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Abstract. We propose a method for automatically extracting semantics
from data sources. The availability of multiple data sources on the one
hand and the lack of proper semantic documentation of such data sources
on the other hand call for new strategies in integrating data sources by
extracting semantics from the data source itself rather than from its
documentation. In this work we focus on relational databases, observing
they are created from semantically-rich designs such as ER diagrams,
which are often not conveyed together with the database itself. While
the relational model may be semantically-poor with respect to ontological
models, the original semantically-rich design of the application domain
leaves recognizable footprints that can be converted into ontology map-
ping patterns. In this work, we offer an algorithm to automatically detect
and map a relational schema to ontology mapping patterns and offer an
empirical evaluation using two benchmark datasets.

1 Introduction

Modern industrial processes and business processes require intensive use of large-
scale data alignment and integration techniques to combine data from multi-
ple heterogeneous data sources into meaningful and valuable information. Such
integration is performed on structured and semi-structured data sets from var-
ious sources such as SQL and XML schemata, entity-relationship (ER) dia-
grams, ontology descriptions, process models, and web forms. Data integra-
tion plays a key role in a variety of domains, including data warehouse load-
ing and exchange, aligning ontologies for the Semantic Web, semantic process
model matching [16], and business document format merging (e.g., orders and
invoices in e-commence) [21]. As an example, consider an application that keeps
track of funded project applications, managing the review process through panel
meetings.

One of the main challenges of data integration is to create a common seman-
tic understanding from the multiple available data sources. In ontology-based
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data access (OBDA) and integration [20], this is achieved through two main
components: (i) an ontology that captures the relevant concepts and relations of
the domain of interest at a high level of abstraction, in turn acting as a vehicle
for reaching a semantic consensus; and (ii) a mapping specification that dictates
how the data in relational sources can be used to (virtually) populate the classes
and properties of the ontology.

A major impediment towards the adoption of OBDA is that data sources
typically lack a proper semantic documentation, which makes it extremely dif-
ficult and error-prone to obtain both the ontology and the mapping. Consider,
in particular, the case of relational databases, where well-established conceptual
modeling principles and methodologies can be employed to design their schemata
so as to suitably reflect the application domain at hand. This design phase is cen-
tered around the usage of semantically-rich representations such as ER diagrams.
However, these representations typically get lost during deployment, since they
are not conveyed together with the database itself, or quickly get outdated due
to continuous adjustments triggered by changing requirements. This may lead
to loss of information regarding concept hierarchies, which are flattened in the
corresponding relational schema.

In this work, we aim at reconstructing such lost domain semantics by inspect-
ing relational data sources, without any additional documentation. To do so,
we start from the key observation that while the relational model may be
semantically-poor with respect to ontological models, the original semantically-
rich design of the application domain leaves recognizable footprints that can be
converted into the aforementioned ontological patterns. Therefore, we propose
to use ontology mapping patterns (mapping patterns for short) [8], which sys-
tematically collect recurring ways of linking relational data sources to ontologies
via mapping specifications. A mapping pattern relates a relational schema frag-
ment to a corresponding ontology fragment, establishing the mapping between
the two. Mapping patterns, therefore, provide a form of a conceptual middleware
that describes a shared set of abstractions that facilitates interoperability.

Specifically, we propose an algorithmic technique called ADaMaP that,
given a relational data source, automatically determines how suitable fragments
of its schema align with corresponding mapping patterns. Once mapping pat-
terns are suitably instantiated on a given data source, they can be employed
for a number of downstream data engineering tasks, e.g., ontology bootstrap-
ping [13,17,19,24] and schema cover [22].

Given a data source, there are in general multiple, sound ways to identify
which patterns are relevant, and how they match. Consequently, to assess the
usefulness and efficacy of ADaMaP, we comparatively evaluate the results it
produced in two real-world case studies against a set of pattern applications
manually identified by a human expert. This shows that most of the time the
algorithm and the expert agree, which is particularly significant considering that
the mapping patterns turn out to cover a large portion of the data sources at
hand.
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The contribution of this work is twofold. On a conceptual level, we offer an
approach to enrich a relational model with semantics through the identification
of the footprints that were left by the conceptual model on which the relations
are based. We then offer an algorithmic solution to the mapping problem using
mapping patterns. Our empirical evaluation demonstrates the effectiveness of
the approach.

The rest of the paper is organized as follows. Section 2 presents the building
blocks of our proposed model, namely the OBDA approach and the mapping pat-
terns, and provides the problem definition. Our algorithmic solution, ADaMaP,
is described in Sect. 3 followed by an empirical evaluation (Sect. 4). The paper
is concluded with related work (Sect. 5) and concluding discussion (Sect. 6). An
appendix, offering more in detail discussions and details to support replicability
are provided in an online repository.1

2 Model

We now detail the building blocks for our proposed method. We begin by pre-
senting the OBDA framework, which we rely on in this work, (Sect. 2.1). Then,
Sect. 2.2 provides an overview of mapping patterns, which represent the inherent
semantics of a data source. Finally, in Sect. 2.3 we formally define the problem.
Throughout, we shall use an example that is based on a database developed by
SIRIS Academic S.L., a consultancy company specialized in higher education
and research, based on the European CORDIS repository.2

2.1 OBDA Framework

In this work, we rely on the OBDA framework of [20]. We use bold font to
denote tuples, e.g., x, y, treat tuples as sets, and allow the use of set operators
on them. An OBDA specification is a triple 〈T ,M,S〉 where T is an ontology
TBox, M is a set of mappings, and S is the schema of a database. The schema
of the databse is a pair (Σ,Γ) where the signature Σ is a set of table schemata,
and Γ is a set of database constraints, including keys and foreign keys.

The ontology T is formulated in OWL2QL [18], whose formal counterpart
is the description logic DL-LiteR [7], which notation is adopted in this work.
An OWL2QL TBox T is a finite set of axioms of the form B � C or r1 � r2,
where B,C are classes and r1, r2 are object properties, according to the following
grammar (where A is a class name, d is a data property name, and p is an object
property name):

B → A | ∃r | ∃d C → B | ¬B r → p | p−

For presentation simplicity we discard datatypes, which are also part of
OWL2QL.

1 https://github.com/ontop/ontop-examples/tree/master/caise-2021-patterns.
2 https://cordis.europa.eu/projects/en.

https://github.com/ontop/ontop-examples/tree/master/caise-2021-patterns
https://cordis.europa.eu/projects/en
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Fig. 1. Fragment of the CORDIS database.

Mappings specify how to populate classes and properties of the ontology
with individuals and values, starting from the data in the underlying database.
In OBDA, the standard language for mappings is R2RML [9], which we replace
here with a more convenient abstract notation, as follows. A mapping m is an
expression of the form

s : Q(x) t : L(t(x))

where Q(x) is a SQL query over the database schema Σ, called source query,
and L(t(x)) is a list of target atoms of the form C(t1(x1)), p(t1(x1), t2(x2)), or
d(t1(x1), t2(x2)), where t1(x1) and t2(x2) are terms that we call templates. In
this work we express source queries using relational algebra notation, omitting
answer variables under the assumption that they coincide with the variables
used in the target atoms. Intuitively, a template t(x) in a target atom of a
mapping corresponds to an R2RML template, and is used to generate object IRIs
(Internationalized Resource Identifiers) or RDF literals, starting from database
values retrieved by the source query in that mapping.

In our examples, we use the concrete mapping syntax adopted by the OBDA
system Ontop [6], in which the source query is expressed in SQL and each target
atom is expressed as an RDF triple pattern with templates. The answer variables
of the source query are indicated in a target atom by enclosing them in curly
brackets ({ · · · }). A mapping example for the fragment of Fig. 1, expressed in
such syntax, is the following:

target :Project -{p_id} a :EC-Project . :Project -{p_id} :cordisRef {cordis_ref} ...

source SELECT p.unics_id AS p_id , p.cordis_ref AS cordis_ref

FROM unics_cordis.projects p

The effect of such a mapping, when applied to a database instance D for Σ, is
to instantiate, for each answer tuple returned by the source query, each (RDF)
triple pattern with templates in the target to an actual RDF triple. This is done
using IRIs and literals that are constructed from the assignments to the answer
variables p id and cordis ref, obtained when the source query is evaluated
over D.
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Table 1. Portion of schema-driven patterns from [8]

2.2 Mapping Patterns

(Ontology) mapping patterns [8] emerge when mapping a database to a domain
ontology, and explain the link between the conceptualization behind the database
design and the domain ontology. To justify our formalization of patterns, we
make the following two fundamental observations: (i) a conceptual schema may
have more than one admissible relational mapping, according to the applied
methodology, as well as to considerations about efficiency, performance opti-
mization, and space consumption on the final information system; (ii) given the
logical schema of a relational database, regardless of its normal form, multiple
conceptual schemata can provide (admissible) alternative representations of its
domain. By (i) and (ii), we explicitly associate a conceptual schema to each
database schema in order to disambiguate among possible conceptualizations of
the database schema, unlike bootstrapping-oriented approaches, e.g., [13].

Formally, a mapping pattern is a quadruple (C,S,M,O), where C is a con-
ceptual schema, S is a database schema, M is a set of mappings, and O is an
ontology. In such mapping pattern, the pair (C,S) is the input, putting into cor-
respondence a conceptual representation to one of its (many) admissible (i.e.,
formally sound) database schemata. Such variants are due to differences in the
applied methodology, considerations about efficiency, performance optimization,
and space consumption of the final database. The pair (M,O), instead, is the
output, where the database schema ontology O [25] is the OWL2QL encoding
of the conceptual schema C, and the set M of database schema mappings pro-
vides the link between S and O. Database schema ontology refers to an ontology
whose concepts and properties reflect the constructs of the conceptual schema,
mirroring the structure of the relational database.

Table 1 shows two examples of patterns, namely, Schema Entity (SE) and
Schema Relationship (SR). SE is a fundamental pattern that considers a
single table TE with primary key K and other attributes A. The pattern captures
how TE is mapped into a corresponding class CE . The primary key of TE is
employed to construct the objects that are instances of CE , using a template
tE specific for that class. Each relevant attribute of TE is mapped to a data
property of CE .
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Example. The projects table (Fig. 1) contains ids of projects (attribute
unics id), together with their funding scheme, their reference in the CORDIS
portal3, etc. It is mapped to the :EC-Project class using unics id to construct its
objects. In addition, every attribute in the table is mapped to a corresponding
data property.

SR considers three tables TR, TE , and TF , in which the primary key of TR

is partitioned into two parts KRE and KRF that are foreign keys to TE and TF ,
respectively. TR has no additional attributes. The pattern captures how TR is
mapped to an object property pR, using the two parts KRE and KRF of the
primary key to construct respectively the subject and the object of each triple
in pR.
Example. The table project erc panels (Fig. 1) connects through two foreign
keys the projects to their corresponding ERC panel. Such table is mapped to an
:ercPanel object property, for which the ontology asserts that the domain is the
class :Project and the range is an additional class :ERC-Panel, which correspond
to the erc panels table.

2.3 The Alignment of Data Sources with Mapping Patterns
Problem

Let P be a set of mapping patterns, representing the elementary semantics of an
application domain. For the scope of this paper, P is composed of the patterns
proposed by Calvanese et al. [8] and illustrated in Sect. 2.2. In addition, recall
that S is a database schema (see Sect. 2.1) composed of Σ = {T1, T2, . . . , Tn}
and Γ, which captures database constraints, including primary and foreign keys.
We assume that S was created from some conceptual model (e.g., the way a
relational database schema is created from an ER diagram) and that P represents
the mapping patterns whose inputs are in line with what a designer used when
transforming such conceptual model to a database schema. The problem we
address in this paper is a reverse engineering one, essentially aligning the tables
of Σ with the mapping patterns in P using Γ.

Formally, we denote by M(S,P) ⊆ S×P (M , for short) an alignment between
a database schema S = (Σ,Γ) and a set P of mapping patterns. An alignment M
is a set of correspondences (S, p), each representing an assignment of a schema
S to a mapping pattern p whose input database schema can be instantiated to
S. Note that a schema S may be involved in more than one correspondence. An
alignment consists of a subset of all mapping patterns whose input is in line with
the design of the database and we are interested in a maximal alignment that
represents the full set of such mapping patterns.

Problem 1 (alignment of data sources with mapping patterns). Let
S = (Σ,Γ) be a database schema and P a set of mapping patterns. The alignment
of data sources with mapping patterns problem aims to find a maximal alignment
M(S,P), such that, for each pair (S, p) ∈ M(S,P), the input database schema
of p can be instantiated to S.
3 https://cordis.europa.eu/projects/en.

https://cordis.europa.eu/projects/en
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3 Extracting Semantics from Data Sources with ADAMAP

We are now ready to describe the proposed ADaMaP algorithm (Sect. 3.1) and
discuss some possible usages of the discovered alignment (Sect. 3.2).

3.1 ADAMAP: Automatically Extracting Semantics from Data
Sources

We now introduce ADaMaP, an iterative algorithm that automatically aligns a
relational data source to mapping patterns (see Sect. 2.2 and a summarization of
abbreviations in Table 2). ADaMaP is applied to each table T ∈ Σ separately,
aiming to determine the most suitable set of mapping patterns. The utilization
of the mapping patterns requires some or all of the following properties in the
definition of a relational data source schema design: (1) primary keys, (2) foreign
keys, and (3) unique constraints [8]. For the scope of this paper we assume that
such properties are well defined and note that in the absence of such properties,
discovery methods may be applied, for example, randomness [26] can be used to
recover foreign keys.

Given a table T , the inference of ADaMaP is divided into four cases, each
targeting a different amount of table relationships with respect to Σ. The table-
based inference is illustrated in Fig. 2. We denote T ’s primary key by KT and
its foreign key(s) by FKT .

Whenever a table does not have foreign keys, the corresponding mapping
pattern is set to be Schema Entity (SE) as shown in Fig. 2a. Intuitively, this
means that in the absense of known relationships, the table should be mapped
into an entity set. If a table has a single relationship with a reference table R,
ADaMaP applies the inference in Fig. 2b and checks whether the primary key of
R, KR, is the same as the foreign key FKR. If not, we return to the case of SE. If
it is, we check the same condition for the examined table T . If KT is a foreign key
in T , we assign T with a Schema Hierarchy (SH), i.e., recognizing that the entity
set corresponding to the table T is a sub-class of the entity set corresponding
to R. If not, we check whether the foreign key is a key in T and decide between
adding a correspondence of T with SHa (requiring an identifier alignment in case
it is) and adding two correspondences to the alignment, (T,SRm) and (T,SE),
meaning that T and R should be merged into a single entity.

For a table T with two foreign keys, FK1
T referring to table R1 and FK2

T

to table R2 (Fig. 2c), We denote FKT = FK1
T ∪ FK2

T . We first check whether
KT == FKT . In case of a negative answer, as in most other negative answers
in Fig. 2c, we roll back to use the inference in Fig. 2b for each of the foreign
keys in T , i.e., as if T has a single foreign key. Then, regardless of the former
answer, we check whether the primary keys of R1 and R2 are the same as the
respective foreign keys FKR1 and FKR2 . The final check in Fig. 2c is conditioned
on whether one of the referenced tables contains a foreign key that identifies
(id. in the figure) the table. We note here that in case we do not roll back to
Fig. 2b, the inference of Fig. 2c may obtain a correspondence between T and
one of the following schema relationship patterns: 1) a “simple” relationship
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Fig. 2. ADaMaP inference for a table T by the number of foreign keys it contains.

between R1 and R2 (SR) if T is only composed of the foreign keys, 2) a reified
relationship (SRR), where all the tables are identified by their foreign keys and
may have additional attributes, and 3) a relationship that requires an alignment
of attributes (SRa) in either R1 or R2.

Table 2. Patterns abbreviations

Pattern Abbreviation

Schema entity SE

Schema relationship SR

→with identifier alignment SRa

→with merging SRm

Schema reified SRR

Relationship

Schema hierarchy SH

→with identifier alignment SHa

In another special case, a table has
three or more references to other tables.
The inference of this case, illustrated in
Fig. 2d, is quite similar to the path in
Fig. 2c resulting in SRR. The idea is that T
represents a relationship between multiple
tables in DB, each identified by the for-
eign key to T and may include additional
attributes.

Finally, by applying the rules illus-
trated in Fig. 2 for every T in Σ, we obtain
an alignment M as a solution to Problem 1.
We now illustrate the execution of ADaMaP using the tables in Fig. 1.
Example. Both projects and erc panels (see Fig. 1) do not contain a foreign
key constraint and thus ADaMaP creates a correspondence between these tables
and an SE pattern according to Fig. 2a. project erc panels has two foreign keys
and accordingly we use the inference of Fig. 2c. However, since the union of for-
eign keys (project, panel) is not the primary key in project erc panels, we roll
back to the inference in Fig. 2b. In both tables the foreign key refers to a primary
key (unics id in projects and code in erc panels), satisfying the first condi-
tion. As for the second condition, we observe that project (the foreign key from
projects) is a primary key in project erc panels. However, panel (the foreign
key from erc panels) is not. In the case of projects we obtain a correspondence
with SH and for erc panels, since panel does not identify project erc panels
we resolve a correspondence with two patterns, namely, SRm and SE. The output of
ADaMaP is therefore {(projects, SE), (erc panels, SE) (project erc panels,
SH), (project erc panels, SRm), (project erc panels, SE)}.
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3.2 Usage of Aligning Data Sources with Mapping Patterns

ADaMaP provides an automatic approach to enriching a database with seman-
tics using matching patterns. We now describe two possible usages of such a
method.
Bootstrapping. In this setting, we only have a conceptual schema of the domain.
Using ADaMaP, a database schema can be transformed into a set of patterns.
Once the patterns are aligned with the tables in the database schema, they can
be used to (semi-)automatically bootstrap a set of mappings, which can then be
further refined and extended manually, possibly exploiting again the discovered
patterns. These mappings, in turn, may also be applied to bootstrap an ontology,
providing the application domain with an additional level of abstraction.

Schema Cover. The idea of schema cover was first introduced by Saha
et al. [22], promoting reuse and collaboration among data source providers. Such
reuse is based on a repository of information building blocks, referred to as con-
cepts, representative of entities in the domain of discourse (e.g., ERC panels).
Schemata are mapped against a set of concepts in a process termed schema cover.
The idea is to “cover” a schema and thereby interpret the schema in terms of
known concepts. This way, the schema is integrated into an existing body of
information and knowledge. For example, consider a network of researchers that
represent diverse interdisciplinary research skills and cooperate to submit joint
research proposals. The analysis of capabilities does not follow a common format
or standard. The aim of schema cover is to allow creating in this case research
consortia in response to specific call for proposals.

4 Empirical Evaluation

In this section we provide an empirical evaluation of ADaMaP. Experimental
settings are given in Sect. 4.1 and the empirical results are analyzed in Sect. 4.2.

4.1 Experiments Setting

Considered Scenarios. The first aspect to consider is the choice of the exper-
imental scenarios. To assess the feasibility of the approach in practice, we focus
on non-trivial and real-world scenarios. Such real-world scenarios should be built
around reasonably well-designed database schemata, providing the (primary-key
and foreign-key) constraints that are needed by our approach, and any bootstrap-
ping approach in general. We identified two such scenarios, provided in an online
repository,4 and detailed next.

NPD Benchmark (NPD). [15] This scenario is built around the domain of oil
and gas extraction, presenting a high number of mappings (>1k). Most mappings
were automatically generated, but there are numerous complex manually-written
mappings as well. The ontology falls in the OWL2QL profile, and consists of

4 https://github.com/ontop/ontop-examples/tree/master/caise-2021-patterns.

https://github.com/ontop/ontop-examples/tree/master/caise-2021-patterns
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4176 TBox axioms over 343 classes, 142 object properties, and 238 data prop-
erties. The database schema consists of 70 tables, 962 columns, and 89 foreign
key constraints. The database schema has a structure, but was not designed
according to common conceptual modeling practices. In fact, it was automati-
cally generated out of unstructured data as CSV files [14].

CORDIS. This setting is designed around the domain of competitive research
projects, provided by SIRIS Academic S.L.5, a consultancy company specializing
in higher education and research. The mappings were manually-written, and
they amount to 120. The ontology, expressed in OWL2QL, consists of 186
TBox axioms over 24 classes, 24 object properties, and 30 data properties. The
database schema is quite well-structured and consists of 19 tables, 6 views, 95
columns, and 20 foreign-key constraints.

Table 3. Coverage analysis

Pattern #usages #mappings

SE 13 60
SR 3 3
SRm 3 3
SRR 1 16

Covered Mappings: 89 (out of 120)
(a)CORDIS Coverage

Pattern #usages #mappings

SE 61 454
SRm 74 74
SRR 1 12
SH 3 132

Covered Mappings: 672 (out of 1173)
(b)NPD Coverage

Database Schema Ontology vs. Domain Ontology. Recall that a map-
ping pattern puts into correspondence a database schema S, together with its
intended conceptualization C, to a pair (M,O), where M is a set of database
schema mappings and O is a database schema ontology. Differently from an
arbitrary domain ontology, O provides an information-preserving encoding of C,
modulo the expressivity of OWL2QL.

In real-world scenarios, however, it is usually the case that the domain ontol-
ogy is developed independently from the relational data-source. The NPD and
CORDIS scenarios we consider here are no exception to this. This results in
a misalignment between the domain ontology and the conceptual schema used
for the database, which in turn results in a misalignment between the database
schema ontology and the domain ontology. In our experimental evaluation we
shall provide a quantitative measure over this misalignment, for both the NPD
and CORDIS scenarios.
Applied vs.DiscoveredPatterns.The conceptual schema of a database, which
serves in the design of our patterns, is typically discarded after the design and
deployment phases, and therefore it is actually not available as input toADaMaP.
As a result, the algorithm cannot disambiguate all the possible conceptualizations
corresponding to the same database schema, but instead chooses one of them (liter-
ally, it operates according to the “most-typical” application of a pattern as per [8]).
5 https://www.sirisacademic.com/wb/.

https://www.sirisacademic.com/wb/
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To check the efficacy of this approach, we have manually analyzed the sce-
narios and categorized the mappings according to the schema-driven mapping
patterns that were actually used in such scenarios.
Evaluation Measures. We use quantitative evaluation measures to measure
the differences between ADaMaP’s results and the manual analysis. The latter
serves as a reference model when comparing the automatically generated and man-
ually extracted reference alignments. M denotes the output of ADaMaP and
M∗ denotes a manually extracted reference alignment. We use the terms coordi-
nated positive and coordinated negative to represent agreement betweenM andM∗

on the presence and absence of correspondences, respectively. Disagreements are
marked as discoordinated positive for correspondences that were identified by the
algorithm but not part of the manual alignment and discoordinated negative for the
opposite situation. We use the well-known precision and recall measures to mea-
sure ADaMaP’s success in aligning a database schema with a set of mapping pat-
terns, with respect to a manually extracted alignment. Precision (P) measures the
ratio of coordinated positive correspondences out of all correspondences assigned
by the algorithm. On the other hand, Recall (R) measures the number of coordi-
nated positive correspondences from all the correct correspondences as given in
the reference alignment. P and R are formally defined as follows:

PM∗(M) =
| M ∩ M∗ |

| M | , RM∗(M) =
| M ∩ M∗ |

| M∗ | (1)

We use precision and recall to define the F1-measure, FM∗(M), calculated as
the harmonic mean of PM∗(M) and RM∗(M).

4.2 Results

Coverage Analysis. To analyze to what extent the database schema ontology is
aligned with the domain ontology, we check how many mappings in the analyzed
scenarios can be explained through the mapping patterns in [8]. A mapping that
cannot be justified this way suggest a misalignment between the database schema
and the domain ontology.

Tables 3(a) and 3(b) report on the number of schema-driven mapping-pattern
applications that were manually reported in CORDIS and NPD, respectively, as
well as the total number of mappings that are covered by these patterns. For
CORDIS, 89 out of 120 mappings (74.16%) can be explained by a schema-driven
pattern, whereas for NPD the situation is slightly worse, with only 672 out of
1173 mappings (57.29%). This can be attributed to the fact that the database
schema of NPD was not designed according to well-known good practices of
conceptual modeling, but was rather automatically generated out of CSV’s
semi-structured data [14]. The remaining mappings, non explainable through
schema-driven patterns, fill the gap between the abstraction levels used in the
database schema and the domain ontology.
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Table 4. Portion of schema-driven patterns from [8]

Mismatches Analysis. The following relates separately to CORDIS and NPD,
with reference to Fig. 3.

CORDIS. We observe that the algorithm and the manual analysis disagree on
7 instances, with 5 discoordinated positives and 2 discoordinated negatives. In
terms of precision (P ), recall (R), and F1-measure (F ), ADaMaP obtains the
following results:

PM∗(M) = RM∗(M) = FM∗(M) = 0.8

ADaMaP discovered 80% of the manually assigned correspondences (recall)
and 80% of the correspondences assigned by ADaMaP were also assigned man-
ually (precision). Overall, ADaMaP and the manual extraction have 20% of
disagreements. All but one disagreement stem from the fact that multiple con-
ceptual schemata can correspond to the same database schema, as observed
above. The algorithm cannot determine which of these equally valid choices is
actually the one that was adopted by the human designer.

For the table project erc panels depicted in Fig. 1, the algorithm identifies
two applicable patterns, namely SH and SRm from Table 4. The application
of SH is justified by the foreign key project that coincides with the primary
key of table project erc panels. Under this plausible modeling point of view,
projects having an ERC panel are a subclass of projects. The application of SRm,
instead, is justified by the foreign key panel, i.e., the 1-N relationship between
project erc panels and erc panels has been merged into the former.

However, as introduced in Sect. 2, such table may also match the less typical
pattern SR, which is actually the one we observed in the CORDIS scenario.
For such reason, the two findings by the algorithm have been categorized as
discoordinated positives since the algorithm applied (still suitable) patterns that
are different from the one that was chosen in the manual alignment.

target :NUTS2 -{ nuts_code} a :NUTS2 ; :extendedName {nuts_desc} .
source SELECT etu.nuts_code AS nuts_code , etu.description AS nuts_desc

FROM unics_cordis.eu_territorial_units etu
WHERE etu.nuts_level =2

target :NUTS3 -{ nuts_code} a :NUTS3 . :extendedName {nuts_desc} .
source SELECT etu.nuts_code AS nuts_code , etu.description AS nuts_desc

FROM unics_cordis.eu_territorial_units etu
WHERE etu.nuts_level =3
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Another mismatch, shown above, relates to the table eu territorial units,
which has not been modeled as a separate entity, but rather as a clustering
of different classes based on the value of attribute nuts level. In these two
mappings, two classes are created: :NUTS2 captures all the nomenclatures of
territorial units for statistics having level of division equal to 2 and :NUTS3
captures the case where the level of division is 3.

Fig. 3. Algorithm vs Manual analysis

Such clustering cannot be recog-
nized by working at the schema level,
but rather requires to inspect the
actual data. Consequently, it cannot
possibly be discovered by ADaMaP.
This calls for an interesting extension
of our algorithm, where also this and
other forms of data-driven mapping
patterns [8] are supported.

NPD. For the NPD scenario, we
observe that the algorithm and
the manual analysis disagree on 35
instances, with 14 discoordinated
positives and 21 discoordinated nega-
tives. In terms of precision (P ), recall
(R), and F1-measure (F ), ADaMaP
obtains the following results:

PM∗(M) = 0.88, RM∗(M) = 0.82,
FM∗(M) = 0.85

Compared to the CORDIS scenario,
ADaMaP obtains better results.
This is because a portion of map-
pings for NPD were automatically
bootstrapped, which results in the
most-typical pattern being applied.
Also, in the case of NPD, we observe
that ADaMaP showed higher pre-
cision than recall, suggesting that
ADaMaP may be better in obtain-
ing an agreement with the man-
ual alignment than covering the full
scope of correspondences.

The reasons for the disagreements
are totally analogous to those we
observed for CORDIS. Something
peculiar about this scenario, that we did not observe in CORDIS, is the pres-
ence of mistakes both at the level of the database schema and at the level
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of patterns application. For the former, tables seaArea, seis acquisition,
wellbore core photo, and apaAreaNet declare non-minimal superkeys6 as pri-
mary keys. Database design theory tells us that this is a conceptual modeling
error. Such mistakes in the schema led to “non-conventional” applications of
mapping patterns, such as the following:

– seis acquisition: URIs are not built from the primary key of that table,
but rather from a proper subset of the primary key that is declared as UNIQUE.

– wellbore core photo: wellbore core photo id is UNIQUE, strictly con-
tained in the primary key while URIs are built from the (non-minimal) pri-
mary key.

– Similar choices to the one above are taken for tables apaAreaNet and
wellbore mud.

Altogether wrong applications of a pattern are present as well. For instance,
for table seaArea, the primary key is the pair of attributes (seaArea id,
seaSurveyName). However, attribute seaArea id is declared as UNIQUE in the
schema. This implies that the primary key is, again, a non-minimal superkey.
However, the mapping-designer here has chosen, for building URIs, neither
the primary key, nor the unique attribute, but actually the non-key attribute
seaSurveyName. This breaks the principle of lossless transformation: the 1-1
correspondence between table rows and individuals in the ontology is lost.

5 Related Work

Multiple tools and approaches deal with the problem of extracting an ontol-
ogy from a relational data source [2,5,11,13,17,19,23,24] have been proposed.
The addressed application scenarios span from OBDA and Virtual Knowledge
Graph (VKG) systems construction, reverse engineering, data integration, ontol-
ogy learning, reasoning-based constraints checking, etc.. They differ mainly in the
ontology languages they support and the required level of automation yet only a
few come with a systematic categorization of the mappings that they produce as
declarative connection between the data sources and the ontology [2,13,17,23].
The comparison of mapping patterns to alternative categorizations is out of this
paper scope (see [8]) and we argue that ADaMaP is agnostic with respect to the
mapping patterns nature in place and can, in principle, be fed with any catalog
of patterns with a proper formal specification.

The analysis of real-world OBDA scenarios offered in this paper represents an
original contribution to the current literature on ontology and mapping extrac-
tion from relational data sources, and a novel way to evaluate the performances
of an algorithm such as ADaMaP, which is meant to support the identification
of suitable and semantic-preserving patterns from relational schemata. To the
best of our knowledge, none of the former approaches aim at showing that the
mapping patterns (and the ontologies) they produced are sufficiently sound and

6 Recall that in database theory, a key is a minimal superkey.
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complete to reflect the real design choices and conceptual modeling practices
that are used by expert designers on real-world scenarios.

The term ontology mapping patterns, used in this work to describe seman-
tics, should not be confused with ontology design patterns (ODP). In ontology
engineering, the latter provides solutions to recurrent modeling issues, and their
adoption improves quality in terms of the ontology axioms specification [12].
Ontology mapping patterns stem from observation and categorization of typi-
cal relational database structures, their associated constraints and conceptual
models.

6 Conclusions

We have introduced ADaMaP, an algorithmic technique that extracts semantics
from a relational data source, by automatically identifying how ontology map-
ping patterns are applied to fragments of its schema. With such identification
process each fragment gets projected into a set of ontological axioms, together
with mapping rules capturing the schema-to-ontology correspondence. Thanks
to ADaMaP, the creation of the ontology and of the mapping rules is no longer
completely manual, error-prone effort. The validation of ADaMaP in two real-
world case studies confirms that the identified patterns by-and-large agree with
those detected by a human expert.

The patterns identified by ADaMaP provide a solid basis that can be man-
ually improved by human experts, overcoming the “blank-page” syndrome when
setting up ontology-based data access and integration systems. In addition, the
identified patterns can be instrumental in a number of consequent tasks: in
data engineering, tackling central problems such as ontology bootstrapping and
schema cover, and in process mining, where the increasing focus on artifact-
centric [10] and object-centric [1,3] processes requires to reconstruct conceptual
data models from event data [4].

As discussed, ADaMaP comes with some limitations that should be tack-
led. First and foremost, for a given relational schema there are in general many
possible combinations of mapping patterns that are, in principle, equally valid.
While the current version of ADaMaP returns the “most typical” of such com-
binations, it would be interesting to allow ADaMaP to incrementally explore
multiple possibilities, for example by iteratively generating and recommending
alternatives that could then be inspected and further explored by human experts.
Second, currently ADaMaP only focuses on the schema of the data source, with-
out exploiting the data stored therein. In a number of situations, determining
whether a given mapping pattern can be suitably applied requires to simulta-
neously inspect the schema, the data, and potential additional constraints that
can be inferred from such data. We wish to enrich ADaMaP with data-driven
features, allowing it to account not only for the schema-driven mapping pat-
terns considered in this work, but also for the data-driven mapping patterns
categorized in [8].
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