
Capturing Relational Schemas and
Functional Dependencies in RDFS

Diego Calvanese
KRDB Research Centre

Free Univ. of Bozen-Bolzano, Italy
calvanese@inf.unibz.it

Wolfgang Fischl, Reinhard Pichler,
Emanuel Sallinger, Mantas Šimkus

Institute of Information Systems
Vienna Univ. of Technology, Austria

{wfischl, pichler, sallinger, simkus}@dbai.tuwien.ac.at

Abstract

Mapping relational data to RDF is an important task for the
development of the Semantic Web. To this end, the W3C has
recently released a Recommendation for the so-called direct
mapping of relational data to RDF. In this work, we propose an
enrichment of the direct mapping to make it more faithful by
transferring also semantic information present in the relational
schema from the relational world to the RDF world. We
thus introduce expressive identification constraints to capture
functional dependencies and define an RDF Normal Form,
which precisely captures the classical Boyce-Codd Normal
Form of relational schemas.

Introduction
Over the past years, we have been witnessing an enormous
growth of the Semantic Web through initiatives like Open
Linked Data (Bizer, Heath, and Berners-Lee 2009) and Open
Government Data (HM Government 2014; US Government
2014). As was noted by He et al. (2007) and Madhavan et
al. (2009), to a large extent, the data accessible on the web
still originates from relational databases. The World Wide
Web Consortium (W3C) has thus recognized a standardized
mapping of relational data to the Semantic Web data format
RDF as an important task. For this purpose, the so-called
direct mapping has been recently released as a W3C Rec-
ommendation (Arenas et al. 2012a). Note that the direct
mapping of relational data to RDF does not transfer the se-
mantic information present in the relational schema to the
RDF graph.

The goal of this paper is to study an enrichment of the di-
rect mapping to make it more faithful by transferring also im-
portant semantic information, e.g., functional dependencies,
from relational to RDF data. As a first attempt to transfer such
information to RDF, Sequeda, Arenas, and Miranker (2012)
have proposed to extend the mapping by the use of OWL
vocabulary. They have succeeded in transferring informa-
tion such as primary and foreign keys to an RDF graph with

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

OWL. They also proved several important properties of their
mapping, such as query-preservation, i.e., SQL queries over
the relational data can be rewritten to equivalent SPARQL
queries over the mapped data.

However, if the RDF graph resulting from such a mapping
is later changed (through update, delete, or insert operations),
then the correspondence between the relational and the RDF
data may get lost. We therefore propose a further extension
of the direct mapping that uses DL-LiteRDFS (Arenas et al.
2012b) – extended with disjointness – as basis. DL-LiteRDFS

is a variant of DL-LiteA (Calvanese et al. 2006) and captures
the Description Logic (DL) fragment of RDFS (Brickley and
Guha 2004). While this DL is simple and allows for effi-
cient reasoning, it naturally captures conceptual modeling
constructs, and hence can express dependencies over RDF
graphs. We present a mapping that produces an RDF graph
(corresponding to the direct mapping) and a DL TBox con-
straining the RDF graph (making use of DL-features such
as functionality and disjointness). We thus keep good prop-
erties of the mapping proposed by Sequeda, Arenas, and
Miranker (2012) – such as query preservation. In addition,
we are able to prove that this mapping satisfies a desired
one-to-one correspondence between relational databases and
legal RDF graphs (i.e., RDF graphs satisfying the constraints
of the TBox).

An important part of the semantic information present in
relational schemas is due to various forms of constraints
imposed on the relational data, such as key dependencies,
functional dependencies, foreign key dependencies, inclu-
sion dependencies, etc. The focus of our work is on func-
tional dependencies (fds). Intuitively, for a relation R, an
fd {A1, . . . , An} →R A0 expresses that if two tuples of R
agree on all attributes A1, . . . , An, they also have to agree on
attribute A0. We will see how to extend this notion to the DL
and RDF setting through the use of paths. Fds are a crucial
building block in database design (Mannila and Räihä 1992).
Indeed, they form the basis of the definition of normal forms
to eliminate redundancies and to avoid update anomalies. Se-
queda, Arenas, and Miranker (2012) have extended the direct
mapping by constraints such as primary and foreign keys,

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1003

while fds have not been in the scope of their work. Calvanese,
De Giacomo, and Lenzerini (2001) enrich DLs with fds and
with a generalization of DL functionality assertions, called
identification constraints (ids). The latter are extended by
Calvanese et al. (2008) to path-based ids (pids)1. Toman and
Weddell (2008) introduce path-based fds in DLs (containing
the expressive DL ALCN); however, they are not interested
in the correspondence to relational data and thus do not take
the direct mapping into account (Toman and Weddell 2005).

As we will show, even the more expressive pids fail to
capture fds for the direct mapping of relational data to RDF.
We shall therefore introduce a further extension of such ids,
which we call tree-based ids (tids). With this new class of ids,
we shall restore the desired one-to-one relationship between
legal databases (i.e., databases satisfying a given set of fds)
and legal RDF graphs.

As mentioned above, the usual strategy to avoid up-
date anomalies of relational data is to introduce normal
forms of relational schemas. Several normal forms of re-
lational schemas have been proposed since the very begin-
nings of relational database research, see, e.g., (Codd 1971a;
1971b). One of the most important and most intuitive normal
forms of relational schemas is Boyce-Codd Normal Form
(BCNF). A relational schema is in BCNF if the following
condition holds: Whenever there is an fd from a subset S of
the attributes to some attribute A /∈ S, then S is a super-key,
i.e., there is an fd from S to every attribute of this schema.
Our goal is to transfer the favorable properties of BCNF to
the RDF world. To this end, we first analyze how update
anomalies can arise in the presence of tids. We identify
several paths (stemming from the same tid) identifying the
same object as a crucial source of redundancy and hence of
update anomalies. This observation inspires the definition
of an RDF Normal Form (RNF) to avoid such anomalies.
Returning to the direct mapping, we prove that a relational
schema is in BCNF if and only if the corresponding TBox
with its constraints guarantees RNF. As a kind of surprise,
it turns out that – for relational schemas in BCNF – the ad-
ditional expressive power of tree-based ids is not needed to
capture fds. Indeed, under the restriction to BCNF, the origi-
nal form of ids introduced by Calvanese, De Giacomo, and
Lenzerini (2001) are expressive enough to transfer fds from
the relational schema to the DL TBox.

The remainder of this paper is structured as follows: after
recalling some basic notions and results, we introduce our
extended direct mapping of relational data to RDF. To capture
also fds, we then extend path-based ids to tree-based ids.
Finally, we define RNF and prove important properties of
this normal form. We conclude with a brief discussion of our
results and an outlook to future work.

Preliminaries
Databases. Let ∆r and ∆v be countably infinite, disjoint
sets of relation symbols and values, respectively. Each
R ∈ ∆r has an associated positive integer value ar(R),
called the arity of R. An atom is an expression of the form

1We explore the connection between pids and fds in the Section
“Capturing Functional Dependencies”.

R(c1, . . . , car(R)), where R ∈ ∆r and c1, . . . , car(R) ∈ ∆v.
A database (DB) I is afinite set of atoms. Let dom(I) denote
the set of values that occur in the atoms of I . We let Inst(R)
be the set of all DBs I with I ⊆ {R(t) | t ∈ (∆v)ar(R)},
i.e., all DBs over the relation symbol R. We let Inst(∆r) be
the set of all DBs over the relation symbols in ∆r.

Functional Dependencies. A functional dependency (fd)
is an expression of the form X →R Y , where R ∈ ∆r

and X,Y ⊆ {1, . . . , ar(R)}. A DB I satisfies X→R Y ,
denoted as I |= X →R Y , if for all {R(c1, . . . , cl),
R(c′1, . . . , c

′
l)} ⊆ I, it holds that ci = c′i for all i ∈ X

implies cj = c′j for all j ∈ Y . Given a set Σ of fds, we
write I |= Σ, if I |= ϕ for all ϕ ∈ Σ. Given an fd ϕ, we
write Σ |= ϕ if for all I |= Σ, it holds that I |= ϕ. We
say that Σ is in Boyce-Codd Normal Form (BCNF) if for
every X→R Y with Σ |= X→R Y , it holds that Y ⊆ X or
Σ |= X→R {1, . . . , ar(R)}.

DL-LiteRDFS ,pid . Unary (resp., binary) relation symbols
are also called concept names (resp., role names). The role
name id is called the identity role. For simplicity, we use the
following abstraction for RDF triples: A DB I is called an
RDF graph (RG) if it only consists of atoms with concept
names or role names as relation symbols, i.e., all atoms in
I are unary or binary. RGs can be easily converted to RDF
triples. We use calligraphic letters I,J to denote RGs.

A basic role is either a role name or an expression of the
form R−, where R is a role name. A basic concept is either
a concept name or an expression of the form ∃P , where
P is a basic role. We write R−(c, d) ∈ I if R(d, c) ∈ I,
and ∃P (c) ∈ I if there exists d with P (c, d) ∈ I. In the
following let A denote a concept name, B, B1, B2 basic
concepts and P , P1, P2 basic roles. A positive concept
inclusion is an expression of the form B v A. We write
I |= B v A if B(c) ∈ I implies A(c) ∈ I for every value
c. A positive role inclusion has the form P1 v P2. We write
I |= P1 v P2 if P1(c, d) ∈ I implies P2(c, d) ∈ I for all
values c, d. A negative concept inclusion is an expression of
the form B1 v ¬B2. We write I |= B1 v ¬B2 if B(c) ∈
I implies B2(c) 6∈ I for every value c. A negative role
inclusion has the form P1 v ¬P2. We write I |= P1 v ¬P2

if P1(c, d) ∈ I implies P2(c, d) 6∈ I for all values c, d. A
functionality assertion has the form (funct P). We write
I |= (funct P) whenever P (a, b) ∈ I and P (a, c) ∈ I
implies b = c.

A test role is an expression of the form B?. We write
B?(c, d) ∈ I in case c = d and B(c) ∈ I. A path is a
(possibly empty) word π = σ1 · · ·σm, where each σi is a
basic or test role. A path-based identification constraint (pid)
(Calvanese et al. 2008) has the form B?(π1, . . . , πn), where
π1, . . . , πn are paths. The function (·)I assigns to each path
π a binary relation based on the RG I as follows:

• εI = {(e, e) | e ∈ ∆v}

• (σ · π)I = {(e1, e2) | ∃(e′1, e′2) ∈ πI s.t.
σ(e1, e

′
1) ∈ I ∧ σ(e2, e

′
2) ∈ I},

1004

White House
building

Oval Office
room

Entrance Hall
room

1600 PA Av
address

1500 PA Av
address

is inis in

located atlocated at

Figure 1: An RG I with data on buildings.

We write I |= B?(π1, . . . , πn), if (e1, e2) ∈
⋂n

i=1(B? ·πi)I
implies e1 = e2. We often write π to denote a pid, e.g.,
π = B?(π1, . . . , πn). We then denote by πI the binary
relation given by

⋂n
i=1(B? · πi)I . A pid is called fully local

if every path πi contains at most one role.
A TBox T is a finite set of inclusions and pids. We write

I |= T if I |= α for all α ∈ T , and id(a, b) ∈ I implies
a = b. Let Mod(T) be the set of all RGs J s.t. J |= T .
Example 1. Consider an RG I that stores buildings, their
rooms and addresses, as depicted in Figure 1. All rooms
in the same building must have the same address, which is
expressed using the pid σ = address?(located at− · is in).
The pid σ is not satisfied in I , since (address? · located at− ·
is in)I = {(1500 PA Av,1600 PA Av)}. In order to sat-
isfy σ we can merge the nodes with values "1500 PA Av"
and "1600 PA Av", which is illustrated in Figure 3.

Direct Mapping of Relational Data to RDFS
Graph Data

Here we propose a mapping from DBs to RGs. Note that, our
mapping is similiar to the so-called direct mapping proposed
by the W3C (Arenas et al. 2012a) and Sequeda, Arenas, and
Miranker (2012). At the end of this section we will discuss
the differences between the direct mapping introduced here
and by Sequeda, Arenas, and Miranker (2012).

We translate relational symbols and DBs to RGs conform-
ing to a TBox. Since our focus is on fds, we do not discuss
primary and foreign keys. We show that our mapping is se-
mantics preserving with respect to fds. First, we will define
a mapping from relation symbols without fds to a TBox, s.t.
all databases conforming to such a TBox are those that can
be mapped to databases of the relation symbols. Then we ex-
tend this definition with a mapping from fds to dependencies
over RGs. We will call the combination of both mappings
Relational to RDF graph direct mapping (R2RG).

For every R ∈ ∆r we use the following: The concept TR
represents tuples of R. Let i ∈ {1, . . . , ar(R)}. The role
R#i associates a tuple with its value in column i, and the
concept R i represents the values in column i. We assume
the domains of the columns to be disjoint.
Definition 1 (Schema mapping sm). The function sm(∆r)
outputs a TBox T as follows. For each R ∈ ∆r we introduce
the following set of assertions:

1. All concepts are disjoint from each other, e.g., an attribute
cannot also denote a tuple:

TR v ¬R i, R i v ¬R j, for 1 ≤ i < j ≤ ar(R)

2. Every role has an associated domain and range:

∃R#i v TR, ∃R#i− v R i, for 1 ≤ i ≤ ar(R)

3. Functionality assertions express that each tuple can only
have one of each attribute:

(funct R#i), for 1 ≤ i ≤ ar(R)

4. Identification constraints ensure that no tuple can occur
twice (the relational model assumes set semantics):

TR?(R#1, . . . , R#ar(R)).

The function sm maps relation symbols to TBoxes. Given
this mapping we can translate RGs conforming to T into
DBs and vice-versa. We now define such translations. The
function d2r(I) translates a DB I into an RG satisfying the
TBox created by the function sm .
Definition 2 (DB to RG mapping). Let I be a finite set of
atoms. Let T = sm(∆r). The function d2r(I) returns the
RG J , defined as follows. For each atom R(c1, . . . , car(R))
we add to J : TR(tc1,...,car(R)

), where tc1,...,car(R)
is a new

value not in dom(I) and called tuple identifier; R i(ci) and
R#i(tc1,...,car(R)

, ci), where 1 ≤ i ≤ ar(R).

We now show that the RG J returned by d2r(I) satisfies
all assertions in T .
Proposition 1. Let T = sm(∆r), let I be a database and
J the RG returned by d2r(I). Then J |= T .

Proof. In order to show that J |= T we need to show that
J satisfies all assertions in T . That is, the following holds
for each relation R ∈ ∆r.
• TR v ¬R i: Every TR atom is built using new domain

elements not yet in I .
• R i v ¬R j: All columns domains are disjoint.
• ∃R#i v TR: All tuple identifiers are in both relations.
• ∃R#i− v R i: All values are in both relations.
• (funct R#i): For each atom we add one value to R#i.
• TR?(R#1, . . . , R#n): Since each tuple is unique, also

the identification assertion is satisfied by J .

The function r2d(I) translates an RG I satisfying a TBox
created by sm(∆r) into a corresponding DB.
Definition 3 (RG to DB mapping). Let I be an RG, s.t. I |=
T , where T = sm(∆r). Let ⊕ denote exclusive or. The func-
tion r2d(I) returns J = {R(c1, . . . , car(R)) | ∃TR(t) ∈ I
s.t.
∧ar(R)

i=1 ((R#i(t, ci) ∈ I)⊕ ci = NULL)}.
Given the construction of Definition 3, it is easy to see that

the DB r2d(I) has only atoms of the relation symbols in ∆r.
That is, the following holds.
Proposition 2. Let ∆r be a set of relation symbols, T =
sm(∆r), and let I be an RG, s.t. I |= T . Let J = r2d(I).
Then J has only atoms of the relation symbols in ∆r.

We have established a direct mapping of relational DBs
to RDF graphs. We are now ready to prove a one-to-one
correspondence between such DBs and RGs.
Theorem 1. Let ∆r be a set of relation symbols and let
T = sm(∆r). Then, we have

(a) I = d2r(r2d(I)), and
(b) I is isomorphic to r2d(d2r(I)).

1005

Proof sketch. (a): Let I be a DB. We translate I into an
RG J = d2r(I) and back into a DB I ′ = r2d(J). Then,
utilizing Propositions 1 and 2, we have that I ′ = I .

(b) Similarly, let I be an RG, s.t. T |= I. We translate I
into a DB and back, i.e., I ′ = d2r(r2d(I)). Again using
Propositions 1 and 2, we get that I ′ and I are isomorphic.

As a corollary of Theorem 1 we get that Inst(∆r) =
{r2d(I) | I |= T } and Mod(T) is isomorphic to {d2r(I) |
I ∈ Inst(∆r)}. Thus, the set Inst(∆r) is equal to the trans-
lated RGs satisfying the TBox T = sm(∆r) and vice versa.

The direct mapping DM introduced by Sequeda, Arenas,
and Miranker (2012) translates a relational schema into OWL
(similar to sm) and a database instance into RDF (similar
to d2r). Note that our direct mapping d2r is a notational
variant of the translation from DBs to RGs established by
the direct mapping DM. Thus, all good properties, e.g.
information and query preservation, of the direct mapping
DM that rely solely on the direct mapping of DBs to RGs
are also kept by the direct mapping d2r . Therefore, in case
of information preservation the proof of part (a) in Theorem 1
is similiar to the proof of Theorem 1 by Sequeda, Arenas,
and Miranker (2012). In contrast, the proof of part (b) in
Theorem 1 does not hold for DM. The direct mapping
DM only generates a set of domain and range assertions of
object- and datatype properties from the relational schema,
whereas our direct mapping sm does the same (see 2. of
Definition 1) and adds disjointness of concepts, functionality
and identification assertions. These additional assertions
allow us to introduce a direct mapping r2d of RGs to DBs
and establish information preservation also for this direct
mapping (part (b) of Theorem 1).

Capturing Functional Dependencies
So far we have shown that we can map DBs to RDF graphs
and vice-versa. Now, we extend this mapping with func-
tional dependencies. Path-based identification constraints
(Calvanese et al. 2008) are an ideal candidate to express fds
over RDF graphs. Here, we investigate the expressivity of
pids and show that, surprisingly, they are not sufficient to
capture fds under the direct mapping. The following example
gives the idea why this is not the case.

Example 2. Consider the fd σ := {1, 2} → 3. The naive
translation following the spirit of the direct mapping into a
pid is δ := R 3?(R#3− · R#1, R#3− · R#2). We will
now show that σ and δ distinguish different DBs and RGs. In
Figure 2 we give two DBs with relation symbol R and arity 4.
The DB in Figure 2a does not satisfy σ, i.e. c1 = c2, whereas
the DB in Figure 2b does satisfy σ. If we translate σ into the
pid δ and also use d2r to map the DBs in Figures 2a and 2b
to RGs, depicted in Figures 2d and 2e, respectively, we have
two RGs that both violate the pid δ, i.e. c1 = c2 and c′1 = c′2.

The above example shows that there exist fds for which
there is no intuitive translation into pids, such that the DBs
that (do not) satisfy these fds translated into RGs also corre-
spondingly (do not) satisfy the translated pids. Actually, we
will show in Theorem 2 that there are fds, which cannot be

translated to any set of pids, such that the previous property
holds. But first, we define a special simulation relation to
analyze the existence of paths in pairs of RGs. Recall that B
denotes a basic concept and P a basic role.

Definition 4. Let I1, I2 be a pair of RGs and let c1 in I1

and c2 in I2. A (c1, c2)-simulation of I1 by I2 is a relation
∼ ⊆ ∆v ×∆v such that:
• c1 ∼ c2;
• for every o1 in I1, there is o2 in I2 with o1 ∼ o2;
• if o1 ∼ o2 and B(o1) ∈ I1, then B(o2) ∈ I2;
• if o1 ∼ o2 and P (o1, o

′
1) ∈ I1, then there exists o′2 such

that P (o2, o
′
2) ∈ I2 and o′1 ∼ o′2;

• if o1 ∼ o2 and P (o1, c1) ∈ I1, then P (o2, c2) ∈ I2.

By using a (c1, c2)-simulation of I1 by I2 we show that
once a pid is violated in I1, it is also violated in I2.

Proposition 3. Let ∼ be a (c1, c2)-simulation of I1 by I2,
and assume that b1 ∼ b2. Let π be a pid. Then (b1, c1) ∈ πI1
implies (b2, c2) ∈ πI2 .

Proof sketch. By induction on the length, we show that every
path from b1 to c1 in I1 also exists from b2 to c2 in I2.

Utilizing the direct mapping, we now show that there is an
fd that is not expressible by any set of pids. That is, the fd is
able to distinguish two different DBs, whereas there is no set
of pids that distinguishes the translated DBs.

Theorem 2. There exists a set Σ of fds such that there does
not exist a set Φ of pids such that: I |= Σ iff d2r(I) |= Φ for
all databases I .

Proof. Let R be a relation symbol with arity 4 and let Σ =
{{1, 2} →R 3}. Let Φ be an arbitrary set of pids. To prove
the claim it suffices to define DBs I and I ′ such that I 6|= Σ
and I ′ |= Σ but d2r(I) 6|= Φ and d2r(I ′) 6|= Φ.

Let I = {R(a1, b1, c1, d1), R(a1, b1, c2, d2)} (Figure 2a).
Clearly, I 6|= Σ. Suppose d2r(I) 6|= Φ, i.e., there ex-
ists π ∈ Φ and a pair (d, e) ∈ πd2r(I) with d 6= e.
Note that for (d, e) ∈ πd2r(I) to be true, there must ex-
ist d′, e′ and a role P such that P (d, d′) ∈ d2r(I) and
P (e, e′) ∈ d2r(I). Due to the structure of d2r(I), the lat-
ter is true only (c1, c2), (d1, d2) and (t1, t2) (cf. Figure 2d).
I.e. (d, e) ∈ {(c1, c2), (d1, d2), (t1, t2)}. Therefore, we con-
sider those three cases:

1. Assume (d, e) = (c1, c2). Let I ′ = {R(a′1, b
′
2, c
′
1, d
′
1),

R(a′2, b
′
1, c
′
1, d
′
1), R(a′3, b

′
1, c
′
2, d
′
2), R(a′1, b

′
3, c
′
2, d
′
2)}

(Figure 2b). Clearly, I ′ |= Σ. Next, we need to show that
there is a (c2, c

′
2)-simulation ∼ of d2r(I) by d2r(I ′). We

do so, by exhbiting such a simulation in the following
table (every pair of objects connected by ∼ below is in the
(c2, c

′
2)-simulation ∼):

HHH
HHM′
M

t1, t2 a1 b1 c1, c2 d1, d2

t′1, t′2, t′3, t′4 ∼
a′1, a′2, a′3 ∼
b′1, b′2, b′3 ∼
c′1, c′2 ∼
d′1, d′2 ∼

1006

1 2 3 4
t1 a1 b1 c1 d1

t2 a1 b1 c2 d2

(a) DB I .

1 2 3 4
t′1 a′1 b′2 c′1 d′1
t′2 a′2 b′1 c′1 d′1
t′3 a′3 b′1 c′2 d′2
t′4 a′1 b′3 c′2 d′2

(b) DB I ′ used in Example 2, Case 1 and
Case 2 of Theorem 2.

A B C D
t′1 a′1 b′2 c′1 d′1
t′2 a′1 b′1 c′1 d′2

(c) DB I ′ used in Case 3 of Theorem 2.

c1 : R 3 t1 : R

a1 : R 1

t2 : Rc2 : R 3

b1 : R 2

d2 : R 4

d1 : R 4
R#3

R#1

R#1

R#3

R#2

R#2

R#4

R#4

(d) RGM = i2mR[U] (I).

c′1 : R 3

t′1 : R

a′
1 : R 1

a′
2 : R 1

a′
3 : R 1

t′2 : R

c′2 : R 3

t′3 : R

b′1 : R 2

b′2 : R 2

b′3 : R 2

t′4 : R

d′1 : R 4

d′2 : R 4

R#3

R#1

R#1

R#1

R#1

R#3R#3

R#2

R#2

R#2

R#2

R#3

R#4

R#4R#4

R#4

(e) RGM′ = i2mR[U] (I ′) used in
Example 2, Case 1 and Case 2 of

Theorem 2.

c1 : R 3

t1 : R

a1 : R 1

t2 : R

b1 : R 2

d2 : R 4

d1 : R 4

R#3R#1

R#1 R#3

R#2

R#2

R#4

R#4

(f) RGM′ = i2mR[U] (I ′) used in
Case 3 of Theorem 2.

Figure 2: DBs and their corresponding RGs used in the proof of Theorem 2.

Therefore, c1 ∼ c′1. By Proposition 3, (c′1, c
′
2) ∈ πd2r(I ′).

Since c′1 6= c′2, we get d2r(I ′) 6|= π and thus d2r(I ′) 6|=
Φ.

2. Assume (d, e) = (d1, d2). The argument is identical to
the above case. Simply replace c1 by d1 and c2 by d2.

3. Assume (d, e) = (t1, t2). Let I ′ = {R(a′1, b
′
1, c
′
1, d
′
1),

R(a′1, b
′
1, c
′
1, d
′
2)} (Figure 2c). Clearly, I ′ |= Σ. Next, we

need to show that there is a (t2, t
′
2)-simulation∼ of d2r(I)

by d2r(I ′). Such a simulation is given in the following
table (every pair of objects connected by ∼ below is in the
(t2, t

′
2)-simulation ∼):

H
HHHHM′
M

t1, t2 a1 b1 c1, c2 d1, d2

t′1, t′2 ∼
a′1 ∼
b′1 ∼
c′1 ∼

d′1, d′2 ∼

Therefore, t1 ∼ t′1. By Proposition 3, (t′1, t
′
2) ∈ πd2r(I ′).

Since t′1 6= t′2, we get d2r(I ′) 6|= π and thus d2r(I ′) 6|=
Φ.

As we have seen, pids do not properly capture fds in RGs.
We now extend path-based to tree-based identification con-
straints. They allow us to overcome the limitations of pids.

Definition 5. A tree-based identification constraint (tid) is
an expression constructed using the following grammar:

τ ::= ε | σ · τ | (τ, τ)

where σ is an ordinary role or a test role of the form C?, and
C is a concept. We usually write C?(τ1, τ2 . . . , τn) instead
of (C? · τ1, (τ2, (. . . (τn−1, τn) . . .)).

The function πI is easily extended from pids to tids.
Definition 6. Let I be an RG. We define the function τI that
assigns to each tid τ a binary relation based on I as follows:
• (ε)I = {(e, e) | e ∈ ∆v},
• (σ · τ)I = {(e1, e2) | ∃(e′1, e′2) ∈ τI s.t.

σ(e1, e
′
1) ∈ I ∧ σ(e2, e

′
2) ∈ I},

• (τ1, τ2)I = τI1 ∩ τI2 .
We say that I |= τ , if (e1, e2) ∈ τI implies e1 = e2.

Notice that each pid is also a tid, but obviously the converse
is not the case. From now on, we assume that a TBox T also
allows for tids, which is called a DL-LiteRDFS ,tid TBox.
Example 3. Following Example 2 we can express the fd
σ := {1, 2} → 3 using the tid τ := R 3?(R#3− ·
(R#1, R#2)). Clearly, considering the RG M depicted
in Figure 2d, we have (c1, c2) ∈ τM. Since c1 6= c2, τ is
violated inM. The RGM′ depicted in Figure 2e does not
violate τ . Thus, τ captures the fd σ overM andM′.

We can generalize the translation used in Example 3 to
arbitrary fds.
Definition 7 (Fds to tids direct mapping). Given a rela-
tional symbol R and a set Σ of fds, the function dm(Σ)
outputs a set of tids Φ as follows: For each fd in Σ of the
form

{i1, . . . ik} → i,
we add the following tid to Φ:

R i?(R#i− · (R#i1, . . . , R#ik))

1007

White House
building

Oval Office
room

Entrance Hall
room

1600 PA Av
address

is inis in

loca
ted

atlocated at

Figure 3: An RG J with data about buildings.

We now combine the fds to tids direct mapping (Defini-
tion 7) with the relation symbols to TBox direct mapping
(Definition 1) to obtain the following:
Definition 8 (Relational to RDF graph direct mapping
(R2RG)). Given a set ∆r of relation symbols and a set
Σ of FDs over the relation symbols in ∆r, the function
rdm(∆r,Σ) outputs a TBox T = sm(∆v) ∪ dm(Σ).

We now show that the tids generated by this direct mapping
indeed captures functional dependencies in RGs.
Theorem 3. Let I be a database with relation symbols ∆r,
let T = sm(∆v), and let Σ be a set of fds over the relation
symbols in ∆r. Then,

I |= Σ iff d2r(I) |= dm(Σ)

Proof sketch. Both directions are proved by contraposition.
(⇒) We assume that there is a tid τ ∈ dm(Σ) that is

violated by d2r(I). Hence, there is a witness, i.e. two objects,
for the violation of τ in d2r(I). We then show, that the
corresponding two values in I = r2d(d2r(I)) are a witness
for the violation of the translated fd.

(⇐) We assume that there is an fd σ ∈ Σ that is violated by
I . Hence, there is a witness, i.e. two values, for the violation
of σ in I . We then show, that the corresponding two objects
in d2r(I) are a witness for the violation of the translated
tid.

Normal Form
In relational databases, normal forms are used to avoid update
anomalies originating from redundancies induced by func-
tional dependencies. Such redundancies are also possible in
RDF graphs as we will see in the following example.
Example 4. Consider the RG from Example 1. Re-
member that the address is the same for all rooms
in one building, which is expressed using the tid
address?

(
located at− · is in

)
. Now consider the DB il-

lustrated in Figure 3. Clearly, the information that the
"White House" is located in "16000 PA Av" is stored
redundantly. If we change the address of one room, we vi-
olate the above tid (see Figure 1). This is what is called an
update anomaly. We can avoid such a redundancy by storing
the address directly connected to the building concept.

In order to detect a redundancy as illustrated in Example 4,
we need to ensure that the properties specified by each tid are
stored as local as possible (e.g., directly connected as in our
example). This is captured as follows:
Definition 9 (RDF Normal Form (RNF)). Let T be a TBox
with tids, and let Φ denote the tids in T . Then T is in RDF
Normal Form (RNF) if and only if there is a set Φ′ of fully
local tids, s.t. Mod(T) = Mod((T \ Φ) ∪ Φ′).

t1 : TR t2 : TR

ai1
: R i1 aik

: R ik

aj1
: R j aj2

: R ja1 : R i a2 : R i

. . .

R#i1

R#i1

R#ik
R#ik

R#j R#jR#i R#i

Figure 4: The RG A.

We now show that RNF captures BCNF in RGs using the
relational to RDF graph direct mapping.

Theorem 4. Let R be a relation symbol and Σ a set of fds
over R. Then (R,Σ) is in BCNF iff rdm(R,Σ) is in RNF.

Proof. Let T = rdm(R,Σ) and let Φ be the set of tids in T .
(⇒) Suppose (R,Σ) is in BCNF. We need to show

that there exists a set Φ′, s.t. each σ ∈ Φ′ is fully lo-
cal and Mod(T) = Mod((T \ Φ) ∪ Φ′). We show
this by substituting each non-local σ ∈ Φ by an equiv-
alent fully local tid σ′ as follows: The tid σ is of the
form R i?(R#i− · (R#i1, . . . , R#ik)) and corresponds
to the fd {i1, . . . , ik} →R i. Since (R,Σ) is in BCNF,
the attributes i1, . . . , ik must be a super-key, i.e., Σ |=
{i1, . . . , ik} →R {1, . . . , ar(R)}. Therefore, we add to Φ′

the tid σ′ = TR?(R#i1, . . . , R#ik). It can be verified that
{σ′, (funct R#i)} |= σ.

(⇐) We proof the contrapositive. Suppose (R,Σ) is not
in BCNF. We need to show that there does not exist a set
Φ′Σ, s.t. each σ ∈ Φ′Σ is fully local. Since (R,Σ) is not
in BCNF, there exists an fd σ = {i1 . . . ik} →R i in Σ,
s.t. {i1 . . . ik} is not a super-key. Therefore, there exists
an attribute j, s.t. {i1 . . . ik} 6→R j. The fd σ is translated
by the R2RG direct mapping into a tid ϕ = R i?(R#i− ·
(R#i1, . . . , R#ik)). Now consider the witness RGA for the
violation of ϕ depicted in Figure 4, i.e., (a1, a2) ∈ ϕA. Note
that since i1, . . . , ik is not a super-key, the tuple identifiers t1
and t2 are distinct. Suppose there is a set of fully local tids
Θ, s.t. (a1, a2) ∈ ΘA. Since a1 and a2 are only reachable by
R#i, also (t1, t2) ∈ ΘA. This contradicts that t1 and t2 are
distinct. Hence, there is no such set of fully local tids Θ.

Note that the proof of Theorem 4 relies only on the tids and
functionality assertions in the TBox T . Hence, to establish
that RNF captures BCNF, a direct mapping of fds together
with functionality assertions suffices. Clearly, for such a
direct mapping Property (b) of Theorem 1 is no longer true.

CHECKRNF Next, we provide a polynomial time algo-
rithm to check whether a given TBox T is in RNF. To this end,
we adapt the well-known database chase technique (Maier,
Mendelzon, and Sagiv 1979; Beeri and Vardi 1984).

Definition 10. Let I be an RG and T a TBox. An RG I ′ is
called a chase of I w.r.t. T if I ′ can be obtained from I by
exhaustively applying the following rules:

• If id(a, b) ∈ I or T has τ such that (a, b) ∈ τI , and
a 6= b, then replace every occurrence of a in I by b.

1008

• If B v A ∈ T and B(c) ∈ I, then add A(c) to I.
• If P v R ∈ T and P (c, d) ∈ I, then add R(c, d) to I.
• If P v R− ∈ T and P (c, d) ∈ I, then add R(d, c) to I.

Let chase(I, T) denote a chase of I w.r.t. T . Note that
chase(I, T) is unique up to renaming of values.

Our next step is to show how the structure of a given tid τ
can be represented as an RG.

Definition 11 (Characteristic RG). Let τ be a tid, and a, b
a pair of values. Then rg(τ, a, b) is an RG defined inductively
on the structure of τ as follows:

• If τ = id, then rg(τ, a, b) = {id(a, b)}.
• If τ = A? · τ ′, then rg(τ, a, b) = rg(τ ′, a, b) ∪
{A(a), A(b)}.

• If τ = (∃R)? · τ ′, then rg(τ, a, b) = rg(τ ′, a, b) ∪
{R(a, a′), R(b, b′)}, where a′, b′ are fresh values, i.e.,
a′, b′ /∈ dom(rg(τ ′, a, b))

• If τ = (∃R−)? · τ ′, then rg(τ, a, b) = rg(τ ′, a, b) ∪
{R(a′, a), R(b′, b)}, where a′, b′ are fresh values.
• If τ = R · τ ′, then rg(τ, a, b) = {R(a, a′), R(b, b′)} ∪ I,

where I is obtained from rg(τ ′, a′, b′) by replacing every
occurrence of a, b with fresh values.

• If τ = (τ1, τ2), then rg(τ, a, b) = rg(τ1, a, b) ∪ I, where
I is obtained from rg(τ2, a, b) by renaming every value c,
c 6∈ {a, b}, with a fresh value.

Note that for every (a′, b′) ∈ τI , there is a homomorphism
h from rg(τ, a, b) to I with h(a) = a′ and h(b) = b′. The
following shows how T |= τ can be decided by employing
the chase of a characteristic RG.

Proposition 4. Let τ be a tid and T a TBox. Let I =
rg(τ, a, b) and J = chase(I, T). Then T |= τ iff (a) there
is a negative inclusion α ∈ T s.t.J 6|= α, or (b) J |= τ .

Proof sketch. (⇒) Observe that J |= α for every tid and
positive inclusion α in T . If in addition J |= α for all
negative inclusions α of T , i.e., J |= T , then by assumption
T |= τ we must have J |= τ .

(⇐) Assume towards a contradiction that T 6|= τ , i.e.,
there is an RGM s.t.M 6|= τ . That is, there exist a′ 6= b′

with (a′, b′) ∈ τM. Then there is homomorphism h from I
toM with h(a) = a′ and h(b) = b′. In other words, I is a
counter-example for τ . It is easy to check that the counter-
example is preserved after applying any chase rule. That is,
we get chase(I, T) |= T but still chase(I, T) 6|= τ .

It is not difficult to see that the method of Proposition 4
allows to check T |= τ in polynomial time in the size of the
input. Given that there are only finitely many, yet double
exponentially, different sets of fully local tids over a given
set of basic concepts and roles, the decidability of RNF can
already be inferred. However, to obtain a polynomial time
algorithm we need to reduce the search space significantly.

Let I be an RG and a, b a pair of values. We next show how
to construct the “maximal” tid that may be used to collapse
a and b in I using the types (Tp) of values in an RG. In the
following, given a set Γ = {B1, . . . , Bn} of basic concepts,
we write Γ? instead of B1? · · ·Bn?.

Definition 12. Let I be an RG and a, b a pair of values. Let
Tp(c) = {A | A(c) ∈ I} ∪ {∃R | R(c, c′) ∈ I} ∪ {∃R− |
R(c′, c) ∈ I}. We let Tp(a, b) = Tp(a) ∩ Tp(b). Then
τ(I, a, b) = Tp(a, b)?(τ1, . . . , τn), where {τ1, . . . , τn} =
{R · (Tp(c))? | {R(a, c), R(b, c)} ⊆ I}.

In Algorithm 1 we present our procedure to check whether
a given TBox T is in RNF. If the answer is “yes”, the pro-
cedure returns the desired normalized TBox. Intuitively, it
checks whether each tid τ ∈ T can be simulated by a set
of fully local tids. To this end, the algorithm computes a
characteristic RG of τ and then chases it using the inclusions
of T and tids τ ′ extracted from the current RG according
to the method in Definition 12. To ensure soundness, the
algorithm checks that each applied τ ′ is in fact entailed from
T .

Theorem 5. The algorithm CHECKRNF in Algorithm 1 is a
decision procedure for RNF.

Proof. Let T be a TBox and let Φ the set of tids in T . Let
Φ∗ be a set of all fully local tids τ such that T |= τ . Observe
that T is in RNF iff Mod(T) = Mod((T \Φ)∪Φ∗). Indeed,
assume T is in RNF, i.e., there is a set of fully local tids Φ′

with Mod(T) = Mod((T \ Φ) ∪ Φ′). Hence Φ′ ⊆ Φ∗ must
be true, and thus Mod((T \ Φ) ∪ Φ∗) ⊆ Mod((T \ Φ) ∪
Φ′) = Mod(T). Moreover, Mod(T) ⊆ Mod((T \Φ)∪Φ∗)
because T |= τ for each τ ∈ Φ∗. This shows that deciding
if T is in RNF can be reformulated to deciding Mod(T) =
Mod((T \ Φ) ∪ Φ∗), which is equivalently formulated as:

1. (T \ Φ) ∪ Φ∗ |= τ , for all τ ∈ Φ, and
2. T |= τ , for all τ ∈ Φ∗.

Clearly, (2) holds by the definition of Φ∗. For (1), let τ ∈ Φ
and I = rg(τ, a, b). By employing Proposition 4, it suffices
to check that either there is a negative inclusion α ∈ T with
chase(I, (T \Φ)∪Φ∗) 6|= α or chase(I, (T \Φ)∪Φ∗) |= τ ,
for all τ ∈ Φ. Algorithm 1 implements this by computing
chase(I, (T \ Φ) ∪ Φ∗)). To this end, it traverses pairs
a 6= b of I and checks whether Φ∗ has a tid τ ′ that would
collapse a and b in the current RG. Clearly, such a τ ′ exists
iff the tid τ(I, a, b) collapses a and b in the current RG.
If the previous succeeds for all τ ∈ Φ, the algorithm has
the set Φ̂ ⊆ Φ∗ of all tids that were used to compute each
chase(I, (T \ Φ) ∪ Φ∗). Thus (T \ Φ) ∪ Φ̂) is the desired
normalized TBox.

Theorem 6. Deciding whether T is in RNF is feasible in
polynomial time.

Proof sketch. To prove the claim we analyze Algorithm 1.
The loop in line 2 has at most |Φ| iterations, which is linear
in the size of Φ. The RG I in line 3 can be constructed in
linear time in the size of Φ. The number of iterations of the
“repeat” loop is bounded by a polynomial in the size of Φ
and T . The condition in the “if” statement on line 6 can be
decided in polynomial time in the size of I and T . Observe
that τ(I, a, b) can be constructed in polynomial time in the
size of I, a, b. Moreover, using Proposition 4, T |= τ(I, a, b)
can be decided by computing chase(τ(I, a, b), T), which is

1009

Algorithm 1: CHECKRNF
Input: TBox T with Φ the set of tids in T
Output: If exists, a set Φ̂ of fully local tids s.t.

Mod(T) = Mod((T \ Φ) ∪ Φ̂)

1 Φ̂← ∅ ;
2 foreach τ ∈ Φ do
3 I ← rg(τ, c, d) (c, d are arbitrary values) ;
4 repeat
5 change ← false ;
6 if exist a 6= b in I s.t. T |= τ(I, a, b) then
7 Φ̂← Φ̂ ∪ {τ(I, a, b)};
8 Identify a and b in I ;
9 change ← true ;

10 if I 6= chase(I, T \ Φ) then
11 I ← chase(I, T \ Φ) ;
12 change ← true ;

13 until change = false;
14 if I |= T and I 6|= τ then
15 return “not in RNF” ;

16 return (T \ Φ) ∪ Φ̂ ;

feasible in polynomial time. Finally, the condition in line 14
can be computed in polynomial time.

We are now going to illustrate in two examples the algo-
rithm CHECKRNF.

Example 5. Consider the tid τ := address?(located at− ·
is in). from Example 4. There we have argued that τ
leads to a violation of RNF. We now show that CHECK-
RNF returns “not in RNF” on τ . First, we can use as char-
acteristic database I = rg(τ,1500 PA Av,1600 PA Av)
the RG depicted in Figure 1. We now check the
condition in line 6 of CHECKRNF. For example, con-
sider the pair Entrance Hall and Oval Office in
I. Then, τ(I,Entrance Hall,Oval Office) =
∃located at?(is in). Clearly, T 6|= ∃located at?(is in).
Note that there does not exist any other pair a 6= b in I s.t.
T |= τ(I, a, b). Since then the condition in line 10 is also
false, the inner loop terminates. It is easy to see that I |= T
and I 6|= τ , hence the algorithm returns “not in RNF”.

Example 6. Consider the following set Φ of tids:

R 2?(R#2− · TR? · ∃R#3? ·R#1), (1)

R 3?(R#3− · TR? · (R#1, R#2)), (2)
TR?(R#1, R#2, R#3), (3)

R 1?(R#1−), R 2?(R#2−), R 3?(R#3−) (4)

Note that the tids (1) and (2) in Φ correspond to the fds 1→R

2 and {1, 2} →R 3. The tid (3) guarantees distinct tuples and
the tids in (4) correspond to functionality assertions. If the
arity ofR is 3, then these fds are in BCNF. We will now show
that Φ is also in RNF. The algorithm CHECKRNF computes
for every tid τ ∈ Φ the following (illustrated at the tid (1)):

c1t1 : TR

a1

t2 : TR c2

c : R 2

d : R 2

R#3

R#1

R#1

R#3

R#2

R#2

Figure 5: The characteristic RG I = rg(τ, c, d).

• First, it builds the characteristic RG I = rg(τ, c, d), which
is depicted in Figure 5.

• We now have, that there exists t1 6= t2, s.t. T |=
τ(I, t1, t2). Note that τ(I, t1, t2) = ∃R#2−?(TR? ·
∃R#3? · R#1). We add τ(I, t1, t2) to Φ̂ and identify
t1 and t2 in I . Since the chase(I, T \Φ) does not change
I we continue with another loop.

• Next, we have that there exists c 6= d, s.t. T |=
τ(I, c, d), where τ(I, c, d) = R 2?(R#2−). Hence, we
add R 2?(R#2−) to Φ̂ and identify c and b in I.

The algorithm CHECKRNF does the same for the tids (2) -
(4) and then returns the following set Φ̂ of fully local tids:

∃R#2−?(TR? · ∃R#3? ·R#1)

∃R#3−?(TR? · (R#1, R#2))

TR?(R#1, R#2, R#3),

R 1?(R#1−), R 2?(R#2−), R 3?(R#3−)

Discussion and Conclusions
In this paper we have proposed an extensions of the direct
mapping of relational data to RDF to ensure a one-to-one cor-
respondence between relational databases and RDF graphs.
We started by incorporating disjointness and functionality
constraints into the direct mapping. To transfer also func-
tional dependencies, we extended previous forms of identifi-
cation constraints to tree-based ids. Finally, we introduced
an RDF Normal Form that turned out to capture precisely the
well-known BCNF of relational schemas.

On top of our agenda for future research is the extension of
our work on RNF. So far, we have concentrated on preserving
BCNF of a relational schema under the direct mapping of re-
lational data to RDF. However, normal forms for eliminating
redundancies in the data would be an interesting topic for the
design of TBoxes in general. We thus see two main directions
to continue our work. On the one hand, we would like to
extend the definition of our RNF to more expressive DLs
than DL-LiteRDFS ,tid . Note that this raises highly non-trivial
questions concerning the recognizability of the normal form,
since our PTIME-membership result in Theorem 6 crucially
depends on the language restrictions of DL-LiteRDFS ,tid . On
the other hand, we also want to investigate relaxations of our
definition of RNF. In our current definition, we request that a
set of tids must be equivalent to a set of fully local ids. This
allows us to capture BCNF in DL-LiteRDFS ,tid . However,
for the definition of a normal form of more expressive DLs,

1010

the equivalence of tids to a richer class of ids – such as lo-
cal pids considered by Calvanese et al. (2008) may be more
appropriate.

Acknowledgments
We thank the anonymous AAAI-2014 referees for their very
helpful comments and suggestions.

Diego Calvanese has been partially supported by the Wolf-
gang Pauli Institute Vienna, and by the EU IP project Op-
tique (Scalable End-user Access to Big Data), grant agree-
ment n. FP7-318338. Wolfgang Fischl, Reinhard Pichler,
Emanuel Sallinger and Mantas Šimkus have been partially
supported by the Austrian Science Fund (FWF):P25207-N23,
(FWF):P25518-N23 and by the Vienna Science and Technol-
ogy Fund (WWTF) project ICT12-15.

References
Arenas, M.; Bertails, A.; Prud′hommeaux, E.; and Sequeda, J.
2012a. A direct mapping of relational data to RDF. W3C Rec-
ommendation, W3C. Available at http://www.w3.org/TR/rdb-
direct-mapping.
Arenas, M.; Botoeva, E.; Calvanese, D.; Ryzhikov, V.; and
Sherkhonov, E. 2012b. Exchanging description logic knowl-
edge bases. In Proc. of the 13th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2012), 308–
318. AAAI Press.
Beeri, C., and Vardi, M. Y. 1984. A proof procedure for data
dependencies. J. of the ACM 31(4):718–741.
Bizer, C.; Heath, T.; and Berners-Lee, T. 2009. Linked data -
the story so far. Int. J. on Semantic Web Information Systems
5(3):1–22.
Brickley, D., and Guha, R. V. 2004. RDF vocabulary
description language 1.0: RDF Schema. W3C Recom-
mendation, World Wide Web Consortium. Available at
http://www.w3.org/TR/rdf-schema/.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini,
M.; Poggi, A.; and Rosati, R. 2006. Linking data to on-
tologies: The description logic DL-LiteA. In Proc. of the
2nd Int. Workshop on OWL: Experiences and Directions
(OWLED 2006), volume 216 of CEUR Workshop Proceed-
ings. CEUR-WS.org.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2008. Path-based identification constraints
in description logics. In Proc. of the 11th Int. Conf. on
the Principles of Knowledge Representation and Reasoning
(KR 2008), 231–241. AAAI Press.
Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 2001.
Identification constraints and functional dependencies in de-
scription logics. In Proc. of the 17th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2001), 155–160. Morgan Kauf-
mann.
Codd, E. F. 1971a. Further normalization of the data base
relational model. IBM Research Report RJ909, IBM, San
Jose, California.
Codd, E. F. 1971b. Normalized data structure: A brief
tutorial. In Proc. of the SIGFIDET Workshop, 1–17. ACM.

He, B.; Patel, M.; Zhang, Z.; and Chang, K. C.-C. 2007. Ac-
cessing the deep web. Communications of the ACM 50(5):94–
101.
HM Government. 2014. data.gov.uk. http://data.gov.uk.
Madhavan, J.; Afanasiev, L.; Antova, L.; and Halevy, A. Y.
2009. Harnessing the deep web: Present and future. In
Proc. of the 4th Biennial Conf. on Innovative Data Systems
Research (CIDR 2009). www.cidrdb.org.
Maier, D.; Mendelzon, A. O.; and Sagiv, Y. 1979. Testing
implications of data dependencies. ACM Trans. on Database
Systems 4(4):455–469.
Mannila, H., and Räihä, K.-J. 1992. The Design of Relational
Databases. Addison Wesley Publ. Co.
Sequeda, J.; Arenas, M.; and Miranker, D. P. 2012. On
directly mapping relational databases to RDF and OWL. In
Proc. of the 21st Int. World Wide Web Conf. (WWW 2012),
649–658. ACM.
Toman, D., and Weddell, G. E. 2005. On the interaction
between inverse features and path-functional dependencies
in description logics. In Proc. of the 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005), 603–608.
Toman, D., and Weddell, G. E. 2008. On keys and functional
dependencies as first-class citizens in description logics. J.
of Automated Reasoning 40(2–3):117–132.
US Government. 2014. data.gov. http://www.data.gov.

1011

