
Semantics and Analysis of DMN Decision Tables

Diego Calvanese1, Marlon Dumas2, Ülari Laurson2, Fabrizio M. Maggi2(B),
Marco Montali1, and Irene Teinemaa2

1 Free University of Bozen-Bolzano, Bolzano, Italy
2 University of Tartu, Tartu, Estonia

f.m.maggi@ut.ee

Abstract. The Decision Model and Notation (DMN) is a standard nota-
tion to capture decision logic in business applications in general and
business processes in particular. A central construct in DMN is that of
a decision table. The increasing use of DMN decision tables to capture
critical business knowledge raises the need to support analysis tasks on
these tables such as correctness and completeness checking. This paper
provides a formal semantics for DMN tables, a formal definition of key
analysis tasks and scalable algorithms to tackle two such tasks, i.e., detec-
tion of overlapping rules and of missing rules. The algorithms are based
on a geometric interpretation of decision tables that can be used to sup-
port other analysis tasks by tapping into geometric algorithms. The algo-
rithms have been implemented in an open-source DMN editor and tested
on large decision tables derived from a credit lending dataset.

Keywords: Decision model and notation · Decision table · Sweep
algorithm

1 Introduction

Business process models often incorporate decision logic of varying complexity,
typically via conditional expressions attached either to outgoing flows of deci-
sion gateways or to conditional events. The need to separate this decision logic
from the control-flow logic [2] and to capture it at a higher level of abstraction
has motivated the emergence of the Decision Model and Notation (DMN) [8].
A central construct of DMN is that of a decision table, which stems from the
notion of decision table proposed in the context of program decision logic specifi-
cation in the 1960s [10]. A DMN decision table consists of columns representing
the inputs and outputs of a decision, and rows denoting rules. Each rule is a
conjunction of basic expressions captured in an expression language known as
S-FEEL (Simplified Friendly Enough Expression Language).

The use of DMN decision tables as a specification vehicle for critical business
decisions raises the question of ensuring the correctness of these tables, in par-
ticular the detection of inconsistent or incomplete DMN decision tables. Indeed,
detecting errors in DMN tables at specification time may prevent costly defects
down the road during business process implementation and execution.
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 217–233, 2016.
DOI: 10.1007/978-3-319-45348-4 13

218 D. Calvanese et al.

This paper provides a foundation for analyzing the correctness of DMN
tables. The contributions of the paper are: (i) a formal semantics of DMN tables;
(ii) a formalization of correctness criteria for DMN tables; and (iii) scalable algo-
rithms for two basic correctness checking tasks over DMN tables, i.e., detection
of overlapping rules and detection of missing rules (i.e., incompleteness). The
latter algorithms are based on a novel geometric interpretation of DMN tables,
wherein each rule in a table is mapped to an iso-oriented hyper-rectangle in an
N-dimensional space (where N is the number of columns). Accordingly, the prob-
lem of detecting overlapping rules is mapped to that of detecting overlapping
hyper-rectangles. Meanwhile, the problem of detecting missing rules is mapped to
that of computing the difference between the N-dimensional universe defined by
the domains of the N columns of a DMN table, and the set of hyper-rectangles
induced by its rules. Based on this geometric interpretation and inspired by
sweep-based spatial join algorithms [1], the paper presents scalable algorithms
for these two analysis tasks. The algorithms have been implemented atop the
dmn-js editor and evaluated over decision tables of varying sizes derived from a
credit lending dataset.

The rest of the paper is structured as follows. Section 2 introduces DMN
and discusses related work. Section 3 presents the formalization of DMN tables
and their associated correctness criteria. Section 4 presents the algorithms for
correctness analysis while Sect. 5 discusses their empirical evaluation. Finally,
Sect. 6 summarizes the contributions and outlines future work directions.

2 Background and Related Work

2.1 Overview of DMN Decision Tables

A DMN table consists of columns corresponding to input or output attributes,
and rows corresponding to rules. Each column has a type (e.g., a string, a num-
ber, or a date), and optionally to a more specific domain of possible values, which
we hereby call a facet. Each row has an identifier, one expression for each input
column (a.k.a. the input entries), and one specific value for each output column

Table 1. Sample decision table with its constitutive elements

Loan Grade
U C Annual Loan Grade

Income Size
≥ 0 ≥ 0 VG,G,F,P

A [0..1000] [0..1000] VG
B [250..750] [4000..5000] G
C [500..1500] [500..3000] F
D [2000..2500] [0..2000] P

Table name

Hit indicator

Completeness
indicator

Input attrs

Facet

Output attr

Rule

Priority
indicator

Input entries Output entry

Semantics and Analysis of DMN Decision Tables 219

(the output entries). For example, Table 1 shows a DMN table with two input
columns, one output column and four rules.

Given an input configuration consisting of a vector of values (one entry per
column), if every input entry of a row holds true for this input vector, then the
vector matches the row and the output entries of the row are evaluated. For
example, vector 〈500, 4230〉 matches rule B in Table 1, thus yielding G in the
output configuration. To specify how output configurations are computed from
input ones, a DMN table has a hit indicator and a completeness indicator. The
hit indicator specifies whether only one or multiple rows of the table may match
a given input, and if multiple rules match an input, how should the output
be computed. The completeness indicator specifies whether every input must
match at least one rule or potentially none. If an input configuration matches
multiple rules, this may contradict the hit policy. Similarly, if no rule matches an
input configuration, this may contradict the completeness indicator. The former
contradiction is called overlapping rules while the latter is called missing rule.

2.2 Analysis of DMN Decision Tables

The need to analyze decision tables from the perspective of completeness (i.e.,
detecting missing rules) as well as consistency and non-redundancy (i.e., detect-
ing overlapping rules) is widely recognized [3]. These two analysis tasks have been
tackled using rough sets [9]. However, this approach requires that the domains of
the input attributes are boolean or categorical. Numerical attributes need to be
previously discretized into intervals and in such a way that no two intervals over
any column overlap. For example, approaches based on rough sets cannot handle
situations where multiple overlapping intervals appear along the same attribute
(e.g., [151..300] and [200..250]). Instead, the table needs to be expanded so that
these intervals do not overlap (e.g., intervals [151..300] and [200..250] need to be
broken down into [151..200], [201..250] and [251..300]) and this expansion can in
the worst case increase the size of the table exponentially.

Prologa [11,12] is a tool for modeling and executing classical decision tables.
It supports the construction of decision tables in a way that prevents overlap-
ping or missing rules. It also supports the simplification of decision tables via
rule merging: two rules are merged when all but one of their input entries are
identical, and their output entries are also identical. However, Prologa has the
same intrinsic limitation as the rough set approach: it requires columns to have
categorical domains. Numerical domains need to be broken down into elementary
non-overlapping intervals as explained above. The same limitations hold in other
techniques for detecting overlapping and missing rules [7,13] and algorithms for
simplifying decision tables [6]. In other words, while the verification and sim-
plification of decision tables with discrete or discretized domains has received
much attention, the case where the columns have both discrete domains and
numeric domains with arbitrary interval expressions has not been considered in
the literature.

220 D. Calvanese et al.

Signavio’s DMN editor1 detects overlapping and missing rules without impos-
ing discretization of numeric domains. However, the employed techniques are
undisclosed and no empirical evaluation thereof has been reported. Also, the
diagnosis of overlapping and missing rules produced by Signavio is unnecessarily
large: it often reports the same rule overlap multiple times. This behavior will
be further explained in Sect. 5.

OpenRules2 uses constraint satisfaction techniques to analyze business rules,
in particular rules encoded in decision tables. While using a general solver to
analyze decision tables is an option (e.g., an SMT solver such as Z3 [4]), this
approach leads to a boolean output (is the set of rules satisfiable?), and cannot
natively highlight specific sets of rules that need to be added to a table (missing
rules), nor specific overlaps between pairs of rules that need to be resolved.

3 Formalization

In this section, we provide a formalization of DMN decision tables, unambigu-
ously defining their input/output semantics, and at the same time introducing
several analysis tasks focused on correctness checking. As a concrete specifica-
tion language for input entries, we consider the S-FEEL language introduced in
the DMN standard itself.

Our formalization is based on classical predicate logic extended with data
types, which are needed to capture conditions that employ domain-specific pred-
icates such as comparisons interpreted over the total order of natural numbers.
Such formalization is important per sè, as it defines a clear, unambiguous seman-
tics of decision tables, and also as an interlingua supporting the comparison of
different analysis techniques.

3.1 Data Types and S-FEEL Conditions

We first introduce the building blocks of decision tables, i.e., the types of the
modeled attributes, and conditions over such types expressed using the S-FEEL
language. A data type T is a tuple 〈ΔT , ΣT 〉, where ΔT is an object domain,
and ΣT = ΣP

T �ΣF
T is a signature, constituted by a set ΣP

T of predicate symbols,
and a set ΣF

T of function symbols (disjoint from ΣP
T). Each predicate symbol

R ∈ ΣP
T comes with its own arity n, and with an n-ary predicate RT ⊆ Δn

T that
rigidly defines its semantics. Each function symbol f ∈ ΣF

T comes with its own
arity m, and with a function Δm

T → ΔT that defines its semantics. To make the
arity explicit in predicate and function symbols, we use the standard notation
R/n and f/m. As usual, we assume that every data type is equipped equality
as a predefined, binary predicate interpreted as the identity on the underlying
domain. Hence, we will not explicitly mention equality in the signatures of data
types. In the following, we show some of the S-FEEL data types3:
1 http://www.signavio.com.
2 http://openrules.com/.
3 Date/time data types are also supported but can be considered as simple numeric

attributes.

http://www.signavio.com
http://openrules.com/

Semantics and Analysis of DMN Decision Tables 221

– TS = 〈S, ∅, ∅〉 – strings.
– TB = 〈{true, false}, ∅, ∅〉 – boolean attributes.
– TZ = 〈Z, {0/0,1/0, </2, >/2}, {+/2,−/2, ·/2,÷/2}〉 – integer numbers

equipped with the usual comparison predicates and binary operations;
– TR (defined as TZ by replacing the domain Z with R, and by reinterpreting all

predicates and functions accordingly) – real numbers equipped with the usual
comparison predicates and binary operations.

The set of all such types is denoted by T. Since decision tables do not support
conditions that combine multiple data types, we can assume that the object
domains of all types in T are pairwise disjoint.

S-FEEL allows one to formulate conditions over types. These conditions con-
stitute the basic building blocks for facets and rules, which in turn are the
core of decision tables. The syntax of an (S-FEEL) condition Q over type is:

Q ::= “−” | Term | “not(” Term “)” | Comparison | Interval | Q1,Q2

Comparison ::= COp Term
COp ::= “=” | “<” | “>” | “≤” | “≥”

Interval ::= (“(” | “[”) Term1 “..” Term2 (“)” | “]”)
Term ::= v | f(Term1, . . . ,Termm)

where v is an object and f is an m-ary function.
S-FEEL supports the following conditions on a given data type T =

〈ΔT , ΣT 〉: (i) “−” indicates any value, i.e., it holds for every object in ΔT .
(ii) “= Term” indicates a matching expression, which holds for the object in
ΔT that corresponds to the result denoted by term Term. A term, in turn,
corresponds either to a specific object in ΔT , or to the recursive application
of an m-ary function in ΣT to m terms. It is worth noting that, in the actual
S-FEEL standard, the symbol “ = ” is usually omitted, that is, when resolving
the scope symbol Q, Term is interpreted as a shortcut notation for “= Term”.
(iii) Comparison is only applicable when T is a numeric data type, and indi-
cates a comparison condition, which holds for all objects that are related via the
employed comparison predicate to the object resulting from expression Term.
(iv) Interval is only applicable when T is numeric, and allows the modeler to
capture membership conditions that tests whether an input object belongs to
the modeled interval. (v) “Q1,Q2” indicates an alternative condition, which holds
whenever one of the two conditions Q1 and Q2 holds.

Example 1. The fact that a risk category is either high, medium or low can be
expressed by the following condition over TS: “high, medium, low”. By using TZ

to denote the age of persons (in years), the group of people that are underage
or old (i.e., having at least 70 years) is captured by condition “[0..18], ≥ 70”. �

3.2 Decision Tables

We are now in the position of defining DMN decision tables. See Table 1
for a reference example. A decision table D is a tuple 〈T, I,O,Type,Facet,
R,Priority, C,H〉, where:

222 D. Calvanese et al.

– T is the table name.
– I and O are disjoint, finite sets of input and output attributes (represented

as strings).4

– Type : I � O → T is a typing function that associates each input/output
attribute to its corresponding data type.

– Facet is a facet function that associates each input/output attribute a ∈ I�O
to a condition over Type(a), defining the acceptable objects for that attribute.
Facet functions are depicted as “optional lists of values” in Table 1.

– R is a finite set of rules {r1, . . . , rp}. Each rule rk is a pair 〈Ifk,Thenk〉, where
Ifk is an input entry function that associates each input attribute ain ∈ I
to a condition over Type(ain), and Thenk is an output entry function that
associates each output attribute aout ∈ O an object in Type(aout).

– Priority : R → {1, . . . , |R|} is a priority function injectively mapping rules
in R to a corresponding rule number defining its priority. If no priority is
explicitly given, in accordance with the standard we assume that the priority
is implicitly defined by the graphical ordering in which rule entries appear
inside the decision table.

– C ∈ {c, i} is the completeness indicator, where c is the default value and
stands for complete table, while i stands for incomplete table.

– H ∈ {u, a, p, f} is the (single) hit indicator defining the policy for the rule
application, where: (i) u is the default value and stands for unique hit policy,
(ii) H = a stands for any hit policy, (iii) H = p stands for priority hit policy,
and (iv) H = f stands for first hit policy.

We now informally review the intuitive semantics of rules and of complete-
ness/hit indicators in DMN, moving to the formalization in Sect. 3.3.

Rule Semantics. Intuitively, rules follow the standard “if-then” interpretation.
Rules are matched against input configurations, which map the input attributes
to objects in such a way that each object (i) belongs to the type of the corre-
sponding input attribute, and (ii) satisfies the corresponding facet. If, for every
input attribute, the assigned object satisfies the condition imposed by the rule
on that type, then the rule triggers, and bounds the output attributes to the
actual objects mentioned by the rule.

Example 2. Consider the decision table in Table 1. The input configuration
where Income is 500 and Loan is 4230, triggers rule B. �

Completeness Indicator. When the table is declared to be complete, the
intention is that every possible input configuration must trigger at least one
rule. Incomplete tables, instead, have input configurations with no matching
rule.

4 These are called “expressions” in the DMN standard, but we prefer the term
“attribute” as it is less ambiguous.

Semantics and Analysis of DMN Decision Tables 223

Hit Policies. Hit policies specify how to handle the case where multiple rules
are triggered by an input configuration. In particular:

– “Unique hit” indicates that at most one rule can be triggered by a given input
configuration, thus avoiding the need of handling how to compute the output
objects in the case of multiple triggered rules.

– “Any hit” indicates that when multiple rules are triggered, they must agree
on the output objects, thus guaranteeing that the output is unambiguous.

– “Priority hit” indicates that whenever multiple rules trigger, then the output is
unambiguously computed by only considering the contribution of the triggered
rule that has highest priority.

– “First hit” can be understood as a variant of the priority hit, in which priority
is implicitly obtained from the ordering in which rules appear in the decision
table. Hence, this case is subsumed by that of priority hit.

– “Collect” implies that multiple rules can match an input configuration and
when this is the case, all matching rules are fired the resulting output con-
figurations are aggregated. Aggregation is orthogonal to correctness checking,
and thus we leave the “Collect” policy outside the scope of the formalization
below.

3.3 Formalization of Rule Semantics and of Analysis Tasks

We first define how conditions map to corresponding formulae. Since each con-
dition is applied to a single input attribute, the corresponding formula has a
single free variable corresponding to that attribute. Given a condition Q over
type T = 〈ΔT , ΣT 〉, the condition formula for Q, written ΦQ, is a formula using
predicates/functions in ΣT and objects from ΔT , and possibly mentioning a sin-
gle free variable, constructed as follows:

ΦQ �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if Q = “−”
¬ΦTerm if Q = “not(Term)”
x = Term if Q = Term
x COp Term if Q = “COp Term”and COp ∈ {<,>,≤,≥}
x > ΦTerm1

∧ x < ΦTerm2
if Q = “(Term1..T erm2)”

x > ΦTerm1
∧ x ≤ ΦTerm2

if Q = “(Term1..T erm2]”
x ≥ ΦTerm1

∧ x < ΦTerm2
if Q = “[Term1..T erm2)”

x ≥ ΦTerm1
∧ x ≤ ΦTerm2

if Q = “[Term1..T erm2]”
ΦQ1x ∨ ΦQ2x if Q = “Q1,Q2”

As usual, we also use notation ΦQ(x) to explicitly mention the free variable of
the condition formula.

Example 3. Consider the S-FEEL conditions in Example 1. The condition over
the risk category is Risk = high ∨ Risk = medium ∨ Risk = low. The condition
formula person ages is instead: (Age ≥ 0 ∧ Age ≤ 18) ∨ Age ≥ 70. �

224 D. Calvanese et al.

With this notion at hand, we now formalize the notions of correctness of rule
specifications, semantics of rules, and semantics of completeness and hit indica-
tors. These notions are building blocks for an overall notion of table correctness.

Let D = 〈T, I,O,Type,Facet, R,Priority, C,H〉 be a decision table with m
input attributes I = {a1, . . . ,am}, n output attributes O = {b1, . . . ,bn},
and p rules R = {r1, . . . , rp}. We use variables x1, . . . , xm for objects match-
ing the input attributes, and variables y1, . . . , yn for those matching the output
attributes.

Facet Correctness. We first consider the Facet correctness of D, which intu-
itively amounts to check whether all the mentioned input conditions and out-
put objects are compatible with their corresponding attribute facets. Given an
attribute a ∈ I∪O and a corresponding input variable x, we can identify whether
a condition Q over a is compatible with a, i.e., whether the condition is specified
in such a way that can potentially trigger, or is instead contradictory with the
facet attached to a:

CompatibleQ
a � ∃x.ΦFacet(a)(x) ∧ ΦQ(x)

Rule Semantics. A rule r = 〈If,Then〉 ∈ R is triggered by a configuration
x1, . . . , xm of input objects whenever each such object matches with the corre-
sponding input condition:

TriggeredByr(x1, . . . , xm) �
∧

i∈{1,...,m}
Matches If(ai)

ai
(xi)

Two configurations �x and y1, . . . , yn of input and output objects are input-output
related by a rule r = 〈If,Then〉 ∈ R if the rule is triggered by the input configu-
ration, and binds the output as specified by the output configuration:

IORelr(�x, y1, . . . , yn) � TriggeredByr(�x) ∧
∧

j∈{1,...,n}
MatchesThen(bj)

bj
(yj)

Completeness. When declaring that a table is (in)complete, there is no guar-
antee that the specified rules guarantee this property. To check whether this is
indeed the case, we introduce a formula that holds whenever each possible input
configuration triggers at least one rule:

CompleteD � ∀x1, . . . , xm.
∨

k∈{1,...,p}
TriggeredByrk(x1, . . . , xm)

Hit Policies. We start with the unique hit policy, which requires that each
input configuration triggers at most one rule. This can be formalized as follows:

UniqueD � ∀�x.
∧

i∈{1,...,p}

⎛

⎝TriggeredByri(�x) →
∧

j∈{1,...,p}\{i}
¬TriggeredByrj (�x)

⎞

⎠

Semantics and Analysis of DMN Decision Tables 225

We then continue with the any hit policy. Here multiple rules may be trig-
gered by the same input configuration, but if so, then they must agree on the
output. This can be formalized as follows:

AgreesOnOutputD �
∧

i,j∈{1,...,p},i �=j

(
∀�x∀�y.TriggeredByri(�x)

∧ TriggeredByrj (�x) → IORelri(�x, �y)
∧ IORelrj (�x, �y)

)

We now consider the case of priority hit policy. This requires to reformulate
the rule semantics, so as to consider the whole decision table and the priority of
the rules. In particular, with this hit policy a rule r ∈ R is triggered with priority
by an input configuration �x if it is triggered by �x in the sense specified above,
and no rule of higher priority is triggered by the same input �x:

TriggeredWithPriorityByr(�x) � TriggeredByr(�x) ∧
∧

rh∈{r′|r′∈R and Priority(r′)>Priority(r)}
¬TriggeredByr′(�x)

Finally, we observe that the priority hit policy may create a situation in which
some rules are never triggered. This happens when other rules of higher priority
have more general input conditions. We formalize this notion by introducing a
formula dedicated to check when a rule r1 ∈ R is masked by another rule r2 ∈ R:

MaskedByr2
r1

� Priority(r2) > Priority(r1) ∧ ∀�x.TriggeredByr1
(�x) → TriggeredByr2

(�x)

Correctness Formula. We now combine the previously defined formulae into
a single formula that captures the overall correctness of a decision table.

We say that D is correct if the following conditions hold:

1. Every table cell, i.e., every input condition or output object, is legal for the
corresponding attribute (considering the attribute type and facet).

2. The completeness indicator corresponds to c iff the table is indeed complete.
3. The rules are compatible with the hit policy indicator:

(a) if the hit policy is u, each input configuration triggers at most one rule;
(b) if the hit policy is a, all overlapping rules (i.e., rules that could simulta-

neously trigger) have the same output;
(c) if the hit policy is p, all rules are “useful”, i.e., no rule is masked by a

rule with higher priority.

Based on the previously introduced formulae, we formalize correctness as:

CorrectD �
∧

〈If,Then〉∈R

(
∧

a∈I

Compatible If(a)a ∧
∧

b∈O

CompatibleThen(b)b

)

∧
(
(C = c) ↔ CompleteD

)

∧
(
(H = u) → UniqueD

)

∧
(
(H = a) → AgreesOnOutputD

)

∧
(
(H = p) →

∧

r1,r2∈R

¬MaskedByr2
r1

)

226 D. Calvanese et al.

Global Input-Output Formula. We combine the previously defined formulae
into a single formula that captures the overall input-output relation induced by
D. This is done by exploiting the notion of input-output related configurations
by a rule, so as to cover the entire table. Specifically we say that an input
configuration �x and an output configuration �y are input-output related by D if:

1. The hit policy is either u or a, and there exists a rule that relates �x to �y (in
the case of any hit policy, there could be many, but they establish the same
input-output relation, so it is sufficient to pick one of them);

2. The hit policy is p, and there exists a rule relating �x to �y without any other
rule of higher priority that is triggered by �x (if such a rule exists, then it is
such rule that has to be selected to relate input-output).

This is formalized as follows:

IORelD(�x, �y) �
(
(H = u ∨ H = a) →

∨

r∈R

IORelr(�x, �y)
)

∧

⎛

⎜
⎝(H = p) →

∨
r=〈If,Then〉∈RTriggeredWithPriorityByr(�x)

∧
∧

j∈{1,...,n} MatchesThen(bj)
bj

(yj)

⎞

⎟
⎠

4 Algorithms

We now introduce algorithms to handle the two main analysis tasks introduced
in the previous section: detecting overlapping rules and (in)completeness. The
proposed algorithms rely on a geometric interpretation of a DMN table. Every
rule in a table is seen as an iso-oriented hyper-rectangle in an N-dimensional
space (where N is a number of columns). Indeed, an input entry in a rule can
be seen a constraint over one of the columns (i.e., dimensions). In the case of
a numerical column, an input entry is an interval (potentially with an infinite
upper or lower bound) and thus it defines a segment or line over the dimension
corresponding to that column. In the case of a categorical column, we can map
each value of the column’s domain to a disjoint interval – e.g., “Refinancing”
to [0..1), “Card payoff” to [1..2), “Car leasing” to [2..3), etc. – and we can see
an input entry under this column as defining a segment (or set of segments)
over the dimension corresponding to the column in question. The conjunction
of the entries of a row hence defines a hyper-rectangle, or potentially multi-
ple hyper-rectangles in the case of a multi-valued categorical input entry (e.g.,
{“Refinancing”, “Car leasing”}). The hyper-rectangles are iso-oriented because
only constraints of the form “attribute operator literal” are allowed in S-FEEL
and such constraints define iso-oriented lines or segments.

For example, the geometric interpretation of Table 1 is shown in Fig. 1.5 The
two dimensions, x and y, represent the two input columns (Annual income and

5 For simplicity, the figure is purely schematic and does not preserve the scale along
the axes.

Semantics and Analysis of DMN Decision Tables 227

Loan size) respectively. The table contains 4 rules: A, B, C, and D. Some of them
are overlapping. For example, rule A overlaps with rule C. Their intersection is
the rectangle [500, 1000] × [500, 1000]. The table also contains missing values.
For example, vector 〈200, 2000〉 does not match any rule in Table 1.

Fig. 1. Geometric representation of the DMN table shown in Table 1

The algorithms are presented for numeric columns. Minor adaptations (not
discussed here) allow these algorithms to handle categorical columns as well.

4.1 Finding Overlapping Rules

Algorithm 1 finds overlapping rules in a DMN table. This algorithm is an exten-
sion of line-sweep algorithm for two-dimensional spatial joins proposed in [1]. The
idea of this latter algorithm is to pick one dimension (e.g., x-axis), project all
hyper-rectangles into this dimension, and then sweep an imaginary line orthog-
onal to this axis (i.e., parallel to the y-axis). The line stops at every point in
the x-axis where either an hyper-rectangle starts or ends. When the line makes
a “stop”, we gather all hyper-rectangles that intersect the line (the active list).
These hyper-rectangles overlap along their x-axis projection. In [1], it is then
checked if the hyper-rectangles also overlap in the y-axis, and if so they are
added to the result set (i.e., the hyper-rectangles overlap). Algorithm 1 extends
this idea to N dimensions. The algorithm takes as input:

1. ruleList, containing all rules of the input DMN table;
2. i, containing the index of the column under scrutiny;
3. N, representing the total number of columns;
4. OverlappingRuleList, storing the rules that overlap.

The algorithm starts analyzing the first column of the table (axis x). All rules
are projected over this column. Note that the projection of a rule on a column
is an interval. We indicate the projection of rule K over axes x and y with
IxK and IyK respectively. All the intervals are represented in terms of upper and
lower bounds. The bounds are sorted in ascending order (line 7). The algorithm

228 D. Calvanese et al.

iterates over the list of sorted bounds (line 8). In the case of Fig. 1, the rules
projected over the x axis correspond are:

A

B

C

Dlower bound upper bound

Considering the rules above, the algorithm first analyzes the lower bound of
IxA. Therefore, IxA is added to an active list of intervals for the first column x,
Lx, since the bound processed is a lower bound (line 13). Next, the algorithm
processes the lower bound of IxB and IxB is added to Lx. Then, the lower bound
of IxC is processed and IxC is added to Lx. Finally, the algorithm processes the
upper bound of IxB. Every time an upper bound of an interval is processed (line
9), the following column of the table is analyzed (in this case y) by invoking
findOverlappingRules recursively (line 10).

All the interval projections on y of the rules corresponding to intervals con-
tained in Lx (in our example A, B, and C) are represented in terms of upper
bounds and lower bounds as depicted below:

A

B

C

The bounds are sorted in ascending order. The algorithm iterates over the list
of sorted bounds. Considering the intervals above, the algorithm first encounters
the lower bound of IyA. Therefore, IyA is added to the active list of intervals for the
second column y, Ly. Next, the algorithm processes the lower bound of IyC and
adds IyC to Ly. Then, the upper bound of IyC is processed. Since there is no other
column in the table, this means that all the rules corresponding to the intervals
in Ly overlap. At the end of each recursion, the interval corresponding to the
current bound is removed from the current active list (line 11). In addition,
when the last column of the table is processed (line 1), the algorithm checks
whether the identified set of overlapping rules is contained in one of the other
sets produced in a previous recursion (lines 3). If this is not the case, the new
set of overlapping rules is added to the output list overlappingRuleList (line 4).
In this way, the procedure outputs maximal sets of overlapping rules having a
non-empty intersection stored in overlappingRuleList (line 14).

4.2 Finding Missing Rules

Algorithm 2 describes the procedure for finding missing rules, which is also based
on the line-sweep principle. The algorithm takes as inputs 5 parameters:

1. ruleList, containing all rules of the input DMN table;
2. missingIntervals, storing the current missing intervals;
3. i, containing the index of the column under scrutiny;
4. N, representing the total number of columns;
5. MissingRuleList, storing the missing rules.

Semantics and Analysis of DMN Decision Tables 229

Algorithm 1. Procedure findOverlappingRules.
Input: ruleList; i; N ; overlappingRuleList.

1 if i == N then
2 define current overlap currentOverlapRules; /* it contains the list of rules that overlap

up to the current point */ ;
3 if !overlappingRuleList.includes(currentOverlapRules) then
4 overlappingRuleList.put(currentOverlapRules);

5 else
6 define the current list of bounds Lxi

;

7 sortedListAllBounds = ruleList.sort(i);

8 foreach currentBound ∈ sortedListAllBoundaries do
9 if !currentBound.isLower() then

10 findOverlappingRules(Lxi
,i +1, N , overlappingRuleList); /* recursive call */

11 Lxi
.delete(currentBound);

12 else
13 Lxi

.put(currentBound);

14 return overlappingRuleList;

The algorithm starts analyzing the first column of the table (axis x). Consider
again the projection of the table in Fig. 1 on x:

A

B

C

D

Upper and lower bounds of each interval are sorted in ascending order (line 3).
The algorithm iterates over the list of sorted bounds (line 5).

Considering the rules above, the algorithm first analyzes the lower bound of
IxA. Therefore, IxA is added to an active list of intervals for the first column x, Lx.
An interval is added to the active list only if its lower bound is processed (line
16). If the upper bound of an interval is processed, the interval is removed from
the list (line 18). Next, the algorithm processes the lower bound of IxB . Since Lx

is not empty, IxB is not added to Lx yet (line 12). Starting from the interval IA,B
(line 13) having the lower bound of IxA as lower bound and the lower bound of
IxB as upper bound, the following column of the table is analyzed (in this case y)
by invoking findMissingRules recursively (line 14). All the interval projections
on y of the rules corresponding to intervals contained in Lx (in our example only
A) are represented in terms of upper and lower bounds, obtaining in this case
the following simple situation:

A

The bounds are sorted in ascending order. The algorithm iterates over the list of
sorted bounds. The first bound taken into consideration is the lower bound of IyA
so that IyA is added to Ly (since Ly is empty). Since this bound corresponds to the
minimum possible value for y, there are no missing values between the minimum
possible value for y and the lower bound of IyA (line 6). Next, the algorithm
processes the second bound in Ly that is the upper bound of IyA. Considering
that the upper bound of IyA is the last one in Ly, the algorithm checks if this

230 D. Calvanese et al.

value corresponds to the maximum possible value for y (line 6). Since this is not
the case, this means that there are missing values in the area between the upper
bound of IyA and the next bound over the same column (in this case area 1). The
algorithm checks if the identified area is contiguous to an area of missing values
previously found (line 8). If this is the case the two areas are merged (line 9). If
this is not the case, the area is added to a list of missing value areas (line 11). In
our case, area 1 is added to a list of missing value areas. Note that the algorithm
merges two areas of missing values only when the intervals corresponding to one
column are contiguous and the ones corresponding to all the other columns are
exactly the same. In the example in Fig. 1, areas 4 and 6 are merged.

At this point, the recursion ends and the algorithm proceeds analyzing the
intervals in the projection along the x axis. The last bound processed was the
lower bound of IxB , so that IxB is added to Lx. Next, the algorithm processes the
lower bound of IxC (since Lx is not empty, IxC is not added to Lx yet). Starting
from the interval IB,C having the lower bound of IxB as lower bound and the
lower bound of IxC as upper bound, the following column of the table is analyzed
(in this case y) again through recursion.

All intervals projections on y of the rules corresponding to intervals contained
in Lx (in this case A and B) are represented in terms of upper and lower bounds:

A B

The bounds are sorted in ascending order. The algorithm iterates over the list
of sorted bounds. Considering the rules above, the algorithm first processes the
lower bound of IyA so that IyA is added to Ly (Ly is empty). Then, the upper
bound of IyA is processed. When the algorithm reaches the upper bound of an
interval in a certain column the interval is removed from the corresponding
active list. Therefore, IyA is removed from Ly. Next, the lower bound of IyB is
processed. Since Ly is empty, the algorithm checks if the previous processed
bound is contiguous with the current one (line 6). Since this is not the case, this
means that there are missing values in the area between the upper bound of IyA
and the next bound over the same column (in this case area 2). The algorithm
checks if the identified area is contiguous to an area of missing values previously
found. If this is the case, the two areas are merged. If this is not the case, the
area is added to a list of missing value areas (in our case area 2 is added to a
list of missing value areas). The list of missing areas stored in missingRuleList
is returned by the algorithm (line 20).

5 Evaluation

We implemented the algorithms on top of dmn-js: an open-source rendering and
editing toolkit for DMN tables.6 In it current version, dmn-js does not support
correctness verification. Our dmn-js extension with verification features can be
found at https://github.com/ulaurson/dmn-js and a deployed version is avail-
able for testing at http://dmn.cs.ut.ee.

6 https://github.com/bpmn-io/dmn-js.

https://github.com/ulaurson/dmn-js
http://dmn.cs.ut.ee
https://github.com/bpmn-io/dmn-js

Semantics and Analysis of DMN Decision Tables 231

Algorithm 2. Procedure findMissingRules.
Input: ruleList; missingIntervals; i; N ; missingRuleList.

1 if i > N then
2 define the current list of boundaries Lxi

;

3 sortedListAllBoundaries = ruleList.sort(i);
4 lastBound = 0;
5 foreach currentBound ∈ sortedListAllBoundaries do
6 if !areContiguous(lastBound, currentBound) then
7 missingIntervals[i] = constructInterval(lastBound, currentBound);
8 if missingRuleList.canBeMerged(missingIntervals); then
9 missingRuleList.merge(missingIntervals);

10 else
11 missingRuleList.add(missingIntervals);

12 if !Lxi
.isEmpty()) then

13 missingIntervals [i] = constructInterval(lastBound, currentBound);
14 findMissingRules(Lxi

,missingIntervals,i +1, N , missingRuleList); /*

recursive invocation */

15 if currentBound.isLower() then
16 Lxi

.put(currentBound);

17 else
18 Lxi

.delete(currentBound);

19 lastBound = currentBound;

20 return missingRuleList;

For the evaluation, we created decision tables from a loan dataset of Lend-
ingClub – a peer-to-peer lending marketplace.7 The employed dataset contains
data about all loans issued in 2013–2014 (23 5629 loans). For each loan, there are
attributes of the loan itself (e.g., amount, purpose), of the lender (e.g., income,
family status, property ownership), and a credit grade (A, B, C, D, E, F, G).

Using Weka [5], we trained decision trees to classify the grade of each loan
from a subset of the loan attributes. We then translated each trained decision
tree into a DMN table by mapping each path from the root to a leaf of the
tree into a rule. Using different attributes and pruning parameters in the deci-
sion tree discovery, we generated DMN tables containing approx. 500, 1000 and
1500 rules and 3, 5 and 7 columns (nine tables in total). The 3-dimensional
(i.e., 3-column) tables have one categorical and two numerical input columns; the
5-dimensional tables have two categorical and three numerical input columns, and
the 7-dimensional tables has two categorical and five numerical input columns.

By construction, the generated tables do not contain overlapping or missing
rules. To introduce missing rules in a table, we selected 10% of the rules. For
each of them, we then randomly selected one column, and we injected noise into
the input entry in the cell in the selected column by decreasing its lower bound
and increasing its upper bound in the case of a numerical domain (e.g., interval
[3..6] becomes [2..7]) and by adding one value in the case of a categorical domain
(e.g., { Refinancing, CreditCardPayoff } becomes { Refinancing, CreditCard-
Payoff, Leasing }). These modifications make it that the rule will overlap others.
Conversely, to introduce missing rule errors, we selected 10% of the rules, picked
a random column for each row and “shrank” the corresponding input entry.
7 https://www.lendingclub.com/info/download-data.action.

https://www.lendingclub.com/info/download-data.action

232 D. Calvanese et al.

We checked each generated table both for missing and incomplete rules and
measured execution times averaged over 5 runs on a single core of a 64-bit
2.2 GHz Intel Core i5-5200U processor with 16 GB of RAM. The results are
shown in Table 2. Execution times for missing rules detection are under 2 s,
except for the 7-columns tables with 1000–1500 rules. The detection of over-
lapping rules leads to higher execution times, due to the need to detect sets of
overlapping rules and ensure maximality. The execution times for overlapping
rules detection on the 3-columns tables is higher than on the 5-columns tables
because the 5-columns tables have less rule overlaps, which in turn is due to the
fact that the 5-columns tables have proportionally less categorical columns than
the 3-columns ones.

In addition to implementing our algorithms, we implemented algorithms
designed to produce the same output as Signavio. In Signavio, if multiple rules
have a joint intersection (e.g., rules {r1, r2, r3}) the output contains an over-
lap entry for the triplet {r1, r2, r3} but also for the pairs {r1, r2}, {r2, r3}
and {r1, r3} (i.e., subsets of the overlapping set). Furthermore, the overlap of
pair {r1, r2} may be reported multiple times if r3 breaks r1 ∩ r2 into multiple
hyper-rectangles (and same for {r2, r3} and {r1, r3}). Meanwhile, our approach
produces only maximal sets of overlapping rules with a non-empty intersection.

Table 3 shows the number of sets of overlapping rules and the number of
missing rules identified by our approachvs. Signavio’s one. In all runs, both the
number of overlapping and missing rules is drastically lower in our approach.

Table 2. Execution times (in milliseconds)

3 columns 5 columns 7 columns

#rules 499 998 1 492 505 1 000 1 506 502 1 019 1 496

Overlapping

time

297ms 6 475ms 24 530ms 200ms 1 621ms 5 374ms 5 715ms 6 793ms 30 736ms

Missing time 160ms 611ms 1 672ms 163ms 820ms 1 942ms 2 173ms 7 029ms 18 263ms

Table 3. Number of reported errors of type “overlapping rules” and “missing rule”

3 columns 5 columns 7 columns

#rules 499 998 1 492 505 1 000 1 506 502 1 019 1 496

#overlapping

rule sets

Our approach 131 447 812 110 225 378 139 227 371

Signavio 1 226 10 920 23 115 679 3 692 8 921 23 175 22 002 62 217

#missing rules Our approach 117 330 726 136 254 462 134 322 518

Signavio 668 2 655 5 386 563 2 022 4 832 5 201 18 076 43 552

6 Conclusion and Future Work

This paper presented a formal semantics of DMN decision tables, a notion of
DMN table correctness, and algorithms that operationalize two core elements of

Semantics and Analysis of DMN Decision Tables 233

this correctness notion: the detection of overlapping rules and of missing rules.
The algorithms have been implemented atop the DMN toolkit dmn-js. An empir-
ical evaluation on large decision tables has shown the potential for scalability of
the proposed algorithms and their ability to generate non-redundant feedback
that is more concise than the one generated by the Signavio DMN editor.

The proposed algorithms rely on a geometric interpretation of rules in deci-
sion tables, which we foresee could be used to tackle other analysis problems. In
particular, we foresee that the problem of simplification of decision tables (rule
merging) could be approached from a geometric standpoint. Indeed, if we see the
rules as hyperrectangles, the problem of table simplification can be mapped to
one of finding an optimal way of merging hyperrectangles with respect to some
optimality notion. Another direction for future work is to extend the proposed
formal semantics to encompass other aspects of the DMN standard, such as the
concept of Decision Requirements Graphs (DRGs), which allow multiple decision
tables to be linked in various ways.

Acknowledgement. This research was partly funded by an Institutional Grant of
the Estonian Research Council.

References

1. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Scalable sweeping-
based spatial join. In: VLDB (1998)

2. Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision
logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.)
CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Heidelberg (2015)

3. CODASYL Decision Table Task Group: A modern appraisal of decision tables: a
CODASYL report. ACM (1982)

4. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

5. Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18
(2009)

6. Hewett, R., Leuchner, J.: Restructuring decision tables for elucidation of knowl-
edge. Data Knowl. Eng. 46(3), 271–290 (2003)

7. Hoover, D.N., Chen, Z.: Tablewise, a decision table tool. In: Proceedings of COM-
PASS, pp. 97–108 (1995)

8. Object Management Group: Decision Model and Notation (DMN) 1.0 (2015)
9. Pawlak, Z.: Decision tables - a rough set approach. Bull. EATCS 33, 85–95 (1987)

10. Pooch, U.W.: Translation of decision tables. Compt. Surv. 6(2), 125–151 (1974)
11. Vanthienen, J., Dries, E.: Illustration of a decision table tool for specifying and

implementing knowledge based systems. Int. J. Artif. Intell. Tools 3(2), 267–288
(1994)

12. Vanthienen, J., Mues, C., Aerts, A.: An illustration of verification and validation
in the modelling phase of KBS development. Data Knowl. Eng. 27(3), 337–352
(1998)

13. Zaidi, A.K., Levis, A.H.: Validation and verification of decision making rules. Auto-
matica 33(2), 155–169 (1997)

	Semantics and Analysis of DMN Decision Tables
	1 Introduction
	2 Background and Related Work
	2.1 Overview of DMN Decision Tables
	2.2 Analysis of DMN Decision Tables

	3 Formalization
	3.1 Data Types and S-FEEL Conditions
	3.2 Decision Tables
	3.3 Formalization of Rule Semantics and of Analysis Tasks

	4 Algorithms
	4.1 Finding Overlapping Rules
	4.2 Finding Missing Rules

	5 Evaluation
	6 Conclusion and Future Work
	References

