accepting.

Theorem 7 Let A be a 2WATA. Then there is an NTA An such that L (A) = L (An). The number of
states of An is at most exponential in the number of states of A.

Proof. The proof follows by specializing the construction in [71] to 2WATAs on finite trees.
Let A = (L, S, s0, δ, α) and let the input tree be T = (∆T , `T). The automaton An guesses mappings

τ : ∆T → T and η : ∆T → E and checks that τ is a strategy for A on T and η is an accepting annotation
for A on T with respect to τ . The state space of An is T × E ; intuitively, before reading the label of a
node x, An needs to be in state (τ(x), η(x)). The transition function of An checks that state, τ , and η
satisfies all the required conditions.

Formally, An = (L, Q,Q0, ρ), where

• Q = T × E ,

• We first define a function ρ : T × E × L × [1..k]→ 2T ×E :

We have that (r′, R′) ∈ ρ(r,R, a, i) if

1. if (s, i, s′) ∈ r, then s′ ∈ state(r′), if (s,−1, s′) ∈ r′, then s′ ∈ state(r),
2. if (s, c, s) ∈ R, then c = 1,

3. for each s ∈ state(r), the set {(c, s′) | (s, c, s) ∈ r} satisfies δ(s, a),

4. if (s, c, s′) ∈ R′ and (s′, c′, s′′) ∈ R′, then (s, c′′, s′′) ∈ R′ where c′′ = max{c, c′},
5. if (s, 0, s′) ∈ r, then (s, c, s′) ∈ R, where c = 1 if s′ ∈ α and c = 0 otherwise,

6. if (s, i, s′) ∈ r, (s′, c, s′′) ∈ R′, and (s′′,−1, s′′′) ∈ r′, then (s, c′, s′′′) ∈ r, where c′ = 1 if s ∈ α,
c = 1, or s′′′ ∈ α, and c′ = 0 otherwise,

7. if (s,−1, s′) ∈ r′, (s′, c, s′′) ∈ R, and (s′′, i, s′′′) ∈ r, then (s, c′, s′′′) ∈ R′, where c′ = 1 if either
s′ ∈ α, c = 1, or s′′′ ∈ α, and c′ = 0 otherwise.

Intuitively, the transition function ρ checks that all conditions on the strategy and annotation hold,
except for the condition on the strategy at the root.

We now define ρ(r,R, a) =
∨

1≤i≤k
∧

(r′,R′)∈ρ(r,R,a,i)(i, r
′, R′). If, however, we have that (∅, ∅) ∈

ρ(r,R, a, i) for all 1 ≤ i ≤ k, then we define ρ(r,R, a) = true.

• The set of initial states is Q0 = {(r,R) | s0 ∈ state(r) and there is no transition (s,−1, s′) ∈ r}.

It follows from the argument in [71] that An accepts a tree T iff A has a strategy tree on T and an
accepting annotation of that strategy.

We saw earlier that nonemptiness of NTAs can be checked in linear time. From Proposition 6 we now
get:

Theorem 8 Given a 2WATA A with n states and an input alphabet with m elements, deciding nonempti-
ness of A can be done in time exponential in n and linear in m.

14

The key feature of the state space of An is the fact that states are pairs consisting of subsets of
S × {0, 1} × S and S × [−1..k]× S. Thus, a set of states of An can be described by a Boolean function
on the domain S4 × {0, 1} × [−1..k]. Similarly, the transition function of An can also be described as a
Boolean function. Such functions can be represented by binary decision diagrams (BDDs) [12], enabling
a symbolic implementation of the fixpoint algorithm discussed above.

We note that the framework of [71] also converts a two-way alternating tree automaton (on infinite
trees) to a nondeterministic tree automaton (on infinite trees). The state space of the latter, however,
is considerably more complex than the one obtained here. In fact, the infinite-tree automata-theoretic
approach so far has resisted attempts at practically efficient implementation [62, 66], due to the use of
Safra’s determinization construction [60] and parity games [40]. This makes it very difficult in practice
to apply the symbolic approach in the infinite-tree setting.

5 Query Evaluation and Reasoning on µXPath

We now exploit the correspondence between µXPath and 2WATAs we establish the main characteristics
of µXPath as a query language over sibling trees. We recall that sibling trees can be encoded in (well-
formed) binary trees in linear time, and hence we blur the distinction between the two.

5.1 Query Evaluation

We can evaluate µXPath queries over sibling trees by exploiting the correspondence with 2WATAs,
obtaining the following complexity characterization.

Theorem 9 Given a (binary) sibling tree T and a µXPath query q, we can compute qT in time that is
linear in the number of nodes of T (data complexity) and in the size of q (query complexity).

Proof. By Theorem 1, we can construct from q a 2WATA Aq whose number of states is linear in the
size of q. On the other hand, the well-formed binary tree πb(T) induced by T can be built in linear time.
By Theorem 4, we can evaluate Aq over πb(T) in linear time in the product of the sizes of Aq and πb(T)
by constructing the product automaton Aq × πb(T)x (where x is an arbitrary node of πb(T)). Notice
that, while the alphabet of Aq is the powerset of the alphabet of q, in Aq × πb(T)x only the labels that
actually appear in πb(T) are used, hence the claim follows.

5.2 Query Satisfiability and Containment

We now turn our attention to query satisfiability and containment. A µXPath query q is satisfiable if
there is a sibling tree Ts and a node x in Ts that is returned when q is evaluated over Ts. A µXPath query
q1 is contained in a µXPath query q2 if for every sibling tree Ts, the query q1 selects a subset of the nodes
of Ts selected by q2. Checking satisfiability and containment of queries is crucial in several contexts,
such as query optimization, query reformulation, knowledge-base verification, information integration,
integrity checking, and cooperative answering [37, 13, 53, 19, 47, 46, 52] Obviously, query containment
is also useful for checking equivalence of queries, i.e., verifying whether for all databases the answer to
a query is the same as the answer to another query. For a summary of results on query containment in
graph and tree-structured data, see [16, 6, 5].

Satisfiability of a µXPath query q can be checked by checking the non-emptiness of a 2WATA Awf
q .

Such automaton Awf
q accepts a binary tree T (i.e., selects its root ε) if and only if (i) T is well-formed

(and hence correspond to a binary sibling tree), and (ii) Aq selects a non-deterministically chosen node x
from T . Formally, given Aq = (L, Sq, sq, δq, αq), the 2WATA Awf

q = (L, S, sini , δ, α) is defined as follows:

• The set of states is S = Sq ∪ {sini , sstruc , s0
q}, where sini is the initial state, sstruc is used to check

structural properties of well-formed trees, and s0
q is used to non-deterministically move to a node

from which to check q.

• The transition function is constituted by all transitions in δq, plus the following transitions:

1. For each λ ∈ L, there is a transition

δ(sini , λ) = (0, sstruc) ∧ (0, s0
q)

Such transitions move both to state sstruc , from which structural properties of the tree are
verified, and to state s0

q used to non-deterministically choose a node to be selected by Aq.

15

2. For each λ ∈ L, there is a transition

δ(sstruc , λ) = ((0,¬hfc) ∨ ((1, ifc) ∧ (1,¬irs) ∧ (1, sstruc))) ∧
((0,¬hrs) ∨ ((2, irs) ∧ (2,¬ifc) ∧ (2, sstruc)))

Such transitions check that, (i) for a node labeled with hfc, its left child is labeled with ifc but
not with irs, and satisfies the same structural property; and (ii) for a node labeled with hrs,
its right child is labeled with irs but not with ifc, and satisfies the same structural property.

3. For each λ ∈ L, there is a transition

δ(s0
q, λ) = (0, sq) ∨ (1, s0

q) ∨ (2, s0
q)

Such transitions non-deterministically either verify that q holds at the current node by moving
to the initial state sq of Aq, or move downwards in the tree to repeat the same checks at the
children.

• The set of accepting states is α = αq∪{sstruc}. The states sini and sstruc form each a single element
of the partition of states, where {sini} precedes all other elements, and {sstruc} follows them.

As for the size of Awf
q , by Theorem 1, and considering that the additional states and transitions in Awf

q

are of constant size, which does not depend on q, we get that the number of states of Awf
q is linear in the

size of q.

Proposition 10 Let q be a µXPath query, and Awf
q the corresponding 2WATA constructed as above.

Then Awf
q is nonempty if and only if q is satisfiable.

Proof. “⇒” Let Awf
q accept a binary tree T . Consider the subtree T ′ of T where every subtree

rooted at a node in which neither hfc nor hrs holds is pruned away. By Transitions (1), and (2) in the
definition of Awf

q , we have that T ′ is well-formed, and hence we can consider the sibling tree Ts = πs(T
′)

induced by T ′. Considering that by Transitions (3), there is node x that is selected by Aq from T ′, and
that T ′ = πb(Ts), by Theorem 1, we have that q selects x from Ts, and hence is satisfiable.

“⇐” If q is satisfiable, then there exists a sibling tree Ts and a node x in Ts that is selected by q. By
Theorem 1, Aq selects x from πb(Ts), and being πb(Ts) well-formed by construction, Awf

q accepts πb(Ts).

From the above result, we obtain a characterization of the computational complexity for both query
satisfiability and query containment.

Theorem 11 Checking satisfiability of a µXPath query is ExpTime-complete.

Proof. For the upper bound, by Theorem 10, checking satisfiability of a µXPath query q can be
reduced to checking nonemptiness of the 2WATA Awf

q . Awf
q has just three states more than Aq, which

in turn, by Theorem 1 has a number of states that is linear in the size of q and an alphabet whose size
is exponential in the size of the alphabet of q. Finally, by Theorem 8 checking nonemptiness of Awf

q can
be done in time exponential in its number of states and linear in the size of its alphabet, from which the
claim follows.

For the hardness, it suffices to observe that satisfiability of RXPath queries, which can be encoded in
linear time into µXPath (see Section 2), is already ExpTime-hard [3].

Theorem 12 Checking containment between two µXPath queries is ExpTime-complete.

Proof. To check query containment (X1 : F1) ⊆ (X2 : F2), it suffices to check satisfiability of the
µXPath query X0 : F1 ∪ F2 ∪ {lfp{X0 = X1 ∧ ¬X2}}, where without loss of generality we have assumed
that the variables defined in F1 and F2 are disjoint and different from X0. Hence, by Theorem 11, we
get the upper bound.

For the lower bound, it suffices to observe that query (X1 : F1) is unsatisfiable if and only if it is
contained in the query X2 : {lfp{X0 = false}}.

16

5.3 Root Constraints

Following [50], we now introduce root constraints, which in our case are µXPath formulas intended to be
true on the root of the document, and study the problem of reasoning in the presence of such constraints.
Formally, the root constraint ϕ is satisfied in a sibling tree Ts if ε ∈ ϕTs . A (finite) set Γ of root constraints
is satisfiable if there exists a sibling tree Ts that satisfies all constraints in Γ. A set Γ of root constraints
logically implies a root constraint ϕ, written Γ |= ϕ, if ϕ is satisfied in every sibling tree that satisfies all
constraints in Γ.

Root constraints are indeed a quite powerful mechanism to describe structural properties of docu-
ments. For example, as shown in [51], RXPath (and hence µXPath) formulas allow one to express all
first-order definable sets of nodes, and this allows for quite sophisticated conditions as root constraints. In
fact, µXPath differently from RXPath [3], can express arbitrary MSO root constraints (see Section 6.2).

Also they allow for capturing XML DTDs3 by encoding the right-hand side of DTD element definitions
in a suitable path along the right axis. We illustrate the latter on a simple example (cf. also [15, 50] for
a similar encoding).

Consider the following DTD element type definition (using grammar-like notation, with “,” for con-
catenation and “|” for union), where A is the element type being defined, and C, D, E are element
types:

A −→ B, (C∗|D), E

The constraint on the sequence of children of an A-node that is imposed on an XML document by such
an element type definition, can be directly expressed through the following RXPath constraint:

[u](A→ 〈fchild;B?; ((right;C?)∗ ∪ (right;D?)); right;E?〉[right]false)

where u is an abbreviation for the path expression (fchild ∪ right)∗, and we have assumed to have one
atomic proposition for each element type, and that such proposition are pairwise disjoint (in turn enforced
through a suitable RXPath constraint). Similarly, by means of (RXPath) root constraints, one can express
also Specialized DTDs [58] and the structural part of XML Schema Definitions4 (cf. [50]).

XPath includes identifiers, which are special propositions that hold in a single node of the sibling tree.
It is easy to see that the following root constraint NA forces a proposition A to be an identifier:

NA = 〈u〉A ∧ (1)
[u]((〈fchild;u〉A→ [right;u]¬A) ∧

(〈right;u〉A→ [fchild;u]¬A) ∧
(A→ [(fchild ∪ right);u]¬A))

(2)
(3)
(4)

In the above constraint, Line 1 expresses that there exists a node of the tree where A holds. Line 2
expresses that, if a node where A holds exists in the fchild subtree of a node n, then A never holds in the
right subtree of n. Line 3 is analogous to Line 2, with fchild and right swapped. Finally, Line 4 expresses
that, if A holds in a node n, then it holds neither in the fchild nor in the right subtree of n.

It is immediate to see that every set {X1 : F1, . . . Xk : Fk} of µXPath root constraint can be expressed
as a µXPath query that selects only the root of the tree:

Xr : {lfp{Xr
.
= ([fchild−]false) ∧ ([right−]false) ∧X1 ∧ · · · ∧Xk}} ∪ F1 ∪ · · · ∪ Fk.

As a consequence, checking for satisfiability and logical implication of root constraints can be directly
reduced to satisfiability and containment of µXPath queries. Considering that satisfiability and logical
implication is already ExpTime-hard for RXPath root constraints [50], we get the following result.

Theorem 13 Satisfiability and logical implication of µXPath root constraints are ExpTime-complete.

We can also consider query satisfiability and query containment under root constraints, i.e., with
respect to all sibling trees that satisfy the constraints. Indeed, a µXPath query Xq : Fq can be expressed
as the root constraint:

Xr : {lfp{Xr
.
= Xq ∨ (〈fchild〉Xr) ∨ (〈right〉Xr)}} ∪ Fq.

Hence, we immediately get the following result.

3http://www.w3.org/TR/REC-xml/
4http://www.w3.org/TR/xmlschema-1

17

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmlschema-1

Theorem 14 Satisfiability and containment of µXPath queries under µXPath root constraints are
ExpTime-complete.

Proof. The upper bound follows from Theorem 13. The lower bound follows from Theorems 11
and 12, by considering an empty set of constraints.

5.4 View-based Query Processing

View-based query processing is another form of reasoning that has recently drawn a great deal of attention
in the database community [38, 39]. In several contexts, such as data integration, query optimization,
query answering with incomplete information, and data warehousing, the problem arises of processing
queries posed over the schema of a virtual database, based on a set of materialized views, rather than
on the raw data in the database [1, 45, 70]. For example, an information integration system exports a
global virtual schema over which user queries are posed, and such queries are answered based on the
data stored in a collection of data sources, whose content in turn is described in terms of views over the
global schema. In such a setting, each data source corresponds to a materialized view, and the global
schema exported to the user corresponds to the schema of the virtual database. Notice that typically,
in data integration, the data in the sources are correct (i.e., sound) but incomplete with respect to their
specification in terms of the global schema. This is due the fact that typically the global schema is not
designed taking the sources into account, but rather the information needs of users. Hence it may not be
possible to precisely describe the information content of the sources. In this paper we will concentrate
on this case (sound views), cf. [45].

Consider now a sibling tree that is accessible only through a collection of views expressed as µXPath
queries, and suppose we need to answer a further µXPath query over the tree only on the basis of our
knowledge on the views. Specifically, the collection of views is represented by a finite set V of view
symbols, each denoting a set of tree nodes. Each view symbol V ∈ V has an associated view definition
qV and a view extension EV . The view definition qV is simply a µXPath query. The view extension EV is
a set of node references, where each node reference is either an identifier, or an explicit path expression
that is formed only by chaining fchild and right and that identifies the node by specifying how to reach
it from the root. Observe that a node reference a is interpreted in a sibling tree Ts as a singleton set
of nodes aTs . We use (EV)Ts to denote the set of nodes resulting from interpreting the node references
in Ts. We say that a sibling tree Ts satisfies a view V if (EV)Ts ⊆ (qV)Ts . In other words, in Ts all the
nodes denoted by (EV)Ts must appear in (qV)Ts , but (qV)Ts may contain nodes not in (EV)Ts .

Given a set V of views, and a µXPath query q, the set of certain answers to q with respect to V
under root constraints Γ is the set certq,V,Γ of node references a such that aTs ∈ qTs , for every sibling tree
Ts satisfying each V ∈ V and each constraint in Γ. View-based query answering under root constraints
consists in deciding whether a given node reference is a certain answer to q with respect to V.

View-based query answering can also be reduced to satisfiability of root constraints. Given a view V ,
with extension EV and definition XV : FV , for each a ∈ EV :

• if a is an identifier, then we introduce the root constraint

Xa : {lfp{Xa
.
= a ∧XV ∨ (〈fchild〉Xa) ∨ (〈right〉Xa)}} ∪ FV .

• if a is an explicit path expressions P1; · · · ;Pn, then we introduce the root constraint

Xa : {lfp{Xa
.
= 〈P1〉 · · · 〈Pn〉XV }} ∪ FV .

Let ΓV be the set of µXPath root constraints corresponding to the set of µXPath views V, q = Xq : Fq a
µXPath query, and Γ a finite set of root constraints. Then a node reference c belongs to certq,V,Γ if and
only if the following set of root constraints is unsatisfiable:

Γ ∪ ΓV ∪ Γid ∪ Γ¬q,

where Γid consists of one root constraint Na imposing that a behaves as an identifier (see above), for
each node a appearing in V, and:

• if c is and identifier, then Γ¬q is

Xc : {lfp{Xc
.
= c ∧ ¬Xq ∨ (〈fchild〉Xc) ∨ (〈right〉Xc)}} ∪ Fq.

18

• if c is an explicit path expressions P1; · · · ;Pn, then Γ¬q is

Xc : {lfp{Xc
.
= 〈P1〉 · · · 〈Pn〉¬Xq}} ∪ Fq.

Hence we have linearly reduced view-based query answering under root constraints to unsatisfiability of
µXPath root constraints, and the following result immediately follows.

Theorem 15 View-based query answering under root constraints in µXPath is ExpTime-complete.

We conclude this section by observing that reasoning over RXPath formulas can be reduced to checking
satisfiability in Propositional Dynamic Logics (PDLs), as shown in [50]. Specifically, one can resort to
Repeat-Converse-Deterministic PDL (repeat-CDPDL), a variant of PDL that allows for expressing the
finiteness of trees and for which satisfiability is ExpTime-complete [71]. This upper bound, however,
is established using sophisticated infinite-tree automata-theoretic techniques, which, we just point out
have resisted practically efficient implementations. The main advantage of our approach here is that
we use only automata on finite trees, which require a much “lighter” automata-theoretic machinery.
Indeed, symbolic-reasoning-techniques, including BDDs and Boolean saisfiability solving have been used
successfully for XML reasoning [31]. We leave further exploration of this aspect to future work.

6 Relationship among µXPath , 2WATAs, and MSO

In this section, we show that µXPath is expressively equivalent to Monadic Second-Order Logic (MSO).
We have already shown that µXPath is equivalent to 2WATAs, hence it suffices to establish the relation-
ship between 2WATAs and MSO. To do so we make use of nondeterministic node-selecting tree automata,
which were introduced in [30], following earlier work on deterministic node-selecting tree automata in [55].
(For earlier work on MSO and Datalog, see [33, 34].) For technical convenience, we use here top-down,
rather than bottom-up automata. It is also convenient here to assume that the top-down tree automata
run on full binary trees, even though our binary trees are not full. Thus, we can assume that there is
a special label ⊥ such that a node that should not be present in the tree (e.g., left child of a node that
does not contain hfc in its label) is labeled by ⊥.

A nondeterministic node-selecting top-down tree automaton (NSTA) on binary trees is a tuple A =
(L, S, S0, δ, F, σ), where L is the alphabet of tree labels, S is a finite set of states, S0 ⊆ S is the initial

state set, δ : S × L → 2S
2

is the transition function, F ⊆ S is a set of accepting states, and σ ⊆ S is
a set of selecting states. Given a tree T = (∆T , `T), an accepting run of A on T is an S-labeled tree
R = (∆T , `R), with the same node set as T , where:
• `R(ε) ∈ S0.
• If x ∈ ∆T is an interior node, then 〈`R(x · 1), `R(x · 2)〉 ∈ δ(`R(x), `T (x)).
• If x ∈ ∆T is a leaf, then δ(`R(x), `T (x)) ∩ F 2 6= ∅.

A node x ∈ ∆T is selected by A from T if there is a run R = (∆T , `R) of A on T such that `R(x) ∈ σ.
The notion of accepting run used here is standard, cf. [22]. It is the addition of selecting states that turns
these automata from a model of tree recognition to a model of tree querying.

Theorem 16 [30] (i) For each MSO query ϕ(x), there is an NSTA Aϕ such that a node x in a tree
T = (∆T , `T) satisfies ϕ(x) iff x is selected from T by Aϕ. (ii) For each NSTA A, there is an MSO
query ϕA such that a node x in a tree T = (∆T , `T) satisfies ϕA(x) iff x is selected by A from T .

We now establish back and forth translations between 2WATAs and NSTAs, implying the equivalence
of 2WATAs and MSO.

6.1 From 2WATAs to NSTAs

Theorem 17 For each 2WATA A, there is an NSTA A′ such that a node x in a binary tree T is selected
by A if and only if it is selected by A′.

Proof. In Section 4.2, we described a translation of 2WATAs to NTAs. Both the 2WATA and the
NTA start their runs there from the root ε of the tree. Here we need the 2WATA to start its run from
a node x0 ∈ ∆T , on one hand, and we want the NSTA to select this node x0. Note, however, that the
fact that the 2WATA starts its run from ε played a very small role in the construction in Section 4.2.

19

Namely, we defined the set of initial states as: Q0 = {(r,R) | s0 ∈ state(r) and there is no transition
(s,−1, s′) ∈ r}. The requirement that s0 ∈ state(r) corresponds to the 2WATA starting its run in ε.

More generally, however, we can say that the strategy τ is anchored at a node x0 ∈ ∆T if we have
s0 ∈ state(τ(x0)). In particular, the strategies studied in Section 4.2 are anchored at ε.

We can now relax the claims in Section 4.2:

Claim 1 [71]

1. A node x0 of T is selected by the 2WATA A iff A has an accepting strategy for T that is anchored
at x0.

2. A node x0 of T is selected by the 2WATA A iff A has a strategy for T that is anchored at x0 and
an accepting annotation η of τ .

To match this relaxation in the construction of the NSTA, we need to redefine the set of initial
states as Q0 = {(r,R) | there is no transition (s,−1, s′) ∈ r}, which means that the requirement that the
2WATA starts its run from the root is dropped, as the strategy guessed by the NSTA no longer needs to
be anchored at ε. Instead, we want the strategy to be anchored at the node x0 selected by A. To that
end, we define the set of selecting states as σ = {(r,R) ∈ T × E | s0 ∈ state(r)}. That is, if A starts its
run at x0, then the strategy needs to be anchored at x0 and x0 is selected by the NSTA.

Finally, while the NTA constructed in Section 4 accepts when the transition function yields the truth
value true, the NSTA accepts by means of accepting states. We can simply add a special accepting state
accept and transition to it whenever the transition function yields true.

We remark that the translation from 2WATA to NSTA is exponential. Together with the results
in the previous sections, we get an exponential translation from µXPath to NSTAs. This explains why
NSTAs are not useful for efficient query-evaluation algorithms, as noted in [64].

6.2 From NSTAs to 2WATAs

For the translation from NSTAs to 2WATAs, the idea is to take an accepting run of an NSTA, which
starts from the root of the tree, and convert it to a run of a 2WATA, which starts from a selected node.
The technique is related to the translation from tree automata to Datalog in [34]. The construction here
uses the propositions ifc, irs, hfc, and hrs introduced earlier.

Theorem 18 For each NSTA A, there is a 2WATA A′ such that a node x0 in a tree T is selected by A
if and only if it is selected by A′.

Proof. Let A = (L, S, S0, δ, F, σ) be an NSTA. We construct an equivalent 2WATA A′ = (L, S′, s′0, δ′, α′)
as follows (for s ∈ S and a ∈ L):

• S′ = {s0} ∪ S × {u, d, l, r} ∪ Σ. (We add a new initial state, and we keep four copies, tagged with
u, d, l, or r of each state in S. We also add the alphabet to the set of states.)

• α′ = ∅. (Infinite branches are not allowed in runs of A′.)

• δ′(s0, a) =
∨
s∈σ(((s, d), 0) ∧ ((s, u), 0)). (A′ guesses a selecting state of A and spawns two copies,

tagged with d and u, respectively to go downwards and upwards.)

• If a does not contain hfc and does not contain hrs (that is, we are reading a leaf node), then
δ′((s, d), a) = true if δ(s, a) ∩ F 2 6= ∅, and δ′((s, d), a) = false if δ(s, a) ∩ F 2 = ∅. (In a leaf node,
a transition from (s, d) either accepts or rejects, just like A from s.)

• If a contains hfc or hrs (that is, we are reading an interior node), then δ′((s, d), a) =∨
(t1,t2)∈δ(s,a)((t1, d), 1)∧ ((t2, d), 2). (States tagged with d behave just like the corresponding states

of A.)

• If a contains neither ifc nor irs (that is, we are reading the root node), then δ′((s, u), a) = true if
s ∈ S0, and δ′((s, u), a) = false, otherwise (that is, if an upword state reached the root, then we
just need to check that the root has been reached with an initial state),

• If a contains ifc (it is a left child), then δ′((s, u), a) =
∨
t∈S,a′∈L,(s,t′)∈δ(t,a′)((t, u),−1) ∧ (a′,−1) ∧

((t′, r),−1). (Guess a state and letter in the node above, and proceed to check them.)

20

• If a contains irs (it is a right child), then δ′((s, u), a) =
∨
t∈S,a′∈L,(t′,s)∈δ(t,a′)((t, u),−1)∧ (a′,−1)∧

((t′, l),−1). (Guess a state and letter in the node above, and proceed to check them.)

• δ′(a′, a) = true if a′ = a and δ′(a′, a) = false if a′ 6= a. (Check that the guessed letter was correct.)

• δ′((s, l), a) = ((s, d), 1). (Check left subtree.)

• δ′((s, r), a) = ((s, d), 2). (Check right subtree.)

Intuitively, A′ tries to guess an accepting run of A that selects x0. A′ starts at x0 in a selecting state
of A, guesses the subrun below x0, and also goes up the tree to guess the rest of the run. Note that we
need not worry about cycles in the run of A′, as it only goes upward in the u mode, and once it leaves
the u mode it never enters again the u mode.

We need to show that that a node x0 in a tree T is selected by A if and only if it is selected by A′.
If a node x0 of T is selected by A, then A has an accepting run on T that reaches x0 in some selecting
state sa ∈ σ. Then A′ starts its run at x0 in state sa, and it proceeds to emulate precisely the accepting
run of A. More precisely, at x0 A′ branches conjunctively to both (sa, d) and (sa, u). From (sa, d), A′

continues downwards and emulate the run of A. That is, if A reaches a node x below x0 in state s, then
A′ reaches x in state (s, d). At the leaves, A transitions to accepting states, and A′ transitions to true.
From (sa, u), A′ first continues upwards. Let x be a node above x0 such that (1) x0 is at or below the left
child of x, (2) x is labeled by the letter a, and (3) x is reached by A in state t, and A reaches the right
child of x in state t′. Then A′ reaches x with states (t, u), a, and (t′, r). Then A′ continues the upward
emulation from (t, u), verifies that a is the letter at x, and also transitions to the right child in state
(t′, d), from which it continues with the downward emulation of A. The upward emulation eventually
reaches the root in an initial state.

On the other hand, for A′ to select x0 in T it must start at x0 in some state sa ∈ σ. While A′ is
a 2WATA and its run is a run tree, this run tree has a very specific structure. From a state (s, d), A′

behaves just like an NTA. From a state (s, u), A′ proceeds upward, trying to label every node on the
path to the root with a single state, such that the root is labeled by an initial state, and from every node
on that path A′ can then go downward, again labeling each node by a single state. Thus, A′ essentially
guesses an accepting run tree of A that selects x0.

While the translation from 2WATAs to NSTAs was exponential, the translation from NSTAs to
2WATAs is linear. It follows from the proof of Theorem 18 that the automaton A′ correspond to lfp-
µXPath, which consists of µXPath queries with a single, least fixpoint block. This clarifies the relationship
between µXPath and Datalog-based languages studied in [34, 30]. In essence, µXPath corresponds to
stratified monadic Datalog, where rather than use explicit negation, we use alternation of least and
greatest fixpoints, while lfp-µXPath corresponds to monadic Datalog. The results of the last two sections
provide an exponential translation from µXPath to lfp-µXPath. Note, however, that lfp-µXPath does
not have a computational advantage over µXPath, for either query evaluation or query containment.
In contrast, while stratified Datalog queries can be evaluated in polynomial time (in terms of data
complexity), there is no good theory for containment of stratified monadic Datalog queries.

The above results provide us a characterization of the expressive power of µXPath.

Theorem 19 Over (binary) sibling trees, µXPath and MSO have the same expressive power.

Proof. By Theorems 1 and 2, µXPath is equivalent to WATAs, and by Theorems 16, 17, and 18,
2WATAs are equivalent to MSO.

7 Conclusion

The results of this paper fill a gap in the theory of node-selection queries for trees. With a natural
extension of XPath by fixpoint operators, we obtained µXPath, which is expressively equivalent to MSO,
has linear-time query evaluation and exponential-time query containment, as RXPath. 2WATAs, the
automata-theoretic counterpart of µXPath, fills another gap in the theory by providing an automaton
model that can be used for both query evaluation and containment testing. Unlike much of the theory of
automata on infinite trees, which so far has resisted implementation, the automata-theoretic machinery
over finite trees should be much more amenable to practical implementations

21

Our automata-theoretic approach is based on techniques developed in the context of program logics
[44, 71]. Here, however, we leverage the fact that we are dealing with finite trees, rather than the
infinite trees used in the program-logics context. Indeed, the automata-theoretic techniques used in
reasoning about infinite trees are notoriously difficult [62, 66] and have resisted efficient implementation.
The restriction to finite trees here enables us to obtain a much more feasible algorithmic approach. In
particular, as pointed out in [17], one can make use of symbolic techniques, at the base of modern model
checking tools, for effectively querying and verifying XML documents. It is worth noting that while our
automata run over finite trees they are allowed to have infinite runs. This separates 2WATAs from the
alternating tree automata used in [23, 65]. The key technical results here are that acceptance of trees by
2WATAs can be decided in linear time, while nonemptiness of 2WATAs can be decided in exponential
time.

References

[1] Serge Abiteboul and Oliver Duschka. Complexity of answering queries using materialized views.
In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS), pages 254–265, 1998.

[2] L. Afanasiev, T. Grust, M. Marx, J. Rittinger, and J. Teubner. An inflationary fixed point operator
in XQuery. In Proc. of the 24th IEEE Int. Conf. on Data Engineering (ICDE), pages 1504–1506,
2008.

[3] Loredana Afanasiev, Patrick Blackburn, Ioanna Dimitriou, Bertrand Gaiffe, Evan Goris, Maarten
Marx, and Maarten de Rijke. PDL for ordered trees. J. of Applied Non-Classical Logics, 15(2):115–
135, 2005.

[4] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2003.

[5] Pablo Barceló Baeza. Querying graph databases. In Proc. of the 32nd ACM SIGACT SIGMOD
SIGAI Symp. on Principles of Database Systems (PODS), pages 175–188, 2013.

[6] Henrik Björklund, Wim Martens, and Thomas Schwentick. Conjunctive query containment over
trees. J. of Computer and System Sciences, 77(3):450–472, 2011.

[7] Mikolaj Bojanczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-
variable logic on data words. ACM Trans. on Computational Logic, 12(4):27, 2011.

[8] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic on
data trees and XML reasoning. J. of the ACM, 56(3):13:1–13:48, 2009.

[9] Mikolaj Bojanczyk and Pawel Parys. XPath evaluation in linear time. In Proc. of the 27th ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS), pages 241–250,
2008.

[10] Piero Bonatti, Carsten Lutz, Aniello Murano, and Moshe Y. Vardi. The complexity of enriched
µ-calculi. Logical Methods in Computer Science, 4(3:11):1–27, 2008.

[11] Patricia Bouyer. A logical characterization of data languages. Information Processing Lett., 84(2):75–
85, 2002.

[12] Randal E. Bryant. Graph-based algorithms for Boolean-function manipulation. IEEE Trans. on
Computers, C-35(8):677–691, 1986.

[13] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A query language and optimiza-
tion technique for unstructured data. In Proc. of the ACM SIGMOD Int. Conf. on Management of
Data, pages 505–516, 1996.

[14] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking:
1020 states and beyond. Information and Computation, 98(2):142–170, 1992.

22

[15] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Representing and reasoning on
XML documents: A description logic approach. J. of Logic and Computation, 9(3):295–318, 1999.

[16] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-based query
answering and query containment over semistructured data. In Giorgio Ghelli and Gösta Grahne,
editors, Revised Papers of the 8th International Workshop on Database Programming Languages
(DBPL 2001), volume 2397 of Lecture Notes in Computer Science, pages 40–61. Springer, 2002.

[17] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. An automata-
theoretic approach to Regular XPath. In Proc. of the 12th Int. Symp. on Database Programming
Languages (DBPL), volume 5708 of Lecture Notes in Computer Science, pages 18–35. Springer, 2009.

[18] Diego Calvanese, Giuseppe De Giacomo, and Moshe Y. Vardi. Node selection query languages for
trees. In Proc. of the 24th AAAI Conf. on Artificial Intelligence (AAAI), pages 279–284, 2010.

[19] S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, and K. Shim. Optimizing queries with materialized
views. In Proc. of the 11th IEEE Int. Conf. on Data Engineering (ICDE), pages 190–200, 1995.

[20] James Clark and Steve DeRose. XML path language (XPath) version 1.0. W3C Recommenda-
tion, World Wide Web Consortium, November 1999. Available at http://www.w3.org/TR/1999/

REC-xpath-19991116.

[21] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof Loöding,
Sophie Tison, and Marc Tommasi. Tree automata techniques and applications. Available at http:

//www.grappa.univ-lille3.fr/tata/, 2008.

[22] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Sophie Tison,
and Marc Tommasi. Tree automata techniques and applications. Available at http://www.grappa.
univ-lille3.fr/tata/, 2002.

[23] Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable op-
timization problems for database logic programs. In Proc. of the 20th ACM SIGACT Symp. on
Theory of Computing (STOC), pages 477–490, 1988.

[24] Giuseppe De Giacomo and Maurizio Lenzerini. Concept language with number restrictions and fix-
points, and its relationship with µ-calculus. In Proc. of the 11th Eur. Conf. on Artificial Intelligence
(ECAI), pages 411–415, 1994.

[25] Stéphane Demri and Ranko Lazić. LTL with the Freeze quantifier and register automata. ACM
Trans. on Computational Logic, 10(3):1–30, 2009.

[26] John E. Doner. Decidability of the weak second-order theory of two successors. Notices Amer. Math.
Soc., 12:819, 1965.

[27] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability of propositional
horn formulae. J. of Logic Programming, 1(3):267–284, 1984.

[28] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the mu-calculus. In Proc. of
the 1st IEEE Symp. on Logic in Computer Science (LICS), pages 267–278, 1986.

[29] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs. J. of
Computer and System Sciences, 18:194–211, 1979.

[30] Markus Frick, Martin Grohe, and Christoph Koch. Query evaluation on compressed trees (extended
abstract). In Proc. of the 18th IEEE Symp. on Logic in Computer Science (LICS), pages 188–197,
2003.

[31] Pierre Genevès and Nabil Layäıda. XML reasoning made practical. In Proc. of the 26th IEEE Int.
Conf. on Data Engineering (ICDE), pages 1169–1172, 2010.

[32] Pierre Genevès, Nabil Layäıda, and Alan Schmitt. Efficient static analysis of XML paths and types.
In Proc. of the ACM SIGPLAN 2007 Conf. on Programming Language Design and Implementation
(PLDI 2007), pages 342–351, 2007.

23

http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.grappa.univ-lille3.fr/tata/
http://www.grappa.univ-lille3.fr/tata/
http://www.grappa.univ-lille3.fr/tata/
http://www.grappa.univ-lille3.fr/tata/

[33] Georg Gottlob and Christoph Koch. Monadic Datalog and the expressive power of languages for web
information extraction. In Proc. of the 21st ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS), pages 17–28, 2002.

[34] Georg Gottlob and Christoph Koch. Monadic Datalog and the expressive power of languages for
web information extraction. J. of the ACM, 51(1):74–113, 2004.

[35] Georg Gottlob, Christoph Koch, and Reihard Pichler. Efficient algorithms for processing XPath
queries. ACM Trans. on Database Systems, 30(2):444–491, 2005.

[36] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite Games:
A Guide to Current Research, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.
Outcome of a Dagstuhl seminar in February 2001.

[37] Ashish Gupta and Jeffrey D. Ullman. Generalizing conjunctive query containment for view main-
tenance and integrity constraint verification (abstract). In Workshop on Deductive Databases (In
conjunction with JICSLP), page 195, Washington D.C. (USA), 1992.

[38] Alon Y. Halevy. Theory of answering queries using views. SIGMOD Record, 29(4):40–47, 2000.

[39] Alon Y. Halevy. Answering queries using views: A survey. Very Large Database J., 10(4):270–294,
2001.

[40] M. Jurdzinski. Small progress measures for solving parity games. In Proc. of the 17th Symp.
on Theoretical Aspects of Computer Science (STACS), volume 1770 of Lecture Notes in Computer
Science, pages 290–301. Springer, 2000.

[41] Michael Kaminski and Tony Tan. Tree automata over infinite alphabets. In Pillars of Computer
Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, volume
4800 of Lecture Notes in Computer Science, pages 386–423. Springer, 2008.

[42] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer Science, 27:333–354,
1983.

[43] Orna Kupferman, Ulrike Sattler, and Moshe Y. Vardi. The complexity of the graded mu-calculus.
In Proc. of the 18th Int. Conf. on Automated Deduction (CADE), 2002.

[44] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach to
branching-time model checking. J. of the ACM, 47(2):312–360, 2000.

[45] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21st ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS), pages 233–246, 2002.

[46] Alon Y. Levy and Marie-Christine Rousset. Verification of knowledge bases: a unifying logical view.
In Proc. of the 4th European Symposium on the Validation and Verification of Knowledge Based
Systems, Leuven, Belgium, 1997.

[47] Alon Y. Levy and Yehoshua Sagiv. Semantic query optimization in Datalog programs. In Proc.
of the 14th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS),
pages 163–173, 1995.

[48] Leonid Libkin. Logics for unranked trees: An overview. Logical Methods in Computer Science, 2(3),
2006.

[49] Leonid Libkin and Cristina Sirangelo. Reasoning about XML with temporal logics and automata.
In Proc. of the 15th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), pages 97–112, 2008.

[50] Maarten Marx. XPath with conditional axis relations. In Proc. of the 9th Int. Conf. on Extending
Database Technology (EDBT), volume 2992 of Lecture Notes in Computer Science, pages 477–494.
Springer, 2004.

[51] Maarten Marx. First order paths in ordered trees. In Proc. of the 10th Int. Conf. on Database
Theory (ICDT), volume 3363 of Lecture Notes in Computer Science, pages 114–128. Springer, 2005.

24

[52] Tova Milo and Dan Suciu. Index structures for path expressions. In Proc. of the 7th Int. Conf.
on Database Theory (ICDT), volume 1540 of Lecture Notes in Computer Science, pages 277–295.
Springer, 1999.

[53] Amihai Motro. Panorama: A database system that annotates its answers to queries with their
properties. J. of Intelligent Information Systems, 7(1), 1996.

[54] Frank Neven. Automata theory for XML researchers. SIGMOD Record, 31(3):39–46, 2002.

[55] Frank Neven and Thomas Schwentick. Query automata over finite trees. Theoretical Computer
Science, 275(1–2):633–674, 2002.

[56] Frank Neven and Thomas Schwentick. XPath containment in the presence of disjunction, DTDs,
and variables. In Proc. of the 9th Int. Conf. on Database Theory (ICDT), pages 315–329, 2003.

[57] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over infinite
alphabets. ACM Trans. on Computational Logic, 5(3):403–435, 2004.

[58] Yannis Papakonstantinou and Victor Vianu. DTD inference for views of XML data. In Proc. of the
19th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS), pages
35–46, 2000.

[59] Vaugham R. Pratt. A practical decision method for Propositional Dynamic Logic. In Proc. of the
10th ACM Symp. on Theory of Computing (STOC), pages 326–337, 1978.

[60] Shmuel Safra. On the complexity of ω-automata. In Proc. of the 29th Annual Symp. on the Foun-
dations of Computer Science (FOCS), pages 319–327, 1988.

[61] Klaus Schild. Terminological cycles and the propositional µ-calculus. In Proc. of the 4th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR), pages 509–520, 1994.

[62] C. Schulte Althoff, W. Thomas, and N. Wallmeier. Observations on determinization of Büchi au-
tomata. In Proc. of the 10th Int. Conf. on the Implementation and Application of Automata, 2005.

[63] Thomas Schwentick. XPath query containment. SIGMOD Record, 33(1):101–109, 2004.

[64] Thomas Schwentick. Automata for XML – A survey. J. of Computer and System Sciences, 73(3):289–
315, 2007.

[65] Giora Slutzki. Alternating tree automata. Theoretical Computer Science, 41:305–318, 1985.

[66] S. Tasiran, R. Hojati, and R. K. Brayton. Language containment using non-deterministic Omega-
automata. In Proc. of the 8th Advanced Research Working Conf. on Correct Hardware Design and
Verification Methods (CHARME), volume 987 of Lecture Notes in Computer Science, pages 261–277.
Springer, 1995.

[67] Balder ten Cate. The expressivity of XPath with transitive closure. In Proc. of the 25th ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS), pages 328–337,
2006.

[68] Balder ten Cate and Carsten Lutz. The complexity of query containment in expressive fragments of
XPath 2.0. J. of the ACM, 56(6), 2009.

[69] Balder ten Cate and Luc Segoufin. XPath, transitive closure logic, and nested tree walking automata.
In Proc. of the 27th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS), pages 251–260, 2008.

[70] Jeffrey D. Ullman. Information integration using logical views. In Proc. of the 6th Int. Conf. on
Database Theory (ICDT), volume 1186 of Lecture Notes in Computer Science, pages 19–40. Springer,
1997.

[71] Moshe Y. Vardi. Reasoning about the past with two-way automata. In Proc. of the 25th Int. Coll.
on Automata, Languages and Programming (ICALP), volume 1443 of Lecture Notes in Computer
Science, pages 628–641. Springer, 1998.

[72] Victor Vianu. A web odyssey: From Codd to XML. In Proc. of the 20th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS), 2001. Invited talk.

25

	1 Introduction
	2 The Query Language XPath
	3 2WATAs and their Relationship to XPath
	3.1 Two-way Weak Alternating Tree Automata
	3.2 Binary Trees and Sibling Trees
	3.3 From XPath to 2WATAs
	3.4 From 2WATAs to XPath

	4 Acceptance and Non-Emptiness for 2WATAs
	4.1 The Acceptance Problem
	4.2 The Nonemptiness Problem

	5 Query Evaluation and Reasoning on XPath
	5.1 Query Evaluation
	5.2 Query Satisfiability and Containment
	5.3 Root Constraints
	5.4 View-based Query Processing

	6 Relationship among XPath, 2WATAs, and MSO
	6.1 From 2WATAs to NSTAs
	6.2 From NSTAs to 2WATAs

	7 Conclusion

