
Artificial Intelligence 195 (2013) 335–360
Contents lists available at SciVerse ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Data complexity of query answering in description logics

Diego Calvanese a, Giuseppe De Giacomo b, Domenico Lembo b,∗, Maurizio Lenzerini b,
Riccardo Rosati b

a Faculty of Computer Science, Free University of Bozen–Bolzano, Piazza Domenicani 3, Bolzano, Italy
b Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”, Sapienza Università di Roma, Via Ariosto 25, Roma, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 August 2011
Received in revised form 19 May 2012
Accepted 8 October 2012
Available online 15 October 2012

Keywords:
Knowledge representation
Description logics
Ontologies
Computational complexity
Conjunctive queries

In this paper we study data complexity of answering conjunctive queries over description
logic (DL) knowledge bases constituted by a TBox and an ABox. In particular, we are
interested in characterizing the FOL-rewritability and the polynomial tractability boundaries
of conjunctive query answering, depending on the expressive power of the DL used
to express the knowledge base. FOL-rewritability means that query answering can be
reduced to evaluating queries over the database corresponding to the ABox. Since first-
order queries can be expressed in SQL, the importance of FOL-rewritability is that, when
query answering enjoys this property, we can take advantage of Relational Data Base
Management System (RDBMS) techniques for both representing data, i.e., ABox assertions,
and answering queries via reformulation into SQL. What emerges from our complexity
analysis is that the description logics of the DL-Lite family are essentially the maximal
logics allowing for conjunctive query answering through standard database technology.
In this sense, they are the first description logics specifically tailored for effective query
answering over very large ABoxes.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The idea of using ontologies as a conceptual view over data repositories is becoming more and more popular. For ex-
ample, in enterprise application integration [1], data integration [2], and the semantic web [3], the intensional level of the
application domain can be profitably represented by an ontology, so that clients can rely on a shared conceptualization
when accessing the services provided by the system. In these contexts, the set of instances of the concepts in the ontology
is to be managed in the data layer of the system architecture (e.g., in the lowest of the three tiers of the enterprise software
architecture), and, since instances correspond to the data items of the underlying information system, such a layer consti-
tutes a very large (much larger than the intensional level of the ontology) repository, to be stored in secondary storage (see,
e.g., [4]).

When clients access the application ontology, it is very likely that one of the main services they need is the one of
answering complex queries over the extensional level of the ontology, which means computing the answers to the queries
that are logically implied by the whole ontology. Here, by ‘complex’ we mean that it does not suffice to ask for the instances
of concepts, but we need at least to express conjunctive conditions on the extensional level [5–11]. Given the size of the
instance repository, when measuring the computational complexity of query answering (and reasoning in general) the most

* Corresponding author.
E-mail addresses: calvanese@inf.unibz.it (D. Calvanese), degiacomo@dis.uniroma1.it (G. De Giacomo), lembo@dis.uniroma1.it (D. Lembo),

lenzerini@dis.uniroma1.it (M. Lenzerini), rosati@dis.uniroma1.it (R. Rosati).
0004-3702/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.artint.2012.10.003

http://dx.doi.org/10.1016/j.artint.2012.10.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:calvanese@inf.unibz.it
mailto:degiacomo@dis.uniroma1.it
mailto:lembo@dis.uniroma1.it
mailto:lenzerini@dis.uniroma1.it
mailto:rosati@dis.uniroma1.it
http://dx.doi.org/10.1016/j.artint.2012.10.003

336 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
important parameter is the size of the data. In other words, we are interested in the so-called data complexity of query
answering [12].

In this paper we consider conjunctive queries (CQs) specified over ontologies expressed in description logics (DLs), and
study the data complexity of the query answering problem. Since an ontology in DL is essentially a knowledge base (KB)
constituted by a TBox and an ABox, the problem we address is the one of computing the answers to a CQ that are logical
consequences of the TBox and the ABox, where complexity is measured with respect to the size of the ABox only. Note
that we borrow the notion of data complexity from the database literature [12], on the premise that an ABox can be
naturally viewed as a relational database. Recently, data complexity has attracted the interest of the DL community, first for
reasoning over TBox and ABox (i.e., instance checking, which is the simplest form of query answering) [13,14], and then also
for answering full conjunctive queries [15,16]. This gave rise to the study of DLs for which query answering can be done
efficiently in data complexity [17–20], which is a key aspects of the present paper.

Specifically, we are interested in characterizing the FOL-rewritability and the polynomial tractability boundaries of con-
junctive query answering, depending on the expressive power of the DL used to specify the KB. We say that query answering
is FOL-rewritable in a DL L, if for every conjunctive query q over an L TBox T , one can effectively compute a first-order
(FOL) query qr such that for all ABoxes A the answers to q with respect to the KB 〈T ,A〉 are the same as the answers
to qr over the database corresponding to the ABox A. Since first-order queries can be expressed in SQL, the importance
of FOL-rewritability is that, when query answering enjoys this property, we can take advantage of Relational Data Base
Management System (RDBMS) techniques for both representing data, i.e., ABox assertions, and answering queries via refor-
mulation into SQL.1 Notably, in this case, the data complexity of conjunctive query answering over ontologies is the one of
evaluating FOL queries over relational databases, i.e., AC

0 [21], a complexity class strictly contained in LogSpace [22].
We are also interested in knowing for which DLs we go beyond FOL. For this purpose, we single out those DLs for which

query answering becomes NLogSpace-hard and PTime-hard, respectively, thus not allowing for FOL-rewritability. From the
complexity characterization of query languages, it follows that those DLs require at least the power of linear recursive
Datalog (NLogSpace), and general recursive Datalog (PTime), respectively. Note that, although very interesting and promising
Datalog engines exist, query optimization strategies for this query language are not sufficiently mature yet to deal with
complex applications with millions of instances in the extensional level. Finally, we address the problem of going even
beyond PTime, by exhibiting DLs for which query answering is polynomially intractable.

More precisely, the contributions of the paper are the following.

• We discuss DLs for which conjunctive query answering is FOL-rewritable. In this class, we essentially find the languages
of the DL-Lite [18] family.2 Notably, the two simplest DLs of this family (namely, DL-LiteR and DL-LiteF) are rich enough
to express basic ontology languages, e.g., extensions of (the DL subset of) RDFS3 or fragments of OWL 24; conceptual
data models, e.g., Entity-Relationship [21]; and object-oriented formalisms, e.g., basic UML class diagrams.5 In fact,
in the present paper we consider a new DL of the DL-Lite family, called DLR-LiteA,� , which generalizes both DL-LiteR
and DL-LiteF by allowing for the use of n-ary relations between (instances of) concepts, the specification of keys on
relations, combined together (in a controlled way) with inclusions between (projections on) relations, and the use of
conjunctions in the left-hand side of the inclusion assertions constituting the knowledge base TBox. We show that for
such a DL query answering is FOL-rewritable.

• We show that minimal additions to the languages considered above make the data complexity of conjunctive query an-
swering NLogSpace-hard or PTime-hard, thus losing the possibility of reformulating queries in first-order logic. In spite
of the fact that for such languages query answering is polynomially tractable (in NLogSpace and PTime, respectively),
these hardness results tell us that for query answering we cannot take advantage of state-of-the-art database query
optimization strategies, and this might hamper practical feasibility for very large ABoxes.

• Finally, we establish coNP-hardness of conjunctive query answering with respect to data complexity for surprisingly
simple DLs. In particular, we show that we get intractability as soon as the DL is able to express simple forms of union.

What emerges from our complexity analysis is that the DLs of the DL-Lite family are DLs that enjoy FOL-rewritability of
conjunctive query answering and that cannot be extended with any construct typical of DLs [23] without losing this prop-
erty.6 In this sense, the DLs of the DL-Lite family studied here are the maximal logics that allow for answering conjunctive
queries through standard database technology.

The paper is organized as follows. In Section 2 we introduce some preliminary notions on DLs and query answering,
and present the DLs which we deal with in this paper, including DLR-LiteA,� . In Section 3 we show that for this DL query
answering and KB satisfiability are FOL-rewritable. Then, in Section 4 we deal with DLs for which query answering goes

1 We consider here the kernel of the SQL-92 standard, i.e., we see SQL as an implementation of relational algebra.
2 Not to be confused with the set of DLs studied in [20], which form the DL-Litebool family.
3 http://www.w3.org/TR/rdf-schema/.
4 http://www.w3.org/TR/owl2-overview/.
5 http://www.omg.org/uml/.
6 Actually, our mandatory participation and functionality constructs can be extended to unqualified number restrictions in a rather straightforward

way [20,24].

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl2-overview/
http://www.omg.org/uml/

D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360 337
beyond LogSpace: we first identify DLs for which query answering is NLogSpace-hard; then we characterize DLs for which
query answering is PTime-hard; and finally we identify DLs for which query answering is coNP-hard. Finally, in Section 5
we overview related work, and in Section 6 we draw some conclusions.

We point out that the present paper is an extended and revised version of [25]. In particular, the logic DLR-LiteA,� stud-
ied in this paper generalizes the DL-Lite logics considered in [25], since it allows for the use of n-ary relations rather than
binary roles (this case has been only briefly commented in [25]), and for a (controlled) combination of keys on relations
with inclusions between relations (which have been studied separately in [25]). Furthermore, we show here also compu-
tational complexity upper bounds for non-FOL-rewritable DLs, which were not considered in [25]. Finally, in the present
paper we provide complete proofs of all the results, and a detailed related work analysis.

2. Preliminaries

Description logics (DLs) [23] are logics that represent the domain of interest in terms of objects, i.e., individuals, concepts,
which are abstractions for sets of objects, and relations among concepts. Relations are typically binary in DLs (they are called
roles), but in this paper we also consider n-ary relations, in the spirit of the DL DLR [5,9].

In the rest of the paper, we implicitly refer to a signature S , and therefore we often omit to refer to it explicitly. The
signature S includes symbols for constants (also called individuals), unary predicates (also called atomic concepts), binary
predicates (also called atomic roles), n-ary (with n � 2) predicates (also called atomic relations). The arity of a relation R ,
denoted ar(R), is the number of its arguments, also called its components.

A DL knowledge base (KB) K = 〈T ,A〉 over S is a pair formed by a set T of assertions, called TBox, and a set A of
assertions, called ABox. Intuitively, T contains intensional assertions, i.e., axioms specifying general properties of concepts,
roles, and relations, while A contains extensional assertions, i.e., axioms about individual objects.

Definition 2.1 (Knowledge base). A DL knowledge base over a signature S is a pair K = 〈T ,A〉, where:

• T , called the TBox of K, is a finite set of intensional assertions (also called TBox assertions) over S;
• A, called the ABox of K, is a finite set of extensional assertions (also called ABox assertions) over S of the form:

A(a1) (concept membership assertion),

P (a1,a2) (role membership assertion),

R(a1, . . . ,an) (relation membership assertion),

with A, P , and R denoting respectively an atomic concept symbol, an atomic role symbol, and an n-ary atomic relation
symbol, for n � 2, and a1, . . . ,an denoting constant symbols. �

Informally, a concept membership assertion specifies that an object is an instance of an atomic concept. Analogously, the
other types of membership assertions specify instances of atomic roles and relations.

Later in the paper, we will illustrate the form of TBox assertions. What is important to note here about such assertions is
that they are specified using not only atomic concepts, roles, and relations, but also complex expressions. Complex concept
expressions are constructed starting from atomic concepts by applying suitable operators. Analogously, for complex roles
and complex relations. Different DLs allow for both different concept and role expressions, and different TBox intensional
assertions. In other words, defining a specific DL means providing a specification of both the language for building complex
expressions, and the language for specifying intensional assertions.

We start with the definition of the concept, role, and relation expressions allowed in the various DLs considered in this
paper. The whole set of relevant constructs are shown in the following syntactic rules:

C −→ A | ¬C | C � · · · � C | C � · · · � C | ∃Q | ∃Q .C | ∀Q .C | ∃i:R
Q −→ P | P− | ¬P | ¬P−
V −→ R | ¬R | R[i1, . . . , ih] | ¬R[i1, . . . , ih],

where

• A denotes an atomic concept, P an atomic role, R an atomic relation, C an arbitrary (i.e., either atomic or complex)
concept, Q an arbitrary role, and V an arbitrary relation. All these symbols will be used with subscripts, when needed.

• In an expression of the form ∃i:R , we have that i ∈ {1, . . . ,ar(R)}.
• In an expression of the form R[i1, . . . , ih], we have that i j ∈ {1, . . . ,ar(R)}, for each j ∈ {1, . . . ,h}, and i j �= i� , for j, � ∈

{1, . . . ,h} with j �= �. Such an expression denotes a relation of arity h whose components are 1, . . . ,h, and such that
the component i j of R corresponds to component j of R[i1, . . . , ih]. Notice that, when R has arity n, then R[1, . . . ,n]
coincides with R .

The semantics of a DL KB is given in terms of first-order interpretations, where an interpretation I = 〈�I , ·I〉 consists of
a non-empty interpretation domain �I , and an interpretation function ·I , assigning to each atomic concept A a subset AI

338 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
Table 1
The DL constructs considered in this article with their semantics.

Construct Syntax Semantics

Atomic concept A AI ⊆ �I

Atomic role P PI ⊆ �I × �I

Atomic relation R RI ⊆ �I × · · · × �I

Concept negation ¬C �I \ CI

Concept conjunction C1 � · · · � Cn CI
1 ∩ · · · ∩ CI

n

Concept disjunction C1 � · · · � Cn CI
1 ∪ · · · ∪ CI

n

Universal ∀Q .C {o | ∀o′. (o,o′) ∈ Q I → o′ ∈ CI}
quantification

Unqualified existential ∃Q {o | ∃o′. (o,o′) ∈ Q I}
role quantification

Qualified existential ∃Q .C {o | ∃o′. (o,o′) ∈ Q I ∧ o′ ∈ CI}
role quantification

Unqualified existential ∃i:R {o′ | ∃�o ∈ RI . �o[i] = o′}
relation quantification

Inverse role P− {(o,o′) | (o′,o) ∈ PI}
Role negation ¬Q (�I × �I) \ Q I

Relation projection R[i1, . . . , ih] {�o[i1, . . . , ih] | �o ∈ RI}
Relation negation ¬V (�I × · · · × �I) \ V I

Table 2
The TBox assertions considered in this article with their semantics.

TBox assertion Syntax Semantics

Concept inclusion Cl � Cr ClI ⊆ CrI

Role inclusion Ql � Qr QlI ⊆ QrI

Relation inclusion Vl � Vr VlI ⊆ VrI

Role functionality (funct Q) ∀o1.∀o2.∀o3.

assertion (o1,o2) ∈ Q I ∧ (o1,o3) ∈ Q I → o2 = o3

Relation key (key j1, . . . , j�: V) ∀�o1 ∈ V I .∀�o2 ∈ V I .

assertion �o1[j1, . . . , j�] = �o2[j1, . . . , j�] → �o1 = �o2

of �I , to each atomic role P a binary relation PI over �I (i.e., a subset of �I ×�I), and to each n-ary relation R an n-ary
relation RI over �I . Also, ·I assigns to each constant a an object aI of �I . All the DLs discussed in this paper follow the
unique name assumption, and, therefore, if a1 and a2 are different constants, then the objects aI1 and aI2 are different as
well.

In the following, we use �o to denote an n-tuple of objects in �I , and �o[i], where i ∈ {1, . . . ,n}, to denote the i-th
component of �o. Also, we will use �o[i1, . . . , ih], where i1, . . . , ih ∈ {1, . . . ,n} and i j �= i� , for j, � ∈ {1, . . . ,h} with j �= �,
as a shortcut for (�o[i1], . . . , �o[ih]). Finally, for �a = (a1, . . . ,an), where a1, . . . ,an are constants, we use �aI as a shortcut for
(aI1 , . . . ,aIn).

The semantics of all the constructs that are relevant for this article is shown in Table 1. For each of the constructs, the
table shows its name, its syntax, and its semantics.

We now turn to the definition of TBox assertions. In this paper, we consider three kinds of TBox assertions:

• Inclusion assertions between concepts, stating that all instances of one concept are also instances of another concept.
Analogous assertions specify inclusions between roles, and inclusions between relations.

• Functional assertions, stating that a role is functional.
• Key assertions, stating that a set of components is a key for a relation.

Table 2 illustrates the various TBox assertions mentioned above, by describing their syntax and their semantics. In par-
ticular, the “Semantics” column of the table specifies, for each assertion, which is the condition that an interpretation I
must obey in order to satisfy the assertion. Note that:

• In the concept inclusion assertions, Cl (resp., Cr) denotes a concept used in the left-hand side (resp., right-hand side) of
the inclusion. The distinction between Cl and Cr is motivated by the fact that the constraints that the various DLs put
on the form of concept expressions appearing in one side of the inclusion are often different with respect to those in
the other side. Analogous observation holds for both role and relation inclusions assertions.

• In an expression of the form (key j1, . . . , j�: V), we have that jk ∈ {1, . . . ,ar(V)}, for each k ∈ {1, . . . , �}, and jk �= jm

for each k,m ∈ {1, . . . , �} with k �= m. In particular, when R is a relation of arity n, in an expression (key j1, . . . , j�:
R[i1, . . . , ih]) we have that i1, . . . , ih ∈ {1, . . . ,n} and j1, . . . , j� ∈ {1, . . . ,h}.

D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360 339
We are now ready to complete the definition of the semantics of KBs. For this purpose, the basic definitions are as
follows:

• An interpretation I is a model of a TBox assertion α if I satisfies α, according to what reported in Table 2.
• An interpretation I is a model of (or equivalently satisfies) a membership assertion A(a) if aI ∈ AI . It is a model of

P (a1,a2) if (a1,a2) ∈ PI , and it is a model of R(a1, . . . ,an) if (aI1 , . . . ,aIn) ∈ RI .

A model of a KB K = 〈T ,A〉 is an interpretation I that is a model of all assertions in T and A. A KB is satisfiable if it
has at least one model. A KB K logically implies (an assertion) α, written K |� α, if all models of K are also models of α.

Example 2.2. Let us assume that our signature includes the atomic concepts Supplier, Customer, and Product, the ternary
relation supply, and the binary relation clientOf. The following is a TBox T :

∃1:supply � Supplier (1)

∃2:supply � Customer (2)

∃3:supply � Product (3)

Supplier � ¬Product (4)

Customer � ¬Product (5)

(key 2,3: supply) (6)

Supplier � Customer � ∃1:supply (7)

Supplier � Customer � ∃2:supply (8)

supply[1,2] � clientOf [2,1]. (9)

In the above TBox, inclusions (1)–(3) specify the domain respectively of the first, second, and third component of the
relation supply, with the intended meaning that suppliers provide customers with products. Assertions (4) and (5) impose
that the set of products is disjoint from the set of customers and the set of suppliers, respectively. Assertion (6) imposes
that positions 2 and 3 in supply constitute the key of supply, with the intended meaning that a customer for a certain
product has only one supplier. Assertions (7) and (8) specify that those individuals that are both suppliers and customers
must participate in both the first and the second component of the relation supply. Finally, assertion (9) says that each
individual that is a supplier of a customer (for a certain product), has such a customer as a client.

As an example of ABox A, consider

Customer(SmithInc)

Supplier(SmithInc)

clientOf (SmithInc,SmartCompany). �
In the rest of this paper, each of the DLs that we will refer to will be characterized by the following elements:

1. the form of the concept expressions Cl and Cr,
2. the form of the role expressions Ql and Qr,
3. the form of the relation expressions Vl and Vr, and
4. the type of TBox assertions allowed in the DL.

Note that, when in the description of a DL, the second item (resp., the third item) is missing, this means simply that the
DL includes only relations (resp., roles), and not roles (resp., n-ary relations).

2.1. The DL-Lite family

The DL-Lite family [18] is a family of DLs specifically tailored to capture knowledge representation and ontology lan-
guages, while allowing reasoning tasks to be carried out efficiently. In particular, the distinguishing feature of the DLs of
this family is that query answering has the same computational complexity as in relational databases, if one measures the
complexity with respect to the size of the ABox only. The goal of this subsection is to provide the definition of the DLs of
the DL-Lite family.

Table 3 describes the basic members of the DL-Lite family, studied in detail in [18,26]. In all these DLs, only roles (i.e.,
binary relations) are allowed. Note that the symbol (∗) associated to the TBox assertion (funct Q) of DL-LiteA indicates that
in this DL the following restriction on the use of such assertions holds:

340 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
Table 3
The basic DLs of the DL-Lite family.

DL-Litecore DL-LiteF DL-LiteR DL-LiteA

Cl A | ∃P | ∃P−

Cr Cl | ¬Cl

Ql – P | P−

Qr – Ql | ¬Ql

Vl, Vr –

TBox assertions
Cl � Cr Cl � Cr Cl � Cr Cl � Cr

(funct Ql) Ql � Qr Ql � Qr
(funct Ql)(∗)

Table 4
The DL DLR-LiteA,� .

DLR-LiteA,�
Cl A | ∃i:R | Cl1 � · · · � Cln
Cr A | ∃i:R | ¬A | ¬∃i:R

Ql, Qr –

Vl R | R[i1, . . . , ih]
Vr Vl | ¬Vl

TBox assertions
Cl � Cr
Vl � Vr

(key j1, . . . , j�: Vl)(∗)

(∗) In a DL-LiteA KB K = 〈T ,A〉, for each role P such that in T there is an assertion (funct P) or (funct P−), in T there is
no assertion of the form Q � P and no assertion of the form Q � P− .

In other words, functional roles cannot be specialized in the TBox. This restriction is crucial for keeping query answering
efficient, as we will demonstrate in Section 4.

We observe that DL-LiteA , as defined in [18,26], is actually richer than the DL described in Table 3, because it includes
constructs for modeling concept attributes, which are binary relations between concepts and value-domains. However, from
the technical point of view, attributes can be considered essentially as roles, and therefore we ignore them here.

Although much of the technical work done so far on the DL-Lite family deals with the basic members, in this paper we
consider a new member of the family, called DLR-LiteA,� , which is characterized by the following features:

• it allows for modeling a domain not only in terms of concepts and roles, but also in terms of n-ary relations;
• it allows for the specification of inclusions between (projections of) n-ary relations;
• it provides the possibility of specifying conjunctions in the left-hand side of inclusions between concepts;
• it allows for the specification of key constraints on (projections of) n-ary relations.

We provide the definition of DLR-LiteA,� in Table 4. In the following, we say that the key assertion (key j1, . . . , j�: Vl) is
on relation R if Vl is either R or R[i1, . . . , ih].

Analogously to the case of DL-LiteA , the symbol (∗) associated to the TBox assertion (key j1, . . . , j�: Vl) of DLR-LiteA,�
indicates that in this DL the following restriction on the use of such assertions holds:

(∗) In a DLR-LiteA,� KB K = 〈T ,A〉, for each relation R such that in T there is a key assertion on R , in T there is no
assertion of the form V � R and no assertion of the form V � R[i1, . . . , ih].

In other words, relations occurring in key assertions in T cannot be specialized, i.e., they cannot occur positively in the
right-hand side of inclusion assertions between relations. Observe that the KB discussed in Example 2.2 is a DLR-LiteA,� KB.

Hereinafter, we call positive inclusions (PIs) assertions of the form Cl � A, Cl � ∃i:R , Vl � R , and Vl � R[i1, . . . , ih]. More-
over, we call negative inclusions (NIs) assertions of the form Cl � ¬A, Cl � ¬∃i:R , Vl � ¬R , and Vl � ¬R[i1, . . . , ih].

Note that, analogously to DL-LiteA , DLR-LiteA,� includes concept attributes, but we ignore them in this paper. It is
immediate to verify that DLR-LiteA,� is more expressive than all the basic members of the DL-Lite family. Indeed, although
DLR-LiteA,� does not include roles, they can obviously be captured by relations of arity 2. Analogously, constructs like ∃R
and P− can be easily expressed in terms of the constructs of DLR-LiteA,� . We observe that DLR-LiteA,� might also be
enhanced with the capability of managing qualified existential quantification on the right-hand side of inclusion assertions
between concepts, i.e., adding to Cr the construct

∃i:R.A1, . . . , Ai−1, Ai+1, . . . , An,

D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360 341
where R is an n-ary relation with no key constraint in T , and A1, . . . , Ai−1, Ai+1, . . . , An are atomic concepts [25]. The
semantics of the above construct is defined as follows. Given an interpretation I , we have that (∃i:R.A1, . . . , Ai−1, Ai+1,

. . . , An)I is

{�o[i] ∣∣ �o ∈ RI and �o[j] ∈ AI
j , for j ∈ {1, . . . , i − 1, i + 1, . . . ,n}}.

This construct, however, can be simulated by suitably using inclusions between relations and unqualified existential
quantification on relations in inclusions between concepts. More precisely, we can replace each assertion of the form
Cl � ∃i:R.A1, . . . , Ai−1, Ai+1, . . . , An with the assertions

Cl � ∃i:R̂
R̂ � R

∃1:R̂ � A1

· · ·
∃i − 1:R̂ � Ai−1

∃i + 1:R̂ � Ai+1

· · ·
∃n:R̂ � An,

where R̂ is a fresh n-ary relation. Therefore, in the following we do not explicitly consider qualified existential quantification.
Other logics allowing for different usages of qualified existential quantification will be analyzed in the next sections.

We conclude by emphasizing that DLR-LiteA,� is the first DL of the DL-Lite family that allows for the use of (i) n-ary
relations, rather than binary roles, (ii) key assertions, rather than simple functionalities, and (iii) conjunctions in the left-
hand side of inclusion assertions. Nonetheless, we will show in the next section that for DLR-LiteA,� KBs, both query
answering and KB satisfiability are FOL-rewritable, i.e., such a DL presents the distinguishing fundamental properties of the
DLs of the DL-Lite family (cf. [18]).

2.2. Query answering

By using queries, we can extract information from the extensional level of a KB K expressed in a DL. We start with
a general notion of queries in first-order logic, and then we move to the definition of queries over a DL KB.

A query is an open formula of first-order logic with equalities (FOL, in the following). Formally, A FOL query q is an ex-
pression of the form

{�x ∣∣ φ(�x)},
where φ(�x) is a FOL formula with free variables �x. We call the size of �x the arity of q. Given an interpretation I , qI is the
set of tuples of domain elements that, when assigned to the free variables, make the formula φ true in I [21]. A boolean
query is a query that does not involve any free variable (i.e., φ is a closed formula). Given an interpretation I , if a boolean
query q is true in I then qI consists only of the empty tuple, i.e., the tuple of arity 0; instead, if q is false in I then qI is
obviously empty. Finally, a ground query is a boolean query that does not contain any variable.

We are interested in conjunctive queries and unions of conjunctive queries. A conjunctive query (CQ) q is a query of the
form

{�x ∣∣ ∃�y. conj(�x, �y)
}
,

where conj(�x, �y) is a conjunction of atoms and equalities, with variables �x and �y. A union of conjunctive queries (UCQ) Q ,
is a query of the form

{
�x
∣∣∣ ∨

i∈{1,...,n}
∃ �yi . conji(�x, �yi)

}
,

where each conji(�x, �yi) is, as before, a conjunction of atoms and equalities with free variables �x and �yi . Obviously, the class
of unions of conjunctive queries contains the class of conjunctive queries.

For convenience, we adopt the usual Datalog notation (see e.g., [21]). Namely, a conjunctive query q = {�x | ∃�y. conj(�x, �y)}
is denoted as

q
(�x′) ← conj′

(�x′, �y′),

342 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
where conj′(�x′, �y′) is the list of atoms in conj(�x, �y) obtained after having equated the variables �x, �y according to the equali-
ties in conj(�x, �y). As a result of such equality elimination, we have that �x′ and �y′ can actually contain constants and multiple
occurrences of the same variable. We call q(�x′) the head of q, denoted head(q), and conj′(�x′, �y′) the body, denoted body(q).
Moreover, we call the variables in �x′ the distinguished variables of q and those in �y′ the non-distinguished variables. If the
query q is boolean, its Datalog notation is q ← conj′(�y′).

A union of conjunctive queries

Q =
{
�x
∣∣∣ ∨

i∈{1,...,n}
∃�yi .conji(�x, �yi)

}

is denoted in Datalog notation as

Q = {α1, . . . ,αn},
where each αi is the conjunctive query {�x | ∃�yi . conji(�x, �yi)} expressed in Datalog notation. Notice that, for an interpreta-
tion I , we have that Q I = ⋃

i∈{1,...,n} αI
i .

The size of a CQ q, denoted with size(q), is the number of atoms occurring in its body when q is given in Datalog
notation. The size, size(Q), of a UCQ Q coincides with the maximum among the sizes of the CQs contained in Q .

We can now define queries over a DL KB. We will concentrate on conjunctive queries and unions of conjunctive queries,
only. A conjunctive query over a TBox T is a conjunctive query whose atoms are of the form A(z) or R(z1, . . . , zn) where A
and R are respectively an atomic concept and a relation of T and z, z1, . . . , zn are either constants or (possibly non-distinct)
variables. Similarly, we define unions of conjunctive queries over a TBox T . We also say that a conjunctive query q is specified
over a KB K = 〈T ,A〉 if q is a conjunctive query over T .

The reasoning service we are interested in is (conjunctive) query answering: given a satisfiable knowledge base K and
a union of conjunctive queries Q (�x) over K, return all tuples �a of constants in K such that, when substituted to the
variables �x in Q (�x), denoted q(�a), we have that K |� Q (�a), i.e., such that �aI ∈ Q I for every model I of K. We denote with
ans(Q ,K) the set of such tuples. When the query Q is boolean, ans(Q ,K) contains the empty tuple if K |� Q , i.e., if Q I

is true in every model I of K, whereas ans(Q ,K) = ∅, otherwise.
We point out that defining query answering only for satisfiable KBs is not a simplification. Indeed, from the “ex falso

quod libet” principle, it follows that the answers to a query of arity n posed over an unsatisfiable KB K would be trivially all
possible tuples of constants in K whose arity is the one of the query. Since we are not interested in getting such answers,
we have defined query answering only over satisfiable KBs, and we will perform query answering only after a check on the
satisfiability of the KB at hand.

We observe that query answering (properly) generalizes two well-known reasoning services in DLs. The first one is
instance checking, i.e., logical implication of an ABox assertion, which can be expressed as the problem of answering boolean
ground queries whose body contains exactly one ground atom. The second one is retrieval, i.e., determining all individuals
that are logically implied to be instances of a concept, which can be expressed as the problem of answering a unary query
whose body contains exactly one unary atom.

Finally, we refer to data complexity of query answering, which is a notion borrowed from relational database theory [12],
and in the context of DLs is defined as follows. First, we note that there is a decision problem associated with query
answering: fixed a TBox T expressed in a DL L, and a query q, the recognition problem associated to T and q is the decision
problem of checking whether, given an ABox A such that 〈T ,A〉 is satisfiable, and a tuple �a of constants, we have that
〈T ,A〉 |� q(�a). Note that neither the TBox nor the query is an input to the recognition problem.

Let C be a complexity class. When we say that query answering for a certain DL L is in C with respect to data complexity,
we mean that the corresponding recognition problem is in C . Similarly, when we say that query answering for a certain
DL L is C-hard with respect to data complexity, we mean that the corresponding recognition problem is C-hard.

2.3. The notion of FOL-rewritability

We now introduce the notion of FOL-rewritability of query answering and KB satisfiability. We start by giving the notion
of Q-rewritability of query answering and KB satisfiability, where Q is a given query language. To this purpose, given
an ABox A (of the kind considered above), we define the interpretation db(A) = 〈�db(A), ·db(A)〉 as follows:

• if A �= ∅, then �db(A) is the set consisting of all constants occurring in A, otherwise, if A= ∅, then �db(A) = {c} where
c is some constant symbol,

• adb(A) = a, for each constant a,
• Adb(A) = {a | A(a) ∈A}, for each atomic concept A, and
• Rdb(A) = {(a1, . . . ,an) | R(a1, . . . ,an) ∈A}, for each n-ary atomic relation R .

Definition 2.3. Query answering in a DL L is Q-rewritable, if for every TBox T expressed in L and every (conjunc-
tive) query q over T , one can effectively compute a query qr over T , belonging to the query language Q, such that for

D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360 343
every ABox A, for which 〈T ,A〉 is satisfiable, and every tuple of constants �a occurring in A, 〈T ,A〉 |� q(�a) if and only if
�adb(A) ∈ qdb(A)

r . The query qr is called the Q-rewriting of q w.r.t. T . �
In other words, Q-rewritability of query answering captures the property that we can reduce query answering to evalu-

ating a query belonging to the query language Q over the ABox A considered as a relational database, i.e., over db(A).
Analogously, we can define Q-rewritability of KB satisfiability.

Definition 2.4. KB satisfiability in a DL L is Q-rewritable, if for every TBox T expressed in L, one can effectively compute
a boolean query qr , over T , belonging to the query language Q, such that for every ABox A, 〈T ,A〉 is satisfiable if and
only if qr evaluates to false in db(A), i.e., qdb(A)

r = ∅. �
One of the most interesting classes of queries to be considered for Q is that of FOL queries, since, from the practical

point of view, FOL queries correspond to queries expressed in relational algebra (i.e., in SQL). In other words, (the SQL
encoding of) FOL queries can be easily evaluated by an SQL engine over a simple relational database defined by ABox
assertions (i.e., the relational database corresponding to the interpretation db(A) defined above), thus taking advantage of
well-established query optimization strategies supported by current industrial strength relational technology.

Observe that every FOL query can be evaluated in AC
0 with respect to data complexity (see e.g., [21]). It follows that,

if query answering (or KB satisfiability) in L is FOL-rewritable, then query answering (resp., KB satisfiability) in L is in AC
0

w.r.t. data complexity. Vice-versa, if query answering (or KB satisfiability) is C-hard w.r.t. data complexity for some com-
plexity class C that strictly contains AC

0 (e.g., LogSpace, NLogSpace, PTime, coNP, etc.), then it is not FOL-rewritable.
In the following, we study FOL-rewritability of KB satisfiability only in those cases in which query answering is FOL-

rewritable. Indeed, checking the satisfiability of a KB is always needed before answering a query posed over it, and estab-
lishing FOL-rewritability of both reasoning services guarantees the possibility of completely relying on relational database
technology to perform them. In all the other cases, we analyze the computational complexity of query answering only.

3. FOL-rewritability in DLR-LiteA,�

In this section we provide algorithms that reduce CQ answering and KB satisfiability in DLR-LiteA,� to first-order logic
query evaluation, thus showing FOL-rewritability (and therefore membership in AC

0) of both such reasoning services.
We first study query answering and provide an algorithm, called PerfectRef, that takes as input a DLR-LiteA,� TBox T and

a union of conjunctive queries Q and returns a union of conjunctive queries Q r , which we show to be the FOL-rewriting
of Q w.r.t. T . In a nutshell, the algorithm compiles in Q r both the query Q and the assertions of T that are relevant to
compute the answers to Q . Notably, we will show that, to obtain Q r , only the PIs explicitly asserted in T have to be taken
into account (see Theorem 3.9).

We then deal with KB satisfiability, which we in fact reduce to query answering (of a suitable boolean query), and show
that PerfectRef can be used to solve this problem through rewriting into FOL.

From now on, we assume that both PIs and NIs are transformed as described next. As for PIs, we substitute each
occurrence of an atomic concept A with A[1], and each occurrence of a concept of the form ∃i:R with R[i]. For example, we
transform the inclusion ∃3:R1 � A � ∃2:R2 in R1[3] � A[1] � R2[2]. In this way, both positive concept inclusions and positive
relation inclusions in T are specified according to the following syntax:

S1[i1,1, . . . , i1,k] � · · · � Sh[ih,1, . . . , ih,k] � S[i1, . . . , ik], (10)

where each of S, S1, . . . , Sh may be an atomic concept or a relation, and k � min(m,m1, . . . ,mh), with m,m1, . . . ,mh denot-
ing the arities of S, S1, . . . , Sh , respectively. Notice that, since conjunction in the left-hand side of inclusions is allowed only
in concept inclusions, we have that k > 1 implies h = 1.

We adopt an analogous transformation also for NIs, and write them according to the following syntax:

S1[i1,1, . . . , i1,k] � · · · � Sh[ih,1, . . . , ih,k] � ¬S0[i0,1, . . . , i0,k], (11)

where S0, S1, . . . , Sh , m0,m1, . . . ,mh , and k are defined as for positive inclusions. Again, k > 1 implies h = 1.
In the following, we will always use S , possibly with subscripts, to denote either an atomic concept or an atomic relation.

In the former case, we always have ar(S) = 1.

Example 3.1. The TBox given in Example 2.2 is transformed in the following way:

supply[1] � Supplier[1] (12)

supply[2] � Customer[1] (13)

supply[3] � Product[1] (14)

Supplier[1] � ¬Product[1] (15)

344 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
Algorithm PerfectRef(Q ,T)
Input: UCQ Q of arity n and size k, DLR-LiteA,� TBox T
Output: UCQ Q r

Q r := Q ;
J := {z1, . . . zk}, with each zi not occurring in Q ;

repeat
Q ′

r := Q r ;
for each CQ q ∈ Q ′

r do
(a) for each g1, g2 in q do

if g1 and g2 unify
then Q r := Q r ∪ {τ (reduce(q, g1, g2))};

(b) for each g in q do
for each PI I in T do

if I is applicable to g
then Q r := Q r ∪ {atomRewrite(q, g, I, J)};

until Q ′
r = Q r ;

return Q r

Fig. 1. The algorithm PerfectRef.

Customer[1] � ¬Product[1] (16)

(key 2,3: supply) (17)

Supplier[1] � Customer[1] � supply[1] (18)

Supplier[1] � Customer[1] � supply[2] (19)

supply[1,2] � clientOf [2,1]. � (20)

3.1. FOL-rewritability of query answering

In the following, we illustrate PerfectRef from a technical point of view, and show its termination and its correctness.
We start our discussion with some preliminary notions.

We point out that, for technical reasons, PerfectRef works on (unions of) conjunctive queries specified in Datalog syntax
(see Section 2). We say that an argument of an atom in a query is bound if it corresponds either (i) to a distinguished
variable, or (ii) to a shared variable, i.e., a variable occurring at least twice in the query body (including the case of a variable
occurring more than once in a single atom of the query), or (iii) to a constant. Instead, we say that an argument of an atom
is unbound if it corresponds to a non-distinguished non-shared variable (we use the symbol ‘− ’ to represent unbound
variables).

Definition 3.2. Given a query atom g = S(x1, . . . , xn), where each xi is either a bound term or a ‘− ’, and a positive inclusion
I ∈ T of the form (10), we say that I is applicable to g (on xi1 , . . . , xik) if for each � ∈ {1, . . . ,n} such that x� �=− , there
exists p ∈ {1, . . . ,k} such that ip = �. We say also that the arguments xi1 , . . . , xik are propagated by I (or that I propagates
xi1 , . . . , xik). �

Roughly speaking, an inclusion I is applicable to an atom g if all bound arguments of g are propagated by I . For example,
the positive inclusion R ′[2,3] � R[1,2], where R ′ is of arity 3 and R is of arity 4, is applicable to the atom R(x1, x2,−,−),
where x1 and x2 are bound terms, but it is not applicable to the atom R(x1, x2,−, x4), since it does not propagate the bound
term x4. We notice that the PIs of the form Cl � A are always applicable to an atom of the form A(x), disregarding whether
x is equal to − or not.

The algorithm PerfectRef is given in Fig. 1. It is constituted by two main steps, iteratively repeated until a fixpoint
is reached, namely, the reduce step (Step (a)), which realizes some unifications on the query, and the atom rewrite step
(Step (b)), which rewrites query atoms with respect to applicable PIs. Roughly speaking, in the latter step, PIs are used as
rewriting rules, applied from right to left, which allow one to compile away in the reformulation the intensional knowledge
(represented by T) that is relevant for answering the query. Notice that each step produces a new CQ which is added to
the set of queries returned by the algorithm.

The algorithm is structurally similar to the PerfectRef algorithm presented in [18] for computing the FOL-rewriting of
a UCQ over either a DL-LiteR or a DL-LiteF TBox. However, differently from [18], both the reduce and the atom rewrite
steps have now to deal with the presence of n-ary relations, both in the query and in the inclusions, and the atom rewrite
step has to properly manage the presence of conjunctions in concept PIs. In particular, atom rewrite turns out to be much
more complicated than the analogous step of the algorithm in [18]. Also, the proofs of termination and correctness of the
algorithm, which we will give later on, are now much more involved due to the presence of n-ary relations and conjunctions
in the left-hand side of inclusion assertions. We now describe more in detail the two steps of the algorithm.

The function reduce takes as input a CQ q and two atoms g1 and g2 occurring in the body of q, and returns a conjunctive
query q′ obtained by applying to q the most general unifier between g1 and g2. We point out that, in unifying g1 and g2, each

D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360 345
occurrence of the − symbol has to be considered a different unbound variable. The most general unifier substitutes each −
symbol in g1 with the corresponding argument in g2, and vice-versa (obviously, if both arguments are − , the resulting
argument is −). For example, given the query q(x, w) ← R(x, y,−, z), R(w, y,−, z), A(y), the unification performed by reduce
on the first two atoms produces the query q(x, x) ← R(x, y,−, z), A(y). Notice that, by virtue of the reduce step, variables
that are bound in q may become unbound in q′ . The function τ is thus used to guarantee that each unbound variable is
represented by the symbol − . For instance, applied to the query in the example above, τ substitutes the unbound variable z
with − and returns the query q(x, x) ← R(x, y,−,−), A(y). Now, it may be the case that PIs that were not applicable
to atoms of the query q in the input to reduce, may become applicable to atoms of τ (q′). For example, in our ongoing
example, the PI R ′[2,3] � R[1,2] is applicable to the atom R(x, y,−,−), obtained through the reduce step, but not to the
atoms R(x, y,−, z) or R(w, y,−, z).

The function atomRewrite takes as input a CQ q, an atom g (belonging to q), a PI I , and the set J of variables, and returns
a new CQ in which the atom g has been rewritten according to the PI I . Assume that g has the form S(x1, . . . , xn), where S
is either an atomic concept or an atomic relation symbol (in the first case, n = 1), and that I is specified in the form (10).
The function atomRewrite substitutes g with

S1(y1,1, . . . , y1,m1), . . . , Sh(yh,1, . . . , yh,mh),

where, for each j ∈ {1, . . . ,h}, m j is the arity of S j , and for each yr,s different cases are possible, depending on whether I
is an inclusion without conjunctions (either a role or a concept inclusion) (Case (i)), or I is a concept inclusion with
conjunctions that propagates a bound term (Case (ii)), or I is as in Case (ii), but propagates an unbound term (Case (iii)).
More precisely,

(i) if in Eq. (10) we have that h = 1 (and therefore k may be greater than 1), then for each p ∈ {1, . . . ,m1}, y1,p = xir if
there exists r such that i1,r = p, otherwise y1,p = −;

(ii) if in Eq. (10) we have that k = 1 and h > 1, and in g we have that xi1 �= − , then y1,i1,1 = · · · = yh,ih,1 = xi1 , and all
others yr,s are −;

(iii) if in Eq. (10) we have that k = 1 and h > 1 (as for Case (ii)), and in g we have that xi1 = − , then y1,i1,1 = · · · = yh,ih,1 = z,
where z is a symbol from J that does not occur in q, and all other yr,s are − .

Informally, in Case (i), atomRewrite substitutes the input atom g with a new atom g′ , over the predicate S1, in which
the terms of g propagated by the inclusion I occur as arguments of S1 in the positions specified in the left-hand side of I ,
whereas the other arguments of S1 are − . For example, if g = R(x, y,−,−) and I = R ′[2,3] � R[1,2], in the query returned
by atomRewrite g , is substituted by R ′(−, x, y) (we assume that ar(R ′) = 3).

In Case (ii), atomRewrite substitutes g with a conjunction of atoms over the predicates S1, . . . , Sh , where each such atom
contains the term xi1 in the position specified in the left-hand side of the inclusion I . Other arguments in these atoms are − .
Notice that all such atoms are joined through the variable xi1 . For example, if g = R(−, y,−,−) and I = R ′[2] � R ′′[1] � R[2],
in the query returned by atomRewrite, g is substituted by R ′(−, y,−), R ′′(y,−) (we assume that ar(R ′) = 3 and ar(R ′′) = 2).
R ′ and R ′′ are thus joined on y.

Case (iii) is as Case (ii), with the only difference that an unbound term is now propagated. To express the join on the
new atoms introduced by atomRewrite, a new variable not occurring in the query q has to be used. For example, if g =
R(−,−,−,−) and I = R ′[2] � R ′′[1] � R[2], in the query returned by atomRewrite, g is substituted by R ′(−, z,−), R ′′(z,−),
where z is a new variable not occurring in the query q (to which g belongs). The procedure picks up z from the fixed set J
of variables, which contains only k variable symbols, where k is the size of the query Q given as input to PerfectRef. Using
only variables from J is sufficient, since it is possible to show that PerfectRef includes in the final rewriting only CQs that
may contain at most k new variable symbols, other than the variables originally occurring in Q plus the − symbol. We will
prove this property in the proof of the termination of PerfectRef.

Example 3.3. Let us consider the query q(x) ← supply(x, y, z),Product(z) posed over the TBox T of Examples 2.2 and 3.1.
The algorithm applies the PI (14) and generates the query q(x) ← supply(x, y, z), supply(w1, w2, z).7 Applying the reduce
operator to the atoms contained in such a query, with unifier {w1/x, w2/y}, we then obtain the query q(x) ← supply(x, y, z),
to which the PI (18) can be applied, thus adding to the rewriting the query q(x) ← Supplier(x),Customer(x). We notice that
the use of the reduce function is necessary to generate this query. The evaluation of the last query over the ABox A produces
the set {SmithInc}. Such a set constitutes in fact the set of answers to the input query over the KB 〈T ,A〉. �
Lemma 3.4. Let T be a DLR-LiteA,� TBox, and let Q be a union of conjunctive queries over T . Then, the algorithm PerfectRef(Q ,T)

terminates.

Proof. First of all, we notice that the set of terms that occur in the conjunctive queries generated by the algorithm is equal
to the set of variables and constants occurring in Q , plus the symbol − , plus the k new variables of the set J (we recall that

7 In the example, we use new symbols for indicating unbound variables introduced by rewriting steps, rather than the symbol − .

346 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
k is the size of Q , i.e., the maximum number of atoms in a CQ contained in Q). Indeed, a new variable is introduced in the
rewriting by PerfectRef only when it propagates, through atomRewrite, an unbound term by applying a concept inclusion
with conjunctions (Case (iii) of atomRewrite). This may happen only if the atom to which such inclusion is applied is of
the form S(−, . . . ,−), i.e., its arguments are all unbound, and k is the maximum number of atoms of this form that may
simultaneously occur in a query generated by PerfectRef that takes as input a CQ q of size k. We prove this property by
induction on the size of the query taken as input by PerfectRef.

Base step: Let us assume that PerfectRef takes as input a query q of size equal to 1, i.e., with exactly one atom, and
show that 1 is the maximum number of atoms of the form S(−, . . . ,−) that can simultaneously occur in a query generated
by PerfectRef. Two cases are possible: (1) there is at least a bound argument in the body of q. If such argument is a dis-
tinguished variable or a constant, there is no hope to even generate a single atom of the form S(−, . . . ,−), since all bound
arguments are always propagated by the function atomRewrite, and distinguished variables or constants can never be trans-
formed into unbound arguments using the function reduce. If bound arguments are due to self-joins on the only atom of q,
then at least two bound arguments occur in such atom, and therefore the algorithm cannot generate any query whose size
is greater than 1, since PIs with conjunctions can never be applied (i.e., Case (ii) and Case (iii) of atomRewrite, which are the
only cases that produce a query whose size is greater than the size of the input query, cannot be executed). Therefore, the
claim easily follows. (2) the only atom g in the query is already of the form S(−, . . . ,−). The algorithm can generate queries
whose size is greater than 1 only by applying Case (iii) of the function atomRewrite to g , or to an atom obtained from g by
(possibly iteratively) applying Case (i) of atomRewrite. It is easy to see that in each query of size greater than 1 produced
by PerfectRef all atoms are of the form S(−, . . . ,−, z,−, . . . ,−), where z is a variable from J . Therefore, a new atom of the
form S(−, . . . ,−) can be generated by PerfectRef only after pairwise unifications of all such atoms through reduce steps, but
this means that the query that contains such atom cannot contain other atoms at all, and therefore the claim follows.

Inductive step: In the following we denote with q j the query obtained at the j-th iteration of PerfectRef which has taken
as input a CQ q. Furthermore, a conjunction c of atoms in the body of q is called an isolated component of q if there are no
variables that occur both in c and in another atom of q. With a little abuse of notation, we denote with c the boolean query
having c as its body, and call it a sub-query of q. We also say that a (sub-)query qc is generated from a (sub-)query qs if qc

is in the set of queries produced by PerfectRef taking qs as input. Given a query q and a sub-query qs of q, we denote with
q − qs the sub-query obtained by eliminating the atoms in qs from q.

We are now ready to face the inductive step of the proof. The inductive hypothesis establishes that if PerfectRef takes as
input a query whose size is at most k, then it cannot generate a query in which more than k atoms of the form S(−, . . . ,−)

occur. Let us now assume that PerfectRef takes as input a query q of size k + 1, and that, by contradiction, PerfectRef
generates a query q j with more than k + 1 atoms of such form. Without loss of generality we assume that q j contains
exactly k + 2 atoms of such form and that it is generated from q j−1 that contains k + 1 atoms of such form. Therefore,
q j = τ (reduce(q j−1, g1, g2)), where g1 and g2 are atoms of q j−1 that are not in the form S(−, . . . ,−), and q j contains the
atom g = S(−, . . . ,−) which is obtained by the unification of g1 and g2. This means that in g1 and g2 no constants or dis-
tinguished variables occur, and no self-joins are possible (otherwise there should be arguments that cannot be transformed
in unbound arguments after the unification), and that, for the same reason, qg = g1, g2 constitutes an isolated component
of q j−1. We have that qg is generated by an isolated component qs of q. Indeed, at each iteration PerfectRef does not create
atoms that are not obtained from the rewrite or the reduce step, and therefore each sub-query in q j−1 must be generated
from a sub-query of q. Furthermore, qs cannot contain constants, distinguished variables or variables occurring elsewhere in
q − qs , otherwise they should occur also in qg , and qg would no longer be an isolated component of q j−1. This implies that
q j−1 − qg is an isolated component generated by q − qs . Notice that PerfectRef produces the FOL-rewriting of q if it takes
as input either q or qs and q − qs separately, and the queries in the results that it produces in this second case are then
combined together in all possible ways. Indeed, the only computation that PerfectRef might execute in the former case, but
not in the latter, is the reduction of atoms having all arguments unbound and belonging to the two different components,
but this produces queries that are equivalent to other queries in the rewriting generated in the former case. Now, since
size(q − qs) = k and q j−1 − (g1, g2) contains k + 1 atoms of the form S(−, . . . ,−), we have reached a contradiction.

We can now prove termination of PerfectRef, for each q and T in input, which indeed follows then from the following
facts:

1. Let n be proportional to the size of the input query Q and to the number of terms occurring in it. The cardinality of
the set of terms that occur in the conjunctive queries generated by the algorithm is then less than or equal to 2n + 1
(as shown above).

2. As a consequence of the above point, the number of different atoms that may occur in a conjunctive query generated by
the algorithm is less than or equal to m · (2n + 1)h , where m is the number of predicate symbols (concepts or relations)
that occur in the signature of the TBox, and h is the maximal arity among the arities of the relations in the signature.

3. The algorithm does not drop queries that it has generated.

Notice that the number of queries of any size that can be constructed using a fixed number of different atoms is finite.
Therefore, even if the size of queries generated by the algorithm may grow, point 2 above implies that the number of
distinct conjunctive queries generated by the algorithm is finite, whereas point 3 implies that the algorithm does not
generate a query more than once, and therefore PerfectRef terminates. �

D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360 347
We now prove correctness of the algorithm PerfectRef. To this aim we need to first introduce the notion of canonical
interpretation. The canonical interpretation of a DLR-LiteA,� KB is an interpretation constructed according to the notion of
chase [21]. In particular, we adapt here the notion of restricted chase adopted by Johnson and Klug in [27]. In the following,
we assume to have an infinite set ΓN of constant symbols not occurring in A. We also denote with ΓA the set of constants
occurring in A. Then, our notion of chase is as follows.

Definition 3.5. Let K = 〈T ,A〉 be a DLR-LiteA,� KB. Let chase0(K) =A. For every non-negative integer i, let chasei+1(K) be
the set of membership assertions obtained from chasei(K) by applying the following rule:

Chase Rule. Suppose that there is a PI I in T of the form (10), and that there is a set of membership assertions
F = {S1(�a1), . . . , Sh(�ah)} ⊆ chasei(K) such that �a1[i1,1, . . . , i1,k] = · · · = �ah[ih,1, . . . , ih,k] = �b. If there is no membership
assertion S(�a) ∈ chasei(K) such that �a[i1, . . . , ik] = �b, then chasei+1(K) = chasei(K) ∪ {S(�a f)}, where �a f is an m-tuple

such that �a f [i1, . . . , ik] = �b, and for each p ∈ {1, . . . ,m} \ {i1, . . . , ik}, �a f [p] is a fresh constant from ΓN not occurring in
chasei(K).

Then, we call chase of K, denoted chase(K), the set of membership assertions obtained as the infinite union of all chasei(K),
i.e.,

chase(K) =
⋃
i∈N

chasei(K). �

In the chase rule above, we also say that the PI I is applied in chasei(K) to the set F of membership assertions.
We point out that in chasei(K) there might be several sets of membership assertions to which a PI is applicable, and

that several PIs might be applicable to a set of membership assertions. Therefore, there might be several ways of generating
chasei+1(K) from chasei(K) via the chase rule above, and thus a number of syntactically distinct chases might result from
this process. It is however possible to establish a suitable order on the application of the chase rule, in such a way that
the construction process results in a unique chase. Notice that such an order must guarantee that each PI that becomes
applicable at a certain step of the construction of the chase is eventually applied in the construction of the chase. In this
paper, we do not discuss further this aspect, and implicitly consider a fixed ordering on the execution of the chase rules
that guarantees the above properties. For more details on this aspect we refer the reader to [27,18].

With the notion of chase in place, we can introduce the notion of canonical interpretation. We define the canonical
interpretation can(K) as the interpretation 〈�can(K), ·can(K)〉, where:

• �can(K) = ΓA ∪ ΓN ,
• acan(K) = a, for each constant a occurring in chase(K),
• Scan(K) = {(a1, . . . ,am) | S(a1, . . . ,am) ∈ chase(K)}, where S as usual is an atomic concept (in this case m = 1) or

an atomic relation of arity m.

We also define cani(K) = 〈�can(K), ·cani(K)〉, where ·cani(K) is analogous to ·can(K) but refers to chasei(K) instead of chase(K).
From the fact that chase(K) (and chasei(K)) is unique, it follows that also can(K) (resp., cani(K)) is unique. Notice also that
can0(K) is tightly related to the interpretation db(A). Indeed, while �db(A) ⊆ �can(K) , we have that ·db(A) = ·can0(K) .

In line with similar results on the chase of TGDs, e.g., in database theory [21] and data exchange [28], the following
lemma shows that there is a homomorphism from can(K) to every model of K that preserves the assignment of objects to
concepts and relations.

Lemma 3.6. Let K = 〈T ,A〉 be a satisfiable DLR-LiteA,� KB, and let M = 〈�M, ·M〉 be a model of K. Then, there is a function ψ

from �can(K) to �M such that for each predicate symbol S of arity m in K and each m-tuple of objects o1, . . . ,om ∈ �can(K) ,
if (o1, . . . ,om) ∈ Scan(K) then (ψ(o1), . . . ,ψ(om)) ∈ SM .

Proof. The proof is by induction on the construction of chase(K), and it is similar to the proof of Lemma 28 in [18], which
states an analogous result for DL-LiteR and DL-LiteF KBs. The main difference is here on the inductive step, in which
according to Definition 3.5, applicable PIs may present conjunctions of atoms in their left-hand side for the case of concept
inclusions and may involve n-ary relations. �

The lemma below shows that whenever K is satisfiable, can(K) is a model of K (and vice-versa).

Lemma 3.7. Let K = 〈T ,A〉 be a DLR-LiteA,� KB. Then, can(K) is a model of K if and only if K is satisfiable.

Proof. “⇒” If can(K) is a model of K, then K is obviously satisfiable.
“⇐” We separately show that can(K) is (i) a model of A, (ii) a model of all PIs in T , (iii) a model of all NIs in T , and

(iv) a model of all key assertions in T .

348 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
Point (i) easily follows by the construction of chase(K) (and in particular, by the fact that A⊆ chase(K)).
Point (ii) is proved by contradiction. Suppose that a PI (of the form (10)) is not satisfied in can(K). This means that there

is a set of membership assertions F = {S1(�a1), . . . , Sh(�ah)} ⊆ chase(K) such that �a1[i1,1, . . . , i1,k] = · · · = �ah[ih,1, . . . , ih,k] = �b,
and there is no membership assertion S(�a) ∈ chase(K) such that �a[i1, . . . , ik] = �b. However, this would imply that we
can apply the chase rule and insert a new membership assertion S(�a f) in chase(K), where �a f is an m-tuple such that
�a f [i1, . . . , ik] = �b, and for each p ∈ {1, . . . ,m} such that p /∈ {i1, . . . , ik}, �a f [p] is a fresh constant from ΓN not occurring in
chasei(K). Obviously, this makes the PI satisfied, thus leading to a contradiction.

Point (iii) is proved by contradiction. Suppose that a NI (of the form (11)) is not satisfied in can(K). This means
that there is a set of membership assertions F = {S0(�a0), S1(�a1), . . . , Sh(�ah)} ⊆ chase(K) such that �a0[i0,1, . . . , i0,k] = · · · =
�ah[ih,1, . . . , ih,k]. In other words, for each j ∈ {0, . . . ,h}, we have that �a j = (a j,1, . . . ,a j,m j) ∈ Scan(K)

j . By Lemma 3.6, it follows

that, for each j ∈ {0, . . . ,h} and for each model I of K, (ψ(a j,1)
I , . . . ,ψ(a j,m j)

I) ∈ SIj . It is easy to see that the NI is not
satisfied in I , thus implying that no models of K exists and therefore contradicting the assumption, which states that K is
satisfiable.

Point (iv) is proved by induction on the construction of the chase.
Base step: If K is satisfiable, then can0(K) satisfies all key assertions in K. Indeed, if we assume by contradiction

that can0(K) violates a key assertion in K, i.e., an assertion of the form (key j1, . . . , j�: V), where V is either an atomic
relation R or a projection R[i1, . . . , ih] over R , we get that there are two membership assertions R(�a1) and R(�a2) in A such
that �a1[j1, . . . , j�] = �a2[j1, . . . , j�]. Since every model has to satisfy both all ABox assertions and all key assertions in K,
this implies that no model of K exists (remember that we adopt the unique name assumption for the interpretation of the
constants of the KB), thus contradicting the assumption that K is satisfiable.

Inductive step: By exploiting the inductive assumption that cani(K) satisfies all key assertions in K, we show that
cani+1(K) satisfies all key assertions in K, where cani+1(K) corresponds to chasei+1(K), i.e., the chase that is obtained
from chasei(K) by application of the chase rule (cf. Definition 3.5). This means that there exists a set of membership
assertions F = {S1(�a1), . . . , Sh(�ah)} ⊆ chasei(K) such that �a1[i1,1, . . . , i1,k] = · · · = �ah[ih,1, . . . , ih,k] = �b, and there does not
exist a membership assertion S(�a) ∈ chasei(K) such that �a[i1, . . . , ik] = �b. Then chasei+1(K) = chasei(K) ∪ {S(�a f)}, where �a f

is an m-tuple such that �a f [i1, . . . , ik] = �b, and for each p ∈ {1, . . . ,m} \ {i1, . . . , ik}, �a f [p] is a fresh constant from ΓN not
occurring in chasei(K). We show below that S(�a f) cannot cause the violation of a key assertion in cani+1(K), considering
all possible cases:

1. If S is an atomic concept, then no key is defined on S , and therefore the claim trivially follows;
2. If S is a relation and k = 1, then key assertions may be specified on S , since the PI applied in the chase rule is a concept

inclusion. In the case where there are no key assertions on S , the claim trivially follows. Let us consider instead the
case in which a key is specified on S . Since k = 1, the membership assertion S(�a f) added to chasei+1(K) is such that �a f
contains only one non-fresh symbol. Let r be the position of such a symbol, i.e., �a f [r] /∈ ΓN . This means that only a key
assertion of the form (key r: V), where V = S or V = S[i1, . . . , ih], can be violated by cani+1(K). However, a violation of
this kind would imply that chasei+1(K) contains a membership assertion S(�c) such that �c[r] = �a f [r]. Since S(�c) belongs
also to chasei(K), then the chase rule would not have been applied and S(�a f) would not have been added to chasei(K)

to obtain chasei+1(K). Hence, the claim follows also in this case.
3. If S is a relation and k > 1, then the PI applied in the chase rule is a relation inclusion. According to the definition of

DLR-LiteA,� (cf. Table 4), T cannot contain key assertions involving S , and therefore the claim trivially follows. �
Exploiting Lemma 3.7 and Lemma 3.6, it is possible to prove the following theorem, which is in turn crucial to establish

correctness of the algorithm PerfectRef.

Theorem 3.8. Let K be a satisfiable DLR-LiteA,� KB, and let Q be a union of conjunctive queries over K. Then, ans(Q ,K) = Q can(K) .

Proof. The proof is analogous to the proof of Theorem 29 in [18], which states an analogous result for DL-LiteR and DL-LiteF
KBs. �

We are now able to prove that for every DLR-LiteA,� TBox T and UCQ Q over T , the algorithm PerfectRef is well suited
for computing the FOL-rewriting of Q w.r.t. T .

Theorem 3.9. Let T be a DLR-LiteA,� TBox, Q a union of conjunctive queries over T , and Q r the union of conjunctive queries returned
by PerfectRef(Q ,T). Then, for every DLR-LiteA,� ABox A such that 〈T ,A〉 is satisfiable, we have that ans(Q , 〈T ,A〉) = Q r

db(A) .

Proof. We first introduce the preliminary notion of witness of a tuple of constants with respect to a conjunctive query.
Given a DLR-LiteA,� knowledge base K = 〈T ,A〉, a conjunctive query q(�x) ← conj(�x, �y) over K, and a tuple �t of constants
occurring in K, a set G of membership assertions is a witness of �t w.r.t. q if there exists a substitution σ from the variables �y
in conj(�t, �y) to constants in G such that the set of atoms in σ(conj(�t, �y)) is equal to G . In particular, we are interested

D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360 349
in witnesses of a tuple �t w.r.t. a query q that are contained in chase(K). Intuitively, each such witness corresponds to
a subset of chase(K) that is sufficient in order to have that the formula ∃�y. conj(�t, �y) evaluates to true in the canonical
interpretation can(K), and therefore the tuple �t = �tcan(K) belongs to qcan(K) . More precisely, we have that �t ∈ qcan(K) iff
there exists a witness G of �t w.r.t. q such that G ⊆ chase(K). The cardinality of a witness G , denoted by |G|, is the number
of membership assertions in G .

Since K = 〈T ,A〉 is satisfiable, by Theorem 3.8, ans(Q ,K) = Q can(K) . Furthermore, Q r
db(A) = ⋃

q̂∈Q r
q̂db(A) , where Q r is

the union of conjunctive queries returned by PerfectRef(Q ,T). Consequently, to prove the claim it is sufficient to show that
Q can(K) = ⋃

q̂∈Q r
q̂db(A) .

“⇐” To prove that
⋃

q̂∈Q r
q̂db(A) ⊆ Q can(K) , we have to prove that q̂db(A) ⊆ Q can(K) , for each q̂ ∈ Q r . In fact, since

q̂db(A) ⊆ q̂can(K) , we will show that q̂can(K) ⊆ Q can(K) . We proceed by induction on the construction of Q r , which is gener-
ated by iteratively applying, as long as they are applicable, Step (a) and Step (b) of the algorithm PerfectRef (starting from
the CQs constituting the query Q).

Base step: It is trivial to see that for each q̂ ∈ Q , it holds that q̂can(K) ⊆ Q can(K) .
Inductive step: Given qi ∈ Q r , by inductive hypothesis we assume that qcan(K)

i ⊆ Q can(K) , and show that qcan(K)
i+1 ⊆ Q can(K)

by distinguishing between (i) the case in which qi+1 is obtained from qi by means of Step (a) of the algorithm PerfectRef,
and (ii) the case in which qi+1 is obtained from qi by means of Step (b) of the algorithm. In both cases, given a tuple �t of
constants occurring in K such that �t ∈ qcan(K)

i+1 , we have that there exists a witness G of �t w.r.t. qi+1 such that G ⊆ chase(K).
As for Case (i), we have that qi+1 = τ (reduce(qi, g1, g2)), where g1, g2 are two atoms belonging to qi such that g1 and g2

unify. It is easy to see that in such a case G is also a witness of �t w.r.t. qi , and therefore �t ∈ qcan(K)
i . As for Case (ii), it is easy

to see that there exists a set of membership assertions in G to which a PI is applicable (cf. Definition 3.5), which implies
that there exists a witness of �t w.r.t. qi contained in chase(K). Therefore, �t ∈ qcan(K)

i .
“⇒” We now prove that Q can(K) ⊆ ⋃

q̂∈Q r
q̂db(A) , i.e., that for each tuple �t ∈ Q can(K) there exists q̂ ∈ Q r such that

�t ∈ q̂db(A) . First, since �t ∈ Q can(K) , it follows that there exists a CQ q0 ∈ Q and a finite number k such that there is a wit-
ness Gk of �t w.r.t. q0 contained in chasek(K). Moreover, without loss of generality, we can assume that every chase rule
used in the construction of chasek(K) is necessary in order to generate such a witness Gk , i.e., chasek(K) can be seen as
a (not necessarily connected) directed acyclic graph where: (i) nodes represent all membership assertions in chasek(K),
and (ii) there is an edge from a node f1 to a node f2 if f1 belongs to the set of membership assertions to which a PI is
applied to produce f2 (via the chase rule). Notice also that, in such a graph, source nodes (i.e., nodes with only outgoing
edges) correspond to membership assertions in A, whereas target nodes (i.e., nodes with only ingoing edges) correspond
to membership assertions in Gk . In the following, we say that a membership assertion f is an ancestor of a membership
assertion f ′ in a set S of membership assertions, if there exist n sets of membership assertions F1, . . . ,Fn such that Fi ⊆ S
for i ∈ {1, . . . ,n}, f ∈ F1, Fn = { f ′}, and for each i ∈ {2, . . . ,n}, one element belonging to Fi can be generated by applying
a chase rule to Fi−1, and every element in Fi−1 is necessary for such a chase rule to be applicable. We also say that f ′
is a successor of f . Furthermore, for each i ∈ {0, . . . ,k}, we denote with Gk−i the pre-witness (of depth i) of �t w.r.t. q0 in
chasek(K), defined as follows:

Gk−i = {
f ∈ chasek−i(K)

∣∣ there exists f ′ ∈ Gk s.t. f is an ancestor of f ′ in chasek(K) and there exists

no successor of f in chasek−i(K) that is an ancestor of f ′ in chasek(K)
}
.

Now we prove by induction on i that, starting from Gk (i.e., i = 0), we can “go back” through the chase rule applications
and find a query q̂ in Q r such that the pre-witness Gk−i of �t w.r.t. q0 in chasek(K) is also a witness of �t w.r.t. q̂ (such
a witness is obviously in chasek−i(K)). To this aim, we prove that there exists q̂ ∈ Q r such that Gk−i is a witness of �t w.r.t. q̂
and size(q̂) = |Gk−i |. The claim then follows for i = k, since chase0(K) =A, and therefore G0 ⊆A.

Base step: There exists q̂ ∈ Q r such that Gk is a witness of �t w.r.t. q̂ and size(q̂) = |Gk|. This is an immediate consequence
of the fact that: (i) q0 ∈ Q r , and (ii) Q r is closed with respect to Step (a) of the algorithm PerfectRef. Indeed, if |Gk| < size(q0)

then there exist two atoms g1, g2 in Q and a membership assertion f in Gk such that f and g1 unify and f and g2 unify,
which implies that g1 and g2 unify. Therefore, by Step (a) of the algorithm, it follows that there exists a query q1 ∈ Q r

(with q1 = reduce(q0, g1, g2)) such that Gk is a witness of �t w.r.t. q1 and size(q1) = size(q0) − 1. Now, if |Gk| < size(q1),
we can iterate the above argument, thus we conclude that there exists q̂ ∈ Q r such that Gk is a witness of �t w.r.t. q̂ and
size(q̂) = |Gk|.

Inductive step: suppose that there exists q̂ ∈ Q r such that Gk−i+1 is a witness of �t w.r.t. q̂ and size(q̂) = |Gk−i+1|. Let I be
the PI of form (10) applied to a set of membership assertions in chasek−i(K) to obtain chasek−i+1(K), i.e., chasek−i+1(K) =
chasek−i(K) ∪ {S(�a f)}, where S(�a f) is as in Definition 3.5. Since non-propagated positions in S , i.e., positions that are
outside i1, . . . , ik , contain new constants, i.e., constants not occurring elsewhere in Gk−i+1, and since size(q̂) = |Gk−i+1|,
it follows that the variables in q̂ that match with such constants are unbound (notice that this might not hold without
the assumption size(q̂) = |Gk−i+1|). Therefore, by Step (b) of the algorithm, it follows that there exists a query q1 ∈ Q r

such that q1 is obtained via atomRewrite by substituting the atom S(�x) in q̂ with its rewriting according to the applied PI,
where S(�x) is the atom in q0 to which I is applicable, and Gk−i , i.e., the pre-witness of depth i of �t w.r.t. q̂, is a witness of �t
w.r.t. q1. Notice that Gk−i = Gk−i+1 \ {S(�a f)} ∪ {S1(�a1), . . . , Sh(�ah)}, where each Si(�ai) is as in Definition 3.5.

350 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
Now, there are two possible cases: either size(q1) = |Gk−i |, and in this case the claim is immediate; or size(q1) > |Gk−i |.
This last case arises if and only if some of the membership assertions S1(�a1), . . . , Sh(�ah) occur both in Gk−i and in Gk−i+1.
Without loss of generality we assume that such assertions are S1(�a1), . . . , S j(�a j) (notice that size(q1) = |Gk−i | + j), and that
this implies that there exist j pairs of atoms, denoted gp,1, gp,2, with p ∈ {1, . . . , j}, in q1 such that S p(�ap) and gp,1 unify
and S p(�ap) and gp,2 unify, hence gp,1 and gp,2 unify. Therefore, by Step (a) of the algorithm iteratively applied to q1 for j
times, it follows that there exists q2 ∈ Q r such that Gk−i is a witness of �t w.r.t. q2 and size(q2) = |Gk−i+1|, which proves the
claim. �

The following corollary is an immediate consequence of the above theorem.

Corollary 3.10. Let K = 〈Tp ∪ Tn ∪ Tk,A〉 be a satisfiable DLR-LiteA,� KB, where Tp , Tn, and Tk respectively denote PIs, NIs, and key
assertions in the TBox of K, and let Q be a union of conjunctive queries over K. Then ans(Q ,K) = ans(Q , 〈Tp,A〉).

Since the evaluation of a FOL query is in AC
0 in data complexity, the following result is an obvious consequence of

Theorem 3.9.

Theorem 3.11. Query answering in DLR-LiteA,� is in AC
0 with respect to data complexity.

3.2. FOL-rewritability of KB satisfiability

We now consider KB satisfiability in DLR-LiteA,� , and provide a mechanism to solve it via FOL query evaluation, thus
showing its FOL-rewritability. We start by considering the special case in which no NIs and no key assertions are specified
over a DLR-LiteA,� TBox, and get the following notable result.

Lemma 3.12. Let K = 〈T ,A〉 be a DLR-LiteA,� KB such that T contains only PIs. Then, K is satisfiable.

Proof. In the proof of Lemma 3.7 (Point (ii)) we have shown that can(K) satisfies all PIs asserted in a DLR-LiteA,� KB. The
same proof can be used to show that for each K whose TBox consists of PIs only, can(K) is a model of K, and therefore K
is satisfiable. �

Let us now consider generic DLR-LiteA,� KBs, i.e., KBs with PIs, NIs, and key assertions. In order to show that KB satisfia-
bility for KBs expressed in such a language is FOL-rewritable, we first introduce the preliminary notions of (boolean) query
associated to a key assertion and of (boolean) query associated to a NI. For ease of exposition, from now on we assume that
a key assertion over a relation R of arity m is always written in the form (key j1, . . . , j�: R[1, . . . ,m]), i.e., we exploit the
fact that R[1, . . . ,m] is equivalent to R to consider only key assertions over projections of atomic relations. In the following,
we make use of CQs and UCQs enriched with inequalities, and express them in Datalog notation, analogously to what we
have done for CQs and UCQs without inequalities.

Definition 3.13. Let F = (key j1, . . . , j�: R[i1, . . . , ih]) be a DLR-LiteA,� key assertion, where R is an atomic relation or arity
m, i1, . . . , ih ∈ {1, . . . ,m}, and j1, . . . , j� ∈ {1, . . . ,h} (cf. Section 2). Then, the query associated to F is the boolean union of
conjunctive queries with inequalities qF = ⋃

k∈{i1,...,ih}\{i j1 ,...,i j� }{qk}, where each qk is as follows

qk ← R(x1, . . . , xm), R(y1, . . . , ym), xk �= yk,

where xi j1
= yi j1

, . . . , xi j�
= yi j�

. �
For example, given a relation R of arity 4 and the key assertion F = (key 2,3: R[2,3,4]), the query associated to F

is qF = {q ← R(x1, x2, x3, x4), R2(y1, y2, x3, x4), x2 �= y2}. It is easy to see that a query associated to a key assertion F is
a boolean query whose evaluation over an interpretation I is true if and only if I is not a model of F .

Definition 3.14. Given a DLR-LiteA,� negative inclusion N in the form (11), the query associated to N is a boolean conjunctive
query qN of the form

qN ← S0(z0,1, . . . , z0,m0), . . . , Sh(zh,1, . . . , zh,mh),

where for j ∈ {0, . . . ,h}, and for � ∈ {1, . . . ,m j}, we have that z j,� = yr if there exists r ∈ {1, . . . ,k} such that i j,r = �,
otherwise z j,� is a variable not occurring elsewhere in qN . �

For example, given the negative exclusion N = R1[1] � R2[2] � ¬R3[1], where R1 is a binary relation and both R2 and R3
are ternary relations, the query associated to N is qN ← R1(y1, y2), R2(y3, y1, y4), R3(y1, y5, y6). It is easy to see that
a query associated to a negative inclusion N is a boolean query whose evaluation over an interpretation I is true if and
only if I is not a model of N .

D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360 351
Example 3.15. The queries associated to the NIs (4) and (5) in Example 3.1 are qN,4 ← Supplier(x),Product(x) and qN,5 ←
Customer(x),Product(x), whereas the query associated to the key assertion (6) is qF ,6 ← supply(x1, x2, x3), supply(y1, x2, x3),

x1 �= y1.

The following lemma states that satisfiability for a DLR-LiteA,� KB K = 〈T ,A〉, where T contains only PIs and key
assertions, can be reduced to answering a union of conjunctive queries with inequalities over the ABox A.

Lemma 3.16. Let K = 〈Tp ∪ Tk,A〉 be a DLR-LiteA,� KB where Tp is the set of PIs in K and Tk the set of key assertions in K (i.e.,
K does not contain NIs), and let Q k = ⋃

F∈Tk
{qF }. Then, K is satisfiable if and only if A �|� Q k.

Proof. “⇐” From A �|� Q k it easily follows that A |� Tk . Then, analogously to the proof of Lemma 3.7 (Part (iv)), it can be
shown that chase(〈Tp,A〉) |� Tk and therefore K = 〈Tp ∪ Tk,A〉 is satisfiable, since chase(〈Tp,A〉) is a model of K.

“⇒” From A |� Q k it follows that there exists a key assertion F ∈ Tk such that A |� qF , and therefore A ∪ {F } is unsat-
isfiable. It is then easy to see that 〈Tp ∪ Tk,A〉 is unsatisfiable (indeed, every interpretation satisfying the ABox necessarily
violates the key assertion F). �

Notably, since answering Q k over the ABox A simply amounts to evaluating Q k over db(A), the above lemma actually
says that satisfiability of a DLR-LiteA,� KB without NIs is FOL-rewritable. We notice that in each such knowledge base K
every key assertion can be processed independently, and that there is no interaction between key assertions and PIs that
has to be taken into account to check if K is satisfiable. Actually, this holds by virtue of the controlled combination of key
assertions and inclusions between relations established for DLR-LiteA,� (cf. Section 2).

Let us now consider the impact of NIs on the satisfiability check. The following lemma states that satisfiability of a sat-
isfiable DLR-LiteA,� KB K extended with a set of NIs can be reduced to query answering over K.

Lemma 3.17. Let 〈T ,A〉 be a satisfiable DLR-LiteA,� KB, let Tn be a set of DLR-LiteA,� NIs, and let Q n = ⋃
N∈Tn

{qN }. Then,
〈T ∪ Tn,A〉 is satisfiable if and only if 〈T ,A〉 �|� Q n.

Proof. “⇐” We show that if K = 〈T ∪ Tn,A〉 is unsatisfiable then 〈T ,A〉 |� Q n . Consider the FOL formula φ obtained as
the conjunction of all the assertions in K, each specified in FOL, i.e.,

φ =
∧
α∈T

α ∧
∧

β∈Tn

β ∧
∧
γ ∈A

γ .

Obviously, if K is unsatisfiable then φ is unsatisfiable, and, by the deduction theorem, it follows that∧
α∈T

α ∧
∧
γ ∈A

γ |�
∨

β∈Tn

¬β.

It is easy to see that, due to Theorem 3.8, this holds if and only if there exists a NI N ∈ Tn such that 〈T ,A〉 |� qN and
therefore 〈T ,A〉 |� Q n .

“⇒” We show that if 〈T ,A〉 |� Q n then 〈T ∪Tn,A〉 is unsatisfiable. Again, due to Theorem 3.8, if 〈T ,A〉 |� Q n then there
exists N ∈ Tn such that 〈T ,A〉 |� qN . This implies that in every model of 〈T ,A〉 (which is satisfiable by the assumption)
there exist some tuples of objects that contradict the NI N , i.e., we have that 〈T ,A〉 |� ¬N . By the deduction theorem,
it follows that 〈T ∪ {N},A〉 is unsatisfiable, and therefore 〈T ∪ Tn,A〉 is unsatisfiable. �

As a consequence of Lemma 3.17 and Lemma 3.12, we have that to establish satisfiability of a DLR-LiteA,� KB K with
no key assertions, it is possible to resort to query answering over satisfiable KBs. Indeed, let Tp be the set of PIs in K,
and Tn the set of NIs in K. We have by Lemma 3.12 that 〈Tp,A〉 is satisfiable, and therefore by Lemma 3.17 we get
that K is satisfiable if and only if 〈Tp,A〉 �|� Q n . Notice that this means that each NI can be processed independently, and
its interaction with PIs can be considered separately. Notably, by Theorem 3.9, we have that the algorithm PerfectRef can
be used to establish whether 〈Tp,A〉 �|� Q n . This actually implies that KB satisfiability for DLR-LiteA,� KBs with no key
assertions is FOL-rewritable.

Now we are ready to show how to reduce satisfiability of generic DLR-LiteA,� KBs to FOL query evaluation, constructing
on the results given in Lemma 3.12, Lemma 3.16, and Lemma 3.17. To this aim, we make use of the algorithm Consistent,
described in Fig. 2. This algorithm calls the algorithm PerfectRef to compute the FOL-rewriting of the query Q n , representing
the union of all the queries associated to NIs in the KB, and then adds the query Q k to the result of PerfectRef, where Q k
is the union of all the queries associated to key assertions in the KB. The theorem below uses the algorithm Consistent to
state FOL-rewritability of KB satisfiability in DLR-LiteA,� KBs.

Theorem 3.18. Let K = 〈Tp ∪ Tn ∪ Tk,A〉 be a DLR-LiteA,� KB, where Tp , Tn, and Tk respectively denote the set of PIs, NIs, and key
assertions of the TBox, and let Q c be the UCQ with inequalities returned by the algorithm Consistent(K). Then, K is satisfiable if and
only if A �|� Q c, i.e., Q db(A)

c = ∅.

352 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
Algorithm Consistent(K)
Input: DLR-LiteA,� KB K = 〈T ,A〉, with set of PIs Tp ⊆ T
Output: UCQ Q c

Q n = ∅;
for each NI N ∈ T do

Q n = Q n ∪ {qN };
Q n = PerfectRef(Q n,Tp);
Q k = ∅;
for each key assertion F ∈ T do

Q k = Q k ∪ {qF };
return Q c = Q n ∪ Q k

Fig. 2. The algorithm Consistent.

Proof. “⇐” Let Q c = Q k ∪ Q N R , where Q F is the union of all the queries associated to key assertions in T f , and Q r
n is

the output of PerfectRef(Q n,Tp), where Q n is the union of all the queries associated to NIs in Tn . From A �|� Q c it follows
that A �|� Q k and A �|� Q r

n . From A �|� Q k it follows that 〈Tp ∪ Tk,A〉 is satisfiable (cf. Lemma 3.16). Also, from A �|� Q r
n

it follows that 〈Tp,A〉 �|� Q n (according to Lemma 3.12 stating that 〈Tp,A〉 is satisfiable, and to Theorem 3.9), and since
〈Tp ∪ Tk,A〉 is satisfiable, from Corollary 3.10 it follows that 〈Tp ∪ Tk,A〉 �|� Q n . Then, from Lemma 3.17 it follows that
K = 〈Tp ∪ Tn ∪ Tk,A〉 is satisfiable.

“⇒” Suppose by contradiction that A |� Q c . This means that A |� Q k or that A |� Q r
n , where Q k and Q r

n are as above.
In the former case, from Lemma 3.16 it follows that 〈Tk,A〉 is unsatisfiable, thus getting a contradiction. In the latter case,
from Theorem 3.9 and Lemma 3.17 it follows that 〈Tp ∪ Tn,A〉 is unsatisfiable, thus getting again a contradiction. �

As an immediate consequence of Theorem 3.18, we obtain the following result.

Theorem 3.19. KB satisfiability in DLR-LiteA,� is in AC
0 with respect to data complexity.

4. Going beyond FOL-rewritability

In the previous section, we have pointed out the importance of languages for which query answering and KB satisfia-
bility are FOL-rewritable. In this section, we show that, as soon as we consider further, minimal extensions of DLR-LiteA,� ,
we cross the boundary of AC

0 data complexity. Going beyond AC
0 data complexity means actually that we lose the prop-

erty of FOL-rewritability and therefore query answering requires more powerful engines than those available in standard
relational database technology. An immediate consequence of this fact is that we cannot take advantage anymore of data
management tools and query optimization techniques of current DBMSs.

We point out that the extensions of DLR-LiteA,� that we consider in the following present the same behavior also if we
restrict relations to be binary, i.e., if we have only roles. Moreover, such extensions make query answering harder even if
we apply them to the core of DL-Lite. Therefore, in the following, we consider DLs with roles rather than n-ary relations,
and analyze extensions of DL-Litecore , the core language of the DL-Lite family (cf. Section 2). Specifically, we study the
computational complexity of instance checking and query answering for extensions of DL-Litecore in which the ABox of a KB
is as described in Section 2, while the TBox consists of (i) concept inclusion assertions of the form Cl � Cr, where the syntax
of Cl and Cr is defined case by case, and (ii) possibly, key (actually, functionality) assertions on roles.

We remark that all lower bounds given below hold under LogSpace-reductions.

4.1. NLogSpace-hard DLs

We consider now extensions of DL-Litecore in which the concept inclusion assertions may contain forms of qualified
existential quantification or universal quantification on roles, possibly combined with functionality assertions.

Theorem 4.1. Instance checking (and hence query answering) is NLogSpace-hard with respect to data complexity for the cases where

1. Cl −→ A | ∃P .A
Cr −→ A
TBox assertions: Cl � Cr.

2. Cl −→ A
Cr −→ A | ∀P .A
TBox assertions: Cl � Cr.

3. Cl −→ A
Cr −→ A | ∃P .A
TBox assertions: Cl � Cr (funct P).

D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360 353
Proof. For Case 1, the proof is by a LogSpace reduction from reachability in directed graphs, which is NLogSpace-complete.
Let G = (N, E) be a directed graph, where N is a set of nodes and E ⊆ N × N is the set of edges of G , and let s, d be two
nodes in N . Reachability is the problem of checking whether there is a path in G from s to d.

We define a KB K = 〈T ,A〉, where the TBox T is constituted by a single inclusion assertion

∃P .A � A

and the ABox A has as constants the nodes of G , and is constituted by the membership assertion A(d), and by one mem-
bership assertion P (n,n′) for each edge (n,n′) ∈ E . It is easy to see that K can be constructed in LogSpace from G , s, and d.
We show that there is a path in G from s to d if and only if K |� A(s).

“⇐” Suppose there is no path in G from s to d. We construct a model I of K such that sI /∈ AI . Consider the interpre-
tation I with �I = N , nI = n for each n ∈ N , PI = E , and AI = {n | there is a path inG from n to d}. We show that I is
a model of K. By construction, I satisfies all membership assertions P (n,n′) and the membership assertion A(d). Consider
an object n ∈ (∃P .A)I . Then there is an object n′ ∈ AI such that (n,n′) ∈ PI . Then, by definition of I , there is a path in G
from n′ to d, and (n,n′) ∈ E . Hence, there is also a path in G from n to d and, by definition of I , we have that n ∈ AI .
It follows that also the inclusion assertion ∃P .A � A is satisfied in I .

“⇒” Suppose there is a path in G from a node n to d. We prove by induction on the length � of such a path that
K |� A(n). Base case: � = 0, then n = d, and the claim follows from A(d) ∈ A. Inductive case: suppose there is a path in G
of length � − 1 from n′ to d and (n,n′) ∈ E . By the inductive hypothesis, K |� A(n′), and since by definition P (n,n′) ∈ A,
we have that K |� ∃P .A(n). By the inclusion assertion in T it follows that K |� A(n).

For Case 2, the proof follows from Case 1 and the observation that an assertion ∃P .A1 � A2 is logically equivalent to
the assertion A1 � ∀P−.A2, and that we can get rid of inverse roles by inverting the edges of the graph represented in the
ABox.

For Case 3, the proof is again by a LogSpace reduction from reachability in directed graphs, and is based on the idea
that an assertion ∃P .A1 � A2 can be simulated by the assertions A1 � ∃P−.A2 and (funct P−). Moreover, the graph can be
encoded using only functional roles, and we can again get rid of inverse roles by inverting edges.

More precisely, let G = (N, E) be a directed graph and consider the problem of reachability in G between nodes s and d.
We define the KB K = 〈T ,A〉, where the TBox T is constituted by the assertions

A � ∃P1.B B � ∃P1.B B � ∃P2.A (funct P1) (funct P2)

and the ABox A makes use of the nodes in N and the edges in E as constants. Consider a node n of G , and let e1, . . . , ek
be all edges of G that have n as their target (i.e., such that ei = (ni,n) for some node ni), taken in some arbitrarily chosen
order. Then the ABox A contains the following membership assertions:

• P1(n, e1), and P1(ei, ei+1) for i ∈ {1, . . . ,k − 1},
• P2(ei,ni), where ei = (ni,n), for i ∈ {1, . . . ,k}.

Additionally, A contains the membership assertion A(d). Notice that the assertions in the ABox do not violate the function-
ality assertions in the TBox. Again, it is easy to see that K can be constructed in LogSpace from G , s, and d. We show that
there is a path in G from s to d if and only if K |� A(s).

“⇐” Suppose there is no path in G from s to d. We construct a model I of K such that sI /∈ AI . Consider the inter-
pretation I with �I = {o} ∪ N ∪ E , and in which each constant of the ABox is interpreted as itself, PI

1 and PI
2 contain all

pairs of nodes directly required by the ABox assertions, AI contains each node n such that there is a path in G from n
to d, and BI contains all edges (i, j) such that there is a path in G from j to d. To satisfy the assertion A � ∃P1.B for
those objects n ∈ AI that have no outgoing P1 edge forced by the ABox (i.e., that have no incoming edge in G), we set
o ∈ BI , (n,o) ∈ PI

1 , and (o,o) ∈ PI
1 . We use o in a similar way to satisfy the assertions B � ∃P1.B and B � ∃P2.A, by set-

ting (o,o) ∈ PI
2 and o ∈ AI . Note that in this way the functionality assertions are not violated. It is easy to see that I is

a model of K, and since there is no path in G from s to d, we have that s /∈ AI .
“⇒” Suppose there is a path in G from a node n to d. We prove by induction on the length � of such a path that

K |� A(n). Base case: � = 0, then n = d, and the claim follows from A(d) ∈ A. Inductive case: suppose there is a path in G
of length � − 1 from j to d and (n, j) ∈ E . Let n1, . . . ,nh be the nodes of G such that (ni, j) ∈ E , up to nh = n and in the
same order used in the construction of the ABox. By the inductive hypothesis, K |� A(j), and by the assertion A � ∃P1.B ,
functionality of P1, and the ABox assertion P1(j, (n1, j)), we obtain that K |� B((n1, j)). Exploiting B � ∃P1.B , functionality
of P1, and the ABox assertion P1((ni, j), (ni+1, j)), we obtain by induction on h that K |� B((nh, j)). Finally, by B � ∃P2.A,
functionality of P2, and the ABox assertion P2((nh, j),nh), we obtain that K |� A(nh), i.e., K |� A(n). �

Note that all the above “negative” results already hold for instance checking, i.e., for the simplest possible queries. Also,
note that in all three cases, we are considering extensions to a minimal subset of DL-Litecore in order to get NLogSpace-
hardness.

Notably, the above result says that restriction (∗) imposed on DL-LiteA and DLR-LiteA,� (cf. Section 2.1) is crucial in
order to guarantee FOL-rewritability of instance checking and query answering. Indeed, consider the DL DL-LiteF ,R that

354 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
is identical to DL-LiteA , except that restriction (∗) is not enforced. We observe that, using a transformation analogous to
the one shown in Section 2.1 to deal with qualified existential quantification, a concept inclusion assertion of the form
A1 � ∃P .A2 can be rewritten equivalently into A1 � ∃P A2 , P A2 � P , ∃P−

A2
� A2, where P A2 is a newly introduced role.

Hence, the KB used in the proof of Case 3 of Theorem 4.1 can be rewritten into DL-LiteF ,R , and in the resulting KB
functional roles are also specialized, i.e., such a KB is not a DL-LiteA KB. It follows that, if restriction (∗) does not hold,
instance checking is NLogSpace-hard, and hence not FOL-rewritable. An analogous observation holds for DLR-LiteA,� .

Theorem 4.2. Conjunctive query answering is NLogSpace-complete with respect to data complexity for the DLs of Case 1 and Case 2
of Theorem 4.1.

Proof. NLogSpace-hardness was already proved in Theorem 4.1. It remains to show membership in NLogSpace. For Case 1,
it follows from the fact that the DL considered is a sub-logic of the DL called DL-Lite+ in [29], and that conjunctive query
answering in such a DL is NLogSpace-complete with respect to data complexity [29]. For Case 2, membership in NLogSpace

immediately follows from the fact that, as already shown, this case can be reduced to Case 1. �
We conjecture that also for Case 3 of Theorem 4.1, conjunctive query answering can be done in NLogSpace, and hence

the established lower-bound is tight.

4.2. PTime-hard DLs

Next we show that if we consider further extensions to the logics mentioned in Theorem 4.1, we get even stronger com-
plexity results. In particular, we consider four different cases where query answering (actually, instance checking already)
becomes PTime-hard in data complexity. Note that the PTime-hardness result basically means that we need at least the
power of full Datalog to answer queries in these cases.

We start by considering DLs obtained by adding conjunction in the left-hand side of inclusion assertions for the DLs
considered in Theorem 4.1. Such an addition makes instance checking a PTime-hard problem.

Theorem 4.3. Instance checking (and hence query answering) is PTime-complete with respect to data complexity for the cases where

1. Cl −→ A | ∃P .A | A1 � A2
Cr −→ A
TBox assertions: Cl � Cr.

2. Cl −→ A | A1 � A2
Cr −→ A | ∀P .A
TBox assertions: Cl � Cr.

3. Cl −→ A | A1 � A2
Cr −→ A | ∃P .A
TBox assertions: Cl � Cr (funct P).

Proof. We first show PTime-hardness.
For Case 1, the proof is by a LogSpace reduction from path system accessibility, which is PTime-complete [30]. An instance

of path system accessibility is defined as PS = (N, E, S, t), where N is a set of nodes, E ⊆ N ×N ×N is an accessibility relation
(we call its elements edges), S ⊆ N is a set of source nodes, and t ∈ N is a terminal node. PS consists in verifying whether t
is accessible, where a node n ∈ N is accessible if n ∈ S or if there exist accessible nodes n1 and n2 such that (n,n1,n2) ∈ E .

We define the KB K = 〈T ,A〉, where the TBox T is constituted by the inclusion assertions

∃P1.A � B1 ∃P2.A � B2 B1 � B2 � A ∃P3.A � A

and the ABox A makes use of the nodes in N and the edges in E as constants. Consider a node n ∈ N , and let e1, . . . , e� be
all edges in E that have n as their first component, taken in some arbitrarily chosen order. Then the ABox A contains the
following membership assertions:

• P3(n, e1), and P3(ei, ei+1) for i ∈ {1, . . . , � − 1},
• P1(ei, j) and P2(ei,k), where ei = (n, j,k), for i ∈ {1, . . . , �}.

Additionally, A contains one membership assertion A(n) for each node n ∈ S . Again, it is easy to see that K can be con-
structed in LogSpace from PS. We show that t is accessible in PS if and only if K |� A(t).

“⇐” Suppose that t is not accessible in PS. We construct a model I of K such that tI /∈ AI . Consider the interpretation I
with �I = N ∪ E , and in which each constant of the ABox is interpreted as itself, PI

1 , PI
2 , and PI

3 consist of all pairs of
nodes directly required by the ABox assertions, BI consists of all edges (i, j,k) such that j is accessible in PS, BI consists
1 2

D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360 355
of all edges (i, j,k) such that k is accessible in PS, and AI consists of all nodes n that are accessible in PS union all edges
(i, j,k) such that both j and k are accessible in PS. It is easy to see that I is a model of K, and since t is not accessible
in PS, we have that t /∈ AI .

“⇒” Suppose that t is accessible in PS. We prove by induction on the structure of the derivation of accessibility that if
a node n is accessible, then K |� A(n). Base case (direct derivation): n ∈ S , hence, by definition, A contains the assertion
A(n) and K |� A(n). Inductive case (indirect derivation): there exists an edge (n, j,k) ∈ E and both j and k are accessible.
By the inductive hypothesis, we have that K |� A(j) and K |� A(k). Let e1, . . . , e� be the edges in E that have n as their first
component, up to e� = (n, j,k) and in the same order used in the construction of the ABox. Then, by P1(e�, j) in the ABox
and the assertions ∃P1.A � B1 we have that K |� B1(e�). Similarly, we get K |� B2(e�), and hence, by B1 � B2 � A, we get
K |� A(e�). By exploiting the ABox assertion P3(ei, ei+i) and the TBox assertions ∃P3.A � A, we obtain by induction on �

that K |� A(e1). Finally, by P3(n, e1), we obtain that K |� A(n).
For Cases 2 and 3, the proof of PTime-hardness follows from Case 1 and observations analogous to the ones for Theo-

rem 4.1.
Finally, membership in PTime immediately follows from the fact that all the three DLs considered are sub-logics of the

DL Horn-SHIQ, and that data complexity of conjunctive query answering in Horn-SHIQ is in PTime with respect to data
complexity [31]. �

In the presence of inverse roles, already the use of qualified existential restriction on the left-hand side of inclusion
assertions is sufficient to obtain PTime-hardness, as shown by the following theorem.

Theorem 4.4. Instance checking (and hence query answering) is PTime-complete with respect to data complexity for the case where

Cl −→ A | ∃R.A
Cr −→ A | ∃P
R −→ P | P−
TBox assertions: Cl � Cr.

Proof. The hardness part is a consequence of Theorem 4.3, together with the observation that an inclusion assertion of the
form A1 � A2 � A3 can be encoded by introducing a fresh atomic concept A123 and a fresh atomic role P123, and adding to
the TBox the following inclusion assertions:

A1 � ∃P123 ∃P−
123.A2 � A123 ∃P123.A123 � A3.

Indeed, consider an interpretation I that is a model of a TBox enriched with the above assertions, and an object o ∈ AI
1 ∩ AI

2 .
By assertion A1 � ∃P123, since o ∈ AI

1 , there is an object o′ ∈ �I such that (o,o′) ∈ PI
123. By assertion ∃P−

123.A2 � A123, since
o ∈ AI

2 , we have that o′ ∈ AI
123. Hence, by assertion ∃P123.A123 � A3, we have that o ∈ AI

3 . On the other hand, it is easy to
see that if in an interpretation I we have that o /∈ AI

1 ∩ AI
2 , then the above assertions are satisfied in I even if o /∈ AI

3 .
Membership in PTime immediately follows from the fact that the considered DL is a sub-logic of the DL Horn-SHIQ, and

that data complexity of conjunctive query answering in Horn-SHIQ is in PTime with respect to data complexity [31]. �
4.3. coNP-hard DLs

Finally, we show three cases where the TBox language becomes so expressive that the data complexity of query answer-
ing goes beyond PTime (assuming PTime �= NP).

Theorem 4.5. Query answering is coNP-complete with respect to data complexity for the cases where

1. Cl → A
Cr → A | A1 � A2
TBox assertions: Cl � Cr.

2. Cl → A | ¬A
Cr → A
TBox assertions: Cl � Cr.

3. Cl → A | ∀P .A
Cr → A
TBox assertions: Cl � Cr.

Proof. Let us start from coNP-hardness. In all three cases, the proof is an adaptation of the proof of coNP-hardness of
instance checking for ALE presented in [13]. We first consider Case 1.

356 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
coNP-hardness of query answering is proved by a reduction from 2+2-CNF unsatisfiability (which is showed to be coNP-
complete in [13]). A 2+2-CNF formula on an alphabet P is a CNF formula in which each clause has exactly four literals: two
positive ones and two negative ones, where the propositional letters are elements of P ∪{true,false}. Given a 2 + 2-CNF
formula F = C1 ∧ · · · ∧ Cn , where Ci = Li

1+ ∨ Li
2+ ∨ ¬Li

1− ∨ ¬Li
2− , we associate with it the knowledge base KF = 〈TF ,AF 〉

defined as follows:

TF = {O � At � A f }
AF = {

At(true), A f (false),

O
(
�1

1+
)
, O

(
�1

2+
)
, O

(
�1

1−
)
, O

(
�1

2−
)
,

· · ·
O

(
�n

1+
)
, O

(
�n

2+
)
, O

(
�n

1−
)
, O

(
�n

2−
)
,

P1
(
c1, �

1
1+

)
, P2

(
c1, �

1
2+

)
, N1

(
c1, �

1
1−

)
, N2

(
c1, �

1
2−

)
,

· · ·
P1

(
cn, �

n
1+

)
, P2

(
cn, �

n
2+

)
, N1

(
cn, �

n
1−

)
, N2

(
cn, �

n
2−

)}
.

Intuitively, KF has one constant �i
j± for each literal Li

j± in F , one constant ci for each clause Ci , and two constants true
and false for the corresponding propositional constants. The atomic roles of KF are P1, P2, N1, and N2, used to connect ci
to the constants corresponding to the two positive and to the two negative literals of Ci . The atomic concepts of KF

are O , At , and A f , where O represents all the literals of F , while At and A f represent the literals that are true and false,
respectively. Note that the ABox AF contains the assertions At(true) and A f (false) in order to guarantee that in each
model I of KF the constants true and false are interpreted respectively as members of AI

t and AI
f (possibly of both).

Then, we consider the following boolean query q:

q ← P1(x, y), A f (y), P2(x, z), A f (z), N1(x, w1), At(w1), N2(x, w2), At(w2).

Intuitively, checking whether KF |� q (i.e., whether the query evaluates to true in KF) corresponds to checking whether in
every truth assignment for the formula F there exists a clause whose positive literals are interpreted as false and whose
negative literals are interpreted as true, i.e., a clause that is not satisfied. Next we show that the formula F is unsatisfiable
if and only if KF |� q.

“⇒” Suppose that F is unsatisfiable. Consider a model I of KF (which always exists since KF is always satisfiable),
and let δI be the truth assignment for F such that δI(L) = true iff �I ∈ AI

t , for every literal L in F (and corresponding
constant � in KF). Since F is unsatisfiable, there exists a clause Ci that is not satisfied by δI , and therefore δI(Li

1+) = false,

δI(Li
2+) = false, δI(Li

1−) = true, and δI(Li
2−) = true. By definition of δI , it follows that in KF the interpretation of the

constants related to ci through the roles P1 and P2 is not in AI
t , and consequently is in AI

f , and the interpretation of the

constants related to ci through the roles N1 and N2 is in AI
t . Thus, there exists a substitution σ that assigns variables in q

to constants in KF in such a way that σ(q) evaluates to true in I (notice that this holds even if the propositional constants
true or false occur in F). Therefore, since this argument holds for each model I of KF , we can conclude that KF |� q.

“⇐” Suppose that F is satisfied by some truth assignment δ, and let Iδ be the interpretation for KF defined as follows,
where we use L to denote the literal in F corresponding to constant �:

• OIδ = {�Iδ | L occurs in F },
• AIδ

t = {�Iδ | δ(L) = true} ∪ {true},

• AIδ

f = {�Iδ | δ(L) = false} ∪ {false},

• ρIδ = {(aIδ ,bIδ) | ρ(a,b) ∈AF }, for ρ ∈ {P1, P2, N1, N2}.

It is easy to see that Iδ is a model of KF . On the other hand, since F is satisfiable, for every clause in F there exists
a positive literal interpreted as true or a negative literal interpreted as false. It follows that for every constant ci , either one
of the roles P1 or P2 relates ci to a constant whose interpretation is in AIδ

t , or one of the roles N1 or N2 relates ci to

a constant whose interpretation is in AIδ

f . It follows that the query q evaluates to false in Iδ , and therefore KF �|� q.
Proofs for Cases 2 and 3 are obtained by analogous reductions from 2 + 2-CNF unsatisfiability. More precisely, for Case 2

the knowledge base KF = 〈TF ,AF 〉 has the same constants and the same atomic roles as for Case 1, and has only the atomic
concepts At and A f . Then, TF = {¬At � A f } and AF is as for Case 1 but without the assertions involving the concept O .
Finally, the query q is as for Case 1.

For Case 3, KF is similar to the one for Case 2. It has the same constants, the same atomic roles plus an extra atomic
role P , and the atomic concepts A and A f . The TBox is TF = {∀P .A � A f }. The ABox AF is as for Case 2, but without the

D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360 357
assertion At(true), which is substituted by the assertion P (true,d), where d is a new constant not occurring elsewhere
in KF . Finally, the query q is as follows

q ← P1(x, y), A f (y), P2(x, z), A f (z), N1(x, w1), P (w1, w2), N2(x, w2), P (w3, w4)

Soundness and completeness of the above reductions can be proved as done for the reduction of Case 1.
We point out that the intuition behind the above reductions is that in all three cases it is possible to require a reasoning

by case analysis, caused by set covering assertions. Indeed, whereas in Case 1 we have explicitly asserted O � At � A f , for
the other cases this can be seen by considering that At and A f , and ∀P .A and ∃P cover the entire domain in Case 2 and
Case 3, respectively.

Finally, membership in coNP follows immediately from the fact that each of the DLs above considered is a sub-logic of the
DL ALCNR, and that conjunctive query answering in ALCNR is coNP-complete with respect to data complexity [32]. �
5. Related work

The first results on decidability of conjunctive query answering over DL knowledge bases in expressive DLs appeared
in [33,5,9]. In particular, [5] proves a 2ExpTime-upper bound in combined complexity for the ALCI and DLR families
of DLs. This upper bound has been extended in [11] to conjunctive query answering in SHIQ. In [34] an analogous
result is presented for the DL SHOQ, which differs from SHIQ since it does not allow for inverse roles, while it allows
for nominals. A 2ExpTime lower bound for conjunctive query answering has been shown for ALCI , while for ALC , i.e.,
dropping inverse roles, the problem is ExpTime-complete [10]. These results are complemented in [16], which shows that
also for SH, i.e., the DL that includes transitive roles but no inverses, conjunctive query answering is 2ExpTime-hard (and
hence 2ExpTime-complete).

The first main data complexity results for DLs appeared in [13], where a coNP lower bound for data complexity of in-
stance checking in the DL ALE was shown. [33] gives a coNP upper-bound with respect to data complexity for conjunctive
query answering in a DL with arbitrary inclusion assertions, but lacking inverse roles. In the last decade, there has been a re-
newed interest in data complexity of conjunctive query answering, both for expressive and novel DLs specifically designed
to have low data complexity.

A coNP upper bound for data complexity of instance checking in the expressive DL SHIQ has been shown by making
use of a reduction to disjunctive Datalog and then exploiting resolution [35,14,36]. It remains open whether such a technique
can be extended to deal efficiently with conjunctive queries for expressive DLs.

In [14], a fragment of SHIQ, called Horn-SHIQ, which subsumes both DL-LiteF and DL-LiteR , is studied and a PTime

upper bound in data complexity for instance checking is shown. Our results, in particular, Theorem 4.4, tell us that instance
checking in Horn-SHIQ is also PTime-hard. Indeed, Horn-SHIQ allows for qualified existential quantification ∃P .A in
both sides of inclusion assertions and (an extended form) of functionality restrictions.

Building on the techniques presented in [33], coNP-completeness in data complexity of answering conjunctive queries
in SHIQ, which includes inverse roles and number restrictions (which generalize functionality) has been shown in [15].
It is interesting to observe that the results presented here, in particular, Theorem 4.5, tell us that we get coNP-completeness
already for very small fragments of SHIQ.

Concerning less expressive DLs, [37,19] show that conjunctive query answering in the DL EL is tractable, i.e., PTime,
with respect to data complexity. The PTime lower bound follows from Theorem 4.3, which was originally presented in [25].
Instead, conjunctive query answering in the DL EL++ is undecidable, as independently shown in [19,38,37]. Complexity
results and algorithms for query answering in the DL-Lite family of DLs (as described in Section 1) are presented in [18].
This investigation has been extended in [20] to DLs whose concepts are built as boolean combinations of atomic concepts
and projections on roles (actually considered in the more general form of minimal number restrictions). In particular [20]
studies extensions of the DLs of the DL-Lite family with number restrictions, role constructs such as (ir)reflexivity and
(a)symmetry, different forms of concept inclusions (corresponding to Horn, Krom, and Boolean formulas), and establishes
both upper and lower bounds for such logics. The FOL-rewritability results rely on a correspondence with first-order logic
with unary predicates, and they cover the DL-Lite-variants presented in [18] (over binary relations) extended with number
restrictions, (a)symmetry and (ir)reflexivity of roles, and Horn inclusions (which correspond to role conjunction as in [25]).
The paper studies also DLs that are not FOL-rewritable and establishes some lower bound results that are incomparable
to those presented here. We also observe that [39] advocates a new perspective on data complexity of conjunctive query
answering in DLs, by considering the complexity of query answering for TBoxes with specific properties, as opposed to
considering a specific TBox language. This allows one, e.g., to rephrase some of the results established in Section 4 on the
border between tractability and intractability.

A technique for optimizing conjunctive query answering in DL-Lite is shown in [40], and in [41–44] algorithms for
optimizing conjunctive query rewriting in DL-Lite are presented.

A recent line of research follows the idea of extending Datalog rules with existential variables in rule heads [45–49,44,50].
Among these approaches, the Datalog± family described in [45,51,52] is closely related to the present paper. Actually,
Datalog± is inspired by the work on DL-Lite, and may be seen as an attempt to generalize the DL-Lite approach to more
expressive ontology languages based on logical rules. In this framework, a lot of attention has been devoted to define FOL-
rewritable fragments of Datalog± programs (see, e.g., [49]). In particular, [53] presents a detailed study of the relationship

358 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
Table 5
Data complexity of query answering in description logics.

Cl Cr F R Data complexity
of query answering

DLR-LiteA,�
√a √a in AC

0

A | ∃P .A A – – NLogSpace-complete

A A | ∀P .A – – NLogSpace-complete

A A | ∃P .A
√

– NLogSpace-hard

A | ∃P .A | A1 � A2 A – – PTime-complete

A | A1 � A2 A | ∀P .A – – PTime-complete

A | A1 � A2 A | ∃P .A
√

– PTime-complete

A | ∃P .A | ∃P−.A A | ∃P – – PTime-complete

A A | A1 � A2 – – coNP-complete

A | ¬A A – – coNP-complete

A | ∀P .A A – – coNP-complete
Legend: A (possibly with subscript) = atomic concept, P = atomic role, Cl/Cr =
left/right-hand side of inclusion assertions, F = functionality/key assertions al-
lowed, R = role/relation inclusions allowed. NLogSpace and PTime hardness
results hold already for instance checking.

a With the proviso that relations involved in key assertions are not special-
ized.

between the Datalog± family and the DL-Lite family of languages. This paper shows that a particular class of Datalog±
programs, called multi-linear, is actually able to capture the DL DLR-LiteA,� presented in Section 2.

Observe also that DL-LiteR captures (the DL-subset of) RDFS extended with participation constraints (i.e., inclusion as-
sertions with ∃R on the right-hand side). Hence, query answering over an RDFS ontology, even extended with participation
constraints, is FOL-rewritable. Finally, if we move from RDFS to DLP [54], query answering becomes PTime-hard, since DLP
is a superset of the DL in Case 1 of Theorem 4.3.

As for the management of conjunctive queries in implemented DL systems: all the DLs studied in this paper are frag-
ments of expressive DLs with assertions and inverses studied in the 90’s (see [23] for an overview), which are at the base of
current ontology languages such as OWL, and for which optimized automated reasoning systems such as RacerPro,8 Pellet,9

Hermit,10 and Fact++,11 have been developed. Indeed, one could use, off-the-shelf, a system like RacerPro or Pellet to per-
form instance checking in such DLs. However, none of these systems fully supports conjunctive query answering. Some of
the above systems actually allow users to pose conjunctive queries, but such queries are evaluated under an approximation
of the classical first-order semantics of conjunctive queries: in the approximated semantics, existential variables can only be
assigned to explicit individuals of the knowledge base, rather than to arbitrary objects of the interpretation domain.

While the implementation of systems for answering conjunctive queries in DLs under the “real” first-order semantics
has been accomplished for DLs of the DL-Lite family [55–57,41,40,58,59] and of the EL family [60,61], for more expressive
DLs the current technology seems not mature yet. Unfortunately, the known reasoning algorithms for answering conjunctive
queries in these DLs, which have been used to characterize computational complexity, are not tailored towards obtaining
efficient implementations, and more research on this is needed.

6. Conclusions

We have presented fundamental results on the data complexity (complexity with respect to the size of the ABox only) of
query answering in DLs. In particular, we have concentrated on the FOL-rewritability boundary of the problem, based on the
observation that, when we go above this boundary, query answering is no longer expressible as a first-order logic formula
(and hence an SQL query) over the data. The results provided in this paper are summarized in Table 5.

We are currently following several directions to continue the work reported in this paper. In particular, although here
we focused on data complexity only, we are also working on characterizing the complexity of query answering with respect
to the size of the TBox, with respect to the size of the query, and with respect to combined complexity. Furthermore, while
in this paper we considered conjunctive queries, our general goal is to come up with a clear picture of how the complexity
of query answering is influenced not only by different TBox languages, but also by different query languages.

8 http://www.racer-systems.com/.
9 http://clarkparsia.com/pellet/.

10 http://www.comlab.ox.ac.uk/projects/HermiT/.
11 http://owl.cs.manchester.ac.uk/fact++/.

http://www.racer-systems.com/
http://clarkparsia.com/pellet/
http://www.comlab.ox.ac.uk/projects/HermiT/
http://owl.cs.manchester.ac.uk/fact++/

D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360 359
Acknowledgements

This work has been partially supported by the EU under the FP7 ICT Collaborative project ACSI (Artifact-Centric Service
Interoperation), grant No. FP7-257593.

References

[1] J. Lee, K. Siau, S. Hong, Enterprise integration with ERP and EAI, Communications of the ACM 46 (2) (2003) 54–60.
[2] M. Lenzerini, Data integration: A theoretical perspective, in: Proc. of the 21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems

(PODS 2002), 2002, pp. 233–246.
[3] J. Heflin, J. Hendler, A portrait of the semantic web in action, IEEE Intelligent Systems 16 (2) (2001) 54–59.
[4] A. Borgida, R.J. Brachman, D.L. McGuinness, L.A. Resnick, CLASSIC: A structural data model for objects, in: Proc. of the ACM SIGMOD Int. Conf. on

Management of Data, 1989, pp. 59–67.
[5] D. Calvanese, G. De Giacomo, M. Lenzerini, On the decidability of query containment under constraints, in: Proc. of the 17th ACM SIGACT SIGMOD

SIGART Symp. on Principles of Database Systems (PODS’98), 1998, pp. 149–158.
[6] I. Horrocks, S. Tessaris, A conjunctive query language for description logic ABoxes, in: Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000),

2000, pp. 399–404.
[7] R. Fikes, P. Hayes, I. Horrocks, OWL-QL: A language for deductive query answering on the semantic web, Journal of Web Semantics 2 (1) (2005) 19–29.
[8] D. Calvanese, T. Eiter, M. Ortiz, Answering regular path queries in expressive description logics: An automata-theoretic approach, in: Proc. of the 22nd

AAAI Conf. on Artificial Intelligence (AAAI 2007), 2007, pp. 391–396.
[9] D. Calvanese, G. De Giacomo, M. Lenzerini, Conjunctive query containment and answering under description logics constraints, ACM Transactions on

Computational Logic 9 (3) (2008) 22.1–22.31.
[10] C. Lutz, The complexity of conjunctive query answering in expressive description logics, in: Proc. of the 4th Int. Joint Conf. on Automated Reasoning

(IJCAR 2008), in: Lecture Notes in Artificial Intelligence, vol. 5195, Springer, 2008, pp. 179–193.
[11] B. Glimm, I. Horrocks, C. Lutz, U. Sattler, Conjunctive query answering for the description logic SHIQ, Journal of Artificial Intelligence Research 31

(2008) 151–198.
[12] M.Y. Vardi, The complexity of relational query languages, in: Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC’82), 1982, pp. 137–

146.
[13] F.M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, Deduction in concept languages: From subsumption to instance checking, Journal of Logic and Compu-

tation 4 (4) (1994) 423–452.
[14] U. Hustadt, B. Motik, U. Sattler, Data complexity of reasoning in very expressive description logics, in: Proc. of the 19th Int. Joint Conf. on Artificial

Intelligence (IJCAI 2005), 2005, pp. 466–471.
[15] M. Ortiz, D. Calvanese, T. Eiter, Data complexity of query answering in expressive description logics via tableaux, Journal of Automated Reasoning 41 (1)

(2008) 61–98.
[16] T. Eiter, C. Lutz, M. Ortiz, M. Šimkus, Query answering in description logics with transitive roles, in: Proc. of the 21st Int. Joint Conf. on Artificial

Intelligence (IJCAI 2009), 2009, pp. 759–764.
[17] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, DL-Lite: Tractable description logics for ontologies, in: Proc. of the 20th Nat. Conf. on

Artificial Intelligence (AAAI 2005), 2005, pp. 602–607.
[18] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: The DL-Lite

family, Journal of Automated Reasoning 39 (3) (2007) 385–429.
[19] A. Krisnadhi, C. Lutz, Data complexity in the EL family of description logics, in: Proc. of the 14th Int. Conf. on Logic for Programming, Artificial

Intelligence, and Reasoning (LPAR 2007), 2007, pp. 333–347.
[20] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations, Journal of Artificial Intelligence Research 36 (2009) 1–69.
[21] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison Wesley Publ. Co., 1995.
[22] O. Reingold, Undirected connectivity in log-space, Journal of the ACM 55 (4) (2008) 17:1–17:24.
[23] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation and Applications,

Cambridge University Press, 2003.
[24] E. Botoeva, A. Artale, D. Calvanese, Query rewriting in DL-LiteHN

horn , in: Proc. of the 23rd Int. Workshop on Description Logic (DL 2010), in: CEUR
Electronic Workshop Proceedings, vol. 573, 2010, pp. 267–278, http://ceur-ws.org/.

[25] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Data complexity of query answering in description logics, in: Proc. of the 10th Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), 2006, pp. 260–270.

[26] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to ontologies, Journal on Data Semantics X (2008) 133–173.
[27] D.S. Johnson, A.C. Klug, Testing containment of conjunctive queries under functional and inclusion dependencies, Journal of Computer and System

Sciences 28 (1) (1984) 167–189.
[28] R. Fagin, P.G. Kolaitis, R.J. Miller, L. Popa, Data exchange: Semantics and query answering, Theoretical Computer Science 336 (1) (2005) 89–124.
[29] H. Pérez-Urbina, B. Motik, I. Horrocks, Rewriting conjunctive queries over description logic knowledge bases, in: K.-D. Schewe, B. Thalheim (Eds.),

Revised Selected Papers of the 3rd Int. Workshop on Semantics in Data and Knowledge Bases (SDKB 2008), in: Lecture Notes in Computer Science,
vol. 4925, Springer, 2008, pp. 199–214.

[30] M.R. Garey, D.S. Johnson, Computers and Intractability – A Guide to NP-Completeness, W.H. Freeman and Company, San Francisco, CA, 1979.
[31] T. Eiter, G. Gottlob, M. Ortiz, M. Šimkus, Query answering in the description logic Horn-SHIQ, in: Proc. of the 11th Eur. Conference on Logics in

Artificial Intelligence (JELIA 2008), 2008, pp. 166–179.
[32] A.Y. Levy, M.-C. Rousset, Verification of knowledge bases based on containment checking, Artificial Intelligence 101 (1–2) (1998) 227–250.
[33] A.Y. Levy, M.-C. Rousset, Combining Horn rules and description logics in CARIN, Artificial Intelligence 104 (1–2) (1998) 165–209.
[34] B. Glimm, I. Horrocks, U. Sattler, Unions of conjunctive queries in SHOQ, in: Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation

and Reasoning (KR 2008), 2008, pp. 252–262.
[35] U. Hustadt, B. Motik, U. Sattler, Reducing SHIQ-description logic to disjunctive Datalog programs, in: Proc. of the 9th Int. Conf. on the Principles of

Knowledge Representation and Reasoning (KR 2004), 2004, pp. 152–162.
[36] B. Motik, Reasoning in description logics using resolution and deductive databases, Ph.D. thesis, Universität Karlsruhe, Karlsruhe, Germany, January

2006.
[37] R. Rosati, The limits of querying ontologies, in: Proc. of the 11th Int. Conf. on Database Theory (ICDT 2007), in: Lecture Notes in Computer Science,

vol. 4353, Springer, 2007, pp. 164–178.
[38] M. Krötzsch, S. Rudolph, Conjunctive queries for EL with role composition, in: Proc. of the 20th Int. Workshop on Description Logic (DL 2007), in:

CEUR Electronic Workshop Proceedings, vol. 250, 2007, pp. 355–362, http://ceur-ws.org/.

http://ceur-ws.org/
http://ceur-ws.org/

360 D. Calvanese et al. / Artificial Intelligence 195 (2013) 335–360
[39] C. Lutz, F. Wolter, Non-uniform data complexity of query answering in description logics, in: Proc. of the 13th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2012), 2012, pp. 297–307.

[40] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, M. Zakharyaschev, The combined approach to query answering in DL-Lite, in: Proc. of the 12th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2010), 2010, pp. 247–257.

[41] R. Rosati, A. Almatelli, Improving query answering over DL-Lite ontologies, in: Proc. of the 12th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2010), 2010, pp. 290–300.

[42] H. Pérez-Urbina, B. Motik, I. Horrocks, Tractable query answering and rewriting under description logic constraints, Journal of Applied Logic 8 (2)
(2010) 186–209.

[43] G. Gottlob, T. Schwentick, Rewriting ontological queries into small nonrecursive Datalog programs, in: Proc. of the 13th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2012), 2012, pp. 254–263.

[44] G. Gottlob, G. Orsi, A. Pieris, Ontological queries: Rewriting and optimization, in: Proc. of the 27th IEEE Int. Conf. on Data Engineering (ICDE 2011),
2011, pp. 2–13.

[45] A. Calì, G. Gottlob, T. Lukasiewicz, A general Datalog-based framework for tractable query answering over ontologies, in: Proc. of the 28th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2009), 2009, pp. 77–86.

[46] J.-F. Baget, M. Leclère, M.-L. Mugnier, E. Salvat, On rules with existential variables: Walking the decidability line, Artificial Intelligence 175 (9–10)
(2011) 1620–1654.

[47] J.-F. Baget, M.-L. Mugnier, S. Rudolph, M. Thomazo, Walking the complexity lines for generalized guarded existential rules, in: Proc. of the 22nd Int.
Joint Conf. on Artificial Intelligence (IJCAI 2011), 2011, pp. 712–717.

[48] M. Krötzsch, S. Rudolph, Extending decidable existential rules by joining acyclicity and guardedness, in: Proc. of the 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI 2011), 2011, pp. 963–968.

[49] A. Calì, G. Gottlob, A. Pieris, New expressive languages for ontological query answering, in: Proc. of the 25th AAAI Conf. on Artificial Intelligence (AAAI
2011), 2011, pp. 1541–1546.

[50] N. Leone, M. Manna, G. Terracina, P. Veltri, Efficiently computable Datalog∃ programs, in: Proc. of the 13th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2012), 2012, pp. 13–23.

[51] A. Calì, G. Gottlob, A. Pieris, Advanced processing for ontological queries, Proceedings of the VLDB Endowment 3 (1) (2010) 554–565.
[52] A. Calì, G. Gottlob, A. Pieris, Query answering under non-guarded rules in Datalog+/−, in: Proc. of the 4th Int. Conf. on Web Reasoning and Rule

Systems (RR 2010), 2010, pp. 1–17.
[53] A. Calì, G. Gottlob, T. Lukasiewicz, A general Datalog-based framework for tractable query answering over ontologies, Tech. Rep. CL-RR-10-21, Oxford

University Computing Laboratory, 2010.
[54] B.N. Grosof, I. Horrocks, R. Volz, S. Decker, Description logic programs: Combining logic programs with description logic, in: Proc. of the 12th Int. World

Wide Web Conf. (WWW 2003), 2003, pp. 48–57.
[55] A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, M. Palmieri, R. Rosati, QuOnto: Querying ontologies, in: Proc. of the 20th Nat. Conf.

on Artificial Intelligence (AAAI 2005), 2005, pp. 1670–1671.
[56] M. Stocker, M. Smith, Owlgres: A scalable OWL reasoner, in: Proc. of the 5th Int. Workshop on OWL: Experiences and Directions (OWLED 2008), in:

CEUR Electronic Workshop Proceedings, vol. 432, 2008, http://ceur-ws.org/.
[57] E. Thomas, J.Z. Pan, Y. Ren, TrOWL: Tractable OWL 2 reasoning infrastructure, in: Proc. of the 7th Extended Semantic Web Conf. (ESWC 2010), 2010,

pp. 431–435.
[58] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, D.F. Savo, The Mastro system for ontology-based

data access, Semantic Web Journal 2 (1) (2011) 43–53.
[59] M. Rodriguez-Muro, D. Calvanese, High performance query answering over DL-Lite ontologies, in: Proc. of the 13th Int. Conf. on the Principles of

Knowledge Representation and Reasoning (KR 2012), 2012, pp. 308–318.
[60] F. Baader, C. Lutz, B. Suntisrivaraporn, CEL—a polynomial-time reasoner for life science ontologies, in: Proc. of the 3rd Int. Joint Conf. on Automated

Reasoning (IJCAR 2006), in: Lecture Notes in Artificial Intelligence, vol. 4130, Springer, 2006, pp. 287–291.
[61] K. Dentler, R. Cornet, A. ten Teije, N. de Keizer, Comparison of reasoners for large ontologies in the OWL 2 EL profile, Semantic Web Journal 2 (2)

(2011) 71–87.

http://ceur-ws.org/

	Data complexity of query answering in description logics
	1 Introduction
	2 Preliminaries
	2.1 The DL-Lite family
	2.2 Query answering
	2.3 The notion of FOL-rewritability

	3 FOL-rewritability in DLR-LiteA,
	3.1 FOL-rewritability of query answering
	3.2 FOL-rewritability of KB satisﬁability

	4 Going beyond FOL-rewritability
	4.1 NLogSpace-hard DLs
	4.2 PTime-hard DLs
	4.3 coNP-hard DLs

	5 Related work
	6 Conclusions
	Acknowledgements
	References

