
a	
 i S C	

ACSI – Artifact-Centric Service Interoperation

Deliverable D2.4.2

Techniques and Tools for KAB,

to Manage Action Linkage with Artifact Layer - Iteration 2

Project Acronym ACSI
Project Title Artifact-Centric Service Interoperation
Project Number 257593
Workpackage WP2 – Formal Based Techniques and Tools
Lead Beneficiary FUB
Editor(s) Diego Calvanese FUB

Babak Bagheri Hariri FUB
Riccardo De Masellis UNIROMA1
Domenico Lembo UNIROMA1
Marco Montali FUB
Ario Santoso FUB
Dimitry Solomakhin FUB
Sergio Tessaris FUB

Contributor(s) Giuseppe De Giacomo UNIROMA1
Alessio Lomuscio Imperial
Fabio Patrizi UNIROMA1

Reviewer(s) Lior Limonad IBM Haifa
Dissemination Level PU
Contractual Delivery Date 28/02/2013
Actual Delivery Date 31/05/2013
Version 1.3

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme [FP7/2007-2013] under grant agreement no. 257593.

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Abstract

This document reports on the activities related to Task 2.4: Techniques and Tools for
KAB, to Manage Action Linkage with Artifact Layer, which is part of Workpackage 2 within
the ACSI project. In particular, it describes the results of the second iteration of Task T2.4.

The main goal of this activity is to tackle the key issues for actually realizing the Knowl-
edge and Action Base (KAB), by marrying the descriptions of the static and the dynamic
aspects of the domain of interest. We start from the logic-based frameworks and the de-
cidability results for KAB verification achieved during the first iteration, and link them to
concrete languages, techniques and settings. We apply the discussed technique to the ACSI
Energy use case, showing the benefits of adding a Semantic Layer on top of the GSM-based
artifacts used to handle energy control points and the corresponding monthly reports.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 2 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Document History

Version Date Comments

V1.1 15/02/2013 First draft

V1.2 12/04/2011 Second draft

V1.3 31/05/2013 Final version

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 3 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Table of Contents

Document History 3

List of Figures 6

1 Introduction 7

I Knowledge and Action Bases 9

2 Data-Centric Dynamic Systems 9
2.1 Data Layer . 9
2.2 Process Layer . 10
2.3 Semantics via Transition System . 11
2.4 Verification . 12
2.5 History-Preserving Mu-Calculus . 13
2.6 Persistence Preserving Mu-Calculus . 15
2.7 Summary of (Un)Decidability Results . 16

3 Knowledge-Based Dynamic Systems 16
3.1 DL-LiteA Knowledge Bases . 17
3.2 Knowledge-Based Dynamic Systems: Definition 17
3.3 Semantics via Transition System . 18
3.4 Summary of (Un)Decidability Results . 18

4 Semantically-governed Artifact Systems 19
4.1 The Role of the Semantic Layer . 20
4.2 Linking Data to Ontologies . 21
4.3 Semantically-Governed Artifact Systems: Definition 23
4.4 Execution Semantics . 23
4.5 Compilation of Semantic Constraints . 24
4.6 Rewriting and Unfolding of Dynamic Laws . 24

II KAB Instantiation: the Case of GSM 26

5 The Guard-Stage-Milestone model 26
5.1 Informal Introduction . 26
5.2 Formal Basis . 27
5.3 An Example from the ACSI Energy Use Case . 29

6 Undecidability of GSM Verification 31

7 Translating GSM into DCDSs 33

8 State-bounded GSM Models 35
8.1 GSM Models without Artifact Creation . 36
8.2 Arbitrary GSM Models . 36

III KAB Instantiation: Artifact Systems with Semantic Layer 38

9 DL Ontologies: a Recap 39
9.1 Description Logic Ontologies . 39
9.2 Querying DL Ontologies . 40

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 4 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

10 Semantic GSM 40

11 Linking Semantic GSM with Multiple Front-End Applications 45
11.1 Data Transfer . 46
11.2 Transparent Access . 46

12 Semantic Monitoring and Governance of Relational Artifacts 47
12.1 Data Transfer . 49
12.2 Transparent Access . 50
12.3 Semantic Event Log . 50

IV Model Checking GSM with Semantic Layer 53

13 OBGSM System Specification 53
13.1 Specification of Conceptual Temporal Properties 54
13.2 Specification of the Input Mapping . 57
13.3 OBGSM Workflow and Components . 61
13.4 Running the OBGSM . 63

14 An Example from the ACSI Energy Use Case 63
14.1 ACSI Energy Use Case at a Glance . 63
14.2 The Semantic Layer . 64
14.3 Verification . 67

V Appendix 74

A Translating GSM into the DCDS Framework 74
A.1 Data layer . 74
A.2 Process layer . 75
A.3 An Example . 82
A.4 Correctness of the Translation . 90

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 5 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

List of Figures

1 Semantics of µL . 13
2 Evolution of an SAS, condensing artifact’s data in a unique database 20
3 Semantic Layer as a mean to understand the snapshots of an artifact system

evolution . 21
4 Semantic Layer as a mean to govern an artifact system evolution 21
5 Semantic Layer as a mean to govern an artifact system evolution 22
6 Relationship between the RTS and STS of an SAS S 24
7 Graphical representation of the control point assessment artifact data schema

described in Example 5.1. 29
8 Graphical representation of the control point assessment artifact lifecycle de-

scribed in Example 5.1. 29
9 GSM model of a Turing machine . 32
10 CA-rule encoding a milestone invalidation upon stage activation 34
11 Construction of the B-step transition system ΥG and unblocked-state transition

system ΥS , respectively for a GSM model G with initial snapshot s0, and for the
corresponding DCDS S . 34

12 GSM model of a simple order management process 36
13 Unbounded execution of the GSM model in Fig. 12 36
14 Graphical representation of the lifecycle TBox for Example 10.1 41
15 Fragment of the semantic GSM schema for the energy process in Example 5.1

describing the domain. 43
16 Fragment of the semantic GSM schema for the energy process in Example 5.1

partially describing the process’ lifecycle. 44
17 Semantic GSM with LAV mappings exploited by multiple front-end applications 45
18 Relational processes with GAV mappings and a unifying ontology 49
19 Ontology-based governance with propagation of violations from the Semantic

Layer down to the Artifact Layer . 51
20 Meta-model of an ontology-governed BPMN task 51
21 E-R diagram capturing a portion of the XES meta-model; the dashed part is

reported for clarity, but is concretely realized in XES through the notion of
extension and corresponding required attributes for the events. 52

22 OBGSM System Architecture . 62
23 GSM Model for ACSI Energy Use Case . 65
24 Ontology for the CPMR reviewing process in ACSI Energy Use Case 65
25 Incremental formulation of a B-step [25] . 76
26 GSM model of (a+ b) . 82

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 6 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

1 Introduction

This document reports on the activities related to Deliverable 2.4.2: Techniques and Tools for
KAB, to Manage Action Linkage with Artifact Layer, which is part of Work Package 2 within
the ACSI project. In particular, it describes the results of the second iteration of Task T2.4,
leveraging on the ones presented at the end of the first iteration.

The main goal of this activity is to tackle the key issues for actually realizing the Knowledge
and Action Base (KAB), by marrying the descriptions of the static and the dynamic aspects of
the domain of interest. In particular, we are interested in capturing artifact-centric systems by
placing different hypothesis on how data are captured, and how the system dynamics interacts
with data. In particular, we consider three main scenarios:

1. artifact systems where data are modeled with complete information, by resorting to rela-
tional databases;

2. “semantic” artifact systems where data are modeled under incomplete information, by
resorting to full-fledged (description logic) ontologies;

3. a combination of the two approaches, where artifacts are equipped with a relational in-
formation model, but a Semantic Layer is added on top of them in order to provide a
high-level, conceptual understanding of the domain of interest.

In the first iteration, we have dealt with logic-based frameworks to attack these different sce-
narios, with the main goal of making artifact-systems amenable to formal verification (model
checking against variants of first-order temporal properties). This is far from trivial: differently
from traditional model checking, the transition system representing the execution semantics of
an artifact-centric system has infinite states, and verification turns out to be highly undecidable
in general, even when considering simple propositional temporal properties.

In this second iteration, starting from these logic-based frameworks together and their de-
cidability results (described in Part I), we link them to concrete languages, techniques and
settings. In particular, we show how they can be employed to:

• provide decidability results related to the verification of artifact-systems based on the
Guard-Stage-Milestone approach [35, 25], which has been adopted by ACSI as the main
language for declaratively modeling and enacting artifact-centric systems (Part II);

• support different concrete architectural frameworks by tuning how relational artifact sys-
tems can be combined with a Semantic Layer (Part III);

• realize an effective tool for the verification of GSM-based artifact systems equipped with
a Semantic Layer, by combining techniques and technologies developed in the context of
Ontology-Based Data Access [42], with the GSMC model checker for GSM, implemented
as part of the ACSI project [32] (Part IV).

In addition, we apply the discussed technique to the ACSI Energy use case, showing the benefits
of adding a Semantic Layer on top of the GSM-based artifacts used to handle energy control
points and the corresponding monthly reports.

More in detail, the deliverable is organized in four parts, described in the following.

Part I. In this part of the deliverable, we provide an overview of the logic-based frameworks
and the corresponding results reported in the first iteration of the deliverable to specify and
verify Knowledge and Action Bases (KABs). In particular, we describe:

• Data-Centric Dynamic Systems (DCDS) as a mean to capture artifacts equipped with a
relational information model;

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 7 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

• Knowledge-Based Dynamic Systems as a mean to capture semantic artifact, equipped with
a full-fledged ontology for their information models;

• Semantically-governed Artifact Systems, where a Semantic Layer is added on top of the
Artifact Layer.

For each one of such frameworks, we discuss the main restrictions that have been investigated
to obtain interesting decidability results for their verification. The results of this activity are
reported in the Proceedings of the 32nd ACM Symposium on Principles of Database Systems
(PODS 2013) [8], the Proceedings of the 20th European Conference on Artificial Intelligence
(ECAI 2012) [5], and the Journal of Artificial Intelligence Research [6], and rely on further
technical results reported in ACSI Deliverable D2.5.2 [22].

Part II. In this part of the deliverable, we provide a translation procedure that, starting
from a GSM model, produces a corresponding DCDS that faithfully reproduces the possible
executions of the original GSM model. This allows us to provide decidability results for the
verification of GSM-based artifact systems by relying on decidability of verification for DCDSs.
The results of this activity are going to be submitted to the International Conference on Service
Oriented Computing (ICSOC).

Part III. In this part of the deliverable, we discuss several concrete architectural solutions
that can be realized by combining GSM-based artifact systems with a Semantic Layer. To show
the potential of such solutions, we ground them in the context of the ACSI Energy use case.
The results of this activity have been submitted to the Journal on Data Semantics.

Part IV. In this last part of the deliverable, we present a tool for the verification of GSM-
based artifact systems equipped with a Semantic Layer. The tool includes a language for spec-
ifying mapping assertions that link the GSM artifact information models with domain-relevant
concepts and relations present in the Semantic Layer. We show how Ontology-Based Data Ac-
cess techniques can be applied to manipulate conceptual temporal properties specified over the
evolutions of the system understood through the lens of the Semantic Layer, in such a way that
they can be verified by the GSMC model checker. To show the potential of the tool, we show
its application in the context of the ACSI Energy use case. The results of this activity are going
to be submitted to the International Conference on Service Oriented Computing (ICSOC).

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 8 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Part I

Knowledge and Action Bases

For the sake of self containment, in this part we provide a summary of the three main foun-
dational frameworks studied within ACSI to formally account for knowledge and action bases.
All such frameworks share the presence of two interacting layers: a data component, used to
maintain the data of interest, and a process component, used to manipulate and evolve such
data. In the context of artifact-centric systems, the data component can be seen as a pristine
way for representing the artifact information models, whereas the process component reflects
the artifact lifecycle constraints. Starting from this common basis, we review in particular:

• Data-Centric Dynamic Systems (DCDSs), where the data component is constituted by a
relational database with constraints, and the process component manipulate instances of
the database, possibly injecting new data from the external environment, through service
calls.

• Knowledge-Based Dynamic Systems (KBDSs)1, where the data component is constituted
by a full-fledge (description logic) knowledge base, whose intensional knowledge (TBox)
is maintained fixed, and whose extensional knowledge (ABox) is evolved by the process
component, possibly injecting new data from the external environment, through service
calls.

• Semantically-Governed Artifact Systems (SASs), which provide a formal account for the
notion of ACSI semantic layer, which equips the artifact system with a full-fledged on-
tology that accounts for a conceptual description of the domain, and that is used to
understand and govern the evolution of the artifact layer.

Part of the material presented in the following is extracted from previous ACSI deliverables
[12, 18].

2 Data-Centric Dynamic Systems

In this section, we introduce the notion of (relational) data-centric dynamic system, or simply
DCDS. A DCDS is a pair S = 〈D,P〉 formed by two interacting layers: a data layer D and a
process layer P over it. Intuitively, the data layer keeps all the data of interest, while the process
layer modifies and evolves such data. We keep the structure of both layers to the minimum, in
particular we do not distinguish between various possible components providing the data, nor
those providing the subprocesses running concurrently. Indeed the framework can be further
detailed in several directions, while keeping the results obtained here (see, e.g., Part II).

2.1 Data Layer

The information of interest in the modeled domain is represented in the data layer. It is con-
stituted by a relational schema R equipped with equality constraints2 E , e.g., to state keys of
relations, and an initial database instance I0, which conforms to the relational schema and the
equality constraints. The values stored in this database belong to a predefined, possibly infi-
nite, set C of constants. These constants are interpreted as themselves, blurring the distinction
between constants and values. We will use the two terms interchangeably.

Given a database instance I, its active domain adom(I) is the subset of C such that c ∈
adom(I) if and only if c occurs in I.

A data layer is a tuple D = 〈C, R, E , I0〉 where:

1In the literature, these systems are referred to as KABs [6, 21], and as semantic artifacts in [12]. We use here
KBDSs as an umbrella term, avoiding confusion with the general notion of KAB as defined in the ACSI A3M .

2Other kinds of constraints can also be included without affecting the results reported here [8].

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 9 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

• C is a countably infinite set of constants/values.
• R = {R1, . . . , Rn} is a database schema, constituted by a finite set of relation schemas.
• E is a finite set {E1, . . . , Em} of equality constraints. Each Ei has the form

Qi →
∧
j=1,...,k zij = yij ,

where Qi is a domain independent FO query over R using constants from the active
domain adom(I0) of I0 and whose free variables are ~x, and zij and yij are either variables
in ~x or constants in adom(I0).3

• I0 is a database instance that represents the initial state of the data layer, which con-
forms to the schema R and satisfies the constraints E : namely, for each constraint
Qi →

∧
j=1,...,k zij = yij and for each tuple (i.e., substitution for the free variables)

θ ∈ ans (Qi, I), it holds that zijθ = yijθ.
4

2.2 Process Layer

The process layer constitutes the progression mechanism for the DCDS. We assume that at
every time the current instance of the data layer can be arbitrarily queried, and can be updated
through action executions, possibly involving external service calls to get new values from the
environment. Hence the process layer is composed of three main notions: actions, which are
the atomic progression steps for the data layer; external services, which can be called during
the execution of actions; and processes, which are essentially nondeterministic programs that
use actions as atomic instructions. While we require the execution of actions to be sequential,
we do not impose any such constraints on processes, which in principle can be formed by
several concurrent branches, including fork, join, and so on. Concurrency is to be interpreted by
interleaving and hence reduced to nondeterminism, as often done in formal verification [9, 28].
There can be many ways to provide the control flow specification for processes. Here we adopt
a simple rule-based mechanism, but our results can be immediately generalized to any process
formalism whose processes control flow is finite-state. Notice that this does not imply that the
transition system associated to a process over the data layer is finite-state as well, since the
data manipulated in the data layer may grow over time in an unbounded way.

Formally, a process layer P over a data layer D = 〈C, R, E , I0〉, is a tuple P = 〈F , A, %〉
where:
• F is a finite set of functions, each representing the interface to an external service. Such

services can be called, and as a result the function is activated and the answer is produced.
How the result is actually computed is unknown to the DCDS since the services are indeed
external.
• A is a finite set of actions, whose execution progresses the data layer, and may involve

external service calls.
• % is a finite set of condition-action rules that form the specification of the overall process,

which tells at any moment which actions can be executed.
An action α ∈ A has the form

α(p1, . . . , pn) : {e1, . . . , em},

where: (i) α(p1, . . . , pn) is the signature of the action, constituted by a name α and a sequence
p1, . . . , pn of input parameters that need to be substituted with values for the execution of the
action, and (ii) {e1, . . . , em}, also denoted as effect(α), is a set of effect specifications, whose
specified effects are assumed to take place simultaneously. Each ei has the form q+

i ∧Q−i Ei,
where:

3For convenience, and without loss of generality, we assume that all constants used inside formulae appear in
I0.

4We use the notation tθ (resp., ϕθ) to denote the term (resp., the formula) obtained by applying the substi-
tution θ to t (resp., ϕ). Furthermore, given a FO query Q and a database instance I, the answer ans (Q, I) to Q
over I is the set of assignments θ from the free variables of Q to the domain of I, such that I |= Qθ. We treat
Qθ as a boolean query, and with some abuse of notation, we say ans (Qθ, I) ≡ true if and only if I |= Qθ.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 10 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

• q+
i ∧Q−i is a query over R whose terms are variables ~x, action parameters, and constants

from adom(I0). The query q+
i is a UCQ, and the query Q−i is an arbitrary FO formula

whose free variables are included in those of q+
i . Intuitively, q+

i selects the tuples to
instantiate the effect, and Q−i filters away some of them.
• Ei is the effect, i.e., a set of facts for R, which includes as terms: terms in adom(I0),

input parameters, free variables of q+
i , and in addition Skolem terms formed by applying

a function f ∈ F to one of the previous kinds of terms. Such Skolem terms involving
functions represent external service calls and are interpreted so as to return a value chosen
by an external user/environment when executing the action.

The process % is a finite set of condition-action rules, of the form Q 7→ α, where α is an action
in A and Q is a FO query over R whose free variables are exactly the parameters of α, and
whose other terms can be either quantified variables or constants in adom(I0).

2.3 Semantics via Transition System

The semantics of a DCDS is defined in terms of a possibly infinite (relational) transition system
whose states are labeled by databases. Such a transition system represents all possible compu-
tations that the process layer can do on the data layer. A relational transition system(RTS) Υ
is a tuple of the form 〈∆, R,Σ, s0, db,⇒〉, where:

• ∆ is a countably infinite set of values;

• R is a database schema;

• Σ is a set of states;

• s0 ∈ Σ is the initial state;

• db is a function that, given a state s ∈ Σ, returns the database associated to s, which is
made up of values in ∆ and conforms to R;

• ⇒ ⊆ Σ× Σ is a transition relation between pairs of states.

Given a DCDS S, we sketch in the following how to construct the RTS that captures its
semantics (the complete description can be found in [8, 12]). The initial state corresponds to
the initial database instance in the data layer of S. The actions (with parameter assignments)
that are executable in the initial database instance according to the condition-action rules of the
process are determined, and then non-deterministically applied to obtain all possible candidate
successor states. Among these candidates, only those that satisfy the constraints in the data
layer are preserved as successors. This approach is then iteratively applied over such successors,
and so on.

A key issue in the construction of the transition system is how to determine the successor
state starting from the current state and a given action with parameter assignment. This is done
by applying the effect specifications contained in the action, querying the current state with
their left-hand side, and creating the facts contained in the right hand-side grounded with all the
obtained answers. However, such facts may contain service calls, that requires to be evaluated
so as to obtain the effective successor state(s). How the service call results are computed is
determined by the service call semantics. In particular, two semantics have been considered:

• Deterministic service calls return the same value whenever they are invoked with the same
input parameters along a run of the system.

• Nondeterministic service calls may return different values even when they are called with
the same input parameters along a run of the system.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 11 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

To reflect the fact that the behavior of external services is not under the control of the sys-
tem, when a service is invoked with given input parameters, each possible value must be non-
deterministically considered as being a possible obtained result (with the exception of an invo-
cation which was already issued in the past, under the deterministic service call semantics).

Consequently, in general the obtained transition system may contain three sources of infin-
ity/unboundedness:

• infinite branching, due to the interaction with external services, and the need for consid-
ering all possible results;

• infinite runs, constituted by infinitely many different database instances;

• unbounded database instances, obtained by iteratively applying actions that increase the
number of tuples present in a state of the data layer.

2.4 Verification

To specify dynamic properties over a DCDS, we use µ-calculus [28, 45, 10], one of the most
powerful temporal logics for which model checking has been investigated in the finite-state set-
ting. Indeed, such a logic is able to express both linear time logics such as LTL and PSL, and
branching time logics such as CTL and CTL* [24]. The main characteristic of µ-calculus is
the ability of expressing directly least and greatest fixpoints of (predicate-transformer) opera-
tors formed using formulae relating the current state to the next one. By using such fixpoint
constructs one can easily express sophisticated properties defined by induction or co-induction.
This is the reason why virtually all logics used in verification can be considered as fragments
of µ-calculus. From a technical viewpoint, µ-calculus separates local properties, i.e., properties
asserted on the current state or on states that are immediate successors of the current one, and
properties that talk about states that are arbitrarily far away from the current one [10]. The
latter are expressed through the use of fixpoints.

In this work, we use a first-order variant of the µ-calculus [41], called µL and defined as
follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉Φ | Z | µZ.Φ
where Q is a possibly open FO query, and Z is a second order predicate variable (of arity 0).
We make use of the following abbreviations: ∀x.Φ = ¬(∃x.¬Φ), Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2),
[−]Φ = ¬〈−〉¬Φ, and νZ.Φ = ¬µZ.¬Φ[Z/¬Z].

As usual in µ-calculus, formulae of the form µZ.Φ (and νZ.Φ) must obey to the syntactic
monotonicity of Φ wrt Z, which states that every occurrence of the variable Z in Φ must be
within the scope of an even number of negation symbols. This ensures that the least fixpoint
µZ.Φ (as well as the greatest fixpoint νZ.Φ) always exists.

Since µL also contains formulae with both individual and predicate free variables, given an
RTS Υ, we introduce an individual variable valuation v, i.e., a mapping from individual variables
x to ∆, and a predicate variable valuation V , i.e., a mapping from predicate variables Z to
subsets of Σ. With these three notions in place, we assign meaning to formulae by associating
to Υ, v, and V an extension function (·)Υ

v,V , which maps formulae to subsets of Σ. Formally,

the extension function (·)Υ
v,V is defined inductively as shown in Figure 1.

Intuitively, the extension function (·)Υ
v,V assigns to such constructs the following meaning:

• The boolean connectives and quantification of individuals have the expected meaning.

• The extension of 〈−〉Φ consists of the states s such that for some state s′ with s⇒ s′, we
have that Φ holds in s′, while the extension of [−]Φ consists of the states s such that for
all states s′ with s⇒ s′, we have that Φ holds in s′.

• The extension of µX.Φ is the smallest subset Sµ of Σ such that, assigning to Z the
extension Sµ, the resulting extension of Φ is contained in Sµ. That is, the extension of

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 12 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

(Q)Υ
v,V = {s ∈ Σ | ans (Qv, db(s))}

(¬Φ)Υ
v,V = Σ \ (Φ)Υ

v,V

(Φ1 ∧ Φ2)Υ
v,V = (Φ1)Υ

v,V ∩ (Φ2)Υ
v,V

(∃x.Φ)Υ
v,V = {s ∈ Σ | ∃t.t ∈ ∆ and s ∈ (Φ)Υ

v[x/t],V }
(〈−〉Φ)Υ

v,V = {s ∈ Σ | ∃s′.s⇒ s′ and s′ ∈ (Φ)Υ
v,V }

(Z)Υ
v,V = V (Z)

(µZ.Φ)Υ
v,V =

⋂{S ⊆ Σ | (Φ)Υ
v,V [Z/S] ⊆ S}

Figure 1 – Semantics of µL

µX.Φ is the least fixpoint of the operator (Φ)Υ
v,V [Z/S] (here V [Z/S] denotes the predicate

valuation obtained from V by forcing the valuation of Z to be S).

• Similarly, the extension of νX.Φ is the greatest subset Sν of Σ such that, assigning to X
the extension Sν , the resulting extension of Φ contains Sν . That is, the extension of νX.Φ
is the greatest fixpoint of the operator (Φ)Υ

v,V [X/S]. Formally, (νZ.Φ)Υ
v,V =

⋃{S ⊆ Σ | S ⊆
(Φ)Υ

v,V [Z/S]}.
Example 2.1. An example of µL formula is:

∃x1, . . . , xn.
∧

i 6=j
xi 6= xj ∧

∧

i∈{1,...,n}

µZ.[Stud(xi) ∨ 〈−〉Z] (1)

The formula asserts that there are at least n distinct objects/values, each of which eventually
denotes a student along some execution path. Notice that the formula does not imply that all
of these students will be in the same state, nor that they will all occur in a single run. It only
says that in the entire RTS there are (at least) n distinct students.

When Φ is a closed formula, (Φ)Υ
v,V depends neither on v nor on V , and we denote the

extension of Φ simply by (Φ)Υ. We say that a closed formula Φ holds in a state s ∈ Σ if
s ∈ (Φ)Υ. In this case, we write Υ, s |= Φ. We say that a closed formula Φ holds in Υ, denoted
by Υ |= Φ, if Υ, s0 |= Φ, where s0 is the initial state of Υ. We call model checking verifying
whether Υ |= Φ holds.

In particular we are interested in formally verifying properties of a DCDS. Given the RTS
ΥS of a DCDS S and a dynamic property Φ expressed in µL,5 we say that S verifies Φ if

ΥS |= Φ.

The challenging point is that ΥS is in general-infinite state, so we would like to devise a finite-
state RTS that is a faithful abstraction of ΥS , in the sense that it preserves the truth value
of all µL formulae. Unfortunately, this program is doomed right from the start if we insist on
using full µL as the verification formalism. Indeed formulae of the form (1) defeat any kind of
finite-state transition system. So next we introduce two interesting sublogics of µL that serve
better our objective.

2.5 History-Preserving Mu-Calculus

The first fragment of µL that we consider is µLA, which is characterized by the assumption
that quantification over individuals is restricted to individuals that are present in the current
database. To enforce such a restriction, we introduce a special predicate live(x), which states
that x belongs to the current active domain. The logic µLA is defined as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.live(x) ∧ Φ | 〈−〉Φ | Z | µZ.Φ
5We remind the reader that, without loss of generality, we assume that all constants used inside formulae Φ

appear in the initial database instance of the DCDS.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 13 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

We make use of the usual abbreviation, including ∀x.live(x) → Φ = ¬(∃x.live(x) ∧ ¬Φ).
Formally, the extension function (·)Υ

v,V is defined inductively as in Figure 1, with the new
special predicate live(x) interpreted as follows:

(live(x))Υ
v,V = {s ∈ Σ | x/d ∈ v implies d ∈ adom(db(s))}

Example 2.2. As an example, consider the following µLA formula:

νX.(∀x.live(x) ∧ Stud(x)→
µY.(∃y.live(y) ∧Grad(x, y) ∨ 〈−〉Y) ∧ [−]X),

which states that, along every path, it is always true, for each student x, that there exists an
evolution that eventually leads to a graduation of the student (with some final mark y).

We are going to show that under suitable conditions we can get a faithful finite abstraction for
a DCDS that preserves all formulae of µLA, and hence enables us in principle to use standard
model checking techniques. Towards this goal, we introduce a notion of bisimulation that is
suitable for the kind of transition systems we consider here. In particular, we have to take into
account that the two RTSs are over different data domains, and hence we have to consider the
correspondence between the data in the two transition systems and how such data evolve over
time. To do so, we introduce the following notions.

Given two domains ∆1 and ∆2, a partial bijection h between ∆1 and ∆2 is a bijection between
a subset of ∆1 and ∆2. Given a partial function f : S → S′, we denote with dom(f) the domain
of f , i.e., the set of elements in S on which f is defined, and with im(f) the image of f , i.e.,
the set of elements s′ in S′ such that s′ = f(s) for some s ∈ S. A partial bijection h′ extends
h if dom(h) ⊆ dom(h′) (or equivalently im(h) ⊆ im(h′)) and h′(x) = h(x) for all x ∈ dom(h)
(or equivalently h′−1(y) = h−1(y) for all y ∈ im(h)). Let db1 and db2 be two databases over
two domains ∆1 and ∆2 respectively, both conforming to the same schema R. We say that
a partial bijection h induces an isomorphism between db1 and db2 if adom(db1) ⊆ dom(h),
adom(db2) ⊆ im(h), and h projected on adom(db1) is an isomorphism between db1 and db2.

Given two RTSs Υ1 = 〈∆1, R,Σ1, s01, db1,⇒1〉 and Υ2 = 〈∆2, R,Σ2, s02, db2,⇒2〉, and the
set H of partial bijections between ∆1 and ∆2, a history preserving bisimulation between Υ1

and Υ2 is a relation B ⊆ Σ1 ×H × Σ2 such that 〈s1, h, s2〉 ∈ B implies that:

1. h is a partial bijection between ∆1 and ∆2 that induces an isomorphism between db1(s1)
and db2(s2);

2. for each s′1, if s1 ⇒1 s
′
1 then there is an s′2 with s2 ⇒2 s

′
2 and a bijection h′ that extends

h, such that 〈s′1, h′, s′2〉 ∈ B.

3. for each s′2, if s2 ⇒2 s
′
2 then there is an s′1 with s1 ⇒1 s

′
1 and a bijection h′ that extends

h, such that 〈s′1, h′, s′2〉 ∈ B.

A state s1 ∈ Σ1 is history preserving bisimilar to s2 ∈ Σ2 wrt a partial bijection h, written
s1 ≈h s2, if there exists a history preserving bisimulation B between Υ1 and Υ2 such that
〈s1, h, s2〉 ∈ B. A state s1 ∈ Σ1 is history preserving bisimilar to s2 ∈ Σ2, written s1 ≈ s2, if
there exists a partial bijection h and a history preserving bisimulation B between Υ1 and Υ2

such that 〈s1, h, s2〉 ∈ B. An RTS Υ1 is history preserving bisimilar to Υ2, written Υ1 ≈ Υ2,
if there exists a partial bijection h0 and a history preserving bisimulation B between Υ1 and
Υ2 such that 〈s01, h0, s02〉 ∈ B. The next theorem gives us the classical invariance result of
µ-calculus wrt bisimulation, in our setting.

Theorem 2.1. Consider two RTSs Υ1 and Υ2 such that Υ1 ≈ Υ2. Then for every µLA closed
formula Φ, we have:

Υ1 |= Φ if and only if Υ2 |= Φ.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 14 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

2.6 Persistence Preserving Mu-Calculus

The second fragment of µL that we consider is µLP , which further restricts µLA by requiring
that individuals over which we quantify must continuously persist along the system evolution
for the quantification to take effect.

With a slight abuse of notation, in the following we write live(x1, . . . , xn) =∧
i∈{1,...,n} live(xi).

The logic µLP is defined as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.live(x) ∧ Φ | 〈−〉(live(~x) ∧ Φ) |
[−](live(~x) ∧ Φ) | Z | µZ.Φ

where Q is a possibly open FO query, Z is a second order predicate variable, and the following
assumption holds: in 〈−〉(live(~x)∧Φ) and [−](live(~x)∧Φ), the variables ~x are exactly the free
variables of Φ, with the proviso that we substitute to each bounded predicate variable Z in Φ
its bounding formula µZ.Φ′. We use the usual abbreviations, including: 〈−〉(live(~x) → Φ) =
¬[−](live(~x)∧¬Φ) and [−](live(~x)→ Φ) = ¬〈−〉(live(~x)∧¬Φ). Intuitively, the use of live(·)
in µLP ensures that individuals are only considered if they persist along the system evolution,
while the evaluation of a formula with individuals that are not present in the current database
trivially leads to false or true (depending on the use of negation).

Example 2.3. Getting back to the example above, its variant in µLP is

νX.(∀x.live(x) ∧ Stud(x)→
µY.(∃y.live(y) ∧Grad(x, y) ∨ 〈−〉(live(x) ∧ Y)) ∧ [−]X)

which states that, along every path, it is always true, for each student x, that there exists an
evolution in which x persists in the database until she eventually graduates (with some final
mark y). Formula

νX.(∀x.live(x) ∧ Stud(x)→
µY.(∃y.live(y) ∧Grad(x, y) ∨ 〈−〉(live(x)→ Y)) ∧ [−]X)

instead states that, along every path, it is always true, for each student x, that there exists an
evolution in which either x is not persisted, or eventually graduates (with final mark y).

The bisimulation relation that captures µLP is as follows. Given two RTSs Υ1 =
〈∆1, R,Σ1, s01, db1,⇒1〉 and Υ2 = 〈∆2, R,Σ2, s02, db2,⇒2〉, and the set H of partial bijections
between ∆1 and ∆2, a persistence preserving bisimulation between Υ1 and Υ2 is a relation
B ⊆ Σ1 ×H × Σ2 such that 〈s1, h, s2〉 ∈ B implies that:

1. h is an isomorphism between db1(s1) and db2(s2);6

2. for each s′1, if s1 ⇒1 s
′
1 then there exists an s′2 with s2 ⇒2 s

′
2 and a bijection h′ that

extends h|adom(db1(s1))∩adom(db1(s′1)), such that 〈s′1, h′, s′2〉 ∈ B;7

3. for each s′2, if s2 ⇒2 s
′
2 then there exists an s′1 with s1 ⇒1 s

′
1 and a bijection h′ that

extends h|adom(db1(s1))∩adom(db1(s′1)), such that 〈s′1, h′, s′2〉 ∈ B.

We say that a state s1 ∈ Σ1 is persistence preserving bisimilar to s2 ∈ Σ2 wrt a partial bijection
h, written s1 ∼h s2, if there exists a persistence preserving bisimulation B between Υ1 and Υ2

such that 〈s1, h, s2〉 ∈ B. A state s1 ∈ Σ1 is persistence preserving bisimilar to s2 ∈ Σ2, written
s1 ∼ s2, if there exists a partial bijection h and a persistence preserving bisimulation B between
Υ1 and Υ2 such that 〈s1, h, s2〉 ∈ B. An RTS Υ1 is persistence preserving bisimilar to Υ2,
written Υ1 ∼ Υ2, if there exists a partial bijection h0 and a persistence preserving bisimulation
B between Υ1 and Υ2 such that 〈s01, h0, s02〉 ∈ B. The next theorem shows the invariance of
µLP under this notion of bisimulation.

6Notice that this implies dom(h) = adom(db1(s1)) and im(h) = adom(db2(s2)).
7 Given a set D, we denote by f |D the restriction of f to D, i.e., dom(f |D) = dom(f)∩D, and f |D(x) = f(x)

for every x ∈ dom(f) ∩D.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 15 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

deterministic nondeterministic
µL µLA µLP µL µLA µLP

unrestricted U ← U ← U1 U ← U ← U1

↑ ↑ ↑ ↑
state-bounded U ← U D U ← U D3

↓ ↓
run-bounded ?2 D3 → D ?2 D3 → D

1Holds even for propositional LTL/CTL.
2Decidability cannot rely on faithful finite-state abstraction.
3Via reduction to finite-state model checking.

Table 1 – Summary of (un)decidability results for verification of DCDSs

Theorem 2.2. Consider two RTSs Υ1 and Υ2 such that Υ1 ∼ Υ2. Then for every µLP closed
formula Φ, we have:

Υ1 |= Φ if and only if Υ2 |= Φ.

2.7 Summary of (Un)Decidability Results

Table 1 summarizes the main results related to decidability and undecidability of verification
for DCDSs for the logics introduced before, and by placing different assumptions on the DCDS
under study. Notice that studying the verification problem with different assumptions on the
DCDS is required. As shown in the first row of Table 1, verification for unrestricted DCDSs
is already in place for propositional LTL/CTL properties; the expressiveness of such logics is
clearly far below what is needed to query the (database instances contained in the) states of
the system, and to formalize properties that predicate about the evolution of the individuals
extracted with such queries.

We consider in particular two classes of DCDSs:

• run-bounded DCDSs, for which the fresh data introduced along each run are bounded,
though they might not be bounded in the overall system;

• state-bounded DCDSs, for which the values that accumulate in each state are bounded,
tough they might not be bounded along the system runs.

Notably, we proved decidability of verification of µLA properties for run-bounded DCDSs, and
decidability of verification fo µLP properties for state-bounded DCDSs. The complete proofs
for all results presented in Table 1 can be found in [7, 12].

As a last remark, we observe that both run- and state-boundedness are semantic properties
that are undecidable to check. To contrast this problem, in [7, 12] syntactic, sufficient conditions
are introduced, which can be actually checked against the specification of a DCDS to guarantee
its run- or state-boundedness.

3 Knowledge-Based Dynamic Systems

Knowledge-Based Dynamic Systems (KBDSs) are data-centric dynamic systems that, differently
from DCDSs, adopt a full-fledged (description logic) knowledge base to conceptually describe
the data layer, under incomplete data. Different variants of this setting have been studied in
the context of ACSI, mainly by changing the description logic used to formally capture the
knowledge base, and the way service calls are treated.

We report here the variant that adopts the lightweight description logic DL-LiteA, which
belongs to the DL-Lite family of ontology languages [17, 3, 13], which suitably balance between
expressiveness (they capture the key constructs used in conceptual modeling languages such as
UML and E-R) and good computational properties (especially in connection with huge amounts
of data). See also [12, 6] to complete the picture presented here.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 16 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

3.1 DL-LiteA Knowledge Bases

For expressing knowledge bases, we use DL-LiteA [42, 13]. The syntax of concept and role
expressions in DL-LiteA is as follows

B −→ N | ∃R R −→ P | P−

where N denotes a concept name, P a role name, and P− an inverse role. A DL-LiteA knowledge
base (KB) is a pair (T,A), where: (i) A is an Abox, i.e., a finite set of ABox membership
assertions of the form N(t1) | P (t1, t2), where t1, t2 denote individuals (ii) T is a TBox, i.e.,
T = Tp] Tn] Tf , with Tp a finite set of positive inclusion assertions of the form B1 v B2,
Tn a finite set of negative inclusion assertions of the form B1 v ¬B2, and Tf a finite set of
functionality assertions of the form (funct R).

We adopt the standard FOL semantics of DLs based on FOL interpretations I = (∆I , ·I)
such that cI ∈ ∆I , NI ⊆ ∆I , and P I ⊆ ∆I ×∆I . The semantics of the construct, of TBox and
ABox assertions, and the notions of satisfaction and of model are as usual. We also say that
A is T -consistent if (T,A) is satisfiable, i.e., admits at least one model, otherwise we say A is
T -inconsistent.

Queries. As usual (cf. OWL 2 QL), answers to queries are formed by terms denoting individuals
explicitly mentioned in the ABox. The domain of an ABox A, denoted by adom(A), is the
(finite) set of terms appearing in A. A union of conjunctive queries (UCQ) q over a KB (T,A)
is a FOL formula of the form

∨
1≤i≤n ∃~yi.conj i(~x, ~yi) with free variables ~x and existentially

quantified variables ~y1, . . . , ~yn. Each conj i(~x, ~yi) in q is a conjunction of atoms of the form
N(z), P (z, z′), where N and P respectively denote a concept and a role name occurring in T ,
and z, z′ are constants in adom(A) or variables in ~x or ~yi, for some i ∈ {1, . . . , n}. The (certain)
answers to q over (T,A) is the set ans (q, T,A) of substitutions σ of the free variables of q with
constants in adom(A) such that qσ evaluates to true in every model of (T,A). If q has no free
variables, then it is called boolean and its certain answers are either true or false.

We compose UCQs using ECQs, i.e., queries of the query language EQL-Lite(UCQ) [16],
which is the FOL query language whose atoms are UCQs evaluated according to the certain
answer semantics above. An ECQ over T and A is a possibly open formula of the form

Q := [q] | ¬Q | Q1 ∧Q2 | ∃x.Q

where q is a UCQ. The answer to Q over (T,A), is the set ans(Q,T,A) of tuples of constants in
adom(A) defined by composing the certain answers ans (q, T,A) of UCQs q through first-order
constructs, and interpreting existential variables as ranging over adom(A).

Finally, we recall that DL-LiteA enjoys the FO rewritability property, which states that
for every UCQ q, ans (q, T,A) = ans (rew(q), ∅, A), where rew(q) is a UCQ computed by the
reformulation algorithm in [13]. Notice that this algorithm can be extended to ECQs [16],
and that its effect is to “compile away” the TBox. Similarly, also ontology satisfiability is FO
rewritable for DL-LiteA TBoxes [13].

3.2 Knowledge-Based Dynamic Systems: Definition

Similarly to DCDSs, we make use of a countably infinite set C of constant to denote all possible
value in the system. Moreover, we also make use of a finite set F of functions that represent
service calls, and can be used to inject fresh values into the system.

A knowledge-based dynamic system (KBDS) is a tuple K = (T,A0,Γ,Π) where T and A0

form the knowledge base (KB), and Γ and Π form the action base. Intuitively, the KB maintains
the information of interest. It is formed by a fixed DL-LiteA TBox T and an initial T -consistent
DL-LiteA ABox A0. A0 represents the initial state of the system and, differently from T , it
evolves and incorporates new information from the external world by executing actions Γ,
according to the sequencing established by process Π. The definitions for Γ and Π resemble the
ones given for DCDSs, though by using UCQs and ECQs to specify conditions/queries. Γ is a

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 17 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

finite set actions. An action γ ∈ Γ generates a new ABox A′ from the current ABox A, by adding
or deleting assertions. γ is constituted by a signature and an effect specification. The action
signature is constituted by a name and a list of individual input parameters. Such parameters
need to be instantiated with individuals for the execution of the action. Given a substitution θ
for the input parameters, we denote by γθ the instantiated action with the actual parameters
coming from θ. The effect specification consists of a set {e1, . . . , en} of effects, which take place
simultaneously. An effect ei has the form [q+

i] ∧Q−i A′i, where:

• q+
i is an UCQ, and Q−i is an arbitrary ECQ whose free variables occur all among the free

variables of q+
i ;

• A′i is a set of facts (over the alphabet of T) which include as terms: individuals in A0, free
variables of q+

i , and Skolem terms f(~x) having as arguments free variables ~x of q+
i .

The process Π is a finite set of condition/action rules. A condition/action rule π ∈ Π is an
expression of the form Q 7→ γ, where γ is an action in Γ and Q is an ECQ over T , whose free
variables are exactly the parameters of γ. The rule expresses that, for each tuple σ for which
condition Q holds, the action γ with actual parameters σ can be executed.

3.3 Semantics via Transition System

The semantics of a KBDS is defined in terms of a possibly infinite (semantic) transition system
whose states are labeled by ABoxes. Such a transition system represents all possible computa-
tions that the process layer can do on the extensional part of the knowledge base. A semantic
transition system (STS) Υ is a tuple of the form 〈∆, T,Σ, s0, db,⇒〉, where:

• ∆ is a countably infinite set of values;

• R is a database schema;

• Σ is a set of states;

• s0 ∈ Σ is the initial state;

• abox is a function that, given a state s ∈ Σ, returns the ABox associated to s, which is
made up of values in ∆ and is consistent with T ;

• ⇒ ⊆ Σ× Σ is a transition relation between pairs of states.

The construction of the STS that capture the execution semantics of a KBDS follows the same
steps sketched in Section 2.3 for DCDSs, with two main differences: each ABox is required to
be consistent with the TBox of the KBDS, and the progression mechanism used to construct
the successor ABoxes (by nondeterministically applying the executable actions) is not anymore
driven by query evaluation, but by logical implications, computing certain answers and conse-
quently taking into account the constraints of the TBox, as well as the fact that ABoxes contain
incomplete data.

3.4 Summary of (Un)Decidability Results

We now summarise the main results related to decidability of verification for unrestricted, run-
bounded, and state-bounded KBDSs, where the considered logics are variants of µLA (cf. Sec-
tion 2.5) and µLP (cf. Section 2.6). In particular, we consider the two logics µLEQL

A and µLEQL
P ,

which respectively correspond to µLA and µLP by replacing the local first-order queries with
ECQs (cf. Section 3.1). These logics support ECQs over the ABoxes of the KBDS transition
system, and provide restricted forms of quantification across states so as to predicate about the
evolution of the individuals returned by computing the certain answers of such ECQs.

Table 2 shows that the (un)decidability results established for DCDSs can be mirrored also
in the KBDS setting. The entires in the table are obtained by combining the results presented

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 18 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

deterministic nondeterministic

µL µLEQL
A µLEQL

P µL µLEQL
A µLEQL

P

unrestricted U ← U ← U1 U ← U ← U1

↑ ↑ ↑ ↑
state-bounded U ← U D U ← U D3

↓ ↓
run-bounded ?2 D3 → D ?2 D3 → D

1Holds even for LTL/CTL formulae containing just an instance query.
2Decidability cannot rely on faithful finite-state abstraction.
3Via reduction to finite-state model checking.

Table 2 – Summary of (un)decidability results for verification of KBDSs

in [21, 20, 6], and the ones provided for DCDSs, recalling that, thanks to the FO rewritability
of DL-LiteA, it is possible to “compile away” the TBox of a KBDS and obtain a corresponding
DCDS.

As a last observation, we point out that the syntactic, sufficient conditions introduced to
check run- and state-boundedness over DCDSs can be recast for KBDSs as well. The main
difference is that the contribution of the TBox must be taken into account. In particular, as
shown in [6], such syntactic conditions have to be tested over the action base of the KBDS
under study, after having rewritten all the contained queries w.r.t. the TBox.

4 Semantically-governed Artifact Systems

In this section, we discuss the framework of semantically-governed artifact systems (SASs),
which fully account with Artifact Systems as defined in the ACSI setting, covering the Artifact
and Semantic Layers of the abstract ACSI architecture (cf. [14]). According to such architecture,
SASs model systems in which processes are executed at the Artifact Layer, typically relying
on relational databases to capture the artifact information models, but the execution can be
understood at the semantic layer, by accessing these information models through a full-fledged
ontology/conceptual schema.

In particular, SASs are constituted by:

• An Artifact Layer, which abstractly account for the (relational) information models of the
artifacts, and which uses a transition relation to globally capture the evolution of such
information models.

• A description logic knowledge base, which typically relies on the DL-Lite family [17] (such
as DL-LiteA – cf. Section 3.1), to conceptually model the domain under study, and equip
the artifact system with a Semantic Layer.

• A set of mappings that describe how to virtually project data concretely maintained at
the Artifact Layer into the Semantic Layer, thus providing a link between data and the
ontology. We assume that the Artifact Layer exploits relational databases to maintain the
data of interest, and can be hence queried by means of SQL statements; in this context
context, each mapping assertion relates an arbitrary (SQL) query over the databases of
the artifacts to a set of atoms whose predicates are the concepts and roles of the ontology,
and whose arguments are terms built using specific function symbols applied to the answer
variables of the SQL query. Such mappings specify how to populate the elements of the
ontology from the data in the relational database, and the function symbols are used to
construct (abstract) objects (which we call object terms) from the concrete values retrieved
from the database.

• The temporal logics µLEQL
A and µLEQL

P (cf. Section 3.4) to declaratively capture at the
semantic layer the dynamic laws that must be guaranteed by the artifact system. Notice

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 19 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

D2

A2

T

M

D0

A0

α1

T

M

Semantic Layer
Snapshots

Process

D1

A1

T

M

α2

Dw

Aw

T

M

αw

D3

A3

T

α3

M
Relational Layer

Snapshots

OBDA System

Figure 2 – Evolution of an SAS, condensing artifact’s data in a unique database

that these formulae predicate about the evolution of data at the conceptual level, taking
into account the knowledge and constraints present in the ontology, which allows for
inferring information that is only implicitly available.

Since the main focus of this investigation is on how data are manipulated at the Artifact
Layer and understood/governed at the Semantic Layer, we assume, as done for DCDSs and
KBDSs, that the artifact databases are combined into a unique database maintaining the whole
information present at the Artifact Layer, which is then referred to as the Relational Layer.

4.1 The Role of the Semantic Layer

As specified in the A3M , we assume that artifacts evolve as a result of processes running over
the Artifact Layer, where the execution of an action leads to manipulate the data maintained
by one or more artifacts. This is represented, in A3M , as a transition relation that connects the
current artifact system snapshot with the successor one(s) [14]. In this setting, the TBox and
mappings of the KAB can be used not only to understand the evolution of the artifact system
at the conceptual level (see Fig. 3), but also to govern the evolution of the artifact system at the
conceptual level, rejecting those snapshot transitions that, currently executed at the Artifact
Layer, would lead to a new semantic snapshot that is inconsistent with the KAB’s TBox (see
Fig. 4).

Governance through the Semantic Layer gives raise to a so-called Semantically-governed
Artifact System (SAS). We remark that, without loss of generality, we can condens all databases
maintained by the artifacts into a unique database characterizing the whole Artifact Layer,
which becomes, in this case, a Relational Layer. Under this assumption, an evolution of the
system can be understood as depicted in Figure 2.

In this section, we study SASs using the lightweight description logics (cf. 3) to represent
their KABs. In particular, building on FO rewritability of queries over the system state that is
typical of DL-LiteA and of ontology languages for ontology-based data access (OBDA [42]) in
general, we show that the static as well as dynamic component of the KAB can be rewritten
in terms of the underlying relational database schema. This is in line with the A3M , where the
Semantic Layer is used to provide a conceptual, high-level and user-oriented view of an artifact
system, and where the artifact system evolves independently from the Semantic Layer, as a
result of processes defined over the Artifact (Relational) Layer. More specifically, after having
defined the execution semantics of an SAS, we discuss how to:

• Reformulate the semantic constraints of the TBox as denial constraints posed directly over
the database schemas of the artifact information models. This means that, as far as the
evolution of the artifact system is concerned, the Semantic Layer can be compiled away,
provided that the transition relation of the Artifact Layer is modified so as to take such
denial constraints into account.

• Reformulate the dynamic laws of the KAB into temporal properties expressed over the

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 20 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Da

Db

Dc

Artifact System Snapshot

D'a

D'b

D'c

Artifact System Snapshot

Mappings Mappings

Semantic Layer Snapshot

TBox

 ABox1

TBox

Semantic Layer Snapshot

 ABox2

queries queries

Transition

Figure 3 – Semantic Layer as a mean to understand the snapshots of an artifact
system evolution

Da

Db

Dc

Artifact System Snapshot

D'a

D'b

D'c

Artifact System Snapshot

Transition

Mappings Mappings

Semantic Layer Snapshot

TBox

 ABox1

TBox

Semantic Layer Snapshot

 ABox2

Figure 4 – Semantic Layer as a mean to govern an artifact system evolution

underlying artifact database schemas. This enables to verify whether processes specified
over the Artifact Layer comply with such semantic dynamic laws.

4.2 Linking Data to Ontologies

In the last years, a new paradigm for information integration, called ontology-based data access
(OBDA), has been proposed, which is based on the use of an ontology (in fact a TBox) acting
as mediated (a.k.a. global) schema suitably linked to data sources [42]. In OBDA, data sources
are seen as a relational database. As in (virtual) data integration, linkage towards data sources
is realized through mapping assertions. The most expressive mapping assertions considered in

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 21 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Da

Db

Dc

Artifact System Snapshot

D'a

D'b

D'c

Artifact System Snapshot

Mappings Mappings

Semantic Layer Snapshot

TBox

 ABox1

TBox

Semantic Layer Snapshot

 ABox2

Transition

dynamic laws

... ...

... ...

Figure 5 – Semantic Layer as a mean to govern an artifact system evolution

the data integration literature are the so-called GLAV assertions [38], which are expressions of
the form φ(~x) ; ψ(~x), where φ(~x) is a query over the data sources and ψ(~x) is a query over
the global schema (the ontology in OBDA). Intuitively, such a mapping assertion specifies that
the tuples returned by the evaluation of φ(~x) over the source database semantically correspond
(in a sense that will be clarified below) to the formula ψ(~x), and therefore create the bridge
between the data in the sources and the objects satisfying the predicates in the ontology. When
the formula φ(~x) is a single atom formula of the form R(~x), with R a source relational predicate,
the mapping assertion is called LAV (Local-As-View). When the formula ψ(~x) is a single atom
formula of the form S(~x), with S an ontology predicate of arity n and ~x a sequence of n distinct
variables, the mapping assertion is called GAV (Global-As-View).

Formally, an OBDA specification is a triple S = 〈T,M,D〉, where T is a DL TBox, D is a
database, andM is a set of mappings between T and D. Its semantics is given in terms of FOL
interpretations I over the alphabet of T , such that (i) I satisfies T , and (ii) I satisfies M, i.e.,
for each assertion φ(~x) ; ψ(~x) in M we have that for every tuple ~t in the evaluation of φ(~x)
over D it holds that ψ(~t) evaluates to true in I, where the notions of evaluation of φ(~x) over D
and ψ(~t) over I depend on the particular language in which such queries are specified. Notice
that the above (classical) notion of mapping satisfaction actually considers mapping assertions
as sound implications from the database to the ontology. The different notion of complete
mappings considers them as opposite implications, i.e., in this case I satisfies an assertion of
the form above if for every tuple ~t such that ψ(~t) evaluates to true in I it holds that ψ(~t) is in
the evaluation of φ(~x) over D (cf. [38]). The interpretations satisfying both the ontology and
the mapping are the models of the OBDA specification S, and the set of such models is denoted
by Mod(S).

A query posed over and OBDA specification S = 〈T,M,D〉 is a query posed over its TBox
T . Given one such query q, the notion of certain answers to q over S, denoted cert(q,S), is the
natural generalization of the analogous notion given for ontologies.

Analogously to the language used to query the ontology, for computational reasons it is
necessary in practice to control the expressive power of the languages used to specify queries
in the mapping. We notice however that the query φ(~x) in a mapping assertion is posed over a
database, where query answering actually amounts to simple query evaluation. We can therefore
assume that such query is a generic FOL query (possibly expressed in SQL), whereas will
consider ψ(~x), which is a query over the ontology, expressed in the language ECQ given above.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 22 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

4.3 Semantically-Governed Artifact Systems: Definition

An SAS S is a tuple 〈R, I0,F ,KA〉, where:

• R is the database schema of the artifact system’s Relational Layer;

• I0 is the initial database instance of the Relational Layer, made up of values in V and
conforming to R, which describes the starting state of the system;

• F is the transition relation that describes the overall progression mechanism of the Rela-
tional Layer;

• KA is the KAB that describes the Semantic Layer of the system.

The KAB KA, in turn, is defined by the pair 〈K,Γ〉, where:

• K = 〈T,M〉 is the knowledge component of KA, constituted by a DL-LiteA TBox T and
by a mapping specificationM that contains GAV mapping assertions connecting R to T ;

• Γ is a set of µLEQL
A /µLEQL

P formulae declaratively describing the dynamic laws to which
the executions of the system must obey.

Notice that the tuple O = 〈R, T,M〉 constitutes in fact an OBDA system. For an overall picture
providing the intuition for SASs, see Figure 5.

4.4 Execution Semantics

The execution semantics of S can be captured in terms of two transition systems, one describing
the allowed evolutions at the Relational Layer, and one abstracting them at the Semantic Layer.
The first transition system has the form of an RTS (cf. Section 2.3), whereas the second has
the form of an STS (cf. Section 3.3).

RTS. The RTS ΥR
S of the SAS S is formally defined as 〈R,Σ, s0, db,⇒〉, where Σ, ⇒ and db

are defined by simultaneous induction as the smallest sets such that s0 ∈ Σ, with db(s0) = I0,
and satisfying the following property. Given s ∈ Σ, consider every database instance I ′ such
that 〈db(s), I ′〉 ∈ F . Then:

1. if there exists s′ ∈ Σ such that db(s′) = I ′, then s⇒ s′;

2. otherwise, if O = 〈R, T,M〉 is satisfiable wrt I ′, then s′ ∈ Σ, s ⇒ s′ and db(s′) = I ′,
where s′ is a fresh state.

We observe that the satisfiability check done in the last step of the RTS construction accounts
for semantic governance.

STS. The STS ΥS
S of S is an STS 〈T,Σ, s0, abox ,⇒〉, where T is the TBox of S. In particular,

ΥS
S is defined as a “virtualization” of the RTS ΥR

S = 〈R,Σ, s0, db,⇒〉 at the Semantic Layer:
it maintains the structure of ΥR

S unaltered, reflecting that the progression of the system is
determined at the Relational Layer, but it associates each state to a virtual ABox obtained
from the application of the mapping specification M to the database instance associated by
ΥR
S to the same state. Formally, the abox function of ΥS

S is defined as follows: for each s ∈ Σ
with db(s) = I, abox (s) = M(I). Figure 6 provides a pictorial intuition of the two transition
systems and their interconnection.

The STS ΥS
S allows us to define the verification problem for a SAS, i.e., verifying whether

a µLEQL
P /µLEQL

A closed formula Φ holds for the SAS S: ΥS
S |= Φ. This, in turn, allows us to

tackle the conformance problem of ΥS
S wrt the dynamic laws Γ of a KAB KA = 〈K,Γ〉: ΥS

S
conforms to Γ if

ΥS
S |=

∧

Φi∈Γ

Φi

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 23 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Semantic Layer Transition System

Relational Layer Transition System

s0

s1

s2

db

A0

T

s3

s0

s1

s2

s3

M

abox

A1

T

A2

T

A3

T

abox

abox

abox

M

db

db

db

M M

ΥR
S

ΥS
S

D0
R

D1
R

D2
R

D3
R

Figure 6 – Relationship between the RTS and STS of an SAS S

4.5 Compilation of Semantic Constraints

The construction of the RTS ΥR
S involves the use of the KAB’s TBox T for semantic governance,

i.e., to check that the states of the transition system, projected through the mapping specifi-
cation, satisfy the semantic constraints of T . In this Section we argue that, thanks to the FOL
rewritability of DL-LiteA, it is possible to compile away the KAB and rewrite the consistency
check into a denial constraint directly posed over R in the Relational Layer. This can be done
in three steps:

1. the formula qunsat(T) is constructed, following the reduction described in [13, 18];

2. such a formula is unfolded by using the mapping assertion M, and the result is used to
build a denial constraint of the form unfold(qunsat(T),M)→ false;

3. the denial constraint is incorporated into the transition relation F , which now also enforces
that two snapshots 〈I, I ′〉 ∈ F only if both I and I ′ satisfy unfold(qunsat(T),M)→ false.

If we assume that the transition relation of the Relational Layer is induced by a DCDS, this
translation shows that the T can effectively be compiled away, and embedded into the constraints
of the DCDS data layer.

4.6 Rewriting and Unfolding of Dynamic Laws

We now describe how µLEQL
P properties can be processed, i.e., rewritten and then unfolded, in

order to obtain corresponding µLP properties that can be directly verified at the Relational
Layer. The same line of reasoning can be applied to rewrite µLEQL

A properties into µLA prop-
erties. We do so by extending the definition of rewriting and unfolding in OBDA [42, 18].

This allow us to redefine the conformance problem of an SAS as a verification problem over
its Relational Transition System.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 24 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

In the remainder of this section, we consider a an SAS S = 〈R, I0,F ,KA〉, where KA =
〈K,Γ〉, and K = 〈T,M〉.
Rewriting of Dynamic Laws The KAB’s TBox T does not focus on the dynamics of the
system, but only on the information maintained by S. Therefore, for the rewriting of a µLEQL

P

formula Φ wrt the TBox T we separate the treatment of the dynamic part and of the embedded
ECQs. The rewriting is then done by maintaining the dynamic part unaltered, and by replacing
each embedded ECQ with its corresponding rewriting wrt T .

Unfolding of Dynamic Laws The unfolding of µLEQL
P dynamic laws is applied after the

rewriting, i.e., after having compiled away the KAB’s TBox. As for the rewriting, we separate
the treatment of the dynamic part and of the embedded ECQs.

As described in Section 4.4, the execution semantics of S is defined in such a way that
both the STS ΥS

S and the RTS ΥR
S have the same structure. This reflects the intuition that the

dynamics of the artifact system is determined at the Relational Layer. Therefore, the unfolding
of a µLEQL

P formula maintains its dynamic part unaltered, and unfolds all the embedded ECQs
wrt the mapping assertion M. However, two cases deserve a discussion:

• the unfolding of live(x);

• the unfolding of quantification across states, i.e., ∃x.live(x) ∧ Φ.

As far as live(x) is concerned, we observe that live(x) corresponds to the following equivalent
UCQ, which can then be unfolded in the usual way:

live(x) ≡
∨

N in T

N(x) ∨
∨

P in T

(P (x,) ∨ P (, x))

Quantification across states is dealt with in the same way as quantification in ECQs:

unfold(∃x.live(x) ∧ Φ,M) =
∨

(f/n)∈fs(M) ∃x1, . . . , xn.unfold(live(f(x1, . . . , xn)),M)

∧ unfold(Φ[x/f(x1, . . . , xn)],M)

Notice that such unfolding technique guarantees that the unfolded formula is indeed a µLP
formula. In the case of unfolding, a µLEQL

P formula over the TBox T (Semantic Layer)
of the SAS under study is translated into a µLP formula over the SAS relational schema
R (Relational Layer). To ensure that the unfolded formula is in µLP , we observe that
unfold(live(f(x1, . . . , xn)),M) implies that live(x1)∧ · · · ∧ live(xn). In fact, an object term
that is live in a given state of the STS can be only produced starting from live values in the cor-
responding state of the RTS. Consequently, even if live(x1), . . . live(xn) are not syntactically
produced by the unfolding of live(f(x1, . . . , xn)), they are implied by the obtained formula.

This approach shows that the verification problem for SASs can be reduced to a verification
problem directly posed over the Relational Layer only. In particular, when the dynamics of the
Relational Layer is specified by means of a DCDS, we can take advantage from this translation,
and from the TBox compilation approach discussed in the previous section, to reduce the verifi-
cation problem for an SAS into a verification problem for the underlying DCDS (extended with
the denial constraint obtained from the TBox compilation). This, in turn, allows to exploit the
decidability results shown in Section 2.7 also in this extended setting.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 25 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Part II

KAB Instantiation: the Case of GSM

We now draw a correspondence between the formal framework of DCDSs, and the realization of
the ACSI Artifact Layer in terms of the Guard-Stage-Milestone (GSM) artifact model [35, 25].
The choice of DCDSs is motivated by the fact that GSM specifications rely on a relational
information model (with nested tuples).

On the one hand, this correspondence shows that DCDSs are expressive enough to capture
virtually any artifact-centric concrete model. On the other hand, it can be exploited to attack
the verification problem for GSM-based artifacts, taking advantage from the decidability results
established for GSM.

This part of the document of is organized as follows. To make the document self-contained,
in Section 5 provide an introduction of the GSM model, also discussing a running example
that consists of an excerpt extracted from the ACSI Energy use case. In Section 6, we discuss
that verification of GSM-based artifacts is a very challenging task, which can be immediately
shown to be undecidable in the general case. We then move in Section 7 to the correspondence
between GSM and DCDSs, introducing a translation mechanism that, given a GSM model,
produces a corresponding faithful DCDS. In Section 8, we finally exploit this translation to
provide decidability results on the verification of state-bounded GSM models, providing at the
same time design guidelines on how to turn arbitrary GSM models into state-bounded models.

5 The Guard-Stage-Milestone model

In this section we describe the main characteristics of the GSM model. We first provide an
informal description and then give precise formalization of the model.

5.1 Informal Introduction

The GSM artifact modeling language recently introduced by [35, 25] provides means for specify-
ing business artifact lifecycles in a declarative manner, using intuitively natural constructs that
correspond closely to how executive-level stakeholders think about their business. The main
GSM components are:
• data schema (Att) for modeling relevant data domain (data attributes) and keeping track

of progresses of artifact (status attributes);
• milestones (Mst), which correspond to business operational objectives and are achieved

based on triggering events and/or conditions over the data schema;
• stages (Stg), which correspond to clusters of activities intended to achieve milestones, and

which can have a hierarchical structure.
• guards (Grd), which control when a stage can be activated for execution.
• events, which describe interaction with the environment.

The GSM data schema uses (possibly nested) attribute/value pairs to capture the domain of
interest. It distinguishes data attributes, which represent data relevant to the business, and
status attributes, which hold information about the progress of the artifact instance along its
lifecycle.

The description of a particular business process may involve several instances of artifacts
described by a GSM schema. At any point in time, the state of any given artifact instance
(snapshot) is stored according to its data schema, and is characterized by: (i) values of attributes
in the schema, (ii) status of its stages (open or closed) and (iii) status of its milestones (achieved
or invalidated).

The key elements of a lifecycle schema are stages, milestones and guards. Stages may be
organized into a hierarchy, as they can be either atomic or composite. An atomic stage contains
exactly one task, which corresponds to a unit of business-relevant work that is to be performed

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 26 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

by an external agent (either human or machine). A composite stage contains other sub-stages.
At a given moment in time, a stage may be activated (having a status open), which corresponds
to a state when activities within the stage are being executed. Along the process, any stage
may be executed multiple times, but it cannot have two occurrences that are being executed
simultaneously.

Guards control the activation of stages and, like milestones, are described in terms of data-
aware expressions, called sentries, involving events and conditions over the artifact data schema.
Sentries have the form on e if cond, where e is an event and cond is a condition over data. Both
parts are optional, supporting pure event-based or condition-based sentries.

Tasks represent the atomic units of work, which are used to update the data schema of
an artifact instance. Artifact instances may interact with the external world by exchanging
typed events. In fact, tasks are considered to be performed by an external agent, and their
corresponding execution is captured with two event types: an invocation, whose instances are
populated by the data from data schema and then sent to the environment; and a termination,
whose instances represent the corresponding answer from the environment and are used to
incorporate the obtained result back into the artifact data schema. The environment can also
issue unsolicited (one-way) events, to trigger specific guards or milestones.

We also consider a specific type of events: status events, which correspond to any change of
a status attribute, such as opening a stage or achieving a milestone, and can be further used to
govern the artifact lifecycle.

The operational semantics for GSM is specified in terms of how a single event is incorporated
into the current snapshot. Incorporation of an event corresponds to processing of all the effects
the event triggers in the system. Such effects are determined based on a set of Event-Condition-
Action (ECA) rules and result in issuing a set of status events, each of which can trigger further
status changes. A business step, or B-step, corresponds to a transition from a snapshot of the
system (before processing the event) to a new one, resulting from the incorporation of the event.
B-steps correspond to the smallest units of business-relevant change that can occur to a GSM
system and consist of a terminating sequence of internal events, triggered by the event.

5.2 Formal Basis

This section formalizes the concepts introduced previously and gives a brief intuition of the
incremental semantics for GSM.

Definition 1 (GSM schema). A GSM schema is a tuple (x,Att, Stg,Mst, Lcyc), where:
1. x is a variable that ranges over (IDs of) instances of the artifact;
2. Att, Mst and Stg are the sets described above and they are called the data schema of the

artifact;
3. Lcyc = (Substage, Task,Owns,Guards,Achv) is the lifecycle schema, where

(a) Substage is a hierarchical relation over Stg;
(b) Task is a function from atomic stages in Stg to the set of possible tasks;
(c) Owns is a function from Stg to finite, non-empty subsets of Mst;
(d) Guards is a function from Stg to finite sets of sentries (see below);
(e) Achv is a function from Mst to finite sets of sentries;

While sets Stg and Mst are simply the set of stages and milestones, the sett Att is the
union of two disjoint sets: attd, the data attributes and atts, the status attributes, plus a special
attribute LastIncEventType that stores the type of the event that is currently being consumed.
Formally, Att = attd ∪ atts ∪ LastIncEventType. The set of status attributes is composed by
boolean attributes s for each stage s ∈ Stg, which is true if s is currently open or false
otherwise, and boolean attributes m for each milestone mj ∈ Mst, which specifies whether m
is achieved (true) or invalidated (false).

We now introduce some preliminary definitions required to define the lifecycle schema. We
assume to have a set of event names event and a domain ∆ which includes the elements of the
domain and the two boolean constants true and false.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 27 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Definition 2 (Snapshot). A snapshot of a GSM data schema is an assignment function from
attribute names to the domain and the set of event names Σ : Att→ ∆ ∪ event such that:

• Σ(a) ∈ {true, false} for each a ∈ atts and

• Σ(LastIncEventType) ∈ event.

A snapshot Σ is a snapshot for a GSM schema if it satisfies the following invariants:

• GSM-1: A stage and its milestone(s) cannot be both true, i.e., for each stage s and each
milestone m owned by s, Σ(s) and Σ(m) cannot be both true;

• GSM-2: No activity in closed stage. If ¬Σ(s) for stage s ∈ Stg and s′ is substage of s,
then ¬Σ(s′).

We now briefly introduce the language L that will be used for specifying the sentries. The
syntax of L is formally presented in [39] and is out of the scope of this paper. We just mention
that the variables of the language correspond to attributes in Att and event names in event.
Hence, in order to evaluate a formula, we need to associate variables (x1 . . . xn) to ∆ ∪ event.
Given a formula Φ ∈ L, we write Σ |= Φ(x1 . . . xn) when Φ(Σ(x1) . . .Σ(xn)) evaluates to true
accordingly to the semantics of L.

The language L can also refer to the so-called status events. A status event for a GSM data
schema is an expression of the form ¬a∧a′ or a∧¬a′ where a ∈ atts. To ease the notation, from
now on we use +a as a shortcut for ¬a ∧ a′ and −a for a ∧ ¬a′. The intuitive meaning is that
+a is true when a shifted from false to true during the course of a B-step, and analogously for
−a. It is then clear that if a formula contains status events it is temporal, meaning that it can
refer to different snapshots of the system. A temporal formula can hence refer to two snapshots,
Σ and Σ′, where we establish the convention, as customary in the verification community, that
primed snapshots Σ′ are constructed after Σ. Consequently, in formulas, we will use primed
variable symbols for variables that should be associated to elements in ∆ according to Σ′, and
unprimed variables symbols for variables that should be associated to elements in ∆ according
to Σ. Formally, given a formula Φ(x1 . . . xn, x

′
1 . . . x

′
m) where x1 . . . xn, x

′
1 . . . x

′
m ∈ Att, the pair

(Σ,Σ′) satisfies Φ, denoted (Σ,Σ′) |= Φ if Φ(x1/Σ(x1) . . . xn/Σ(xn), x′1/Σ
′(x1) . . . x′m/Σ

′(xm))
evaluates to true, where (xi/Σ(xi) substitues to xi the value Σ(xi) in Φ. We call local a formula
Φ with no primed attributes.

We are now ready to define the set sentry of sentries for a GSM schema. A sentry for a
GSM data schema is a boolean formula of the form τ ∧ γ, where:

• τ is either of the following:

– empty;

– LastIncEventType = E or

– {+,−}a for some status attribute a ∈ atts.

• γ is a L-formula that contains no event type variables nor status events.

Notice that a sentry τ ∧ γ can be expressed in the classical form as on τ if γ.
We now turn to the notion of event. As a first classification, we can distinguish between

business events and status events. We already discussed status events above (and the way they
can be used in sentries), so we now focus on businesses events. Business events are used in
GSM to allow artifacts to communicate with the environment. The environment represents
the external world, or, in other words, everything that is not modeled as an artifact. The
environment performs external tasks, such as human tasks, that are invoked by the artifacts
through business events. Business events can be again separated into one-way and two-way
events. One-way events are sent unsolicitedly from the environment to an artifact or from an
artifact to another artifact. An incoming one-way (event) type is a triple E = (N,O,ψ), where
N ∈ event is the event name, O is the event payload structure which is a list of attributes in

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 28 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

CPAID CPID month year pub_date

CPAID date

CPAID measure

location

company

CPAs

CPAMeas

ManMeas

measure

date manager control_date

CPAID measurecompany
AutoMeas

date

Figure 7 – Graphical representation of the control point assessment artifact data
schema described in Example 5.1.

MRApps ReceivedRequesting CPADrafting

MR1
Received

ReqMR1

waitMR1

MR2
Received

ReqMR2

waitMR2

Legend: = guards = stages

= milestones = tasks

valsWrttn

EqualMeas

wrMeas

valsChsn
Auto

DiffMeasAuto

chsAuto

valsChsn
ManchsMan

published

DiffMeasMan

= creation
 guard

Figure 8 – Graphical representation of the control point assessment artifact
lifecycle described in Example 5.1.

attd, and ψ is a condition (a local formula in L) whose variables refers to attributes in O. A
one-way event instance, or simply a one-way message event is a pair e = (N, p) where p : O → ∆
is the payload such that p |= ψ. The condition ψ in a one-way event type formally represents
restrictions on the output attributes.

Two-way events, instead, model a task invocation to the environment and its related re-
sponse. Let task be a set of task names, disjoint from the other sets of names already estab-
lished. A task is a tuple (T, I,O, ψ) where T ∈ task is a task name, I ⊆ attd are the input
attributes, O ⊆ attd are the output attributes and ψ is a logical formula in L expressing the
postconditions of the task. Given that the postcondition should refer to two different snapshots
Σ and Σ′, where Σ is the snapshot of the system when the task is invoked and Σ′ is the next
snapshot when it finishes, ψ refers to attributes in I without primes and attributes in O with
primes.

A task invocation event type is a pair E = (T, I) where T is a task name and I are the input
attributes of T . A task invocation event instance of type E is a tuple e = (T, p) where p : I → ∆
is the input payload of the event. A task termination event type is a triple E = (T, I,O) where
T is a task name, and I and O are the input and output attributes of T .

A task termination event instance is a triple e = (T, p, p′) where (T, p) is a task invocation
event instance, p′ : O → ∆ is the output of the task and (p, p′) |= ψ evaluates to true. Here p is
called the input payload of e and p′ is called the output payload of e.

5.3 An Example from the ACSI Energy Use Case

Next, we present our running example, which stems from the ACSI Energy use case.

Example 5.1. From a high-level perspective, the electric supply system is a net of control points
(CPs) which generate and distribute the energy for a whole country. Each control point is a

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 29 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

on if

Requesting CPACreationEvent −
RequestMR1 +Requesting −
RequestMR2 +Requesting −
CPADrafting +MRAppsReceived −

EqualMeas +CPADrafting

∃id, c1, c2, d,m.CPAs(id,−,−,−,−,−) ∧ c1 6= c2∧
((ManMeas(id, c1, d,m,−,−) ∧ManMeas(id, c2, d,m,−,−))∨

(Auto meas(id, c1, d,m) ∧Auto meas(id, c2, d,m))∨
(ManMeas(id, c1, d,m,−,−) ∧AutoMeas(id, c2, d,m)))

DiffMeasAuto +CPADrafting
∃id, c1, c2, d,m.CPAs(id,−,−,−,−,−) ∧ c1 6= c2 ∧m1 6= m2∧

ManMeas(id, c1, d,m1,−,−) ∧AutoMeas(id, c2, d,m2)

DiffMeasMan +CPADrafting
∃id, c1, c2, d,m.CPAs(id,−,−,−,−,−) ∧ c1 6= c2 ∧m1 6= m2∧

((ManMeas(id, c1, d,m1,−,−) ∧ManMeas(id, c2, d,m2,−,−))∨
(AutoMeas(id, c1, d,m1) ∧AutoMeas(id, c2, d,m2)))

Table 3 – Guards for the lifecycle in Figure 8.

on if

MR1Received WaitMR1TermEvent −
MR2Received WaitMR2TermEvent −

MRAppsReceived − MR1Received ∧MR2Received
valsWrttn wrMeasTermEvent −

valChsnAuto chsAutoTermEvent −
valChsnMan chsManTermEvent −

published
+valsWrttn ∨+valsChnsAuto∨

+valsChsnMan
(valsWrttn ∨ ¬EqualMeas) ∧ (valsChsnAuto ∨ ¬DiffMeasAuto)

∧(valsChsnMan ∨ ¬DiffMeasMan)

Table 4 – Milestones for the lifecycle in Figure 8.

point in the net where two electric companies exchange energy between each other. A centralized
organization called system operator is in charge of planning the production and monitoring the
energy trade. Every month, for a certain control point, each company participating in the CP
submits a so-called monthly report application to the system operator, which contains a set of
measurements, each describing energy trade for a specific day with the other company connected
to the control point. Such values are determined by companies either automatically by hardware
or manually by an energy manager. When the system operator receives two applications for
each control point, it cross-checks data and publishes a control point assessment, possibly after
a manual inspection when values do not match.

We model such a process in GSM by introducing a control point assessment (CPA) artifact.
We assume a relational representation of data, and Figure 7 provides a graphical representation
of it. The data schema of the artifact provides information about both the assessment to be
published for a specific CP and the measures received by the two companies connected to the
CP.

Relation CPAs stores the id of the control point assessment (CPAID); the id and location
of the control point (CPID and location); the month and the year the assessment refers to
and its publication date. Relation CPAMeas keeps track of the measures chosen by the system
operator for each day of the month. This value is always among the two values which have been
proposed (in the monthly report application) by the two companies connected to the control
point. Later on we will explain how such values are chosen.

The other two relations store the set of measurements performed by the companies. In par-
ticular, manually-determined values are kept in the ManMeas table, which contains company
name, measure, date it refers to, manager in charge of the manual input and the date of in-
put. Automatically determined values, on the other side, are stored in the AutoMeas, in which
company, date and measure are the only relevant information.

Figure 8 shows a graphical representation of the CPA artifact lifecycle. When an instance
of CPA artifact is created (for a specific CP) by a one-way creation event from the environ-
ment, Requesting stage opens. The scope of associated activity is to request monthly measures
from the two companies connected to the CP. Indeed, ReqMR1 and ReqMR2 open in parallel
and their tasks send a two-way event to the environment. When a response event is consumed,

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 30 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

its payload, containing all the information for a monthly request application, is written in the
data schema of the artifact (precisely in the ManMeas and AutoMeas relations in Figure 7)
and milestone MR1Received (or MR2Received) is achieved. When both ReqMR1 and ReqMR2
closes, milestone MRAppsReceived is achieved and stage Requesting closes. Stage CPADrafting
opens when MRAppsReceived and its three substages take care of analyzing the measurement
for each day. In particular, EqualMeas opens if there exist a couple of measurements provided
by the two companies which agree on their values for a specific date. In this case, indeed, such a
value is written in table CPAMeas. In other words, task wrMeas takes care of writing values of
measurements which the two companies agree on. Substage DiffMeasAuto opens when there are
two measurements that disagree (for a specific day) but one of them has been performed auto-
matically. In this case, indeed, the system operator will chose the automatic value to be written
in CPAMeas. The last substage, DiffMeasMan covers the case in which the measurements dis-
agree and they are both been performed automatically or manually. A manual inspection is
then needed in order to choose one of those values.

Table 3 and 4 show sentries for guards and milestone for the energy example, respectively.
Such sentries are expressed as first order logic formulas.

6 Undecidability of GSM Verification

In this section, we show that verifying the infinite-state transition system representing the
execution semantics of a given GSM model is an extremely challenging problem, undecidable
even for a very simple propositional reachability property.

Theorem 6.1. There exists a GSM model for which verification of a propositional reachability
property is undecidable.

Proof. To show undecidability of verification, we illustrate that a Turing machine can be easily
captured in GSM, and that the halting problem can be stated in terms of a verification problem.
In particular, we consider a deterministic, single tape Turing machine M = 〈Q,Σ, q0, δ, qf , 〉,
where Q is a finite set of (internal) states, Σ = {0, 1, } is the tape alphabet (with the blank
symbol), q0 ∈ Q and qf ∈ Q are the initial and final state, and δ ⊆ Q\{qf}×Σ×Q×Σ×{L,R}
is a transition relation. We assume, wlog, that δ consists of k right-shift transitions R1, . . . , Rk
(those having R as last component), and n left-shift transitions L1, . . . , Ln (those having L
as last component). The idea of translation into a GSM model is the following. Beside status
attributes, the GSM information model is constituted by: (i) a curState slot containing the
current internal state q ∈ Q; (ii) a curCell slot pointing to the cell where the head of M is
currently located. (iii) a collection of cells representing the current state of the tape. Each cell
is a complex nested record constituted by a value v ∈ Σ, and two pointers prev and next used
to link the cell to the previous and next cells. In this way, the tape is modeled as a linked list,
which initially contains a single, blank cell, and which is dynamically extended as needed. To
mark the initial (resp., last) cell of the tape, we assume that its prev (next) cell is null.

On top of this information model, a GSM lifecyle that mimics M is shown in Figure 9,
where, due to space constraints, only the right-shift transitions are depicted (the left-shift ones
are symmetric). The schema consists of two top-level stages. Init stage is used to initialize the
tape. Transition stage is instead used to mimic the execution of one of the transitions in δ. Each
transition is decomposed into two sub-stages: state update and head shift. The state update is
modeled by one among k + n atomic sub-stages, each handling the update that corresponds to
one of the transitions in δ. These stages are mutually exclusive, beingM deterministic. Consider
for example a right-shift transition Ri = δ(qRi, vRi, qR

′
i, vR

′
i, R) (the treatment is similar for a

left-shift transition). The corresponding state update stage is opened whenever the current state
is qRi, and the value contained in the cell pointed by the head is vRi (this can be extracted
from the information model using the query curCell.value). The incoming arrows from the two
parent’s guards ensures that this condition is evaluated as soon as the parent stage is opened;

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 31 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Halt
curState == qf

Transition done

...

status attributes curState cellscurCell

curCell = curCell.next;

Head moved

if curCell.next == null

newCell = createCell();
newCell.value = "_";
curCell.next = newCell;
newCell.prev = curCell;
newCell.next = null;

Tape extended

if curCell.next != null

curCell = createCell();
curCell.value = "_";
curState = q0;Initialized if curCell == null

MovedR

. . .

curCell.value = vR1';
curState = qR1';

if curState = qR1
&& curCell.value = vR1

R1 state updated

. . .

curCell.value = vRk';
curState = qRk';

if curState = qRk
&& curCell.value = vRk

Rk state updated

curCell = curCell.prev;

Head moved

if curCell.prev == null

newCell = createCell();
newCell.value = "_";
curCell.prev = newCell;
newCell.next = curCell;
newCell.prev = null;

Tape extended

if curCell.prev != null

MovedL

. . .
curCell.value = vL1';
curState = qL1';

if curState = qL1
&& curCell.value = vL1

L1 state updated

. . .

curCell.value = vLn';
curState = qLn';

if curState = qLn
&& curCell.value = vLn

Ln state updated

...

value prev next

Transition stage

State update stages

Init stage

Right shift stage

Left shift stage

Figure 9 – GSM model of a Turing machine

hence, if the condition is true, the state update stage is immediately executed. When the state
update stage is closed, the achievement of the corresponding milestone triggers one of the guards
of the Right shift stage that handles the head shift. It contains two sub-stages: the first one
extends the tape if the head is currently pointing to the last cell, while the second one just
perform the shifting. Whenever a right or left shift stage achieves the corresponding milestone,
then also the parent, transition stage is closed, achieving milestone “Transition done”. This
has the effect of re-opening the transition stage again, so as to evaluate the next transition to
be executed. An alternative way of immediately closing the transition stage occurs when the
current state corresponds to the final state qf . In this case, milestone “Halt” is achieved, and
the execution terminates (no further guards are triggered).

By considering this construction, the halting problem forM can be rephrased as the follow-
ing verification problem: given the GSM model encoding M, and starting from an initial state
where the information model is empty, is it possible to reach a state where the “Halt” milestone
is achieved? Notice that, sinceM is deterministic, the B-steps of the corresponding GSM model
constitute a linear computation, which could eventually reach the “Halt” milestone or continue
indefinitely. Therefore, reaching a state where “Halt” is achieved can be equivalently formulated
using propositional CTL or LTL.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 32 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

7 Translating GSM into DCDSs

In this section we propose a translation procedure that takes a GSM model and produces a cor-
responding faithful representation in terms of DCDSs. This allows us to transfer the decidability
boundaries studied for DCDSs to the GSM context. We only discuss the intuition behind the
translation and provide the main results. Appendix A reports the full technical development
and proofs.

The translation relies on the incremental semantics: given a GSM model G, we encode each
possible micro-step as a separate condition-action rule in the process of a corresponding DCDS
system S, such that the effect on the data and process layers of the action coincides with the
effect of the corresponding micro-step in GSM. However, in order to guarantee that the transition
system induced by the resulting DCDS mimics the one of the GSM model, the translation
procedure should also ensure that all semantic requirements assumed for GSM [25] are modeled
properly: (i) “one-message-at-a-time” and “toggle-once” principles, (ii) the finiteness of micro-
steps within a B-step, and (iii) their order imposed by the model. We sustain these requirements
by introducing into the data layer of S a set of auxiliary relations, suitably recalling them in
the CA-rules to reconstruct the desired behaviour.

Restricting S to process only one incoming message at a time is implemented by the intro-
duction of a blocking mechanism, represented by an auxiliary relation Rblock(idR, blocked) for
each artifact in the system, where idR is the artifact instance identifier, and blocked is a boolean
flag. This flag is set to true upon receiving an incoming message, and is then reset to false
at the termination of the corresponding B-step, once the outgoing events accumulated in the
B-step are sent the environment. If an artifact instance has blocked = true, no further incoming
event will be processed. This is enforced by checking the flag in the condition of each CA-rule
associated to the artifact.

In order to ensure “toggle once” principle and guarantee the finiteness of sequence of micro-
steps triggered by an incoming event, we introduce an eligibility tracking mechanism. This
mechanism is represented by an auxiliary relation Rexec(idR, x1, ..., xc), where c is the total
number of PAC-rules, and each xi corresponds to a certain PAC-rule of the GSM model. Each
xi encodes whether the corresponding PAC rule is eligible to fire at a given moment in time
(i.e., a particular micro-step). The initial setup of the eligibility tracking flags is performed at
the beginning of a B-step, based on the evaluation of the prerequisite condition of each PAC
rule. More specifically, when xi = 0, the corresponding CA-rule is eligible to apply and has not
yet been considered for application. When instead xi = 1, then either the rule has been fired,
or its prerequisite turned out to be false. This flag-based approach is used to propagate in a
compact way information related to the PAC rules that have been already processed, following a
mechanism that resembles dead path elimination in BPEL. In fact, Rexec is also used to enforce
a firing order of CA-rules that follows the one induced by G. This is achieved as follows. For
each CA-rule Q 7→ α corresponding to a given PAC rule r, condition Q is put in conjunction
with a further formula, used to check whether all the PAC rules that precede r according to the
ordering imposed by G have been already processed. Only in this case r can be considered for
application, consequently applying its effect α to the current artifact snapshot. More specifically,
the corresponding CA-rule becomes Q∧ exec(r) 7→ α, where exec(r) =

∧
i xi such that i ranges

over the indexes of those rules that precede r.
Once all xi flags are switched to 1, the B-step is about to finish: a dedicated CA-rule is

enabled to send the outgoing events to the environment, and the artifact instance blocked flag
is released.

Example 7.1. An example of a translation of a GSM PAC-rule (indexed by k) is presented
in Figure 10. For simplicity, multiple parameters are compacted using an “array” notation
(e.g., x1, . . . , xn is denoted by x). In particular: (1) represents a condition part of a CA-rule,
ensuring the “toggle-once” principle (xk = 0), the compliant firing order (exec(k)) and the
“one-message-at-a-time” principle (Rblock(idR, true)); (2) describes the action signature; (3) is
an effect encoding the invalidation a milestone once the stage has been activated; (4) propagates

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 33 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Rexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→ (2)

akexec(idR, a
′, x) : { (3)

Ratt(idR, a, s,m) ∧RSj

chg(idR, true) {Ratt(idR, a, s,m)[mj/false]} (4)

Ratt(idR, a, s,m) ∧RSj

chg(idR, true) {R
mj

chg(idR, false)} (5)

RMexec(idR, x) ∧ xk = 0 {RMexec(idR, x)[xk/1]} (6)

[CopyMessagePools], [CopyRest] } (7)

Figure 10 – CA-rule encoding a milestone invalidation upon stage activation

s0

aux.

...
s1

aux.
event

...

event

s2

aux.

...

(unblocked)

(unblocked)

acyclic graph of
intermediate steps

acyclic graph of
intermediate steps

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 11

exec(r) =
V

i xi such that i ranges over the indexes corresponding to those rules
that precede r.

Once all xi flags are switched to 1, then the B-step is about to finish: a
specific CA-rule is enabled to send the outgoing events to the environment, and
the artifact instance blocked flag is released.

Rexec(idR, x) ^ xk = 0 ^ exec(k) ^ RBlocked(idR, true) 7! (1)

ak
exec(idR, a0, x) : { (2)

Ratt(idR, a, s, m) ^ R
Sj

chg(idR, true) {Ratt(idR, a, s, m)[mj/false]} (3)

Ratt(idR, a, s, m) ^ R
Sj

chg(idR, true) {R
mj

chg(idR, false)} (4)

RM
exec(idR, x) ^ xk = 0 {RM

exec(idR, x)[xk/1]} (5)

[CopyMessagePools] (6)

[CopyRest] } (7)

Fig. 4: CA-rule encoding a milestone invalidation upon stage activation

Example 2. An example of a translation of a GSM PAC-rule (indexed by k) is presented
in Figure 4. For simplicity, multiple parameters are compacted using an “array” notation
(e.g., x1, . . . , xn is denoted by x). In particular: (1) represents a condition part of a
CA-rule, ensuring the “toggle-once” principle (xk = 0), the compliant firing order
(exec(k)) and the “one-message-at-a-time” principle (RBlocked(idR, true)); (2) describes
the action signature; (3) is an e↵ect encoding the invalidation a milestone if the stage has
just been activated; (4) propagates an internal event denoting the milestone invalidation, What does it

mean “just been
activated”?

What does it
mean “just been
activated”?

if needed; (5) flags the encoded micro-step corresponding to PAC rule k as processed;
(6) and (7) are macros used to transport the una↵ected data into the next snapshot.

Given a GSM model G with initial snapshot s0, we denote by ⌥G its B-step
transition system, i.e., the infinite-state transition system obtained by iteratively
applying the incremental GSM semantics starting from s0 and nondeterministi-
cally considering each possible incoming event. The states of ⌥G corresponds to
stable snapshots of G, and each transition corresponds to a B-step. We abstract
away from the single micro-steps constituting a B-step, because they represent
temporary intermediate states that are not interesting for verification. Similarly,
given the DCDS S obtained from the translation of G, we denote by ⌥S the
transition system obtained by starting from s0, and iteratively applying nondeter-
ministically the CA-rules of the process, and the corresponding actions, in all the
possible ways. As for states, we only consider those database instances where all
artifact instances are not blocked; these correspond in fact to stable snapshots of
G. We also project away from those states all the auxiliary relations introduced by
the translation mechanism. We then connect two such states provided that there
is a sequence of (intermediate) states that lead from the first to the second one,

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 11

exec(r) =
V

i xi such that i ranges over the indexes corresponding to those rules
that precede r.

Once all xi flags are switched to 1, then the B-step is about to finish: a
specific CA-rule is enabled to send the outgoing events to the environment, and
the artifact instance blocked flag is released.

Rexec(idR, x) ^ xk = 0 ^ exec(k) ^ RBlocked(idR, true) 7! (1)

ak
exec(idR, a0, x) : { (2)

Ratt(idR, a, s, m) ^ R
Sj

chg(idR, true) {Ratt(idR, a, s, m)[mj/false]} (3)

Ratt(idR, a, s, m) ^ R
Sj

chg(idR, true) {R
mj

chg(idR, false)} (4)

RM
exec(idR, x) ^ xk = 0 {RM

exec(idR, x)[xk/1]} (5)

[CopyMessagePools] (6)

[CopyRest] } (7)

Fig. 4: CA-rule encoding a milestone invalidation upon stage activation

Example 2. An example of a translation of a GSM PAC-rule (indexed by k) is presented
in Figure 4. For simplicity, multiple parameters are compacted using an “array” notation
(e.g., x1, . . . , xn is denoted by x). In particular: (1) represents a condition part of a
CA-rule, ensuring the “toggle-once” principle (xk = 0), the compliant firing order
(exec(k)) and the “one-message-at-a-time” principle (RBlocked(idR, true)); (2) describes
the action signature; (3) is an e↵ect encoding the invalidation a milestone if the stage has
just been activated; (4) propagates an internal event denoting the milestone invalidation, What does it

mean “just been
activated”?

What does it
mean “just been
activated”?

if needed; (5) flags the encoded micro-step corresponding to PAC rule k as processed;
(6) and (7) are macros used to transport the una↵ected data into the next snapshot.

Given a GSM model G with initial snapshot s0, we denote by ⌥G its B-step
transition system, i.e., the infinite-state transition system obtained by iteratively
applying the incremental GSM semantics starting from s0 and nondeterministi-
cally considering each possible incoming event. The states of ⌥G corresponds to
stable snapshots of G, and each transition corresponds to a B-step. We abstract
away from the single micro-steps constituting a B-step, because they represent
temporary intermediate states that are not interesting for verification. Similarly,
given the DCDS S obtained from the translation of G, we denote by ⌥S the
transition system obtained by starting from s0, and iteratively applying nondeter-
ministically the CA-rules of the process, and the corresponding actions, in all the
possible ways. As for states, we only consider those database instances where all
artifact instances are not blocked; these correspond in fact to stable snapshots of
G. We also project away from those states all the auxiliary relations introduced by
the translation mechanism. We then connect two such states provided that there
is a sequence of (intermediate) states that lead from the first to the second one,

s0

... s1

event

...

event
s2

...

(stable)

(stable)

acyclic graph of
intermediate steps

acyclic graph of
intermediate steps

s0

s0

aux.

s1

s0

aux.

s2

Figure 11 – Construction of the B-step transition system ΥG and unblocked-state
transition system ΥS , respectively for a GSM model G with initial
snapshot s0, and for the corresponding DCDS S

an internal event denoting the milestone invalidation, if needed; (5) flags the encoded micro-
step corresponding to PAC rule k as processed; (6) transports the unaffected data into the next
snapshot.

Given a GSM model G with initial snapshot S0, we denote by ΥG its B-step transition system,
i.e., the infinite-state transition system obtained by iteratively applying the incremental GSM
semantics starting from S0 and nondeterministically considering each possible incoming event.
The states of ΥG correspond to stable snapshots of G, and each transition corresponds to a B-
step. We abstract away from the single micro-steps constituting a B-step, because they represent
temporary intermediate states that are not interesting for verification purposes. Similarly, given
the DCDS S obtained from the translation of G, we denote by ΥS its unblocked-state transition
system, obtained by starting from S0, and iteratively applying nondeterministically the CA-
rules of the process, and the corresponding actions, in all the possible ways. As for states,
we only consider those database instances where all artifact instances are not blocked; these
correspond in fact to stable snapshots of G. We then connect two such states provided that
there is a sequence of (intermediate) states that lead from the first to the second one, and for
which at least one artifact instance is blocked; these sequence corresponds in fact to a series of
intermediate-steps evolving the system from a stable state to another stable state. Finally, we
project away all the auxiliary relations introduced by the translation mechanism, obtaining a
filtered version of ΥS , which we denote as ΥS |G . The intuition about the construction of these
two transition systems is given in Figure 11. Notice that the intermediate micro-steps in the
two transition systems can be safely abstracted away because: (i) thanks to the toggle-once
principle, they do not contain any “internal” cycle; (ii) respecting the firing order imposed
by G, they all lead to reach the same next stable/unblocked state. We can then establish the
one-to-one correspondence between these two transition systems in the following theorem (see
Appendix A for a complete proof):

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 34 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Theorem 7.1. Given a GSM model G and its DCDS translation S, the corresponding B-step
transition system ΥG and filtered unblocked-state transition system ΥS |G are equivalent, i.e.,
ΥG ≡ ΥS |G.

8 State-bounded GSM Models

We now take advantage of the key decidability results discussed in Section 2.7, and study veri-
fiability of state-bounded GSM models. Observe that state-boundedness is not a too restrictive
condition. It requires each state of the transition system to contain a bounded number of tu-
ples. However, this does not mean that the system in general is restricted to encounter only a
limited amount of data: infinitely many values may be distributed across the states (i.e. along
an execution), provided that they do not accumulate in the same state. Furthermore, infinitely
many executions are supported, reflecting that whenever an external event updates a slot of the
information model maintained by a GSM artifact, infinitely many successor states in principle
exist, each one corresponding to a specific new value for that slot. To exploit this, we have first
to show that the GSM-DCDS translation preserves state-boundedness, which is in fact the case.

Lemma 8.1. Given a GSM model G and its DCDS translation S, G is state-bounded if and
only if S is state-bounded.

Proof. Recall that S contains some auxiliary relations, used to restrict the applicability of CA-
rules in order to enforce the execution assumptions of GSM: (i) the eligibility tracking table
Rexec, (ii) the artifact instance blocking flags Rblock, (iii) the internal message pools Rmsgkdata ,
R
srvp
data, R

msgq
out , and (iv) the tables of status changes Rmi

chg, R
sj
chg. (⇐) This is directly obtained by

observing that, if ΥS is state-bounded, then also ΥS |G is state-bounded. From Theorem A.4,
we know that ΥS |G ≡ ΥG , and therefore ΥG is state-bounded as well.
(⇒) We have to show that state boundedness of G implies that also all auxiliary relations present
in ΥS are bounded. We discuss each auxiliary relation separately. The artifact blocking relation
Rblock keeps a boolean flag for each artifact instance, so its cardinality depends on the number
of instances in the model. Since the model is state-bounded, the number of artifact instances is
bounded and so is Rblock. The eligibility tracking table Rexec stores for each artifact instance a
boolean vector describing the applicability of a certain PAC rule. Since the number of instances
is bounded and so is the set of PAC rules, then the relation Rexec is also bounded. Similarly,
one can show the boundedness of Rmi

chg, R
sj
chg due to the fact that the number of stages and

milestones is fixed a-priori. Let us now analyze internal message pools. By construction, S may
contain at most one tuple in Rmsgkdata and R

srvp
data for each artifact instance. This is enforced by

the blocking mechanism Rblock, which blocks the artifact instance at the beginning of a B-step
and prevents the instance from injecting further events in internal pools. The outgoing message
pool R

msgq
out may contain as much tuples per artifact instance as the amount of atomic stages

in the model, which is still bounded. However, neither incoming nor outgoing messages are
accumulated in the internal pool along the B-steps execution, since the final micro-step of the
B-step is designed not to propagate any of the internal message pools to the next snapshot.
Therefore, ΥS is state-bounded.

By combining the decidability result stating that verification of µLP properties over state-
bounded DCDSs is decidable, with Theorem A.4 and Lemma 8.1, we directly obtain:

Theorem 8.2. Verification of µLP properties over state-bounded GSM models is decidable, and
can be reduced to finite-state model checking of propositional µ-calculus.

Obviously, in order to guarantee verifiability of a given GSM model, we need to understand
whether it is state-bounded or not. However, as discussed in Section 2.7, state-boundedness is
a “semantic” condition, which is undecidable to check. We mitigate this problem by isolating a
class of GSM models that is guaranteed to be state-bounded. We show however that even very
simple GSM models (such as the one showin in Figure 12), are not state-bounded, and thus we
provide some modelling strategies to lift an arbitrary GSM model into a state-bounded model.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 35 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

add itemon itemRequest
if not Order paid Item added

execute
payment

on payRequest
if order.items -> exists Order paid

send receipt Receipt sent

...

status attributes items
...

code qty

Figure 12 – GSM model of a simple order management process

status attributes items

∅...

123

status attributes items

...
itemRequest(123,6) code qty

6

...

...

123

status attributes items

...

itemRequest(413,2) code qty

6

...

...

413 2

itemRequest(…,…)

...

...

...
(unbounded number of items)

Figure 13 – Unbounded execution of the GSM model in Fig. 12

8.1 GSM Models without Artifact Creation

We investigate the case of GSM models that do not contain any create-artifact-instance tasks.
Without loss of generality, we assimilate the creation of nested datatypes (such as those created
by the “add item” task in Figure 12) to the creation of new artifacts. From the formal point of
view, we can in fact consider each nested datatype as a simple artifact with an empty lifecycle,
and its own information model including a connection to its parent artifact.

Corollary 1. Verification of µLP properties over GSM models without create-artifact-instance
tasks is decidable.

Proof. Let G be a GSM model without create-artifact-instance tasks. At each stable snapshot
Σk, G can either process an event representing an incoming one-way message, or the termination
of a task. We claim that the only source of state-unboundedness can be caused by service calls
return related to the termination of create-artifact-instance tasks. In fact, one-way incoming
messages, as well as other service call returns, do not increase the size of the data stored in
the GSM information model, because the payload of such messages just substitutes the values
of the corresponding data attributes, according to the signature of the message. Similarly, by
an inspection of the proof of Lemma 8.1, we know that across the micro-steps of a B-step,
status attributes are modified but their size does not change. Furthermore, a bounded number
of outgoing events could be accumulated in the message pools, but this information is then
flushed at the end of the B-step, thus bringing the size of the overall information model back to
the same size present at the beginning of the B-step. Therefore, without create-artifact-instance
tasks, the size of the information model in each stable state is constant, and corresponds to the
size of the initial information model. We can then apply Theorem 8.2 to get the result.

8.2 Arbitrary GSM Models

The types of models studied in paragraph above are quite restrictive, because they forbid the
possibility of extending the number of artifacts during the execution of the system. On the
other hand, as soon as this is allowed, even very simple GSM models, as the one shown in
Fig. 12, may become state unbounded. In that example, the source of state unboundedness lies
in the stage containing the “add item” task, which could be triggered an unbounded number
of times due to continuous itemRequest incoming events, as pointed out in Fig. 13. This,
in turn, is caused by the fact that the modeler left the GSM model underspecified, without
providing any hint about the maximum number of items that can be included in an order. To

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 36 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

overcome this issue, we require the modeler to supply such information (stating, e.g., that each
order is associated to at most 10 items). Technically, the GSM model under study has to be
parameterized by an arbitrary but finite number Nmax, which denotes the maximum number
of artifact instances that can coexist in the same execution state. We call this kind of GSM
model instance bounded. A possible policy to provide such bound is to allocate available “slots”
for each artifact type of the model, i.e. to specify a maximum number NAi for each artifact
type Ai, then having Nmax =

∑
iNAi . In order to incorporate the artifact bounds into the

execution semantics, we proceed as follows. First, we pre-populate the initial snapshot of the
considered GSM instance with Nmax blank artifact instances (respecting the relative proportion
given by the local maximum numbers for each artifact type). We refer to one such blank artifact
instance as artifact container. Along the system execution, each container may be: (i) filled with
concrete data carried by an actual artifact instance of the corresponding type, or (ii) flushed to
the initial, blank state. To this end, each artifact container is equipped with an auxiliary flag
fri, which reflects its current state: fri is false when the container stores a concrete artifact
instance, true otherwise. Then, the internal semantics of create-artifact-instance is changed so
as to check the availability of a blank artifact container. In particular, when the corresponding
service call is to be invoked with the new artifact instance data, the calling artifact instance
selects the next available blank artifact container, sets its flag fri to false, and fills it with
the payload of the service call. If all containers are occupied, the calling artifact instance waits
until some container is released. Symmetrically to artifact creation, the deletion procedure for
an artifact instance is managed by turning the corresponding container flag fri to true. Details
on the DCDS CA-rules formalizing creation/deletion of artifact instances according to these
principles can be found in Appendix A.

We observe that, following this container-based realization strategy, the information model
of an instance-bounded GSM model has a fixed size, which polinomially depends on the total
maximum number Nmax. The new implementation of create-artifact-instance does not really
change the size of the information model, but just suitably changes its content. Therefore,
Corollary 1 directly applies to instance-bounded GSM models, guaranteeing decidability of
their verification. Finally, notice that infinitely many different artifact instances can be created
and manipulated, provided that they do not accumulate in the same state (exceeding Nmax).

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 37 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Part III

KAB Instantiation: Artifact Systems with
Semantic Layer

Even though the tight integration of data and processes is central for artifact-centric systems,
the information managed by artifacts is typically captured by means of rather simple structures,
such as lists of relevant attributes (this is, e.g., the case of GSM). A rich, conceptual and well-
founded modeling of the data component is yet to come. Furthermore, a suitable balance between
these two coexisting aspects is often missing, leading to artifacts that rely on data structures
essentially tailored to the process they have to serve, instead of richer structures able to fully
reflect the complexity of the domain of interest.

The main negative consequence is that it becomes difficult to exploit the artifact data to
satisfy information needs that go beyond those of the specific process execution. This, in turn,
makes it difficult to govern the entire enterprise system, to interconnect the data manipulated
by the different artifacts so as to construct a unique, high-level view of them, and to evolve
the system so as to incorporate new features impacting on the data component, and to support
interoperation with new processes and external systems.

By leveraging on the recent, extensive work on ontology-based data access (see e.g., [42, 11,
37]), the primary goal of this part is to overcome such limitations by proposing a framework for
the semantic enrichment, governance and management of artifact-centric systems, consequently
discussing concrete counterparts for the abstract framework of semantically-governed artifact
systems and the notion of ACSI semantic layer (cf. Section 4).

Even though the notion of semantic layer is orthogonal to the artifact/process modeling
language of choice, we show how this idea can be concretely exploited by grounding it in the
recently proposed GSM (Guard-Stage-Milestone) artifact modeling language ([35, 25]). This is
possible not only because GSM is associated to a concrete modeling and execution environment,
but also because (domain) ontologies have a formal underpinning in Description Logics (DLs),
which in turn come with a plethora of reasoning services and corresponding techniques8. These
reasoning services do not only cover design-time tasks such as satisfiability and consistency of
the ontology, but also query answering, consequently allow for a run-time, live exploitation of
ontologies, which goes far beyond their usage for modeling purposes only.

More specifically, the contributions of this part can be summarized as follows:

• We provide a formal definition of the semantic GSM model, providing a concrete coun-
terpart for the formal framework of KBDSs (cf. Section 3)9. Differently from the classical
GSM, in semantic GSM the information model is given in terms of an ontology, and con-
ditions on data and artifact status attributes, used in the specification of GSM lifecycles,
are all expressed over the ontology. Furthermore, in our formalization the GSM lifecycle
schema itself is modeled through an ontology. The advantage of this feature is twofold:
on the one hand it allows for advanced forms of querying over the status of GSM; on
the other hand, the framework provides a common, uniform representation for both the
lifecycle and the data schema. To guide the modeling of both such aspects, we provide
an upper ontology which constitute the (abstract) core of the overall conceptual schema
to be defined in each artifact. Each specific artifact provides then its own specialization
of this upper layer, enriching the ontology with its own lifecycle elements, relations, and
business objects.

• We enrich the semantic GSM framework by enabling the linkage of the ontology towards
autonomous database systems, possibly with heterogeneous schemas. To this aim, we bor-
row the notion of mapping from the data integration ([38, 27]) and ontology-based data

8See, for instance, the services offered by the DL-based reasoners presented in [33, 44, 49, 43].
9The correspondence between semantic GSM and KBDSs can be established by exploiting the correspondence

between standard GSM and DCDSs (cf. Part II).

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 38 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

access ([42]) literature. The mapping actually establishes a semantic correspondence be-
tween data stored in data sources and the instances of the ontology. This correspondence
consequently fosters collaboration and communication among different artifact-centric sys-
tems, heterogeneous and legacy data management systems, and multiples applications, as
they can continue to work with their own data formats and schemas, but the data they
maintain can be understood in terms of the ontology. In particular, we discuss two main
software engineering scenarios of practical interest in which these needs clearly arise:

– a system constituted by a back-end information subsystem, controlled by a set of
semantic GSM artifacts, and multiple front-end applications running their own pro-
cesses, which however need to access data produced by the back-end;

– a system encompassing multiple interacting subsystems running their own internal
processes, on the top of which an ontology is posed to provide a global view of the ma-
nipulated data, which in turn allows to monitor and govern the underlying processes
at the business level. This corresponds to a concrete instantiation of semantically-
governed artifact systems, and more in general of ACSI semantic layer (cf. Section 4).

• We discuss in details a running example within the ACSI Energy use case, leveraging on
what presented in Section 5.3.

We argue that our framework is parametric with respect to the language used for representing
the ontology and for querying it, as well as with respect to the (various) forms of mappings
that can be adopted to link the ontology with external data management systems. It is out
from the scope of this discussion to investigate specific choices for these languages, and the
computational problems that consequently arise.

9 DL Ontologies: a Recap

In this section we recall some basic notions on Description Logic ontologies, and on mechanisms
to map ontologies to databases, which are taken over from the research on data integration ([38,
27]). The discussion extends what already discussed in Section 3.1 for lightweight ontologies that
rely on the DL-Lite family, and ECQ queries. We will also extensively use the notion of mappings
to link data with ontologies, following what discussed in Section 4.2.

9.1 Description Logic Ontologies

Description Logic (DL) ontologies model the domain of interest in terms of objects (a.k.a.
individuals), concepts, which are abstractions for sets of objects, roles, which denote binary
relations between objects, value-domains, which denote sets of values, and attributes, which
denote binary relations between objects and values. DL expressions are built starting from
an alphabet Γ, which is the disjoint union of ΓP , containing symbols for atomic concepts,
atomic value-domains, atomic attributes, and atomic roles, and ΓC , which contains symbols
for constants (each denoting either an object or a value). Complex expressions are constructed
starting from atomic elements, and applying suitable constructs. Different DLs allow for different
constructs.

A DL ontology is constituted by two main components: a TBox (i.e.,“Terminological Box”),
that stores a set of universally quantified FOL assertions stating general properties of concepts
and roles, thus representing intensional knowledge of the domain, and an ABox (i.e.,“Assertional
Box”), that is constituted by assertions on individual objects, thus specifying extensional knowl-
edge. Again, different DLs allow for different kinds of TBox and/or ABox assertions. Formally,
a DL ontology O over an alphabet Γ is a pair 〈T,A〉, where T is a TBox and A is an ABox,
whose predicate symbols and constants are from Γ.

The semantics of a DL ontologyO over an alphabet Γ is given in terms of FOL interpretations
for Γ (cf. [4]). We denote with Mod(O) the set of models of O, i.e., the set of FOL-interpretations

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 39 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

that satisfy all TBox axioms and ABox assertions in O, where the definition of satisfaction
depends on the DL language in which O is specified. An ontology O is satisfiable if Mod(O) 6= ∅.
A logical sentence, i.e., a closed formula, φ, expressed in a certain language L, is entailed by an
ontology O, denoted O |= φ, if φ is satisfied by every interpretation in Mod(O) (where, again,
the definition of satisfaction depends on the language L). All the above notions naturally apply
to a TBox T alone.

Various reasoning services can be performed over DL ontologies, and are supported by state-
of-the-art automated reasoners (see, e.g., [33, 44, 49]). Among such services, intensional ones
do not consider the ontology ABox, and disclose properties only implicitly specified in the
ontology, as well as permit to verify the quality of the modeling. Instead, extensional reasoning
also involve the ABox. The most important reasoning service of this kind is query answering,
which we describe below.

In the following, we do not refer to a specific ontology language, being our contributions ap-
plicable to any DL ontology. For the sake of simplicity we provide only graphical representation
of ontologies (or better of their approximation) given through ER diagrams.

9.2 Querying DL Ontologies

Given a language L, an L-query over a DL ontology (or TBox) with alphabet Γ is a (possibly
open) L-formula over Γ. Let q(~x) be an L-query with free (a.k.a. distinguished) variables ~x over
an ontology O. Then, a tuple ~t of constants from ΓC is a certain answer for q(~x) if O |= q(~t),
where q(~t) is the closed formula, i.e., a sentence, obtained by substituting ~x with ~t. Then, the
query answering reasoning service is defined as follows: given a DL ontology O, and an L-query
q over O, compute the set of certain answers to q over O. We denote such set by cert(q,O). It
is easy to see that this is a form of reasoning under incomplete information.

We notice that our framework is parametric with respect to the language used for querying
ontologies. However, for computational reasons, the expressivity of such language has to be
somehow controlled in the practice. For example, it is well-known that answering FOL queries
in the presence of incomplete information is undecidable ([1]), whereas the most expressive
language for which decidability of query answering over various DL ontologies has been shown
is that of union of conjunctive queries (UCQs) (e.g., [17, 31]).

In the rest of this part, we consider, as a query language over a DL ontology O, ECQs
(cf. Section 3.1) extended with built-in operators:

Q −→ [q] | ¬Q | Q1 ∧Q2 | ∃x.Q | x op y

where q is a UCQ over O, op is one among =,6=,>,<,≥, and ≤, and [q] denotes that q is evaluated
under the (minimal) knowledge operator (cf. [16]). To compute the certain answers cert(Q,O)
to an ECQ Q over an ontology O, we can compute the certain answers over O of each UCQ
embedded in Q, and evaluate the first-order part of Q over the relations obtained as the certain
answers of the embedded UCQs.

10 Semantic GSM

In this section we propose Semantic GSM, a novel artifact-centric model which merges the
expressing power of ontologies for modeling and querying the data of interest with the capability
of GSM to express data evolution. Two solutions can be adopted to obtain such a coupling. In
the first, the ontology models the domain of interest only, whereas the lifecycle is defined as in
classic GSM. The second one amounts to use an integrated ontology that describes both the
data and the lifecycle schema. Here, we present the second option, with the aim of providing a
unified view of the whole framework allows for answering complex queries. Therefore, arbitrary
queries over the lifecycle are now enabled, as we can access the whole lifecycle structure, i.e.
both status and data attributes. As an example, we can directly inquire which atomic stages

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 40 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Status
Object

Business
Object

Artifact
Instance

SO
refersTo

BO
refersTo

Stage
Instance

Milestone
Instance

Event
Instance

sent

outputs

inputs
received

1..1 1..1

1..11..1

LastEvent

Task

inv

term

owns

1..1
Sentryach

1..1

substage

formula

Open Closed True False

1..*
1..*

guards

1..1
1..1

condition

id

performs

0..1

1..1

0..*
1..1

1..1

1..1

Figure 14 – Graphical representation of the lifecycle TBox for Example 10.1

are waiting for a task termination event from the environment, or which composite stages have
an achieved milestone, i.e., those which have already been executed. Notice that, in classic
GSM, answering such queries requires an extra effort since the lifecycle schema is not explicitly
represented.

Let us assume an alphabet Γ for concepts, value-domains, attributes, roles and constants.
Intuitively, the integrated ontology describes, in common language, both the data and the
lifecycle schema and provides as its core, a domain independent “upper” ontology which has to
be specialized in order to represent the schema of a specific process. Figure 14 shows a graphical
representation of the upper ontology, in which ArtifactInstance is the central concept connected
to the three main (macro-)entities of a GSM model: (i) event (EventInstance concept); (ii) status
attributes, here called StatusObjects and (iii) data attributes, called BusinessObjects. An event
has inputs and outputs (which are business objects) and can be sent or received by an artifact
instance. We distinguish invocation events and task termination events, either of which can be
the event currently being consumed by the system. The LastEvent class is actually a singleton
class, i.e., allowing for only one instance, given that a GSM system processes one event at a
time. A status object is either a milestone or a stage and such a specialization is disjoint and
complete. Stages, being either open or closed, can be hierarchically organized by the transitive
substage role and should have at least one guard (which is a sentry) and a milestone. Milestones
have an achieving sentry, and they are either true or false. Finally, tasks are performed by stages
and they have a invocation and a termination event.

The above upper TBox does not describe a specific artifact process, as it lacks all the
domain-dependent entities. However, it can be specialized to model a GSM schema. Concepts
model the domain by specializing BusinessObject, while the lifecycle schema is defined by spe-
cializing StatusObject. Moreover, EventInstance generalizes all event type instances required by
the process and the same holds for Task. Also roles can be specialized in order to connect the
specialized concepts. Precisely, inv, term, inputs and outputs should relate specific concepts, as

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 41 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

well as substage, guards, ach and owns.

Definition 3. A semantic GSM schema is a TBox T over Γ containing the upper ontology in
Figure 14.

Then, the notion of snapshot for a semantic GSM schema is given below.

Definition 4. A semantic snapshot for a semantic data schema T is an ABox A such that:

1. 〈T,A〉 is satisfiable;

2. (T,A) |= ∀s,m.owns(s,m)→ (True(m)→ Closed(s));

3. (T,A) |= ∀s, s′.substage(s, s′)→ (Closed(s′)→ Closed(s)).

Intuitively, (2) and (3) corresponds to GSM-1 and GSM-2 invariants, respectively, explained
in Section 5.

The conditional language used for specifying semantic sentries is a query language L for
T with alphabet Γ. Differently from classic GSM, now L-formulas are interpreted under the
certain answer semantics.

A semantic status event is an expression of the form: +Stg(s) ≡ Stg(s)∧Close(s)∧Open′(s)
or −Stg(s) ≡ Stg(s)∧Close(s)∧Open′(s) where Stg is a subclass of StageInstance, or +Mst(m) ≡
Mst(m)∧False(m)∧True′(m) or −Mst(m) ≡ Mst(m)∧True(m)∧False′(m) where MstName is a
subclass of MilestoneInstance. To simplify the notation, in sentries we write Stg instead of Stg(s)
since, given an artifact instance, in the ABox there is only one individual for each concept Stg
subclass of StageInstance (analogously for milestones).

Semantic status events are temporal formulas that refers to two semantic snapshots (A,A′).
The intuitive semantics is similar to that presented in Section 5, but, once more, formulas are
interpreted under the certain answer semantics.

Definition 5. A semantic sentry for a semantic GSM data schema is a boolean formula of the
form τ ∧ γ, where:

• τ is either of the following:

– empty;

– Event, where Event is the most specific class of the (singleton) individual belonging
to concept LastEvent;

– {+,−}Stg {+,−}Mst, where Stg and Mst are as before;

• γ is a L-formula that contains neither Event nor status events.

Notice that in semantic GSM there is no need for formal definitions of events and tasks, as
their properties are already captured by the ontology.

Example 10.1. We model the energy process described in Example 5.1 with a semantic GSM
schema T . Figure 16 shows a graphical representation of the portion of T describing the domain
of interest. All concepts in the figure are intended to specialize the BusinessObject concept of
the upper ontology in Figure 14 as a disjoint and complete hierarchy. A monthly report contains
a set of (energy) measures and is either a control point assessment or an application. A control
point assessment is based on exactly two applications (each one edited by a company) and refers
to a control point, which connects exactly two companies. Measures can be either manual or
automatic and they are taken at a specific control point by a specific company.

Notice that such a TBox contains other assertion which are not rendered graphically, but
which can be captured by the ontology language. As an example, each CPA is identified by the
month, the year and the control point it refers to.

In Figure 16, a partial fragment of T which describes the lifecycle of the process is graphically
represented. Concepts Requesting, ReqMR1 and ReqMR2 specialize stage instance. Their indi-
viduals represent a stage instance of a specific artifact. Roles ReqMR1Substg and ReqMR2Substg

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 42 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

MntRep

basedOnCPA App

refersTo editedBy

CtrlPnt CompconnTo

MeastakenAt takenBy

cont

1..12..2

1..1 1..1

2..2

date

month
year

loc

name

date
val

Man Auto

ID

Figure 15 – Fragment of the semantic GSM schema for the energy process in
Example 5.1 describing the domain.

specialize the substage role of the upper ontology (once more such a generalization is not pic-
tured) and ReqMst, ReqMR1Mst and ReqMR2Mst, specializing the owns role, make the relation
between states and milestones explicit.

Table 5 shows the guards of the energy example, now expressed in ECQs over the ontology,
where CPADrafting, EqualMeas, DiffMeasAuto and DiffMeasMan are subclasses of StageInstance.
It is easy to see that, despite their length due to joins, they are easier to manage than the ones
in Table 3. For example, no unions are requested in the guard for EqualMeas stage.

We notice also that we can now easily pose over the ontology complex queries (possibly not
among those designed for the process that the artifact realizes) that could not be immediately
expressed over the data schema of a classical GSM artifact as the one given in Figure 7. For
example, we can easily get information about measures sent by a company C to the system
operator that are not included in the control point assessment for which they are produced.
The query Q1(id , y ,m, d , v) described below returns indeed the CP identifier, the year, month
and date of the control point assessment, and the value of the excluded measure.10

∃cpa,ms.[∃app, cp.CPA(cpa) ∧ refersTo(cpa, cp)∧
ID(cp, id) ∧month(cpa,m) ∧ year(cpa, y)∧
basedOn(cpa, app) ∧ editedBy(app,C) ∧ cont(app,ms)∧
date(ms, d) ∧ val(m, v)] ∧ ¬[cont(cpa,ms)]

Finally, queries can now naturally involve both data and the lifecycle, as done in the query Q2(s)
described below, which returns the closed stages for an artifact instance that is processing the
control point assessment of January 2013 for CP with ID 17.

∃a, cpa, cp.artifactInstance(a) ∧ SOrefersTo(a, s)∧
closed(s) ∧ BOrefersTo(s, cpa) ∧month(cpa, ′January′)∧
year(cps, 2013) ∧ refersTo(cpa, cp) ∧ ID(cp, 17)

The example above makes clear the advantages of using semantic GSM. In the first place, the
ontology captures entities of the domain and relationships between them in a clearer and more
elegant way than a relational model, which is usually built to serve the implementation level,

10We assume that the constant C used in the query denotes the object representing the company C.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 43 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Stage
Instance

Requesting ReqMR1 ReqMR2

Milestone
Instance

MR1
Received

MR2
Received

ReqMR2
Substg

ReqMR1
Substg

Req
Mst

MR1
Received

ReqMR1
Mst

ReqMR2
Mst

1..1 1..11..1
1..1

1..1

1..1

1..1 1..1

1..1 1..1

...

...

Figure 16 – Fragment of the semantic GSM schema for the energy process in
Example 5.1 partially describing the process’ lifecycle.

and not for describing the domain per se. For example, the ontology specifies properties, as for
instance the fact that a CPS is based on two applications, which are hidden in the data schema
of classical GSM. Furthermore, it allows easier and more expressive queries: on the one hand
sentries are more manageable as they can be formulated considering the reasoning services the
logics provides (such as logical implication), and on the other hand, due to the unified view of
the schema, user queries can now directly refer to both data and lifecycle.

Stage
Guard sentry

on if

Requesting CPACreationEvent −
RequestMR1 +Requesting −
RequestMR2 +Requesting −
CPADrafting +MRAppsReceived −

EqualMeas +CPADrafting
∃ap1, ap2.App(ap1) 6= App(ap2)∧

[∃a,m1,m2, d, v.basedOn(a, ap1) ∧ basedOn(a, ap2) ∧ cont(ap1,m1)∧
cont(ap2,m2) ∧ date(m1, d) ∧ date(m2, d) ∧ val(m1, v) ∧ val(m2, v)]

DiffMeasAuto +CPADrafting

∃ap1, ap2, v1, v2.App(ap1) 6= App(ap2) ∧ v1 6= v2∧
[∃a,m1,m2, d.basedOn(a, ap1) ∧ basedOn(a, ap2) ∧ cont(ap1,m1)

∧cont(ap2,m2) ∧ date(m1, d) ∧ date(m2, d) ∧ val(m1, v1) ∧ val(m2, v2)
∧Man(m1) ∧Auto(m2)]

DiffMeasMan +CPADrafting

∃ap1, ap2, v1, v2.App(ap1) 6= App(ap2) ∧ v1 6= v2∧
[∃a,m1,m2, d.basedOn(a, ap1) ∧ basedOn(a, ap2) ∧ cont(ap1,m1)

∧cont(ap2,m2) ∧ date(m1, d) ∧ date(m2, d) ∧ val(m1, v1) ∧ val(m2, v2)∧
((Man(m1) ∧Man(m2)) ∨ (Auto(m1) ∧Auto(m2)))]

Table 5 – Guards for semantic Example 10.1.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 44 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

1

Semantic
process

Ontology

Databases

LAV mappings

Applications

(a) Architectural view

1

LAV mappings

Semantic
process

TBox

DB schema

ABox1 ABox2 ABox3 ABox4

DB inst1 DB inst2 DB inst3 DB inst4

(b) Runtime view

Figure 17 – Semantic GSM with LAV mappings exploited by multiple front-end
applications

11 Linking Semantic GSM with Multiple Front-End

Applications

In this section, we discuss a combination of GSM, ontologies and mappings that is suitable in the
common situation where the architecture of the system is decomposed into a unique back-end
and multiple (possibly legacy) front-ends.

More specifically, we consider the case where:
• a unique back-end hosts the business processes that manipulate (i.e., read, write and

update) the whole data related to the entire application domain.
• multiple front-end applications, conforming to different local database schemas, are em-

ployed to show (i.e., read and visualize) the data produced by the back-end, and to realize
services on top of these data; each such application can also write its own data into the
corresponding local database, but without affecting the information maintained by the
back-end, that is, local updates in this setting should not be propagated towards the
ontology.

Example 11.1. Consider a company whose main asset is knowledge management in e-
agriculture. In particular, the company employs domain experts who manage live, evolving
information about plants, insects, parasites, phytosanitary products, weather forecasts, and
so on. A plethora of web sites and portals, possibly developed by third parties, rely on this
information to realize e-services in the agricultural domain.

A suitable architecture for the company’s information system is one for which a controlled
set of back-end business processes with restricted access is used to insert and update the relevant
data. On the other hand, the web sites are front-end applications, completely decoupled from the
lifecycle of the back-end processes, and relying on their own local database schemas (independent
from the “global” schema employed by the back-end). However, they need to access the back-end
information system to fetch the relevant data stored there.

Figure 17(a) shows how the semantic technologies presented in this work can be combined
to support such an architecture, with a twofold advantage: the back-end can manipulate the
relevant data at the conceptual level, while seamlessly access and “understand” such data in
terms of their local schemas.

More specifically, in Figure 17(a) an ontology is used to capture the domain knowledge.
Semantic GSM is then employed to construct the back-end processes working on top of the
domain ontology, by retaining all the advantages discussed in Section 10. At the same time,
multiple (external) database schemas are used by the front-end applications. The most critical
aspect of the architecture is therefore the link between the ontology and such multiple databases.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 45 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Fortunately, the techniques recalled in Section 9 for linking data to ontologies can be exploited
to attack this challenging problem. Recall that, in this setting, (part of) the data maintained by
the front-end databases must be obtained from the back-end ontology (which is then accessed
by front-end databases in read-mode). This suggests that the form of mapping assertions to
formally capture the link is the one of LAV mappings. In fact, to specify that a relation R in
one of the local, front-end databases, has to be fed with data taken from the ontology, we can
devise a mapping assertion of the form R(~x) ; ψ(~x), which actually expresses that R(~x) is a
(local) view constructed on top of the query ψ(~x) posed over the ontology. In other terms, such
a LAV assertion describes the content of the relation R in terms of the ontology, which is exactly
what we need here. Notice, however, that since in this setting the data flow is from the back-end
ontology to the front-end databases, mapping assertions are interpreted as complete rather then
sound assertions (cf. Section 9). Also, to avoid that local updates on data propagate towards
the ontology, we impose that front-end relations mapped to the ontology are only accessible
in read mode by local processes (except for the import of data coming from the ontology – cf.
below).

Figure 17(b) provides an abstract representation of the evolution of data present in the
ontology and the local databases at execution time. Every time a (semantic) action is performed,
the ABox of the back-end ontology is updated according to the action effects. Through the
LAV mapping assertions, this change in the ontology can be also understood by the front-end
databases, putting together their own local data with the data present in the ontology. From
the operational point of view, this abstract picture can be grounded in the system by exploiting
the mapping assertions in two ways:
• effectively transfer data extracted from the ontology to the local database.
• answer queries posed over the local database by transparently accessing the ontology on-

demand.

11.1 Data Transfer

In data transfer approach, some data maintained by the ontology are now replicated in the
local database, similarly to data exchange (cf. [36]). The disadvantage of this approach is that
it introduces redundancy, and consequently corresponding mechanisms must be implemented to
regularly align the data maintained by the local database with the ones present in the ontology.
Remember, in fact, that there are back-end processes running on top of the ontology, which
could lead to changes that should be propagated to R. On the other hand, the advantage of
this approach is that the back-end and the front-end only interact at specific, pre-determined
moments in time: a connection between the ontology and the local database is required only
when there is an alignment request issued to the local database. Beside these synchronisation
points, the two systems operate completely independently from each other.

As an example, let us consider again the e-agricultural company of Example 11.1. Supposing
that the back-end stores fresh forecast data every day before midnight, a front-end application
requiring those data can simply trigger an alignment just after midnight, importing the new
information into its own local database, then using this local “copy” to provide its specific
service, without the need of further interaction with the back-end.

11.2 Transparent Access

With the transparent access approach, the local database does not replicate the data present in
the ontology. However, when queries are issued over the local database, mapping assertions are
exploited to suitably include in the returned result set also data present in the ontology. From
the viewpoint of a front-end application, there is no difference between this approach and the
data transfer one, i.e., transparent access constitutes a form of “virtual” data transfer.

While this approach requires a stable, long-running connection between each front-end appli-
cation and the back-end ontology (making it possible to access the ontology on-demand, every

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 46 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

time a query is issued over one of the local databases), it has the advantage that front-end
applications always access the fresh, latest data, without incurring in alignment issues.

We point out that the architecture described in this section to link semantic GSM artifacts
with a relational storage, independently from the approach adopted (data transfer or transpar-
ent access), goes fairly beyond OBDA. Indeed, access to data in our setting is possible both
through the (back-end) ontology and through the (front-end) databases. In particular, from the
point of view of the front-end databases, the ontology is seen as a data source, but differently
from OBDA, where data sources are always plain databases, it is a source with incomplete
information. In this respect, both transferring and on-the-fly querying of data turn out to be
computationally challenging. A simple, but effective, way to deal with this situation is to as-
sume that in each mapping assertion R(~x) ; ψ(~x), the relation R is a view corresponding to the
certain answers of ψ(~x) over the ontology. This in fact means to weaken the semantic interpre-
tation of the mapping (w.r.t. the completeness assumption discussed above), and at the same
time makes the front-end database rely only on the query answering service exported by the
back-end ontology (thus somehow hampering the modularization of the overall system in inde-
pendent components). We point out that a similar approach has been advocated in the context
of peer-to-peer (P2P) information management and integration (cf. [19] and [29]), where analo-
gous computational problems have been faced and various solutions proposed, ranging from the
above possible weakening of the mapping, to the devising of topological restrictions in the P2P
network and in the languages used in the peer schemas or ontologies (see also [2, 15, 26, 30, 34]).

Example 11.2. Let us now consider again our previous running example, and have a closer look
at the processes and data managed by the companies which provide monthly report applications
to the system operator. Each such company has indeed its own processes, possibly modeled as
GSM artifacts, which are executed independently from the processes of the system operator, as
well as from the other companies. For these reasons, from the point of view of the control point
assessment artifact, such processes are operating in the external environment, and no details on
them or on the information schemas they use are needed for the the control point assessment
to be executed (cf. Figure 7 and Figure 8). At the same time, databases locally used by various
companies can be seen, for the processes they serve, as front-end databases fed from a back-end
ontology for what concerns the official measures published by the system operator in a control
point assessment. Such a situation resembles exactly those in Figure 17(a).

Assume now that a company C wants to store information about measures it sends to the
system operator that are not included in the control point assessment. To this aim C main-
tains locally a relation R(CP ID, year,month, date, value), whose attributes denote respectively
the identification number of the control point, the year and the month of the control point
assessment, the date and the value of the rejected measure. This information can be gathered
from the ontology through the mapping assertion R(id , y ,m, d ,ms) ; Q1(id, y,m, d, v), where
Q1 is the ontology query in Example 10.1.

12 Semantic Monitoring and Governance of Rela-

tional Artifacts

We discuss now an architectural solution that complements the one discussed in Section 11,
but is as much common in a typical industrial setting. The operation of a company is typically
encapsulated in a plethora of different intra- and inter-organisational processes, each meant to
discipline the work of a branch/group/area inside the company, as well the interaction with other
related areas and/or external stakeholders. Such processes may have a very different nature
(flexible, rigid, unpredictable, . . .), involve different persons and devices (employees, domain
experts, consultants, managers, . . .), and be. partly not under the control of the company,
but of third-parties (partner companies, customers, sellers, suppliers, . . .). Furthermore, from
the architectural point of view, the data they manipulated are typically scattered around into
several (typically relational) data sources with different schemas.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 47 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Example 12.1. Consider a company that maintains a web magazine, accessed by a community
of users and containing banners and advertising information for partner companies. Different
processes, possibly with different underlying databases, are designed and implemented by the
company to accomplish its business objectives. An internal process is executed to feed the web
magazine information system with fresh news. A CRM system is used to record information
about the partner companies. A related process is followed to negotiate advertising contracts
with such companies, and to store the banners to be shown on the web. Finally, a set of web
processes are executed to let the users register to the magazine and surf the news, at the same
time tracking statistical information of banners’ views and clicks.

Despite this architectural fragmentation, however, all the processes rely on and concur in the
provision of data of interest for the company. In particular, the scattered data sources contribute
altogether to provide the extensional information used by business experts and managers to
assess the state of affairs, take strategic decisions, refine the company’s goals, and restructure
the processes. To understand and communicate such information, a common conceptualization
of the domain is needed, and is indeed sometimes adopted, typically represented using graphical
specification languages such as E-R, UML, or ORM diagrams. Of course, such conceptualization
can be naturally captured by a formal ontology.

Since in this case the purpose is to understand data in the data sources through the ontology,
i.e., (virtually) transfer data from the source schemas to the conceptual schema, the most natural
form of mapping to adopt to interconnect the two layers is the one of GAV. In fact, to define
a concept N in the ontology in terms of queries posed over the underlying data sources, a
set of assertions of the following form may be employed: φ1(x) ; N(x), . . . , φn(x) ; N(x).
Similarly, to define a role (i.e., a binary relation) P in the ontology, GAV mapping assertions
of the following forms may be used: φ1(x, y) ; P (x, y), . . . , φn(x, y) ; P (x, y).

As recalled in Section 9, ontology-based data access (OBDA) techniques have been exten-
sively employed to enable the concrete usage of such domain ontology to integrate and access the
company’s data. We discuss here how these benefits carry over the setting where the underlying
data sources are manipulated by artifacts and their corresponding processes, thus focusing on
a concrete instantiation of semantically-governed artifact systems (cf. Section 4). Figure 18(a)
gives an overview of the system architecture that arises in this setting. The difference between
a classical OBDA setting is that the underlying data sources are regularly subject to changes
due to the running processes. This can be appreciated by considering Figure 18(b), which pro-
vides an abstract representation of the system evolution. Ideally, every action execution at the
relational level triggers a change in at least one of the data sources. Through the mapping
assertions, this translates into a corresponding change in the (extensional knowledge of the)
ontology. The new, resulting snapshot can then be queried at the conceptual level through the
ontology itself.

Example 12.2. Consider again our running example on the ACSI energy use case. Assume
now that the control point assessment artifact does not materialize data it receives from the
companies, but it has suitable mappings towards the databases locally used by such companies
to store their reports sent monthly to the system operator (i.e., their applications). For example,
the company C uses the following two relational tables to store such reports containing claimed
measures on a daily basis for a certain control point in a certain month:

R1(MRA ID,CP ID,month, year)
R2(MSR ID,MRA ID, date, time, value, type).

The MRA ID is the database code (indeed a primary key in R1) assigned to a control point
application, CP ID is the code of the control point, month and year are respectively the month
and the year the application refers to, MSR ID is the database code assigned to measures (indeed
a primary key in R2), date, time, and value are respectively the date, the time, and the value
associated to a measure, and type indicates if the measure is taken manually, in this case it has
the value ’M’, or in an automatic way, in which case it assumes the value ’A’.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 48 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Ontology

Databases

GAV mappings

Relational
processes

1 1 1 1

Users

(a) Architectural view

GAV mappings

Relational
process(es)

TBox

DB schema(s)

ABox1

DB inst1

ABox2 ABox3 ABox4

DB inst2 DB inst3 DB inst4

1

(b) Runtime view

Figure 18 – Relational processes with GAV mappings and a unifying ontology

We notice that the company, for other own purposes, stores in fact various measures with
the same MRA ID and the same date, all having a different times (i.e., MRA ID and date together
form a key in R2). Only the measure with the greater value for time within a certain date is
then communicated to the system operator.

The following SQL query QSQL(msr) selects only sent measures taken manually.
SELECT X1.MSR ID AS msr FROM R2 AS X1

WHERE X1.type = ’M’ AND

not exists (SELECT * FROM R2 AS X2

WHERE X2.MSR ID <> X1.MSR ID AND X2.MRA ID = X1.MRA ID

AND X2.date = X1.date AND X1.time > X2.time)

The above query can be used as database query in a mapping assertion QSQL(msr) ;

Man(msr), where Man is the concept denoting manual measures in the ontology given in Fig-
ure 15.

Analogously to what we did in Section 11, this abstract picture can be concretely instantiated
in two ways: by applying an effective data transfer from the data sources to the ontology, or by
exploiting the ontology to access the underlying relational data on-demand.

12.1 Data Transfer

In the data transfer scenario, data are effectively migrated from the underlying data sources to
the ontology. Since GAV mapping assertions are sound w.r.t. the data sources, we can in this
case effectively materialize the ABox of the ontology by simply evaluating the queries used in
the left-hand side of the corresponding assertions, and populating the ABox with the union of
the obtained result sets. For example, for the aforementioned concept N , its population can be
obtained as the answer of the query

∨
i∈{1,...,n} ϕ(x) (similarly for roles).

This approach resembles the one of data warehousing, though in this case the central repos-
itory is constituted by a rich, conceptual model. Business managers and analysts can in fact
exploit the ontology to query the obtained integrated data at a high level of abstraction, and
by exploiting a “business-level” vocabulary. This, in turn, provides the basis for reporting and
analysis.

The data transfer approach can also fruitfully exploited to support external audits. In fact,
part of an audit is typically dedicated to analyse (a portion of) the real data maintained by
the company’s information system, to check compliance with regulations and best practices.
Obviously, this analysis can be facilitated if, instead of directly accessing the data sources with
their heterogeneous schemas, compliance queries are expressed in terms of the ontology.

Another important application of the data transfer approach is in process mining [50]. See
the discussion about the “semantic event log”, provided below.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 49 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

12.2 Transparent Access

Transparent, on-demand access to the concrete data sources through the ontology can be ob-
tained by relying on the classical framework of OBDA. Here, to achieve transparency, no data
is materialized in the ABox, but query answering is realized through query rewriting, which
reformulates the user query into a new query expressed in the alphabet of the sources, whose
evaluation over the source database returns the certain answer of the user query. Such reformu-
lation takes into account the TBox ontology and the mappings. [42] and [43] provide notable
examples in which the above rewritings can be expressed in SQL, thus allowing for deleting its
evaluation to the underlying relational data management systems.

The described framework can be used in our setting to obtain meaningful information about
the current state of affairs, reached as a result of the execution of (possibly multiple) business
artifacts working over the relational sources and the corresponding processes. Understanding
the semantics of data contained in this low-level sources is important to:
• Conceptual query answering, with the same advantages discussed in Section 10. In particu-

lar, if the underlying relational processes are specified in terms of GSM artifact lifecycles,
then part of the ontology can be dedicated to capture GSM itself, as shown, e.g., in
Figures 14 and 16. These concepts and relationships can be easily attached to the status
attributes maintained by the underlying GSM information schemas through suitable GAV
mapping assertions, supporting the possibility of flexibly pose conceptual queries asking
about the current process status, possibly relating it also to the current data, as shown
in Example 10.1.
• Govern the underlying processes, blocking the finalization of those process actions that

manipulate the data leading to a globally inconsistent situation, where some semantic
constraint in the ontology is violated. This scenario instantiates the one of Figure 4 .
Obviously, it requires a mechanism to evaluate the action effects before effectively enforcing
them, triggering an exceptional behaviour if a violation is detected. In particular, this
must be propagated down to the process responsible of the action, which in turn can
activate a compensation phase, finding an alternative execution path. To show how this
approach can be applied also with classical process specifications, Figure 20 sketches the
meta-model of a BPMN task execution that exploits a transaction to coordinate with the
ontology governance service, triggering a roll-back (and a corresponding compensation
sub-process) in the case of non-conformance.
• Relate different artifacts that share information, though possibly with very different rep-

resentation, in their artifact instances. This is even more critical in the case of inter-
organizational processes combining artifacts of multiple companies.
• Discipline the introduction of new artifacts and processes in the system, checking whether

they seamlessly integrate with the already existing artifacts and processes, and supporting
various forms of conformance tests.
• Facilitate the realization and enforcement of authorization views, as defined in the context

of ACSI interoperation hubs to formally regulate to which pieces of information the various
stakeholders participating to the hub share an access.

12.3 Semantic Event Log

We discuss now a particular scenario in which the approach presented in this section is exploited
to provide the basis for process analysis, improvement, and re-engineering. In particular, we
sketch how the combination of ontology and mapping assertions from the process data sources
to the ontology can be used as a basis for process mining [50].

Process mining combines business process analysis with data mining, to the aim of discover-
ing, monitoring, diagnosing and ultimately improving business processes. Traditionally, process
mining is applied to post-mortem data, i.e., data related to already completed process instances.
Recently, its applicability has been broaden including also a plethora of operational decision
support tasks that are exploited at run-time, i.e., by considering live data of running process

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 50 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Process

1

D1a
D1b D1c

Artifact System Snapshot

D2a
D2b D2c

Artifact System Snapshot

Mappings Mappings

Semantic snapshot
TBox

 ABox1

TBox

 ABox2

Semantic snapshot

violation

Task

Figure 19 – Ontology-based governance with propagation of violations from the
Semantic Layer down to the Artifact Layer

Pr
oc

es
s

Task Transaction

Task

ok

violation

Compensation
Process

check conformance

Ontology

Figure 20 – Meta-model of an ontology-governed BPMN task

instances.
Independently from the phase in which process mining techniques are exploited, central

for their applicability is the availability of process event logs, which explicitly trace all the
relevant events (and the corresponding data) occurred so far due to the process execution.
The availability of event logs of good quality poses a twofold challenge. On the one hand, the
meaningful information associated to the events is typically scattered around different tables in
the underlying database, and possibly even in several data sources. On the other hand, standard
formats for event logs, such as XES (http://www.xes-standard.org/), have been proposed to
make it possible to apply process mining algorithms and tools without the need of customizing
how they are fed with input data on a per-company basis.

For these reasons, the extraction of a unique, standard event log from a company’s informa-
tion system is far from trivial. In this respect, OBDA can be effectively applied to:

• Include in the ontology a set of concepts and relationships dedicated to capture event logs
according to the chosen format representation standard (see, e.g., Figure 21).

• Establish mapping assertions from the data sources to this portion of the ontology, in such
a way to be able to understand event-related data in terms of the standard representation.

In this setting, the data transfer scenario can be exploited to extract an event log containing
post-portem data, and to apply process mining techniques off-line. Conversely, the on-demand
access approach can be used for monitoring purpose, writing compliance queries on top of the

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 51 of 94

http://www.xes-standard.org/

FP7-257593 – ACSI Artifact-Centric Service Interoperation

contains

defines

Trace contains

name

overlap

timestamp

Conceptual
Event

Organiz.
Event

Lifecycle
Event

role groupresource

Eventcontains

1..*

1..*1..1 1..1

TimeEvent

transition

key

Attribute

value

Boolean
Attribute

Int
Attribute

Date
Attribute

Float
Attribute

String
Attribute

valuevaluevaluevalue

Classifier

Log

contains

contains

contains

Figure 21 – E-R diagram capturing a portion of the XES meta-model; the
dashed part is reported for clarity, but is concretely realized in XES
through the notion of extension and corresponding required
attributes for the events.

event log, and consequently checking whether a process execution trace is currently respecting
or violating certain business rules, in the style of [23, 40].

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 52 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Part IV

Model Checking GSM with Semantic Layer

In Section 4, we have introduced SASs as a formal framework for representing artifact systems
with a Semantic Layer. In particular, we have focused our attention to the usage of lightweight
Description Logics, belonging to the DL-Lite family, to conceptually capture the relevant domain
entities and relationships at the Semantic Layer. At the same time, we have shown that, thanks
to the FO rewritability of DL-Lite, verification of temporal properties and dynamic laws over
the evolution of an artifact system understood through the lens of the Semantic Layer can be
faithfully reduced to verification of properties directly carried out at the Artifact Layer.

With a different perspective but relying on the same approach, in Section 12 we have dis-
cussed possible concrete usages of this framework.

We now continue the investigation of artifact systems equipped with a Semantic Layer,
showing how the techniques developed for KBDSs can be exploited to effectively attack the
verification problem, leveraging on:

• Ontop11, a JAVA-based framework for OBDA, and in particular the Quest reasoner, which
is the component dedicate to handle query rewriting and unfolding;

• the GSMC model checker, developed within ACSI to verify GSM-based artifact-centric
systems against temporal/dynamic properties [32].

In particular, we report on the development of OBGSM, a JAVA-based tool that, given a
temporal property specified over the ontology that captures the Semantic Layer of the system
under study, together with mapping assertions whose language is suitably shaped to work with
GSMC, automatically rewrites and unfolds the property by producing a corresponding property
that can be directly fed into GSMC. This rewriting and unfolding procedure cannot be done by
solely relying on the functionalities provided by Ontop, for two reasons:

• OBGSM deals with temporal properties specified in a fragment of µLEQL
P , and not just

(local) ECQs;

• the mapping assertions are shaped so as to reflect the specific query language supported
by GSMC, guaranteeing that the rewriting and unfolding process produces a temporal
property expressed in the input language of GSMC.

13 OBGSM System Specification

The OBGSM tool takes a conceptual temporal property specified over the Semantic Layer of
a GSM-based artifact-system, producing a corresponding temporal property that can be di-
rectly verified by GSMC [32] over the GSM specification, without involving the Semantic Layer
anymore. More specifically, OBGSM has three inputs:

1. a conceptual temporal property Φ (provided in a *.prop file);

2. an OWL 2 QL 12 TBox (provided in a *.owl file);

3. a mapping specification M (provided in a *.obgsm file).

We detail in the following the languages used to specify Φ and M.

11http://ontop.inf.unibz.it
12http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/#OWL_2_QL. OWL 2 QL is the OWL2 profile

that closely corresponds to the DL-Lite family of Description Logics.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 53 of 94

http://ontop.inf.unibz.it
http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/#OWL_2_QL

FP7-257593 – ACSI Artifact-Centric Service Interoperation

13.1 Specification of Conceptual Temporal Properties

The input conceptual temporal property is specified in a file with the extension *.prop. As far as
the temporal component is concerned, the verification language relies on CTL, in accordance to
the input verification language of GSMC [32]13. Remember that CTL is subsumed by µ-calculus.
As far as the local queries over the ontology are concerned, the language relies on SPARQL,
in accordance to the query language supported by Ontop. More specifically, the syntax is as
follows:

formula ::= [query]

| (formula)

| formula and formula

| formula or formula

| formula -> formula

| ! formula
| AG formula

| EG formula

| AF formula

| EF formula

| AX formula

| EX formula

| A (formula until formula)

| E (formula until formula)

| forall Var . forallQuantification

| exists Var . existsQuantification

forallQuantification ::= [query] -> formula

| forall Var . forallQuantification

| [query]

existsQuantification ::= [query] and formula

| exists Var . existsQuantification

| [query]

where [query] is a SPARQL 1.114 Select query. Select queries, in turn, obey to the following
grammar:

query ::= PrefixDeclarations Select Var Where {Triples Filter(filter)}

filter ::= filterExpression

| filterExpression && filter

13GSMC also supports epistemic operators, which are not considered here.
14http://www.w3.org/TR/sparql11-query/

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 54 of 94

http://www.w3.org/TR/sparql11-query/

FP7-257593 – ACSI Artifact-Centric Service Interoperation

filterExpression ::= var const < var const

| var const <= var const

| var const > var const

| var const >= var const

| var const = var const

| var const ! = var const

var const ::= Var

| integer
| ”string”

| ”string”ˆˆhttp://www.w3.org/2001/XMLSchema#string

| ”string”ˆˆhttp://www.w3.org/2001/XMLSchema#integer

| ”string”ˆˆhttp://www.w3.org/2001/XMLSchema#decimal

| ”string”ˆˆhttp://www.w3.org/2001/XMLSchema#double

| ”string”ˆˆhttp://www.w3.org/2001/XMLSchema#dateTime

| ”string”ˆˆhttp://www.w3.org/2001/XMLSchema#boolean

| ”string”ˆˆhttp://www.w3.org/1999/02/22-rdf-syntax-ns#Literal

where:

• Var is a variable that obeys to the pattern ?([a-z]|[A-Z])+;

• Triples and PrefixDeclarations follow the usual triple patterns and prefix declarations
of SPARQL 1.1;

• integer and string are the standard integer and string built-in domains.

Additionally, we require that all variables present in the Select clause of the query also appear
in the Where clause, and vice-versa; in other words, all variables in the query must be answer
variables.

The semantics of the temporal operators is the one of CTL [9]. As far as first-order quan-
tification is concerned, we impose the following restrictions:

• Only closed temporal formulae are supported for verification.

• Each first-order quantifier must be “guarded”, in such a way that it ranges over individuals
present in the current active domain. This active domain quantification is in line with
GSMC, and also with the µLEQL

A and µLEQL
P logics introduced before in this document.

As attested by the grammar above, this is syntactically guaranteed by requiring quantified
variables to appear in a [query] according to the following guidelines:

∀~x.query(~x)→ φ
∃~x.query(~x) ∧ φ

• Quantified variables must obey to specific restrictions, depending on whether they quantify
over object terms or values. This can be syntactically recognized by checking whether the
variable appears in the second component of an attribute (in this case, it ranges over
values) or not. The restriction is as follows: for each variable y ranging over values, there
must be at least one variable x that ranges over object terms and that appears in the first
component of the corresponding attribute (i.e., Attr(x, y) is present in the query, with
Attr being an attribute of the TBox), such that x is quantified “before” y. For example,
∀x.C(x) =⇒ ∃y.Attr(x.y) satisfies this condition, whereas ∃y∃x.Attr(x, y) does not.

These restrictions have been introduced so as to guarantee that the conceptual temporal prop-
erty can be translated into a corresponding GSMC temporal property. In fact, GSMC poses
several restrictions on the way values (i.e., attributes of artifacts) can be accessed.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 55 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Example 13.1. We consider a simple university information system similar to the one in [18].
The following TBox is used to capture the relevant concepts and relations of the university
domain at the Semantic Layer:

Bachelor v Student δ(MNum) v Student
Master v Student δ(HasAge) v Student

Graduated v Student ∃Attend v Student
∃Attend− v Course

The Artifact Layer contains the following artifact types:

1. ENROLLEDSTUDENT, whose instances represent the enrolled students. For each enrolled
student, these data attributes are maintained: ID, MNum, Name, Age, Type, where ID,

Name and Type are of type String, while Age and MNum are of type Integer.

2. GRAD, whose instances represent those students who have been graduated. The following
data attributes are maintained: ID, MNum.

3. COURSE, whose instances represent the courses offered by the university. They have the
following data attributes: ID, CourseName.

An example of interesting temporal property specified over the Semantic Layer is:

EF FORALL ?x. ([PREFIX : <http://acsi/example/student/student.owl#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?x WHERE { ?x rdf:type :Bachelor }] ->

[PREFIX : <http://acsi/example/student/student.owl#>

SELECT ?x WHERE { ?x rdf:type :Graduated }]

);

which says that “eventually there is a state in the future where all bachelor students are grad-
uated”. Another example is:

EF FORALL ?x. ([PREFIX : <http://acsi/example/student/student.owl#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?x WHERE {?x rdf:type :Master; :HasAge "26"^^xsd:integer}]

-> [PREFIX : <http://acsi/example/student/student.owl#>

SELECT ?x WHERE { ?x rdf:type :Graduated }]

);

It states that “eventually in the future there is a state where all bachelor students who are at
least 26 years old are graduated”.

Notice that in the second temporal property of Example 13.1, the typed value
"26"^^xsd:integer is used to denote the age of students. More in general, according to the
current implementation of Ontop, there is support for the following type of values:

• xsd:string

• xsd:integer

• xsd:decimal

• xsd:double

• xsd:dateTime

• xsd:boolean

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 56 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

• rdf:Literal

where “xsd:” and “rdf:” are predefined prefixes, respectively de-
fined as“xsd: http://www.w3.org/2001/XMLSchema#” and “rdf:
http://www.w3.org/1999/02/22-rdf-syntax-ns#”. Whenever an input value is not typed,
we consider it to be, by default, of type rdf:Literal.

13.2 Specification of the Input Mapping

The specification of input mapping assertions is provided inside a file with extension *.obgsm.
The structure of our mapping language is borrowed from the one of Ontop. More specifically,
the expected file format is:

[PrefixDeclaration]

...

[ClassDeclaration] @collection [[

...

]]

[ObjectPropertyDeclaration] @collection [[

...

]]

[DataPropertyDeclaration] @collection [[

...

]]

[MappingDeclaration] @collection [[

...

]]

In the following, we detail the different parts of this format.

Prefix, Class, Object Property and Data Property Declaration

The [PrefixDeclaration] part contains the definition of the URI (Uniform Resource Identifier)
prefixes that will be used in the remainder of the file.

Example 13.2. We provide a simple prefix declaration that could be contained in a mapping
specification file:

[PrefixDeclaration]

xsd: http://www.w3.org/2001/XMLSchema#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

: http://acsi/example/student/student.owl#

Parts [ClassDeclaration], [ObjectPropertyDeclaration], and
[DataPropertyDeclaration], respectively contain the declaration of concepts, roles, and
attributes name that will be mentioned in the mapping declarations. They are also specified in
terms of URIs, where each entry is separated by comma.

Example 13.3. We provide three sample declarations for a class, an object property, and a
data property, respectively:

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 57 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

[ClassDeclaration] @collection [[

:Student, :Bachelor, :Graduated, :Master, :Course

]]

[ObjectPropertyDeclaration] @collection [[

:Attend

]]

[DataPropertyDeclaration] @collection [[

:MNum, :HasAge

]]

Mapping Declaration

The [MappingDeclaration] contains the declaration of mapping assertions (cf. Section 4.2).
When constructing object terms starting from artifact identifiers in the Artifact Layer, we
require that only unary function symbols are used. As in Ontop, such unary function symbols
are in turn represented by URI templates (i.e., a preset format for URIs). For example, the
object term stud(x) is represented as <http://www.acsi-project.eu/example/#stud{x}>.

Each mapping assertion is then described by three components:

1. mappingId, which provides a unique identifier for the mapping assertion.

2. target, which contains the target query (i.e., the head of the mapping). Technically, a
target query is a CQ over the vocabulary of the ontology. For the specification of such
target query, we adopt the Ontop syntax, which is in turn based on the Turtle15 syntax to
represent RDF triples. Each atom in the CQ is in fact represented as an RDF-like triple
template. There are three kinds of possible atoms in the target query:

(a) Concepts, expressed as

[URI Template] rdf:type [ConceptName]

where [ConceptName] is an URI, and rdf: is the prefix rdf:

http://www.w3.org/1999/02/22-rdf-syntax-ns#. For example, to represent
the atom

ConceptName(c(x))

(where ConceptName is a concept name in the ontology), the following notation is
used:

<"&:;c{$x}"> rdf:type :ConceptName

where “:” is a predefined prefix.

(b) Roles, again expressed as triples:

[URI Template] [RoleName] [URI Template]

where [RoleName] is an URI. For example, the atom

RoleName(r1(x), r2(y))

(where RoleName is a role name in the ontology) is represented as:

<"&:;r1{$x}"> :RoleName <"&:;r2{$y}">
15http://www.w3.org/TR/turtle/

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 58 of 94

http://www.w3.org/TR/turtle/

FP7-257593 – ACSI Artifact-Centric Service Interoperation

where “:” is a predefined prefix.

(c) Attributes, whose definition resembles the one of roles:

[URI Template] [AttributeName] [TypedOrUntypedVariable]

where [AttributeName] is an URI. For example,

AttributeName(att(x), integer(y))

is represented as:

<"&:;att{$x}"> :AttributeName $y^^xsd:integer .

where “:” and “xsd:” are predefined prefixes, and “xsd:” is defined as “xsd:
http://www.w3.org/2001/XMLSchema#”. It is worth noting that the second com-
ponent of an attribute is a value. We assume that it originates from a value attribute
contained inside the information model of an artifact, we use dedicated function sym-
bols to wrap the value into an object term, ensuring that this choice does not overlap
with any function symbol chosen for “real” object terms. In the example above, we
use “http://www.w3.org/2001/XMLSchema#integer”, but in general, Ontop sup-
ports all the following special data types:

• http://www.w3.org/2001/XMLSchema#string

• http://www.w3.org/2001/XMLSchema#integer

• http://www.w3.org/2001/XMLSchema#decimal

• http://www.w3.org/2001/XMLSchema#double

• http://www.w3.org/2001/XMLSchema#dateTime

• http://www.w3.org/2001/XMLSchema#boolean

• http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal

3. source, which describes the source query, i.e., the body of the mapping. The grammar of
the source query is borrowed from the grammar of the GSMC input language[32], with
extensions that allow to “extract” artifact identifiers and their value attributes, so as to
link them to the ontology. The extended syntax is:

expression ::= constant

| expression == ?variable

| expression aop expression

| expression lop expression

| {variable./path/attributeID}
| GSM.isStageActive(′variable′,′ stageID′)

| GSM.isMilestoneAchieved(′variable′,′milestoneID′)

| variable.attributeID1 -> exists(attributeID2 = expression)

formula ::= expression

| (formula)

| formula and formula

| formula or formula

| ! formula

| exists(′variable′, ′artifactID′)(formula)

| forall(′variable′, ′artifactID′)(formula)

| get(′variable′, ′artifactID′)(formula)

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 59 of 94

http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#double
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/2001/XMLSchema#boolean
http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal

FP7-257593 – ACSI Artifact-Centric Service Interoperation

The two key additional features rely in the possibility of introducing a variable assigning it to
an expression (see the second line in the grammar definition), and the possibility of “getting”
a variable representing an instance of the specified artifact (see the last line in the grammar
definition). These variables are considered to be free in the specified query, and can be conse-
quently used to “transport” values and artifact identifiers into the Semantic Layer, respectively
as attributes and object terms.

Example 13.4. Consider again the Artifact and Semantic Layer introduced in Example 13.1.
We specify the following mapping assertions to link the three artifacts and their information
models to the ontology present in the Semantic Layer:

[MappingDeclaration] @collection [[

mappingId BachelorStudent

target <"&:;stud/{$x}/"> rdf:type :Bachelor .

source get(’x’, ’ENROLLEDSTUDENT’)({x./ENROLLEDSTUDENT/Type} == "Bachelor")

mappingId MasterStudent

target <"&:;stud/{$x}/"> rdf:type :Master .

source get(’x’, ’ENROLLEDSTUDENT’)({x./ENROLLEDSTUDENT/Type} == "Master")

mappingId MatriculationNumber

target <"&:;stud/{$x}/"> :MNum $y^^xsd:integer .

source get(’x’,’ENROLLEDSTUDENT’)({x./ENROLLEDSTUDENT/MNum} == ?y)

mappingId GraduatedStudent

target <"&:;stud/{$x}/"> rdf:type :Graduated .

source get(’x’, ’ENROLLEDSTUDENT’)(exists(’y’, ’GRAD’)(

{x./ENROLLEDSTUDENT/MNum} == {y./GRAD/MNum}))

mappingId Age

target <"&:;stud/{$x}/"> :HasAge $y^^xsd:integer .

source get(’x’, ’ENROLLEDSTUDENT’)(x./ENROLLEDSTUDENT/Age == ?y)

mappingId AttendingCourse

target <"&:;stud/{$x}/"> :Attend <"&:;course/{$y}/"> .

source get(’x’, ’ENROLLEDSTUDENT’)(get(’y’,’COURSE’)

(x./ENROLLEDSTUDENT/AttendedCourses->exists(ID == {y./COURSE/ID})))

]]

The first two mapping assertions are used to populate bachelor and master students in the
Semantic Layer, by extracting information from artifact instances of type ENROLLEDSTUDENT,
respectively selecting those instances whose Type field corresponds to the string “Bachelor”
or “Master”. Notice that the artifact instance identifier x is used to create the corresponding
student object term stud(x) in the ontology.

The following three mapping assertions are used to populate attributes in the Semantic
Layer, starting from specific artifacts and fields in their information models. According to the
previously discussed restrictions, the first component of attributes is always associated to an
object term constructed starting from an artifact instance identifier, and the second from a
value in its information model.

The last mapping assertions is used to populate a relation in the Semantic Layer, starting
from pairs of artifact identifiers in the Artifact Layer. In particular, the source query is used
to extract all pairs of artifact instances of type ENROLLEDSTUDENT and COURSE, such that the
course artifact instance is among the attended courses by the student artifact instance (notice
the navigation x./ENROLLEDSTUDENT/AttendedCourses to select all attended courses, and the
consequent join used to check whether the considered course instance is among the attended
ones). In this case, both the first and the second component of the association are object terms
constructed from artifact instance identifiers.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 60 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

13.3 OBGSM Workflow and Components

As depicted in the Fig. 22, the workflow of OBGSM is as follows.

1. The tool reads and parses the input conceptual temporal property Φ, the input ontology
T , and the input mapping declaration M.

2. The tool rewrites the input conceptual temporal property Φ based on the input ontology
(TBox) T , in order to compile away the TBox. This step produces rewritten temporal
property rew(Φ).

3. The rewritten property rew(Φ) is unfolded by exploitingM. The final temporal property
ΦGSM = unfold(rew(Φ)) obeys to the syntax expected by GSMC, and is such that
verifying Φ over the transition system of the GSM model under study after projecting its
states into the Semantic Layer through M, is equivalent to verifying ΦGSM directly over
the GSM model (without considering the Semantic Layer).

4. GSMC is invoked by passing ΦGSM together with the specification file of the GSM model
under study.

Notice that the correctness of the translation is guaranteed by the fact OBGSM manipulates the
local components of the query Φ according to the standard rewriting and unfolding algorithms,
while maintaining untouched the temporal structure of the property. This has been proven to
be the correct way of manipulating the property (cf. Section 4.6). The proof has been done for
µLEQL

P and µLEQL
A , and since first-order CTL with active domain quantification is a fragment

of µLEQL
A , the result directly applies also in our setting. This result also shows that OBGSM can

largely rely on state-of-the-art existing rewriting and unfolding techniques to manipulate the
temporal properties. Indeed, OBGSM exploits Ontop to accomplish this task, adding a last step
to deal with the constructs that have been introduced for the mapping assertions, but that are
not directly supported by GSMC. In particular, “get” statements are turned into corresponding
existential quantifications, whereas variable assignments are managed by directly applying the
constraints involving these variables to the attributes of the artifact information models, finally
removing such additional variables.

OBGSM consists of the following main components:

1. Temporal Property Parser and Validator. This component parses and validates a con-
ceptual temporal property, checking its well-formedness and whether it guarantees the
required restrictions or not. The parser for the temporal part of the property is imple-
mented using Antlr 4.0 16. For parsing the local queries in the temporal property, the
SPARQL 1.1 parser component from Ontop is extensively used, together with the Apache
JenaTM library17.

2. Ontology Parser. This component, entirely provided by Ontop, reads and parse an OWL
2 QL ontology.

3. Mapping Parser. This component reads and parses the file containing mapping assertions.
As for the implementation, the parser already present in Ontop is reused and comple-
mented with the additional features by using Antlr 4.0.

4. Temporal Property Rewriter. When the input temporal property and the input ontology
have been parsed, OBGSM rewrites the parsed temporal property based on the given
ontology, using this component. The implementation of the query rewriting functionality
is fully inherited from Ontop.

5. Unfolder. This component takes the specification of mapping assertions and the property
produced by the rewriter, producing the final unfolded property. To do so, it extends the
base unfolding functionality already present in Ontop.

16http://www.antlr.org
17http://jena.apache.org

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 61 of 94

http://www.antlr.org
http://jena.apache.org

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Mapping MOWL Ontology
(TBox)

Conceptual
Temporal Property �

Temporal Property
Parser and Validator

Ontology
Parser

Mapping
Parser

Temporal Property
Rewriter

Unfolder

1 2

3

4

5

GSM
Model

True/False

OBGSM

Unfolded Temporal Property
unfold(rew(�))

GSMC

Parsed
Mapping

Rewritten
Temporal Property rew(�)

Parsed OWL
Ontology (TBox)

Valid and Parsed
Temporal Property �

Figure 22 – OBGSM System Architecture

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 62 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

13.4 Running the OBGSM

OBGSM is distributed as a JAR application, which can be directly run from the command
line. It can be downloaded from: http://www.inf.unibz.it/~asantoso/obgsm/. The three
command line options are:

1. -o <ontology file path (*.owl file)>

2. -p <temporal property file path (*.prop file)> property file path.

3. -m <mapping file path (*.obgsm file)>

A sample invocation of the tool follows:

java -jar OBGSM.jar -o ex/ontology.owl -p ex/tempProperty.prop -m ex/mappings.obgsm

14 An Example from the ACSI Energy Use Case

This section describes the application of OBGSM to a fragment of the ACSI Energy use case.
We show how the Semantic Layer can be exploited to facilitate the specification of temporal
properties of interest, and discuss how they are automatically translated into properties that
can be directly verified by GSMC over the Energy GSM model.

14.1 ACSI Energy Use Case at a Glance

We sketch here the main aspects of the Energy use case, referring the interested reader to
[47, 46, 48] for a detailed treatment.

The ACSI Energy use case focuses on the e electricity supply exchange between electric
companies inside the distribution network in Spain. The electricity exchange between companies
occurs at control points. Within a control point, a measurement of electricity supply exchange
takes place in order to calculate the fair remuneration that the participating companies in
the control point should receive. The measurement is done by a meter reader company, which
corresponds to one of the companies pertaining to that certain control point. The measurement
result is then submitted to the system operator, which is in charge of publishing it. If the
company has any objection concerning the published measurement, the company can raise an
objection. Once the objection is resolved, the report is closed.

The GSM Model for ACSI Energy Use Case

To implement the sketched scenario, we consider two artifacts:

• Control Point Monthly Report (CPMR). This artifact contains the information about
hourly measurements done in a control point within a certain month. The lifecycle of an
instance of this artifact is started when the MDM system provides the hourly measure-
ments, and runs until the liquidation for the CP measurements is started. This artifact
consists of three root stages:

– CPMRInitialization, activated when a new instance of the CPMR artifact is created.

– Claiming. This stage handles the submission of measurements, and the consequent
reviewing stage, where objections may be raised. Five sub-stages are used to deal
with this lifecycle in a fine-grained way: Drafting, Evaluating, Reviewing, Closing,
and CreateObjection.

– MeasurementUpdating, activated when there is an event requesting for updating the
measurement results.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 63 of 94

http://www.inf.unibz.it/~asantoso/obgsm/

FP7-257593 – ACSI Artifact-Centric Service Interoperation

• CPMR Monthly Accumulator (CPMRMA), responsible of the measurement files. It sub-
mits measurements to the system operator, and receives back from the operator the value
for the corresponding official measurements. It consists of four root stages:

– CPMRMAInitialization, which handles the generation of measurement files.

– SubmittingMeasurementFile, which submits the measurement files to the system op-
erator.

– EvaluatingMeasurementFile, which waits the official measurements from the system
operator.

– ProcessingOfficialMeasurement, which calculates the differences between the offi-
cial measurements and the submitted measurements, and consequently notify the
CPMR instances about the differences. The CalculatingDifferences and NotifyingOf-
ficialMeasurement sub-stages are used to handle this portion of the lifecycle.

Figure 23 shows the GSM model for the two artifacts described above.

14.2 The Semantic Layer

We provide a Semantic Layer on top of the GSM model for the ACSI Energy use case, restricting
our attention to the Published Control Point Measurement Report (CPMR).

The Ontology

An UML model for the ontology of the Semantic Layer is depicted in Figure 23. A control point
measurement report can be either:

• a finished CPMR (when the milestone CPMRFinished is achieved),

• a reviewed CPMR (after finishing the review inside the Reviewing stage)

• an accepted CPMR (when the milestone PublishedOK is achieved)

• an objected CPMR.

We formalize the UML model in DL-LiteA:

FinishedReport v ControlPointReport
ReviewedReport v ControlPointReport
AcceptedReport v ControlPointReport
ObjectedReport v ControlPointReport

∃contains v ControlPointReportCollection
∃contains− v ControlPointReport

δ(controlPointID) v ControlPointReport
ρ(controlPointID) v String

This ontology is shown visually in Figure 24.

The Mapping Assertions

We use the following mapping assertions in order to link the information model in the GSM
model to the Semantic Layer. The assertions are written in the mapping specification language
of OBGSM.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 64 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

CPMRInitialization

Claiming

Drafting

StaticInfoEditingOnClaimingOpened

StaticInfoEditedAssignment of new static
 information values and sending

it to the MDM system

Control Point Monthly Report (CPMR)

EditStaticInfo

Submitting
Creation of a new

CPMRMonthlyAccumulator
instance

OnCPMRMAInitializedEvent

Measurement
Submitted

Drafting
Completed

Evaluating

Waiting for Official Measurement
publication

OfficialMeasurement
Published

Reviewing

Accepting

The published measurement
is accepted by the Electric

Company
AcceptingPublishedOK

OnSmallDifference

MO Reviewing

A Metering Office operator
decides if the difference is

 acceptable or not

OnMediumDifference

MOReviewingPublishedOK

MOReviewingObjectionRequested

ECD Reviewing

OnBigDifference An ECD operator
decides if the difference is

 acceptable or not ECDReviewingObjectionRequested

Published OK

ObjectionRequested

MO

ECD

Closing

Waiting until the objections
period finishes

MO

CPMRFinished

Objected

Closed

Waiting for official measurement
publication

MeasurementUpdating
Measurement

UpdatedAssignment of new measurement
values to the Information Model

MDM

CPMR Monthly Accumulator (CPMRMA)

SubmittingMeasurementFile

GeneratingMeasurementFile
MeasurementFileGeneratedA webservice is called to

generate a new file using the
collected data

SendingMeasurementFile
A webservice is called to
send the file to the System

Operator infrastructure

MeasurementFileSentFileSent

OnCPMRMAInitialized

OnNotFileGenerated

NotifyingMeasurement
FileSubmission

Notificates to the CPMR
instances the measurement

submission

MeasurementFileSubmissionNotified

EvaluatingMeasurementFile

Waiting for official measurement
file publication

ProcessingOfficialMeasurement

CalculatingDifferences
Difference
Calculated

Calculation of the hourly, daily,
and monthly differences between

measurements

NotifyingOfficial
Measurement

Communicating the official
published measurement to

the involved CPMRs

OfficialMeasurement
NotifiedOnProcessingOfficial

MeasurementOpen

SO

CPMRMAFinished

OnCPMRInitialized

UpdateMeasurement

MeasurementFile
Submitted

OfficialMeasurement
Publication

CPMRMAInitialization

CollectingCPMRsInfo

Recovers information
from the selected CPMRs

CPMRMAInitialization
FailureOccured
An error occured during
the initialization process

CheckingCPMRsInfo

Checks if the selected CPMR
instances obey the System

Operator rules

OnCPMRMAInitializationOpen CPMRsInfoCollected

CollectingCPMRsInfoFailure

CPMRInfoChecked

CPMRMAInitialized

CheckingCPMRsInfoFailure

OnMeasurementFileSubmitted

CPMR Initialized
Calculating the accumulation

of the measurements

MO

MO

InitializateCPMR

NotifyingCPMRMA
Initialization

Notificates to the CPMR instances
that the submission has started

CPMRMAInitializationNotified

ObjectOfficialMeasurement

ObjectOfficialMeasurement

ClosingDeadline

CreatingObjection

Creation of a new Objection
instance

ObjectionCreated

InitializeCPMRMA

AcceptOfficialMeasurement

AcceptOfficialMeasurement Initialize
Objection

CPMRMA
FinishedByOMA

OfficialMeasurement
FilePublished

FinalizeCPMRMA

Measurement
FileSent

CPMRMA
Initialized

Measurement
SubmissionFailed

ECDReviewingPublishedOK

NotifyingCPMRMAInitializationFailure

SubmittingMeasurement
FileFailureOccured

An error occured during
the initialization process

SubmittingMeasurement
FileFailed

GeneratingMeasurementFileFailure
MeasurementFileSendingFailure MeasurementFileSubmission

NotificationFailure

NewOfficial
Measurement
Published

Figure 23 – GSM Model for ACSI Energy Use Case

ControlPointReport
Collection

reportCollectionID: String

ControlPointReport

ControlPointID: String

contains

FinishedReport ReviewReport AcceptedReport ObjectedReport

Figure 24 – Ontology for the CPMR reviewing process in ACSI Energy Use Case

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 65 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

[PrefixDeclaration]

xsd: http://www.w3.org/2001/XMLSchema#

owl: http://www.w3.org/2002/07/owl#

: http://acsi/example/ACSIEnergy/ACSIEnergy.owl#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

[ClassDeclaration] @collection [[

owl:Thing, :ControlPointReportCollection, :ControlPointReport,

:ObjectedReport, :AcceptedReport, :ReviewedReport, :FinishedReport

]]

[ObjectPropertyDeclaration] @collection [[

:contains

]]

[DataPropertyDeclaration] @collection [[

:hasControlPointID

]]

mappingId ControlPointReportCollectionMapping

target <"&:;cpmrma/{$x}/"> rdf:type :ControlPointReportCollection .

source get(’x’, ’CPMRMA’)(TRUE)

mappingId ControlPointIDMapping

target <"&:;cpmr/{$x}/"> :hasControlPointID $y^^xsd:string .

source get(’x’, ’CPMR’)({x./CPMR/CPID} == ?y)

mappingId CPMRMAContainsCPRMMapping

target <"&:;cpmrma/{$x}/"> :contains <"&:;cpmr/{$y}/"> .

source get(’x’, ’CPMRMA’)(get(’y’, ’CPMR’)(

x./CPMRA/CPMRDATA->exists(CPMRID == {y./CPMR/ID})))

mappingId ReviewedReportMapping

target <"&:;cpmr/{$x}/"> rdf:type :ReviewedReport .

source get(’x’,’CPMR’)(GSM.isMilestoneAchieved(’x’,’AcceptingPublishedOK’) OR

GSM.isMilestoneAchieved(’x’,’MOReviewingPublishedOK’) OR

GSM.isMilestoneAchieved(’x’,’ECDReviewingPublishedOK’))

mappingId AcceptedReportMapping

target <"&:;cpmr/{$x}/"> rdf:type :AcceptedReport .

source get(’x’,’CPMR’)(GSM.isMilestoneAchieved(’x’,’PublishedOK’))

mappingId ObjectedReportMapping

target <"&:;cpmr/{$x}/"> rdf:type :ObjectedReport .

source get(’x’,’CPMR’)(GSM.isMilestoneAchieved(’x’,’Objected’) OR

GSM.isMilestoneAchieved(’x’,’ObjectionRequested’) OR

GSM.isMilestoneAchieved(’x’,’ObjectionCreated’) OR

GSM.isMilestoneAchieved(’x’,’MOReviewingObjectionRequested’) OR

GSM.isMilestoneAchieved(’x’,’ECDReviewingObjectionRequested’))

mappingId FinishedReportMapping

target <"&:;cpmr/{$x}/"> rdf:type :FinishedReport .

source get(’x’,’CPMR’)(GSM.isMilestoneAchieved(’x’,’CPMRFinished’))

]]

Where “:” is a prefix declared as http://acsi/example/energy/energy.owl#. The intuition
of some mapping assertions above is as follows:

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 66 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

• ControlPointReportMapping and ControlPointReportCollectionMapping populate
the concepts ControlPointReport and ControlPointReportCollection with the CPMR
and CPMRMA artifact instances respectively.

• CPMRMAContainsCPMRMapping populates the contains role, which relates CPMRMA with
the CPMRs it contains.

• ControlPointIDMapping populates the attribute hasControlPointID by relating
ControlPointReport with its control point ID.

• ReviewedReportMapping populates the ReviewedReport concept with the CPMR arti-
fact instance, given the achievement of one of the three milestones AcceptingPublishe-
dOK MOReviewingPublishedOK or ECDReviewingPublishedOK. In the Semantic Layer,
ReviewedReport intuitively represents a CPMR that has been reviewed. In the Artifact
Layer, this corresponds to the situation in which the CPMR has been reviewed and ac-
cepted either by the electric company, or by the metering office (MO), or by the Electric
Control Department (ECD). This example show how such details can be hidden from the
Semantic Layer, which does not show the fact that a ReviewedReport is obtained by a
(possibly complex) chaining of achieved milestones in the underlying GSM model.

• AcceptedReportMapping populates the AcceptedReport concept with the CMPR arti-
fact instance, when milestone PublishedOK is achieved. This intuitively means that the
AcceptedReport is a published CPMR that has been approved.

• ObjectedReportMapping populates the ObjectedReport concept with an objected CMPR
artifact instance. This situation is recognized, at the Artifact Layer, by combining different
related milestones.

• FinishedReportMapping populates the FinishedReport concept with the finished CM-
PRs, i.e., those that have achieved milestone CPMRFinished.

14.3 Verification

In this section, we demonstrate how the presence of the Semantic Layer can help in the speci-
fication of temporal properties of interests. We consider in particular the following properties:

1. All control point reports will eventually will be finished.

2. All control point reports that are accepted must have been reviewed. This property is used
to ensure that there is no way to achieve a state in which a certain CPMR is accepted,
without going through the review for that CPMR. Notice that “having being reviewed”
is considered to be a permanent property of CPMRs.

3. All control point reports that are finished must not be objected control point reports.
This property ensures that control point reports cannot be classified as finished as long
as they are still objected.

4. All objected control point reports must not be finished control point reports.

Such four properties can be expressed as conceptual temporal properties over the Semantic
Layer. In particular, we encode them using the language provided by OBGSM:

1. AG(forall x . ([ControlPointReport(x)] -> EF[FinishedReport(x)]))

2. AG(forall x . ([AcceptedReport(x)] -> [ReviewedReport(x)]))

3. AG(forall x . ([FinishedReport(x)] -> ![ObjectedReport(x)]))

4. AG(forall x . ([ObjectedReport(x)] -> ![FinishedReport(x)]))

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 67 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

We now show how this high-level property are compiled by OBGSM into underlying temporal
properties that can be fed into the GSMC model checker. We stress that, without the presence
of the Semantic Layer, the user would be forced to write this low-level properties manually.

1. The rewriting step for the first conceptual temporal property produces the following for-
mula, which “embeds” the constraints of the ontology present at the Semantic Layer:

AG(forall x . ((exists y . [hasControlPointID(x, y)]) or

[ObjectedReport(x)] or

[AcceptedReport(x)] or

[ControlPointReport(x)] or

[ReviewedReport(x)] or

(exists z . [contains(z, x)]) or

[FinishedReport(x)] or

-> EF[FinishedReport(x)]))

The expansion of the queries contained in the property is done by embedding the following
cases, reflected by the ontology constraints:

• Those objects that have a control point ID (i.e., are in the domain of the attribute
hasControlPointID), are instances of ControlPointReport.

• ObjectedReport is a ControlPointReport.

• AcceptedReport is a ControlPointReport.

• ReviewedReport is a ControlPointReport.

• Those objects that are in the range of the role contains are instances of
ControlPointReport.

• FinishedReport is a ControlPointReport.

By exploiting the mapping assertions, OBGSM unfolds the rewritten property into this
final result:

AG (forall(′x′, ′CPMR′)(!(GSM.isMilestoneAchieved(′x′,′Objected′) or

GSM.isMilestoneAchieved(′x′,′ObjectionRequested′) or

GSM.isMilestoneAchieved(′x′,′ObjectionCreated′) or

GSM.isMilestoneAchieved(′x′,′MOReviewingObjectionRequested′) or

GSM.isMilestoneAchieved(′x′,′ECDReviewingObjectionRequested′) or

GSM.isMilestoneAchieved(′x′,′ PublishedOK ′) or

(false) or

GSM.isMilestoneAchieved(′x′,′AcceptingPublishedOK ′) or

GSM.isMilestoneAchieved(′x′,′MOReviewingPublishedOK ′) or

GSM.isMilestoneAchieved(′x′,′ECDReviewingPublishedOK ′) or

exists(′y′,′CPMRMA′)(y./CPMRA/CPMRDATA ->

exists(CPMRID == x./CPMR/ID)) or

GSM.isMilestoneAchieved(′x′,′CPMRFinished′)) or

EF (GSM.isMilestoneAchieved(′x′,′CPMRFinished′))))

Notice that the absence of a mapping assertion for the concept ControlPointReport
results into a false disjunct in the unfolding.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 68 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

2. The translation of the second conceptual temporal property produces this final result:

AG forall(′x′, ′CPMR′)(!(GSM.isMilestoneAchieved(′x′,′ PublishedOK ′)) or (

GSM.isMilestoneAchieved(′x′,′AcceptingPublishedOK ′) or

GSM.isMilestoneAchieved(′x′,′MOReviewingPublishedOK ′) or

GSM.isMilestoneAchieved(′x′,′ECDReviewingPublishedOK ′))

)

3. The translation of the third conceptual temporal property produces this final result:

AG forall(′x′, ′CPMR′)(!GSM.isMilestoneAchieved(′x′, CPMRFinished′) or

!(GSM.isMilestoneAchieved(′x′,′Objected′) or

GSM.isMilestoneAchieved(′x′,′ObjectionRequested′) or

GSM.isMilestoneAchieved(′x′,′ObjectionCreated′) or

GSM.isMilestoneAchieved(′x′,′MOReviewingObjectionRequested′) or

GSM.isMilestoneAchieved(′x′,′ECDReviewingObjectionRequested′))

)

4. The translation of the fourth conceptual temporal property produces this final result:

AG forall(′x′, ′CPMR′)(!(GSM.isMilestoneAchieved(′x′,′Objected′) or

GSM.isMilestoneAchieved(′x′,′ObjectionRequested′) or

GSM.isMilestoneAchieved(′x′,′ObjectionCreated′) or

GSM.isMilestoneAchieved(′x′,′MOReviewingObjectionRequested′) or

GSM.isMilestoneAchieved(′x′,′ECDReviewingObjectionRequested′)) or

!GSM.isMilestoneAchieved(′x′, CPMRFinished′)

)

By comparing the properties specified over the Semantic Layer and their corresponding trans-
lations, it is apparent that, even in this simple case study, the presence of the Semantic Layer
hides low-level details, helps the modeler in focusing on the domain under study, and allows for
using the vocabulary he/she is familiar with.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1995.

[2] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and L. Simon. Distributed reasoning
in a peer-to-peer setting: Application to the Semantic Web. Journal of Artificial Intelligence
Research, 25:269–314, 2006.

[3] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and
relations. Journal of Artificial Intelligence Research, 36:1–69, 2009.

[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2nd edition, 2007.

[5] B. Bagheri Hariri, D. Calvanese, G. De Giacomo, R. De Masellis, P. Felli, and M. Montali.
Verification of description logic knowledge and action bases. In L. De Raedt, C. Bessière,
D. Dubois, P. Doherty, P. Frasconi, F. Heintz, and P. J. F. Lucas, editors, Proceedings of the
20th European Conference on Artificial Intelligence (ECAI 2012), volume 242 of Frontiers
in Artificial Intelligence and Applications, pages 103–108. IOS Press, 2012.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 69 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

[6] B. Bagheri Hariri, D. Calvanese, G. De Giacomo, R. De Masellis, P. Felli, and M. Montali.
Description logic knowledge and action bases. Journal of Artificial Intelligence Research,
46:651–686, 2013.

[7] B. Bagheri Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and M. Montali. Verification
of relational data-centric dynamic systems with external services. CoRR Technical Report
arXiv:1203.0024, arXiv.org e-Print archive, 2012.

[8] B. Bagheri Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and M. Montali. Verification
of relational data-centric dynamic systems with external services. In Proc. of the 32nd ACM
SIGACT SIGMOD SIGART Symposium on Principles of Database Systems (PODS 2013).
ACM Press and Addison Wesley, 2013.

[9] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[10] J. Bradfield and C. Stirling. Modal mu-calculi. In Handbook of Modal Logic, volume 3,
pages 721–756. Elsevier, 2007.

[11] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general Datalog-based framework for tractable
query answering over ontologies. In Proc. of the 28th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS 2009), pages 77–86, 2009.

[12] D. Calvanese, G. De Giacomo, B. Bagheri Hariri, R. De Masellis, D. Lembo, and M. Mon-
tali. Techniques and tools for KAB, to manage action linkage with the Artifact Layer –
Iteration 1. Deliverable ACSI-D2.4.1, ACSI Consortium, May 2012.

[13] D. Calvanese, G. De Giacomo, D. L., M. Lenzerini, A. Poggi, M. Rodŕıguez-Muro, and
R. Rosati. Ontologies and databases: The DL-Lite approach. In S. Tessaris and E. Fran-
coni, editors, Reasoning Web. Semantic Technologies for Informations Systems – 5th Int.
Summer School Tutorial Lectures (RW 2009), volume 5689 of Lecture Notes in Computer
Science, pages 255–356. Springer, 2009.

[14] D. Calvanese, G. De Giacomo, D. Lembo, R. De Masellis, P. Felli, D. F. Savo, M. Montali,
and F. Patrizi. The complete ACSI Artifact Paradigm. Deliverable ACSI-D1.3, ACSI
Consortium, Jan. 2012.

[15] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. What to ask to a
peer: Ontology-based query reformulation. In Proc. of the 9th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR 2004), pages 469–478, 2004.

[16] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. EQL-Lite: Effective
first-order query processing in description logics. In Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2007), pages 274–279, 2007.

[17] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

[18] D. Calvanese, G. De Giacomo, D. Lembo, M. Montali, M. Ruzzi, and A. Santoso. Tech-
niques and tools for KAB, to manage data linkage with the Artifact Layer. Deliverable
ACSI-D2.3, ACSI Consortium, May 2012.

[19] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Logical foundations of peer-
to-peer data integration. In Proc. of the 23rd ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS 2004), pages 241–251, 2004.

[20] D. Calvanese, G. De Giacomo, M. Montali, and F. Patrizi. Verification and synthesis in
description logic based dynamic systems. In Proc. of the 7th Int. Conf. on Web Reasoning
and Rule Systems (RR 2013). Springer, 2013.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 70 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

[21] D. Calvanese, E. Kharlamov, M. Montali, A. Santoso, and D. Zheleznyakov. Verification
of inconsistency-aware knowledge and action bases. In Proc. of the 23rd Int. Joint Conf.
on Artificial Intelligence (IJCAI 2013). AAAI Press/The MIT Press, 2013.

[22] D. Calvanese and M. Montali. Evolvability of the interoperation hub – Iteration 2. Deliv-
erable ACSI-D2.5.2, ACSI Consortium, May 2013.

[23] F. Chesani, P. Mello, M. Montali, F. Riguzzi, M. Sebastianis, and S. Storari. Checking
compliance of execution traces to business rules. In D. Ardagna, M. Mecella, and J. Yang,
editors, Proc. of the BPM 2008 Workshops, 4th Int. Workshop on Business Intelligence
(BPI 2008), volume 17 of Lecture Notes in Business Information Processing, pages 134–
145. Springer, 2009.

[24] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. The MIT Press, 1999.

[25] E. Damaggio, R. Hull, and R. Vacuĺın. On the equivalence of incremental and fixpoint
semantics for business artifacts with guard-stage-milestone lifecycles. Information Systems,
38(4):561–584, 2013.

[26] G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. On reconciling data exchange,
data integration, and peer data management. In Proc. of the 26th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS 2007), pages 133–142, 2007.

[27] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann,
2012.

[28] E. A. Emerson. Model checking and the mu-calculus. In Descriptive Complexity and Finite
Models, 1996.

[29] E. Franconi, G. Kuper, A. Lopatenko, and L. Serafini. A robust logical and compu-
tational characterisation of peer-to-peer database systems. In Proc. of the VLDB In-
ternational Workshop On Databases, Information Systems and Peer-to-Peer Computing
(DBISP2P 2003), 2003.

[30] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C. Tan. Peer data exchange. ACM Trans.
on Database Systems, 31(4):1454–1498, 2005.

[31] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for the
description logic SHIQ. Journal of Artificial Intelligence Research, 31:151–198, 2008.

[32] P. Gonzales, A. Griesmayer, and A. Lomuscio. Model checking tool for artifact interoper-
ations (MOCAI) – Iteration 3. Deliverable ACSI-D2.2.3, ACSI Consortium, May 2013.

[33] V. Haarslev and R. Möller. RACER system description. In Proc. of the Int. Joint Conf.
on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in Artificial Intel-
ligence, pages 701–705. Springer, 2001.

[34] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data management
systems. In Proc. of the 19th IEEE Int. Conf. on Data Engineering (ICDE 2003), pages
505–516, 2003.

[35] R. Hull, E. Damaggio, R. De Masellis, F. Fournier, M. Gupta, F. T. Heath, III, S. Hobson,
M. Linehan, S. Maradugu, A. Nigam, P. N. Sukaviriya, and R. Vaculin. Business artifacts
with guard-stage-milestone lifecycles: managing artifact interactions with conditions and
events. In Proc. of DEBS. ACM, 2011.

[36] P. G. Kolaitis. Schema mappings, data exchange, and metadata management. In Proc.
of the 24th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2005), pages 61–75, 2005.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 71 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

[37] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined
approach to query answering in DL-Lite. In Proc. of the 12th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR 2010), pages 247–257, 2010.

[38] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21th ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002), pages
233–246, 2002.

[39] M. Linehan. GSM expression language. Technical report, IBM Research, Jenuary 2011.
Available on request.

[40] M. Montali, F. M. Maggi, F. Chesani, P. Mello, and W. M. P. van der Aalst. Monitoring
business constraints with the event calculus. ACM Transactions on Intelligent Systems
and Technology, 2013.

[41] D. M. R. Park. Finiteness is Mu-ineffable. Theoretical Computer Science, 3(2):173–181,
1976.

[42] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

[43] M. Rodriguez-Muro and D. Calvanese. High performance query answering over DL-Lite
ontologies. In Proc. of the 13th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2012), pages 308–318, 2012.

[44] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. J. of Web Semantics, 5(2):51–53, 2007.

[45] C. Stirling. Modal and Temporal Properties of Processes. Springer, 2001.

[46] D. Toribio Gomez, C. Murphy O Connor, P. De Leenheer, P. Malarme, J. De Vos, S. Chris-
tiaens, F. Fournier, and L. Limonad. Energy and FRIS “as-is” assessment. Deliverable
ACSI-D5.2, ACSI Consortium, May 2011.

[47] D. Toribio Gomez, C. Murphy O Connor, P. De Leenheer, P. Malarme, J. De Vos,
F. Fournier, D. Boaz, B. van Dongen, D. Fahland, M. de Leoni, and M. Dumas. Energy
and FRIS use case definition and requirements. Deliverable ACSI-D5.1, ACSI Consortium,
Mar. 2010.

[48] D. Toribio Gómez, C. Murphy-O Connor, P. D. Leenheer, and P. Malarme. Deployment
and evaluation of pilots using the ACSI Hub System – Iteration 1. Deliverable ACSI-D5.3.1,
ACSI Consortium, June 2012.

[49] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System description. In
Proc. of the 3rd Int. Joint Conf. on Automated Reasoning (IJCAR 2006), pages 292–297,
2006.

[50] W. M. P. van der Aalst, A. Adriansyah, A. K. A. de Medeiros, F. Arcieri, T. Baier,
T. Blickle, R. P. J. C. Bose, P. van den Brand, R. Brandtjen, J. C. A. M. Buijs, A. Burat-
tin, J. Carmona, M. Castellanos, J. Claes, J. Cook, N. Costantini, F. Curbera, E. Damiani,
M. de Leoni, P. Delias, B. F. van Dongen, M. Dumas, S. Dustdar, D. Fahland, D. R. Ferreira,
W. Gaaloul, F. van Geffen, S. Goel, C. W. Günther, A. Guzzo, P. Harmon, A. H. M. ter
Hofstede, J. Hoogland, J. E. Ingvaldsen, K. Kato, R. Kuhn, A. Kumar, M. La Rosa, F. M.
Maggi, D. Malerba, R. S. Mans, A. Manuel, M. McCreesh, P. Mello, J. Mendling, M. Mon-
tali, H. R. Motahari Nezhad, M. zur Muehlen, J. Muñoz-Gama, L. Pontieri, J. Ribeiro,
A. Rozinat, H. S. Pérez, R. S. Pérez, M. Sepúlveda, J. Sinur, P. Soffer, M. Song, A. Sper-
duti, G. Stilo, C. Stoel, K. D. Swenson, M. Talamo, W. Tan, C. Turner, J. Vanthienen,

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 72 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

G. Varvaressos, E. Verbeek, M. Verdonk, R. Vigo, J. Wang, B. Weber, M. Weidlich, T. Wei-
jters, L. Wen, M. Westergaard, and M. T. Wynn. Process mining manifesto. In F. Daniel,
K. Barkaoui, and S. Dustdar, editors, Proc. of the BPM 2011 Workshops, 7th Int. Workshop
on Business Intelligence (BPI 2011), volume 99 of Lecture Notes in Business Information
Processing, pages 169–194. Springer, 2011.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 73 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Part V

Appendix

A Translating GSM into the DCDS Framework

Here we detail the steps to translate a GSM model R into a corresponding DCDS SR = 〈D,P〉,
which faithfully reproduces the dynamics of the original GSM model. We attack this problem
by first discussing how the information model of R is translated into the data layer D of SR,
and then focusing on the translation of the lifecycle of R into the process layer P of SR.

A.1 Data layer

Given an artifact type (R, x,Attdata ∪Attstatus, Typ, Stg,Mst, Lcyc),
a lifecycle Lcyc = (Substages, Task,Owns,Guards,Ach, Inv)18,
a set of finite sets MSG of message types and SRV of (2-way) services,
a corresponding set of PAC-rules ΓPAC ;

the corresponding data layer D = 〈C,R, E , I′〉 will have the following form:

• C =
⋃

i

DOM(Typ(Atti)),

• R = {Ratt} ∪ {Rmi
chg | mi ∈Mst} ∪ {Rsjchg | sj ∈ Stg} ∪

{Rmsgkdata | msgk ∈MSG and msgk is incoming 1-way message} ∪
{Rsrvpdata | srvp ∈ SRV and srvp is a service call return} ∪
{Rmsgqout | msgq ∈MSG and msgq is outgoing 1-way message} ∪
{Rexec, Rblock},

where:

– Ratt = (idA, fr, a1, ..., an, s1, ..., sm,m1, ...,mk), where idA ranges along the artifact
IDs, n = |Attdata|,m = |Stg|, k = |Mst|. Stores the attributes of an artifact. Each si
and mi store the status of a stage and milestone, respectively.

– Rmi
chg = (idoriginR , newstate) – stores the fact of a milestone mi has been recently

achieved or invalidated; idoriginR is the id of the artifact where it happened and
newstate stores the new value. This relation is used to model the pool of internal
events concerning milestones.

– R
sj
chg = (idoriginR , newstate) – same as previous but about stages being opened or

closed.

– Rmsgkdata = (iddestR , p1, ..., pl), where msgk is a 1-way incoming message from the envi-
ronment, (p1, ..., pl) – its signature and iddestR is the id of a destination artifact (or
null if message is indirected)19.

Used to model the immediate effect of an incoming message. The idea behind it is
that, together with propagating changes of involved attributes, message is passed
to the inner ’data-pool’ so that all the sentries which use this message in the event
expression, could react properly.

– R
srvp
data = (idcallerR), p1, ..., pl, where srvp is an external service call return, (p1, ..., pl) –

its signature and iddestR is the id of a caller artifact (basicaly the id of a destination
artifact for service call return, but it can’t be null). This is the same as for the
incoming message.

18Without loss of generality, for the sake of simplicity we consider Substages = Inv = ∅.
19Q: Broadcast messages? A: They use queries to address specific artifacts.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 74 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

– R
msgq
out = (iddestR , a1, ..., al) – stores eventual outgoing messages to be sent to the

environment after finishing the B-step.

– Rexec = (idR, x1, ..., xc), where xi are flags that keep information on which PAC rules
have been taken in consideration and c = |ΓPAC |.

– Rblock = (idR, blocked), keeps information whether an artifact instance may receive
an incoming message / service call return, or is currently still processing the previous
one.

– SHELF = (index, idR), implements a proposed methodology of keeping the ACS
data-bounded by restricting the number of artifact instances within one snapshot
(the number of instances along the execution path may still be infinite).

Represents a physical storage for artifact instances, where one shelf may contain only
one artifact instance. When there is no artifact instance on the shelf - the ID of stored
instance is −1.

• E = {Ei | Ei is some integrity constraint}

• I0 = ∅.

A.2 Process layer

Given an artifact type (R, x,Attdata ∪Attstatus, Typ, Stg,Mst, Lcyc),
a lifecycle Lcyc = (Substages, Task,Owns,Guards,Ach, Inv),
a set of finite sets MSG of message types and SRV of (2-way) services,
a corresponding set of PAC-rules ΓPAC ;

the corresponding process layer P = 〈F ,A, %〉 will have the following form:

• F = {fgenID} ∪ {f srvi | srvi ∈ SRV} ∪
{fmsgi | msgi ∈MSG and msgi is 1-way message from environment} ∪
{fmsgiout | msgi ∈MSG and msgi is 1-way outgoing message},

where

– fgenID is a function with generates IDs for newly created artifact instances.

– srvi(x) = (f srvi(x, 1), ..., f srvi(x, n)), where n is cardinality of service output signa-
ture.

– msgi = (fmsgi(1), ..., fmsgi(n)), where n is cardinality of message signature.

• A = {αi} is a set of actions, where i =
−−−−−→
1, ..., NA and

NA = |ΓPAC |+ |MSGin|+ |SRV |+ 1 + 1 + 1, i.e. there is

– one action for every PAC-rule of the given GSM model

– one action for each incoming message (to describe immediate effect);

– one action for each service call (for immediate effect of the call return);

– one action to send outgoing messages after each B-step;

– one action to create an artifact instance;

– one action to remove the artifact.

• A process %, which is a set of condition-action rules is described below, where for each
action αi ∈ A there is one and only condition-action rule defined.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 75 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Figure 25 – Incremental formulation of a B-step [25]

B-step in DCDS

When modeling a GSM model as a DCDS system, what we would like to do is to mimic an
incremental semantics of GSM, i.e. we encode each micro-step of the B-step as a separate
condition-action rule in DCDS system, such that the effect on the data and process layer of the
ACS of this action coincides with the effect of corresponding micro-step in GSM.

Recall the structure of a B-step in GSM represented on Figure 25. According to the incre-
mental formulation of GSM, each B-step consists of an initial micro-step which incorporates
incoming event into current snapshot, a sequence of micro-steps executing all applicable PAC-
rules, and finally a micro-step sending a set of generated events at the termination of the B-step.
The translation relies on the incremental semantics: given a GSM model G, we encode each pos-
sible micro-step as a separate condition-action rule in the process of a corresponding DCDS
system S, such that the effect on the data and process layers of the action coincides with the
effect of the corresponding micro-step in GSM. However, in order to guarantee that the tran-
sition system induced by a resulting DCDS mimics the one of the GSM model, the translation
procedure should also ensure that all semantic assumption of GSM are modeled properly: (i)
“one-message-at-a-time” and “toggle-once” principles, (ii) the finiteness of micro-steps within
a B-step, and (iii) their order imposed by the model. We sustain these requirements by intro-
ducing into the data layer a set of auxiliary relations, suitably recalling them in the CA-rules
to reconstruct the desired behaviour.

Thus, when performing the translation we rely on the following assumptions:

1. Restricting S to process only one incoming message at a time is implemented by the intro-
duction of a blocking mechanism, represented by an auxiliary relation Rblock(idR, blocked)
for each artifact in the system, where idR is the artifact instance identifier, and blocked
is a boolean flag. This flag is set to true upon receiving an incoming message, and is
then reset to false at the termination of the corresponding B-step, once the outgoing
events accumulated in the B-step are sent the environment. If an artifact instance has
blocked = true, no further incoming event will be processed. This is enforced by checking
the flag in the condition of each CA-rule associated to the artifact.

2. In order to ensure “toggle once” principle and guarantee the finiteness of sequence of micro-
steps triggered by an incoming event, we introduce an eligibility tracking mechanism. This
mechanism is represented by an auxiliary relation Rexec(idR, x1, ..., xc), where c is the
total number of PAC-rules, and each xi corresponds to a certain PAC-rule of the GSM
model. Each xi encodes whether the corresponding PAC rule is eligible to fire at a given

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 76 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

moment in time (i.e., a particular micro-step). The initial setup of the eligibility tracking
flags is performed at the beginning of a B-step, based on the evaluation of the prerequisite
condition of each PAC rule. More specifically, when xi = 0, the corresponding CA-rule is
eligible to apply and has not yet been considered for application. When instead xi = 1,
then either the rule has been fired, or its prerequisite turned out to be false.

3. The same flag-based approach is used to propagate in a compact way information related
to the PAC rules that have been already processed, following a mechanism that resembles
dead path elimination in BPEL. In fact, Rexec is also used to enforce a firing order of
CA-rules that follows the one induced by G. This is achieved as follows. For each CA-rule
Q 7→ α corresponding to a given PAC rule r, condition Q is put in conjunction with a
further formula, used to check whether all the PAC rules that precede r according to the
ordering imposed by G have been already processed. Only in this case r can be considered
for application, consequently applying its effect α to the current artifact snapshot. More
specifically, the corresponding CA-rule becomes Q ∧ exec(r) 7→ α, where exec(r) =

∧
i xi

such that i ranges over the indexes of those rules that precede r. Once all xi flags are
switched to 1, the B-step is about to finish: a dedicated CA-rule is enabled to send the
outgoing events to the environment, and the artifact instance blocked flag is released.

The general translation algorithm is as follows:

1. For each incoming message mi, construct a CA-rule that:

• implements immediate effects of an incoming message;

• puts a block on the artifact instance to perform the B-step.

• sets up the eligibility flags based on the current snapshot, i.e., for each PAC-rule
checks the prerequisite part. If π = false, then set the boolean flag of the corre-
sponding micro-step 1 (which will basically mean that we have already considered
this rule).

2. For each PAC-rule ri, construct a CA-rule that:

• contains a check whether the action has been already executed or has been marked
as irrelevant (simply checks the boolean flag);

• contains a check whether all the PAC rules that precede ri according to the ordering
imposed by G have been already processed;

• if relevant and eligible and if the antecedent part is true (the query to populate the
effect is not empty), performs the required change of the status attribute

• if relevant and eligible, marks the corresponding boolean flag as true.

3. Construct a CA-rule that will send outgoing messages and unblock the artifact instance:

• check whether all the PAC-rules have been taken into consideration (∀xk ∈ Rblock :
xk = 1) and whether the artifact instance is still blocked;

• in the action part – release the block;

• in the action part – flush the eligibility flags.

4. If create artifact or remove artifact tasks are present, add micro-steps dealing with it (a
particular type of the immediate effect micro-steps described later).

Now let us get down to translating each of the possible micro-steps.

Translation 1 (Immediate effect of 1-way incoming message).
Assume an incoming message type M , its associated artifact type R and its signature (a1 :
Typ(a1), . . . , ak : Typ(ak)), where ai ∈ Attdata.
Assume also a set of PAC-rules {(πi, αi, γi)}.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 77 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Then an immediate effect of a message of type M on some artifact instance A of type R may
be modeled by the following condition-action rule:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→
αImmEffM (idR) : {
(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[a1/f

M (1), ..., ak/f
M (k)]

(2) Ratt(idR, a, s,m) RMdata(idR, f
M (1), ..., fM (k))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4) for each i :

RMexec(idR, x1, ..., xq) ∧ πi(idR) RMexec(idR, x1, ..., xq)[xi/0]

RMexec(idR, x1, ..., xq) ∧ ¬πi(idR) RMexec(idR, x1, ..., xq)[xi/1]

(5) [CopyRest] }

(1) substitutes attributes’ values with the payload of the message; (2) propagates values to
the message hub; (3) blocks the artifact instance; (4) initializes the eligibility flags for each
PAC-rule, where πi(idR) is a prerequisite of the i-th PAC-rule.

Translation 2 (Immediate effect of 2-way service call generated by artifact instance).
Assume a 2-way service call type F within an atomic stage Sp, its associated artifact type R,
input signature (b1 : Typ(b1), . . . , bl : Typ(bl)) and output signature (a′1 : Typ(a′1), . . . , a′k :
Typ(a′k)) where a′i ∈ Attdata.
Assume also a set of PAC-rules {(πi, αi, γi)}.
Then a service call and an immediate effect of a service call return of type F on some artifact
instance A of type R may be modeled by the following condition-action rule:

∃a, s,m Ratt(idR, a, s,m) ∧ Sp = true ∧Rblock(idR, false) 7→
αcallF (idR) :

{(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[a1/f
F (b, 1), ..., ak/f

F (b, k)]

(2) Ratt(idR, a, s,m) RFdata(idR, f
F (b, 1), ..., fF (b, k))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4) for each i :

RFexec(idR, x1, ..., xq) ∧ πi(idR) RFexec(idR, x1, ..., xq)[xi/0]

RFexec(idR, x1, ..., xq) ∧ ¬πi(idR) RFexec(idR, x1, ..., xq)[xi/1]

(5) [CopyRest]

}, where

(1) substitutes attributes’ values with the result of the service call; (2) propagates values to
the message hub; (3) blocks the artifact instance; (4) initializes the eligibility flags for each
PAC-rule, where πi(idR) is a prerequisite of the i-th PAC-rule.

Translation 3 (PAC-1 rule (Activating a stage)).
Assume a stage Sj and its activating guard gj = [on ξ(x) if φ(x)], where ξ(x) is a triggering
event and φ(x) is a condition. Then activating a stage Sj by validating gj can be modeled by
the following condition-action rule:
NB: Include term (S′ = true) if S′ is parent of Sj .
NB: Note that prerequisite is checked on the stage of implementing immediate effect and, if
not validated, will lead to marking xk as 1, so will lead to skipping this CA-rule.
NB: Include effect propagating the outgoing message to the outgoing hub, if the stage to be
activated is atomic and contains an action of sending a one-way message O with a signature
(b1 : Typ(b1), . . . , bk : Typ(bk)), where bi ∈ Attdata.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 78 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Rexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a

′, x) : {
(1) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) Ratt(idR, a, s,m)[Sj/true]

(2) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) R
Sj

chg(idR, true)

(3) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) ROout(idR, b1, ..., bk)

(4) Rexec(idR, x) ∧ xk = 0 Rexec(idR, x)[xk/1]

(5) [CopyMessagePools]

(6) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

Rξ(idR, a′) = RM (idR, a′) if the guard contains incoming message event

or Rattchg(idR, statusnew)) if the guard contains internal event.

(1) activates a stage on a condition; (2) propagates internal event of opening a stage on a condi-
tion; (3) prepares eventual outgoing message for sending; (4) flags the microstep as performed.

Translation 4 (PAC-2 rule (Milestone achiever)).
Assume a stage Sj and its milestone mj with achieving sentry [on ξ(x) if φ(x)], where ξ(x) is
a triggering event and φ(x) is a condition. Then achieving a milestone mj can be modeled by
the following condition-action rule:

RMexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a

′, x) : {
(1) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) Ratt(idR, a, s,m)[mj/true]

(2) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) R
mj

chg(idR, true)

(3) Rexec(idR, x) ∧ xk = 0 Rexec(idR, x)[xk/1]

(4) [CopyMessagePools]

(5) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

Rξ(idR, a′) = RM (idR, a′) if the guard contains incoming message event

or Rattchg(idR, statusnew)) if the guard contains internal event.

(1) achieves a milestone on a condition; (2) propagates internal event of achieving a milestone
on a condition; (3) flags the microstep as performed.

Translation 5 (PAC-3 rule (Milestone invalidator)).
Assume a stage Sj and its milestone mj with invalidating sentry [on ξ(x) if φ(x)], where ξ(x)
is a triggering event and φ(x) is a condition. Then invalidating a milestone mj can be modeled

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 79 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

by the following condition-action rule:

RMexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a

′, x) : {
(1) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) Ratt(idR, a, s,m)[mj/false]

(2) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) R
mj

chg(idR, false)

(3) Rexec(idR, x) ∧ xk = 0 Rexec(idR, x)[xk/1]

(4) [CopyMessagePools]

(5) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

Rξ(idR, a′) = RM (idR, a′) if the guard contains incoming message event

or Rattchg(idR, statusnew)) if the guard contains internal event.

(1) invalidates a milestone on a condition; (2) propagates internal event of invalidating a mile-
stone on a condition; (3) flags the microstep as performed.

Translation 6 (PAC-4 rule (Opening stage invalidating milestone)).
Assume a stage Sj and its milestone mj . Then invalidating a milestone mj caused by opening
a stage can be modeled by the following condition-action rule:

Rexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a

′, x) : {
(1) Ratt(idR, a, s,m) ∧RSj

chg(idR, true)) Ratt(idR, a, s,m)[mj/false]

(2) Ratt(idR, a, s,m) ∧RSj

chg(idR, true)) R
mj

chg(idR, false)

(3) RMexec(idR, x) ∧ xk = 0 RMexec(idR, x)[xk/1]

(4) [CopyMessagePools]

(5) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

(1) invalidates a milestone if the stage was open; (2) propagates internal event of invalidating a
milestone; (3) flags the microstep as performed.

Translation 7 (PAC-5 rule (Closing a stage on achieving milestone)).
Assume a stage Sj and its milestone mj . Then closing a stage Sj caused by achieving a milestone
mj can be modeled by the following condition-action rule:

RMexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a, x) : {
(1) Ratt(idR, a, s,m) ∧Rmj

chg(idR, true)) Ratt(idR, a, s,m)[Sj/false]

(2) Ratt(idR, a, s,m) ∧Rmj

chg(idR, true)) R
Sj

chg(idR, false)

(3) RMexec(idR, x) ∧ xk = 0 RMexec(idR, x)[xk/1]

(4) [CopyMessagePools]

(5) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

(1) closes a stage if the milestone was achieved; (2) propagates internal event of closing a stage;
(3) flags the microstep as performed.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 80 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Translation 8 (PAC-6 rule (No activity in a closed stage)).
Assume a stage Sj and its parent stage S′. Then closing a stage Sj caused by closing its parent
stage S′ can be modeled by the following condition-action rule:

RMexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a

′, x) : {
(1) Ratt(idR, a, s,m) ∧RS′

chg(idR, false)) Ratt(idR, a, s,m)[Sj/false]

(2) Ratt(idR, a, s,m) ∧RSj

chg(idR, false)) R
Sj

chg(idR, false)

(3) RMexec(idR, x) ∧ xk = 0 RMexec(idR, x)[xk/1]

(4) [CopyMessagePools]

(5) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

(1) closes a stage if the parent stage is closed; (2) propagates internal event of closing a stage;
(3) flags the microstep as performed.

Translation 9 (Sending outgoing messages to the environment and flushing the
message hubs).
Assume a set of 1-way outgoing message types Oj obtained after all the PAC rules have been
already taken into consideration. Then the conclusive part of a B-step, involving sending one-
way outgoing messages and flushing the system message hubs may be modeled by the following
CA-rule:

∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→
αsendflush(idR) : {
(1) Rexec(idR, x) ∧ ∀i xi = 1 Rblock(idR, false)

(2) Rexec(idR, x) ∧ ∀i xi = 1 Rexec(idR, 0)

(3) Ratt(idR, a, s,m) Ratt(idR, a, s,m)

(4) for each j :

R
Oj

out(idR, b1, ..., bk) Rresult(idR, f
Oj (b1, ..., bk))

(5) [CopyRest] }

(1) unblocks the artifact instance; (2) flushes the eligibility flags; (3) copies data; (4) sends
outgoing messages to the environment.

Translation 10 (Create artifact service call).
Assume a particular kind of a 2-way service call - create artifact service call, within an atomic
stage Sp. Assume also a set of PAC-rules {(πi, αi, γi)}.
Then a create artifact service call and its immediate effect of a service call return may be

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 81 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

modeled by the following condition-action rule:

∃a, s,m Ratt(idR, a, s,m) ∧ Sp = true ∧Rblock(idR, false)
7→ αcreateA (idR, num) :

{(1) Ratt(idR, a, s,m) Ratt(f
create
A (ã), ã, 0, 0)

(3) Ratt(idR, a, s,m) Rsrv−newAdata (f createA (ã))

(4) Ratt(idR, a, s,m) Rblock(idR, true)

(5) for each i :

RFexec(idR, x1, ..., xq) ∧ πi(idR) RFexec(idR, x1, ..., xq)[xi/0]

RFexec(idR, x1, ..., xq) ∧ ¬πi(idR) RFexec(idR, x1, ..., xq)[xi/1]

(6) [CopyRest] },
where f createA (ã) returns ID of newly create artifact.

Translation 11 (Remove artifact service call).
Assume a particular kind of a 2-way service call - remove artifact service call, within an atomic
stage Sp. Assume also a set of PAC-rules {(πi, αi, γi)}.
Then a remove artifact service call and its immediate effect of a service call return may be
modeled by the following condition-action rule:

∃a, s,m Ratt(idR, a, s,m) ∧ Sp = true ∧Rblock(idR, false)
7→ αremoveA (idR, num) :

(2) Ratt(idR, a, s,m) Rsrv−remAdata (f removeA (a))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(5) for each i :

RFexec(idR, x1, ..., xq) ∧ πi(idR) RFexec(idR, x1, ..., xq)[xi/0]

RFexec(idR, x1, ..., xq) ∧ ¬πi(idR) RFexec(idR, x1, ..., xq)[xi/1]

(6) [CopyRest] },
where f removeA (a) returns the outcome of deletion.

A.3 An Example

Let us consider a process Func which is as simple as calculating a sum a+ b, given that a 6= b.
The GSM concrete model of such process is, in fact, represented by the first stage in Figure 26.

Then the corresponding artifact type has the form

(R, x,Attdata ∪Attstatus, T yp, Stg,Mst, Lcyc),

Figure 26 – GSM model of (a+ b)

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 82 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

where20

Attdata = {AID, a, b, c}
Attstatus = {s1,m1,m2}, all Boolean

Type = {(a, F loat), (b, F loat), (c, F loat)}
S = {s1}, M = {m1,m2}

Consequently, lifecycle Lcyc has the following form:

(Substages, Task,Owns,Guards,Ach, Inv), where

Substages = ∅
Task = {(s1, Sum)}
Owns = {(s1, {m1,m2})}

Guards = {(s1, {g̃1})}
Ach = {(m1, {m̃1}), (m2, {m̃2})}
Inv = ∅

Corresponding sentries for guards and milestones are given below:

g̃1 : on x.Funccall(a, b) if a 6= b

m̃1 : on x.Sumreturn(c) if c ≥ 0

m̃2 : if c < 0

Intuitively, the workflow of the given process is the following:

• after receiving a request from the environment, if the operands are not equal, the first
stage is activated;

• the task associated with the first atomic stage is executed, calling the external service
Sum with given parameters and obtaining the result;

• upon completing the request, if the result is positive, then milestone m1 is achieved;

• if attribute storing the result of operation is negative, then milestone m2 is achieved. Note
that the corresponding sentry m̃2 doesn’t contain event expression of receiving service
call return. Thus, if the stage gets activated with c < 0, this milestone will be achieved
immediately.

PAC rules

Type ID Prerequisite Antecedent Consequent

PAC-1 x1 ¬x.s1 on x.Funccall(a, b) if a 6= b +x.s1

PAC-2 x2 x.s1 on x.Sumreturn(c) if c ≥ 0 +x.m1

PAC-2 x3 x.s1 if c < 0 +x.m2

PAC-4 x4 x.m1 on + x.s1 −x.m1

PAC-4 x5 x.m2 on + x.s1 −x.m2

PAC-5 x6 x.s1 on + x.m1 −x.s1

PAC-5 x7 x.s1 on + x.m2 −x.s1

20For the sake of simplicity, we will omit attributes as mostRecEventType and mostRecEventT ime. Similarly,
we will omit attributes like mmostRecentUpdate and activemostRecentUpdate

S .

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 83 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

DCDS Translation

Data layer
The corresponding data layer D = 〈C,R, E , I0〉 will have the following form:

• C =
⋃

i

DOM(Typ(Atti)),

• R = {Ratt} ∪ {Rmi
chg | mi ∈Mst} ∪ {RSj

chg | Sj ∈ Stg} ∪
{Rmsgkdata | msgk ∈MSG and msgk is incoming 1-way message} ∪
{Rsrvpdata | srvp ∈ SRV and srvp is a service call return} ∪
{Rmsgqout | msgq ∈MSG and msgq is outgoing 1-way message} ∪
{Rexec, Rblock},

where Ratt stores the attributes of an artifact, Rexec keeps information on which PAC rules
have been taken in consideration while other relations are used to model the incoming /
outgoing message pool:

– Ratt = (idA, a, b, c, s1,m1,m2),

– Rexec = (idA, x1, x2, x3, x4, x5, x6, x7),

– Rblock = (idA, blocked),

– Rs1chg = (idA, newstate),

– Rm1
chg = (idA, newstate),

– Rm2
chg = (idA, newstate),

– RFuncdata = (idA, a, b),

– RSumdata = (idA, c).

• E = ∅.

• I0 = ∅.

Immediate effect rules
Incoming message Func:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→
αImmEffFunc (idR) : {
(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[a/fFunc(1), b/fFunc(2)]

(2) Ratt(idR, a, s,m) RFuncdata (idR, f
Func(1), fFunc(2))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4) Rexec(idR, x) ∧ ¬S1 Rexec(idR, x)[x1/0, x2/1, x3/1, x6/1, x7/1]
Rexec(idR, x) ∧ S1 Rexec(idR, x)[x1/1, x2/0, x3/0, x6/0, x7/0]

Rexec(idR, x) ∧m1 Rexec(idR, x)[x4/0]
Rexec(idR, x) ∧ ¬m1 Rexec(idR, x)[x4/1]

Rexec(idR, x) ∧m2 Rexec(idR, x)[x5/0]
Rexec(idR, x) ∧ ¬m2 Rexec(idR, x)[x5/1]

(5) [CopyRest] }

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 84 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Service call return Sum:

∃a, s,m Ratt(idR, a, s,m) ∧ S1 = true ∧Rblock(idR, false) 7→
αcallSum(idR) : {
(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[c/fSum(a, b, 1)]

(2) Ratt(idR, a, s,m) RSumdata (idR, f
Sum(a, b, 1))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4) Rexec(idR, x) ∧ ¬S1 Rexec(idR, x)[x1/0, x2/1, x3/1, x6/1, x7/1]
Rexec(idR, x) ∧ S1 Rexec(idR, x)[x1/1, x2/0, x3/0, x6/0, x7/0]

Rexec(idR, x) ∧m1 Rexec(idR, x)[x4/0]
Rexec(idR, x) ∧ ¬m1 Rexec(idR, x)[x4/1]

Rexec(idR, x) ∧m2 Rexec(idR, x)[x5/0]
Rexec(idR, x) ∧ ¬m2 Rexec(idR, x)[x5/1]

(5) [CopyRest] }

PAC rules
PAC-1 rule x1:

Rexec(idR, x) ∧ x1 = 0 ∧Rblock(idR, true) 7→
α1
exec(idR, a, b, x) : {

(1) RFuncdata (idR, a, b) ∧Ratt(idR, a, s,m) ∧ a 6= b Ratt(idR, a, s,m)[S1/true]

(2) RFuncdata (idR, a, b) ∧Ratt(idR, a, s,m) ∧ a 6= b RS1
chg(idR, true)

(3) RMexec(idR, x) ∧ x1 = 0 RMexec(idR, x)[x1/1]

(4) [CopyMessagePools]

(5) [CopyRest] }

PAC-2 rule x2:

Rexec(idR, x) ∧ x2 = 0 ∧Rblock(idR, true) 7→
α2
exec(idR, c, x) : {

(1) RSumdata (idR, c) ∧Ratt(idR, a, s,m) ∧ c ≥ 0 Ratt(idR, a, s,m)[m1/true]

(2) RSumdata (idR, c) ∧Ratt(idR, a, s,m) ∧ c ≥ 0 Rm1
chg(idR, true)

(3) Rexec(idR, x) ∧ x2 = 0 Rexec(idR, x)[x2/1]

(4) [CopyMessagePools]

(5) [CopyRest] }

PAC-2 rule x3:

Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x3 = 0 ∧Rblock(idR, true) 7→
α3
exec(idR, a, x) : {

(1) Ratt(idR, a, s,m) ∧ c < 0 Ratt(idR, a, s,m)[m2/true]

(2) Ratt(idR, a, s,m) ∧ c < 0 Rm2
chg(idR, true)

(3) Rexec(idR, x) ∧ x3 = 0 Rexec(idR, x)[x3/1]

(4) [CopyMessagePools]

(5) [CopyRest] }

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 85 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

PAC-4 rule x4:

Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x4 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→
α4
exec(idR, a, x) : {

(1) Ratt(idR, a, s,m) ∧RS1
chg(idR, true)) Ratt(idR, a, s,m)[m1/false]

(2) Ratt(idR, a, s,m) ∧RS1
chg(idR, true)) Rm1

chg(idR, false)

(3) Rexec(idR, x) ∧ x4 = 0 Rexec(idR, x)[x4/1]

(4) [CopyMessagePools]

(5) [CopyRest] }

PAC-4 rule x5:

Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x5 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→
α5
exec(idR, a, x) : {

(1) Ratt(idR, a, s,m) ∧RS1
chg(idR, true)) Ratt(idR, a, s,m)[m2/false]

(2) Ratt(idR, a, s,m) ∧RS1
chg(idR, true)) Rm2

chg(idR, false)

(3) Rexec(idR, x) ∧ x5 = 0 Rexec(idR, x)[x5/1]

(4) [CopyMessagePools]

(5) [CopyRest] }

PAC-5 rule x6:

Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x6 = 0 ∧ x2 = 1 ∧Rblock(idR, true) 7→
α6
exec(idR, a, x) : {

(1) Ratt(idR, a, s,m) ∧Rm1
chg(idR, true)) Ratt(idR, a, s,m)[S1/false]

(2) Ratt(idR, a, s,m) ∧Rm1
chg(idR, true)) RS1

chg(idR, false)

(3) Rexec(idR, x) ∧ x6 = 0 Rexec(idR, x)[x6/1]

(4) [CopyMessagePools]

(5) [CopyRest] }

PAC-5 rule x7:

Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x7 = 0 ∧ x3 = 1 ∧Rblock(idR, true) 7→
α7
exec(idR, a, x) : {

(1) Ratt(idR, a, s,m) ∧Rm2
chg(idR, true)) Ratt(idR, a, s,m)[S1/false]

(2) Ratt(idR, a, s,m) ∧Rm2
chg(idR, true)) RS1

chg(idR, false)

(3) Rexec(idR, x) ∧ x7 = 0 Rexec(idR, x)[x7/1]

(4) [CopyMessagePools]

(5) [CopyRest] }

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 86 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Sending outgoing messages and unblocking the artifact instance

∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→
αsendflush(idR) : {
(1) Rexec(idR, x) ∧ ∀i xi = 1 Rblock(idR, false)

(2) Rexec(idR, x) ∧ ∀i xi = 1 Rexec(idR, 0)

(3) Ratt(idR, a, s,m) Ratt(idR, a, s,m)

(4) for each j :

R
Oj

out(idR, b1, ..., bk) Rresult(idR, f
Oj (b1, ..., bk))

(5) [CopyRest] }

Execution Semantics

Let us now follow the construction of a transition system resulting from the obtained translation.
We start with an initial state I0 such that:

• s1 = m1 = m2 = 0

• Rblock(idR, false)

• Rexec(idR, 0)

• RSumdata = RFuncdata = ∅
Let us evaluate the condition part of all CA-rules and mark with (∗) applicable ones:

(∗) ∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→ {}
∃a, s,m Ratt(idR, a, s,m) ∧ S1 = true ∧Rblock(idR, false) 7→ {}
Rexec(idR, x) ∧ x1 = 0 ∧Rblock(idR, true) 7→ {}
Rexec(idR, x) ∧ x2 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x3 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x4 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x5 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x6 = 0 ∧ x2 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x7 = 0 ∧ x3 = 1 ∧Rblock(idR, true) 7→ {}
∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→ {}

So, only the first rule is applicable, let us check what it looks like:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→
αImmEffFunc (idR) : {
(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[a/fFunc(1), b/fFunc(2)]

(2) Ratt(idR, a, s,m) RFuncdata (idR, f
Func(1), fFunc(2))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4) Rexec(idR, x) ∧ ¬S1 Rexec(idR, x)[x1/0, x2/1, x3/1, x6/1, x7/1]
Rexec(idR, x) ∧ S1 Rexec(idR, x)[x1/1, x2/0, x3/0, x6/0, x7/0]

Rexec(idR, x) ∧m1 Rexec(idR, x)[x4/0]
Rexec(idR, x) ∧ ¬m1 Rexec(idR, x)[x4/1]

Rexec(idR, x) ∧m2 Rexec(idR, x)[x5/0]
Rexec(idR, x) ∧ ¬m2 Rexec(idR, x)[x5/1]

(5) [CopyRest] }

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 87 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

The first effect is to obtain input from the environment by calling the function fFunc. Second
effect propagates obtained data to the inner message pool. (3) Blocks the artifact instance.
Effects from (4) decide which CA-rules are relevant. For our current state, we get that: x1 = 0
and all the rest xi = 1. Which means that only x1 is relevant.

Thus, we get the following situation:

• s1 = m1 = m2 = 0

• Rblock(idR, true)

• Rexec(idR, (0, 1, ..., 1))

• RSumdata = ∅, RFuncdata = (a, b)

Let us evaluate again the condition part of all CA-rules and mark with (∗) applicable ones:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→ {}
∃a, s,m Ratt(idR, a, s,m) ∧ S1 = true ∧Rblock(idR, false) 7→ {}

(∗) Rexec(idR, x) ∧ x1 = 0 ∧Rblock(idR, true) 7→ {}
Rexec(idR, x) ∧ x2 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x3 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x4 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x5 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x6 = 0 ∧ x2 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x7 = 0 ∧ x3 = 1 ∧Rblock(idR, true) 7→ {}
∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→ {}

So, only the third rule is applicable, let us check what it looks like:

Rexec(idR, x) ∧ x1 = 0 ∧Rblock(idR, true) 7→
α1
exec(idR, a, b, x) : {

(1) RFuncdata (idR, a, b) ∧Ratt(idR, a, s,m) ∧ a 6= b Ratt(idR, a, s,m)[S1/true]

(2) RFuncdata (idR, a, b) ∧Ratt(idR, a, s,m) ∧ a 6= b RS1
chg(idR, true)

(3) RMexec(idR, x) ∧ x1 = 0 RMexec(idR, x)[x1/1]

(4) [CopyMessagePools]

(5) [CopyRest] }

At this point there are 2 possible cases: when a 6= b and a = b.
If a = b the first 2 effects are ignored and we just mark x1 = 1 and are done. Then we go to

the last rule, which unblocks the artifact instance.
If a 6= b, then we open a stage s1 and propagate this event to the inner message pool. We

also mark x1 = 1. So, we have the following situation:

• s1 = 1,m1 = m2 = 0

• Rblock(idR, true)

• Rexec(idR, (1, 1, ..., 1))

• RSumdata = ∅, RFuncdata = (a, b)

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 88 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Let us evaluate again the rules:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→ {}
∃a, s,m Ratt(idR, a, s,m) ∧ S1 = true ∧Rblock(idR, false) 7→ {}
Rexec(idR, x) ∧ x1 = 0 ∧Rblock(idR, true) 7→ {}
Rexec(idR, x) ∧ x2 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x3 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x4 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x5 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x6 = 0 ∧ x2 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x7 = 0 ∧ x3 = 1 ∧Rblock(idR, true) 7→ {}

(∗) ∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→ {}

The last rule is applicable:

∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→
αsendflush(idR) : {
(1) Rexec(idR, x) ∧ ∀i xi = 1 Rblock(idR, false)

(2) Rexec(idR, x) ∧ ∀i xi = 1 Rexec(idR, 0)

(3) Ratt(idR, a, s,m) Ratt(idR, a, s,m)

(4) for each j :

R
Oj

out(idR, b1, ..., bk) Rresult(idR, f
Oj (b1, ..., bk))

(5) [CopyRest] }

So we have:

• s1 = 1,m1 = m2 = 0

• Rblock(idR, false)

• Rexec(idR, (0, 0, ..., 0))

• RSumdata = ∅, RFuncdata = ∅

Let us evaluate again the rules:

(∗) ∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→ {}
(∗) ∃a, s,m Ratt(idR, a, s,m) ∧ S1 = true ∧Rblock(idR, false) 7→ {}

Rexec(idR, x) ∧ x1 = 0 ∧Rblock(idR, true) 7→ {}
Rexec(idR, x) ∧ x2 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x3 = 0 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x4 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x5 = 0 ∧ x1 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x6 = 0 ∧ x2 = 1 ∧Rblock(idR, true) 7→ {}
Ratt(idR, a, s,m) ∧Rexec(idR, x) ∧ x7 = 0 ∧ x3 = 1 ∧Rblock(idR, true) 7→ {}
∃Rexec(idR, x) ∧ ∀i xi = 1 ∧Rblock(idR, true) 7→ {}

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 89 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Here comes a non-deterministic choice of the rule to apply. Let us, say, apply the first one:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→
αImmEffFunc (idR) : {
(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[a/fFunc(1), b/fFunc(2)]

(2) Ratt(idR, a, s,m) RFuncdata (idR, f
Func(1), fFunc(2))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4) Rexec(idR, x) ∧ ¬S1 Rexec(idR, x)[x1/0, x2/1, x3/1, x6/1, x7/1]
Rexec(idR, x) ∧ S1 Rexec(idR, x)[x1/1, x2/0, x3/0, x6/0, x7/0]

Rexec(idR, x) ∧m1 Rexec(idR, x)[x4/0]
Rexec(idR, x) ∧ ¬m1 Rexec(idR, x)[x4/1]

Rexec(idR, x) ∧m2 Rexec(idR, x)[x5/0]
Rexec(idR, x) ∧ ¬m2 Rexec(idR, x)[x5/1]

(5) [CopyRest] }

Then what we get is:

• s1 = 1,m1 = m2 = 0

• Rblock(idR, true)

• Rexec(idR, (1, 0, 0, 1, 1, 0, 0))

• RSumdata = ∅, RFuncdata = (a, b)

So we have to apply x2, x3, x6, x7.

A.4 Correctness of the Translation

The proof plan:

1. Prove that for each micro-step of the GSM model, the corresponding DCDS CA-rule
results in the same state (pre-snapshot) of the model, w.r.t. data and status attributes.

2. Prove that for each GSM B-step (certain path in the resulting transition system) there
exists a corresponding execution in the DCDS transition system.

3. Prove that for each execution path in the DCDS transition system, there exists a corre-
sponding one in GSM.

Lemma A.1. For each micro-step, consisting of applying a ground PAC rule (πk, αk, γk) to
a pre-snapshot Σj, the corresponding translation of this rule – a DCDS condition-action rule
Qk 7→ αk(p1, . . . , pq) : {e1, . . . , em}, results in the same pre-snapshot Σj+1 w.r.t. data and status
attributes.

Proof. First, we have to prove that the CA-rule, corresponding to computing the Σ1 =
ImmEffect(Σ, e, t), results in the same pre-snapshot as ImmEffect(Σ, e, t).

By definition of the immediate effect of an incoming event e = M(A1 : c1, . . . , An : cn),
ImmEffect(Σ, e, t) is a pre-snapshot Σ′ obtained from Σ by modifying the corresponding artifact
instance I in the following way21: for each data attribyte Ai, set I.Ai := ci.

21As mentioned earlier, we omit mostRecEventType and mostRecEventTime.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 90 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Let us now consider the corresponding CA-rule:

∃a, s,m Ratt(idR, a, s,m) ∧Rblock(idR, false) 7→
αImmEffM (idR) : {
(1) Ratt(idR, a, s,m) Ratt(idR, a, s,m)[a1/f

M (1), ..., ak/f
M (k)]

(2) Ratt(idR, a, s,m) RMdata(idR, f
M (1), ..., fM (k))

(3) Ratt(idR, a, s,m) Rblock(idR, true)

(4) for each i :

RMexec(idR, x1, ..., xq) ∧ πi(idR) RMexec(idR, x1, ..., xq)[xi/0]

RMexec(idR, x1, ..., xq) ∧ ¬πi(idR) RMexec(idR, x1, ..., xq)[xi/1]

(5) [CopyRest] }

The condition part of this CA-rule selects an artifact instance and checks whether it is able to
process the message, i.e. is not busy with processing another one. Then, Effect (1) of the action
does exactly what is required by the definition of ImmEffect – it changes the data attributes
affected by the payload of e. Effect (2) propagates the values of the incoming event to the system
message hub, which is used by the DCDS engine to encode the execution of a model. Thus, we
can abstract from it, as well from Effect (3), which blocks the artifact instance from receiving
other messages until the current message is fully processed. Also Effect (4) may be abstracted
away, since it is also a system information. It should be noted, though, that the Effect (4)
implements the step of selecting applicable CA-rules according to the incremental semantics
of GSM. For those CA-rules whose prerequisite is valid (πi(idR) == true), the corresponding
CA-rule is marked as 0, i.e., to be taken into consideration. Not eligible rules are marked with
1, i.e. already taken into consideration. Therefore, since:

• it is assumed that in GSM incoming messages ”are processed by the artifact instances one
at a time”,

• corresponding CA-rule uses its own blocking mechanism to ensure this;

• the only effect changing data attributed is Effect (1), which is applied whenever an action
is fired (i.e., without any condition),

• Effect (1) strictly corresponds to the definition of the ImmEffect in GSM,

• no other effect involves either data or status attributes,

then it may be claimed that the DCDS pre-snapshot obtained after firing the corresponding
CA-rule coincides with the GSM pre-snapshot Σ1 = ImmEffect(Σ, e, t) w.r.t. to data and status
attributes. Similarly it can be shown for the case of service call return. The only difference
would be a condition of an atomic stage to be activated in order to enable service call.

Now let us get down to proving correspondence between PAC rules and their translations.
Consider, for instance, a PAC-1 rule (πk, αk, γk) corresponding to a certain micro-step in

the incremental foundation. We have to prove that a corresponding DCDS CA-rule is eligible
to apply the effect γ if and only if the PAC-1 rule is eligible to apply the effect γ and that
the effect of firing this rule will result in the coinciding pre-snapshot w.r.t. to data and status
attributes.

The PAC-1 rule is eligible to apply the effect γ if and only if each of the following holds:

• Σ � πk, i.e. the prerequisite is met.

• Σj � αk, for αk = [on ξ(x) if φ(x)], i.e. the antecedent is satisfied.

• the ordering implied by PDG(Γ) is respected, i.e. for each pair (r, r′) of ground rules with
abstract actions �R.s and �′R′.s′, respectively, if �R.s < �′R′.s′, then the rule r must
be considered for firing before the rule r′ is considered for firing.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 91 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

Now let us consider the translation of the PAC-1 rule to DCDS CA-rule and show that the
conditions for applying the effect γ coincide with those listed above. The corresponding CA-rule
looks like the following:

Rexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧Rblock(idR, true) 7→
αkexec(idR, a

′, x) : {
(1) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) Ratt(idR, a, s,m)[Sj/true]

(2) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) R
Sj

chg(idR, true)

(3) Ratt(idR, a, s,m) ∧Rξ(idR, a′) ∧ S′ = true ∧ φ(idR) ROout(idR, b1, ..., bk)

(4) Rexec(idR, x) ∧ xk = 0 Rexec(idR, x)[xk/1]

(5) [CopyMessagePools]

(6) [CopyRest] },
where exec(k) =

∧

k

xk such that rk <PDG ra

Rξ(idR, a′) = RM (idR, a′) if the guard contains incoming message event

or Rattchg(idR, statusnew)) if the guard contains internal event.

The condition part of this CA-rule obtains the current state of the execution plan for this
event and insures that this CA-rule has not yet been taken into consideration (xk = 0) and that
all the preceding CA-rules have been taking into consideration (exec(k)).

Assume that Σ 2 πk. Then, since each micro-step is preceded by the ImmEffect , then the
CA-rule implementing the immediate effect of the event has already been fired. Since it has
been fired then for each i either of the effects has been applied:

RFexec(idR, x1, . . . , xq) ∧ πi(idR) RFexec(idR, x1, . . . , xq)[xi/0]

RFexec(idR, x1, . . . , xq) ∧ ¬πi(idR) RFexec(idR, x1, . . . , xq)[xi/1]

Since Σ 2 πk, then it is the second effect that has been applied, so xk = 1, which prevents our
CA-rule to fire, since the condition part is not met.

Now let us assume that the prerequisite holds, but the ordering implied by PDG(Γ) is not
yet respected, i.e. there exists a rule r′, such that �′R′.s′ < +R.activeS and that it has not yet
been considered. Then the executability flag x′ will be equal to 0, which will prevent rule from
firing, since the condition part of the CA-rule contains a check x′ = 1.

Now let us assume that Σ � πk, the ordering is respected, but Σj 2 αk, so either on ξ(x)
hasn’t happened or Σ 2 φk. Then the CA-rule will be eligible to fire, however, the effects (1-3)
will not be applied, since the query for instantiating them will be empty:

• in case Σj 2 φk – it is obvious.

• in case on ξ(x) hasn’t happened, this means that the corresponding record hasn’t been
put into the Rξ, therefore Rξ will be empty.

Then the only effects that will possible take place are (3)–(6), which do not deal with any data
or status attributes and, however, mark this PAC-rule as considered, so that rules dependent
on this one could proceed.

Not let us assume that Σ � πk, Σj � αk and the ordering is respected. Then the effect will be
applied and will result in toggling the status attribute R.activeS to true. None of the remaining
effects deal with data or status attribute, so the resulting DCDS pre-snapshot will coincide to
that of GSM micro-step w.r.t. to data and status attributes.

The proof for other PAC rules can be formulated similarly to PAC-1.
The proof for CA-rule of sending a set of outgoing one-way messages once all the PAC rules

have been taken into consideration, can be formulated similarly to the ImmEffect rule.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 92 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

We now have to prove the second and the third statement of the proof plan.

Lemma A.2. Given an artifact instance AR for each possible GSM B-step (i.e. a sequence of
micro-steps preceded by ImmEff and followed by the step of sending outgoing messages to the
environment) there exists a corresponding execution in the DCDS transition system.

Proof. In order to prove this statement we have to prove that the mechanism used by the DCDS
translation to restrict the possible sequences of CA-rules results in the same order imposed by
the PDG graph of the GSM model.

Let us assume we have a sequence of PAC-rules ΓPAC = {ri = (πi, αi, γi)}, preceded by the
ImmEffect micro-step, which respect the order imposed by the PDG graph constructed for the
given GSM model. We now have to prove that for the set of corresponding CA-rules {tr(ri)}
the following holds:

∀rm, rn ∈ ΓPAC if rm <PDG rn then for any path in DCDS transition system,

tr(rm) is considered for firing before tr(rn) is considered for firing.

Assume rn = (π, α,�R.s) and rm = (π′, α′,�′R′.s′). Then �R.s < �′R′.s′. This means that, by
construction of PDG, α′ contains �R.s as a triggering event (or contains R.s in its condition).

Let us now consider corresponding DCDS CA-rules:

tr(rm) = Q 7→ act

tr(rn) = Q′ 7→ act′

By definition of DCDS translation, exec(n) ∈ Q′ where:

for each PAC rule rk = (πk, αk, γk) the expression exec(k) for the corresponding CA-rule tr(rk)
is defined as follows:

exec(k) =
∧

j

xj such that rj <PDG rk (i.e. γj ∈ αk),

where xj is a boolean flag that shows whether the CA-rule tr(rj) has been taken into consid-
eration. By construction of the DCDS translation, the boolean flag xj is only affected in the
CA-rule tr(rj) and in the first micro-step incorporating the immediate effect. The ImmEff
micro-step checks the prerequisite of a PAC rule in order to set the value of xj . Assume it is
set to 1, which means that prerequisite is not satisfied and therefore rj cannot influence αk,
so rk can fire, which is totally valid. Assume now it is set to 0, which means that rj is appli-
cable and should be taken into consideration. Then, the only place in the translation it may
be affected is the tr(rj) and it will be, in fact, changed to 1, whenever this CA-rule will be
nondeterministically chosen to fire. Till then it will be 0, which will prevent tr(rk) from firing.

Therefore tr(rn) will not be taken into consideration unless tr(rm) has been taken into
consideration.

Lemma A.3. Given an artifact instance AR, its GSM model and a corresponding DCDS trans-
lation, for each possible execution in DCDS starting with Immediate Effect rule, there exists a
corresponding B-step in GSM model, which results in the same next pre-snapshot Σj+1 w.r.t.
data and status attributes.

Proof. The proof is done by construction of CA-rules, see Section A.2.

Given a GSM model G with initial snapshot S0, we denote by ΥG its B-step transition system,
i.e., the infinite-state transition system obtained by iteratively applying the incremental GSM
semantics starting from S0 and nondeterministically considering each possible incoming event.
The states of ΥG correspond to stable snapshots of G, and each transition corresponds to a B-
step. We abstract away from the single micro-steps constituting a B-step, because they represent
temporary intermediate states that are not interesting for verification purposes. Similarly, given

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 93 of 94

FP7-257593 – ACSI Artifact-Centric Service Interoperation

the DCDS S obtained from the translation of G, we denote by ΥS its unblocked-state transition
system, obtained by starting from S0, and iteratively applying nondeterministically the CA-
rules of the process, and the corresponding actions, in all the possible ways. As for states,
we only consider those database instances where all artifact instances are not blocked; these
correspond in fact to stable snapshots of G. We then connect two such states provided that
there is a sequence of (intermediate) states that lead from the first to the second one, and for
which at least one artifact instance is blocked; these sequence corresponds in fact to a series of
intermediate-steps evolving the system from a stable state to another stable state. Finally, we
project away all the auxiliary relations introduced by the translation mechanism, obtaining a
filtered version of ΥS , which we denote as ΥS |G . The intuition about the construction of these
two transition systems is given in Figure 11. Notice that the intermediate micro-steps in the
two transition systems can be safely abstracted away because: (i) thanks to the toggle-once
principle, they do not contain any “internal” cycle; (ii) respecting the firing order imposed by
G, they all lead to reach the same next stable/unblocked state.

We can then establish the one-to-one correspondence between these two transition systems
by applying subsequently results obtained from Lemmas A.1 to A.3 to prove the following
theorem:

Theorem A.4 (Soundness and completeness). Given a GSM model G and its translation into
a corresponding DCDS S, the corresponding B-step transition system ΥG and filtered unblocked-
state transition system ΥS |G are equivalent, i.e., ΥG ≡ ΥS |G.

c© Deliverable D2.4.2 – Techniques and Tools for KAB, Action Linkage - Iter. 2 – v1.3 Page 94 of 94

	Document History
	List of Figures
	Introduction
	I Knowledge and Action Bases
	Data-Centric Dynamic Systems
	Data Layer
	Process Layer
	Semantics via Transition System
	Verification
	History-Preserving Mu-Calculus
	Persistence Preserving Mu-Calculus
	Summary of (Un)Decidability Results

	Knowledge-Based Dynamic Systems
	DL-LiteA Knowledge Bases
	Knowledge-Based Dynamic Systems: Definition
	Semantics via Transition System
	Summary of (Un)Decidability Results

	Semantically-governed Artifact Systems
	The Role of the Semantic Layer
	Linking Data to Ontologies
	Semantically-Governed Artifact Systems: Definition
	Execution Semantics
	Compilation of Semantic Constraints
	Rewriting and Unfolding of Dynamic Laws

	II KAB Instantiation: the Case of GSM
	The Guard-Stage-Milestone model
	Informal Introduction
	Formal Basis
	An Example from the ACSI Energy Use Case

	Undecidability of GSM Verification
	Translating GSM into DCDSs
	State-bounded GSM Models
	GSM Models without Artifact Creation
	Arbitrary GSM Models

	III KAB Instantiation: Artifact Systems with Semantic Layer
	DL Ontologies: a Recap
	Description Logic Ontologies
	Querying DL Ontologies

	Semantic GSM
	Linking Semantic GSM with Multiple Front-End Applications
	Data Transfer
	Transparent Access

	Semantic Monitoring and Governance of Relational Artifacts
	Data Transfer
	Transparent Access
	Semantic Event Log

	IV Model Checking GSM with Semantic Layer
	OBGSM System Specification
	Specification of Conceptual Temporal Properties
	Specification of the Input Mapping
	OBGSM Workflow and Components
	Running the OBGSM

	An Example from the ACSI Energy Use Case
	ACSI Energy Use Case at a Glance
	The Semantic Layer
	Verification

	V Appendix
	Translating GSM into the DCDS Framework
	Data layer
	Process layer
	An Example
	Correctness of the Translation

