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Abstract

We propose a new Description Logic, called DL-Lite, specif-
ically tailored to capture basic ontology languages, while
keeping low complexity of reasoning. Reasoning here means
not only computing subsumption between concepts, and
checking satisfiability of the whole knowledge base, but
also answering complex queries (in particular, conjunctive
queries) over the set of instances maintained in secondary
storage. We show that in DL-Lite the usual DL reasoning
tasks are polynomial in the size of the TBox, and query an-
swering is polynomial in the size of the ABox (i.e., in data
complexity). To the best of our knowledge, this is the first re-
sult of polynomial data complexity for query answering over
DL knowledge bases. A notable feature of our logic is to al-
low for a separation between TBox and ABox reasoning dur-
ing query evaluation: the part of the process requiring TBox
reasoning is independent of the ABox, and the part of the
process requiring access to the ABox can be carried out by an
SQL engine, thus taking advantage of the query optimization
strategies provided by current DBMSs.

Introduction
One of the most important lines of research in Description
Logics (DLs) is concerned with the trade-off between ex-
pressive power and computational complexity of sound and
complete reasoning. Research carried out in the past on this
topic has shown that many DLs with efficient, i.e., worst-
case polynomial time, reasoning algorithms lack modeling
power required in capturing conceptual models and basic
ontology languages, while most DLs with sufficient mod-
eling power suffer from inherently worst-case exponential
time behavior of reasoning [4, 5].

Although the requirement of polynomially tractable rea-
soning might be less stringent when dealing with relatively
small ontologies, we believe that the need of efficient rea-
soning algorithms is of paramount importance when the on-
tology system is to manage large amount of objects (e.g.,
from thousands to millions of instances). This is the case
of several important applications where the use of ontolo-
gies is advocated nowadays. For example, in the Semantic
Web, ontologies are often used to describe the relevant con-
cepts of Web repositories, and such repositories may incor-
porate very large data sets, which constitute the instances

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

of the concepts in the ontology. In such cases, two require-
ments emerge that are typically overlooked in DLs. First, the
number of objects in the knowledge bases requires manag-
ing instances of concepts (i.e., ABoxes) in secondary stor-
age. Second, significant queries to be posed to the knowl-
edge bases are more complex than the simple queries (i.e.,
concepts and roles) usually considered in DL research. Un-
fortunately, in these contexts, whenever the complexity of
reasoning is exponential in the size of the instances (as for
example in Fact1, Racer2 and in [11]), there is little hope for
effective instance management and query answering algo-
rithms.

In this paper we propose a new DL, called DL-Lite, specif-
ically tailored to capture basic ontology languages, while
keeping low complexity of reasoning, in particular, poly-
nomial in the size of the instances in the knowledge base.
Reasoning here means not only computing subsumption be-
tween concepts, and checking satisfiability of the whole
knowledge base, but also answering complex queries over
the set of instances maintained in secondary storage.

Our contributions are the following:

1. We define DL-Lite, and show that it is rich enough to
capture a significant ontology language. Although at a
first sight DL-Lite appears to be a very simple DL, the
kind of modeling constructs in our logic makes it suit-
able for expressing a variety of representation languages
widely adopted in different contexts, such as basic on-
tology languages, conceptual data models (e.g., Entity-
Relationship [2]), and object-oriented formalisms (e.g.,
basic UML class diagrams3).

2. For such a DL we propose novel reasoning techniques for
a variety of tasks, including conjunctive query answering
and containment between conjunctive queries over con-
cepts and roles. Our presentation is focused especially
on the problem of answering conjunctive queries over a
knowledge base. We observe that this is one of the few re-
sults on answering complex queries (i.e., not correspond-
ing simply to a concept or a role) over a DL knowledge
base [11]. Indeed, answering conjunctive queries over a
knowledge base is a challenging problem, even in the case

1
http://www.cs.man.ac.uk/∼horrocks/FaCT/

2
http://www.sts.tu-harburg.de/∼r.f.moeller/racer/

3
http://www.omg.org/uml/



of DL-Lite, where the combination of constructs express-
ible in the knowledge base does not pose particular dif-
ficulties in computing subsumption. Notice that, in spite
of the simplicity of DL-Lite TBoxes, the ability of tak-
ing TBox knowledge into account during the process of
answering conjunctive queries goes beyond the “variable-
free” fragments of first-order logic represented by DLs.

3. An important feature of our approach is that it is per-
fectly suited to representing ABox assertions managed in
secondary storage by a Data Base Management System
(DBMS). Indeed, our query answering algorithm is based
on the idea of expanding the original query into a set of
queries that can be directly evaluated by an SQL engine
over the ABox, thus taking advantage of well established
query optimization strategies. Notably, this was one of
the motivations behind several research works done on
CLASSIC in the 80’s [6].

4. We analyze the complexity of reasoning in DL-Lite. We
show that the usual reasoning tasks considered in DLs
(i.e., subsumption and satisfiability) can be done in poly-
nomial time. As for query answering, computing the an-
swers to a conjunctive query is worst-case exponential in
the size of the TBox and the query, but is polynomial in
the size of the ABox, i.e., in data complexity [17]. Hence,
the complexity of answering queries is no worse than tra-
ditional query evaluation in relational databases4.
A prototype implementation of DL-Lite has been devel-

oped and tested within a research project carried out jointly
by our institution and the IBM Tivoli Laboratory. First ex-
periments show that our approach is extremely effective:
complex domains can be modeled in DL-Lite, and it takes
no more than a few minutes to answer conjunctive queries
over knowledge bases with millions of instances.

DL-Lite
As usual in DLs, DL-Lite allows for representing the domain
of interest in terms of concepts, denoting sets of objects, and
roles, denoting binary relations between objects. DL-Lite
concepts are defined as follows:

B ::= A | ∃R | ∃R−
C ::= B | ¬B | C1 u C2

where A denotes an atomic concept and R denotes an
(atomic) role; B denotes a basic concept that can be either
an atomic concept, a concept of the form ∃R, i.e., the stan-
dard DL construct of unqualified existential quantification
on roles, or a concept of the form ∃R−, which involves an
inverse role. C (possibly with subscript) denotes a (general)
concept. Note that we use negation of basic concepts only,
and we do not allow for disjunction.

A DL-Lite knowledge base (KB) is constituted by two
components: a TBox used to represent intensional knowl-
edge, and an ABox, used to represent extensional informa-
tion. DL-Lite TBox assertions are of the form

B v C inclusion assertions
(funct R), (funct R−) functionality assertions

4We remind the reader that the algorithms for answering a con-
junctive query posed to a relational database are exponential in the
size of the query.

An inclusion assertion expresses that a basic concept is sub-
sumed by a general concept, while a functionality assertion
expresses the (global) functionality of a role, or of the in-
verse of a role.

As for the ABox, DL-Lite allows for assertions of the
form:

B(a), R(a, b) membership assertions

where a and b are constants. These assertions state respec-
tively that the object denoted by a is an instance of the basic
concept B, and that the pair of objects denoted by (a, b) is
an instance of the role R.

Although DL-Lite is quite simple from the language point
of view, it allows for querying the extensional knowledge of
a KB in a much more powerful way than usual DLs, in which
only membership to a concept or to a role can be asked.
Specifically, DL-Lite allows for using conjunctive queries
of arbitrary complexity. A conjunctive query (CQ) q over a
knowledge base K is an expression of the form

q(~x) ← ∃~y.conj (~x, ~y)

where ~x are the so-called distinguished variables, ~y are ex-
istentially quantified variables called the non-distinguished
variables, and conj (~x, ~y) is a conjunction of atoms of the
form B(z), or R(z1, z2), where B and R are respectively a
basic concept and a role in K, and z, z1, z2 are constants
in K or variables in ~x or ~y. Sometimes, for simplifying no-
tation, we will use the Datalog syntax, and write queries of
the above form as q(~x) ← body(~x, ~y), where the existential
quantification ∃~y has been made implicit, and the symbol “,”
is used for conjunction in body(~x, ~y).

The semantics of DL-Lite is given in terms of interpre-
tations over a fixed infinite domain ∆. We assume to have
one constant for each object, denoting exactly that object. In
other words, we have standard names [15], and we will not
distinguish between the alphabet of constants and ∆.

An interpretation I = (∆, ·I) consists of a first order
structure over ∆ with an interpretation function ·I such
that:

AI ⊆ ∆ RI ⊆ ∆×∆
(¬B)I = ∆ \BI (∃R)I = {c | ∃c′. (c, c′) ∈ RI}
(C1 u C2)

I = CI1 ∩ CI2 (∃R−)I = {c | ∃c′. (c′, c) ∈ RI}

An interpretation I is a model of an inclusion assertion
B v C iff BI ⊆ CI ; I is a model of a functionality asser-
tion (funct R) if (c, c′) ∈ RI ∧ (c, c′′) ∈ RI ⊃ c′ = c′′,
similarly for (funct R−); I is a model of a membership as-
sertion B(a) (resp. R(a, b)) if a ∈ BI (resp. (a, b) ∈ RI).
A model of a KB K is an interpretation I that is a model
of all the assertions in K. A KB is satisfiable if it has at
least one model. A KB K logically implies an assertion
α if all the models of K are also models of α. A query
q(~x) ← ∃~y.conj (~x, ~y) is interpreted in an interpretation I
as the set qI of tuples ~c ∈ ∆ × · · · ×∆ such that when we
substitute the variables ~x with the constants ~c, the formula
∃~y.conj (~x, ~y) evaluates to true in I.

Since DL-Lite deals with conjunctive queries, the basic
reasoning services that are of interest are:



• query answering: given a query q with distinguished vari-
ables ~x and a KBK, return the set ans(q,K) of tuples ~c of
constants of K such that in every model I of K we have
~c ∈ qI . Note that this task generalizes instance checking
in DLs, i.e., checking whether a given object is an instance
of a specified concept in every model of the knowledge
base.

• query containment: given two queries q1 and q2 and a KB
K, verify whether in every model I of K qI1 ⊆ qI2 . Note
that this task generalizes logical implication of inclusion
assertions in DLs.

• KB satisfiability: verify whether a KB is satisfiable.

Example 1 Consider the atomic concepts Professor and
Student , the roles TeachesTo and HasTutor , and the fol-
lowing DL-Lite TBox T :

Professor v ∃TeachesTo Student v ∃HasTutor
∃TeachesTo− v Student ∃HasTutor− v Professor
Professor v ¬Student (funct HasTutor).

Assume that the ABox A contains only the asser-
tion HasTutor(John, Mary). Finally, consider the query
q(x) ← TeachesTo(x, y),HasTutor(y, z), asking for
professors that teach to students that have a tutor.

Although equipped with advanced reasoning services, at
first sight DL-Lite might seem rather weak in modeling in-
tensional knowledge, and hence of limited use in practice.
In fact, this is not the case. Despite the simplicity of its lan-
guage and the specific form of inclusion assertions allowed,
DL-Lite is able to capture the main notions (though not all,
obviously) of both ontologies, and of conceptual modeling
formalisms used in databases and software engineering (i.e.,
ER and UML class diagrams). In particular, DL-Lite asser-
tions allow us to specify ISA, e.g., stating that concept A1 is
subsumed by concept A2, using A1 v A2; disjointness, e.g.,
between concepts A1 and A2, using A1 v ¬A2; role-typing,
e.g., stating that the first (resp., second) component of the
relation R is an instance of A1 (resp., A2), using ∃R v A1

(resp., ∃R− v A2); participation constraints, e.g., stating
that all instances of concept A participate to the relation R
as the first (resp., second) component, using A v ∃R (resp.,
A v ∃R−); non-participation constraints, using A v ¬∃R
and A v ¬∃R−; functionality restrictions on relations, us-
ing (funct R) and (funct R−). Notice that DL-Lite is a
strict subset of OWL Lite, the less expressive sublanguage
of OWL5, which presents some constructs (e.g., some kinds
of role restrictions) that are non expressible in DL-Lite, and
that make reasoning in OWL Lite non-tractable in general.

Reasoning in DL-Lite
It can be shown that query containment can be reformulated
as query answering using techniques similar to the ones
in [1]. Hence, we concentrate on query answering only.

We first address some preliminary issues, and then we de-
fine the query reformulation algorithm PerfectRef, which
is at the heart of our query evaluation algorithm Answer.
Finally, we address correctness and complexity issues.

5http://www.w3.org/TR/owl-features

KB normalization We denote by Normalize(K) the
DL-Lite KB obtained by transforming the KB K = (T ,A)
as follows. The ABox A is expanded by adding to A the
assertions ∃R(a) and ∃R−(b) for each R(a, b) ∈ A.

Then, assertions of K in which conjunctive concepts oc-
cur are rewritten by iterative application of the rule: if
B v C1 u C2 occurs in T , then replace it with the two
assertions B v C1 , B v C2.

The TBox T resulting from such a transformation con-
tains assertions of the form (i) B1 v B2, where B1 and
B2 are basic concepts (i.e., each of them is either an atomic
or an existential concept), which we call positive inclusions
(PIs); (ii) B1 v ¬B2, where B1 and B2 are basic concepts,
which we call negative inclusions (NIs); (iii) functionality
assertions on roles of the form (funct R) or (funct R−).

Then, the TBox T is expanded by computing all (non-
trivial) NIs between basic concepts implied by T . More pre-
cisely, the TBox T is closed with respect to the following in-
ference rule: if B1 v B2 occurs in T and either B2 v ¬B3

or B3 v ¬B2 occurs in T (where B1, B2, B3 are arbitrary
basic concepts), then add B1 v ¬B3 to T . It can be shown
that, after the above closure of T , for every pair of basic
concepts B1, B2, we have that T |= B1 v ¬B2 iff either
B1 v ¬B2 ∈ T or B2 v ¬B1 ∈ T .

It is immediate to verify that, for every DL-Lite KB K,
Normalize(K) is equivalent to K, in the sense that the set
of models ofK coincides with that of Normalize(K). In the
following, without loss of generality we assume that every
concept name or role name occurring in A also occurs in T .
ABox storage Once the ABox is normalized, we store it
under the control of a DBMS, in order to effectively manage
objects in the knowledge base by means of an SQL engine.
To this aim, we construct a relational database which faith-
fully represents a normalized ABox A. More precisely,
• for each basic concept B occurring in A, we define a re-

lational table tabB of arity 1, such that 〈a〉 ∈ tabB iff
B(a) ∈ A;

• for each role R occurring inA, we define a relational table
tabR of arity 2, such that 〈a, b〉 ∈ tabR iff R(a, b) ∈ A.
We denote with DB(A) the relational database thus con-

structed.
KB satisfiability The algorithm Consistent takes as in-
put a normalized KB K = (T ,A) and verifies the following
conditions:
(i) there exists a NI B1 v ¬B2 in T and a constant a such
that the assertions B1(a) and B2(a) belong to A;
(ii) there exists an assertion (funct R) (respectively,
(funct R−)) in T and three constants a, b, c such that both
R(a, b) and R(a, c) (resp., R(b, a) and R(c, a)) belong toA.

Informally, condition (i) corresponds to checking whether
A explicitly contradicts some NI in T , and condition (ii)
corresponds to check whetherA violates some functionality
assertion in T . If one of the above conditions holds, then the
algorithm returns false (i.e., K is not satisfiable); otherwise,
the algorithm returns true.

Notably, the algorithm verifies such conditions by posing
to DB(A) suitable conjunctive queries expressed in SQL.
For instance, condition (i) holds for a given NI B1 v ¬B2

iff the query q(x) ← tabB1(x), tabB2(x) has a non-empty



answer in DB(A), while condition (ii) holds for (funct R)
iff the query q(x) ← tabR(x, y), tabR(x, z), y 6= z has
a non-empty answer in DB(A), where 6= is the “not equal”
predicate of SQL. Notice that the algorithm does not con-
sider the PIs occurring in T during its execution. Indeed, we
will show that PIs do not affect the consistency of a DL-Lite
KB, if the TBox is normalized.
Query reformulation Query reformulation is at the heart
of our query answering method. Given the limited expres-
sive power of DL-Lite TBoxes, it might seem that in order
to answer a query q over a KB K, we could simply build a
finite first-order structure on the basis of K, and then evalu-
ate the query as an expression over this first-order structure.
Actually, it is possible to show that this is not the case. In
particular, it can be shown that, in general, given a KB K,
there exists no finite structure S such that, for every con-
junctive query q, the set of answers to q over K is the result
of evaluating q over S . This property demonstrates that an-
swering queries in DL-Lite goes beyond both propositional
logic and relational databases. The basic idea of our method
is to reformulate the query taking into account the TBox: in
particular, given a query q over K, we compile the asser-
tions of the TBox into the query itself, thus obtaining a new
query q′. Such a new query q′ is then evaluated over the
ABox of K, as if the ABox were a simple relational data-
base. Since the size of q′ does not depend on the ABox,
the data complexity of the whole query answering algorithm
is polynomial. In the following, we illustrate our approach
from a technical point of view.

We say that an argument of an atom in a query is bound if
it corresponds to either a distinguished variable or a shared
variable, i.e., a variable occurring at least twice in the query
body, or a constant, while we say that it is unbound if it
corresponds to a non-distinguished non-shared variable (as
usual, we use the symbol to represent non-distinguished
non-shared variables). Notice that, an atom of the form
∃R(x) (resp. ∃R−(x)) has the same meaning as R(x, )
(resp. R( , x)). For ease of exposition, in the following we
will use the latter form only.

A PI I is applicable to an atom B(x), if I has B in its
right-hand side, and I is applicable to an atom R(x1, x2),
if either (i) x2 = and the right-hand side of I is ∃R, or
(ii) x1 = and the right-hand side of I is ∃R−. Roughly
speaking, an inclusion I is applicable to an atom g if all
bound arguments of g are propagated by I . Obviously, since
all PIs in the TBox T are unary, they are never applicable to
atoms with two bound arguments.

We indicate with gr(g, I) the atom obtained from the atom
g by applying the inclusion I , i.e., if g = B1(x) (resp., g =
R1(x, ) or g = R1( , x)) and I = B2 v B1 (resp., I =
B2 v ∃R1 or I = B2 v ∃R−1 ), we have:
• gr(g, I) = R2(x, ), if B2 = ∃R2;
• gr(g, I) = R2( , x), if B2 = ∃R−2 ;
• gr(g, I) = A(x), if B2 = A, where A is a basic concept.

We are now ready to define the algorithm PerfectRef.
Algorithm PerfectRef(q, T )
Input: conjunctive query q, DL-Lite TBox T
Output: set of conjunctive queries P
P := {q};

repeat
P ′ := P ;
for each q ∈ P ′ do
(a) for each g in q do

for each PI I in T do
if I is applicable to g
then P := P ∪ { q[g/gr(g, I)] }

(b) for each g1, g2 in q do
if g1 and g2 unify
then P := P ∪ {τ(reduce(q, g1, g2))};

until P ′ = P ;
return P

In the algorithm, q[g/g′] denotes the query obtained from
q by replacing the atom g with a new atom g′.

Informally, the algorithm first reformulates the atoms of
each query q ∈ P ′, and produces a new query for each atom
reformulation (step (a)). Roughly speaking, PIs are used as
rewriting rules, applied from right to left, that allow to com-
pile away in the reformulation the knowledge of T that is
relevant for answering q.

At step (b), for each pair of atoms g1, g2 that unify, the
algorithm computes the query q′ = reduce(q, g1, g2), by ap-
plying to q the most general unifier between g1 and g2. Due
to the unification, variables that were bound in q may be-
come unbound in q′. Hence, PIs that were not applicable to
atoms of q, may become applicable to atoms of q′ (in the
next executions of step (a)). Function τ applied to q′ re-
places with each unbound variable in q′.

It can be shown that the algorithm always terminates,
since the maximum number of atoms in the body of a gen-
erated query is equal to the length of the initial query, and
the number of different atoms that can be generated by the
algorithm is polynomial in the size of the input.

Example 1 (contd.). Let us analyze PerfectRef(q, T ),
where q(x) ← TeachesTo(x, y),HasTutor(y, ). At the
first execution of step (a), the algorithm inserts in P the new
query q(x) ← TeachesTo(x, y),Student(y), by applying
to the atom HasTutor(y, ) the PI Student v ∃HasTutor .
Then, at a second execution of step (a), the query q(x) ←
TeachesTo(x, y),TeachesTo( , y) is added to P , accord-
ing to application of the PI ∃TeachesTo− v Student to
the atom Student(y). Since the two atoms of the sec-
ond query unify, step (b) of the algorithm inserts the query
q(x) ← TeachesTo(x, ) into P . At a next iteration,
step (a) produces the query q(x) ← Professor(x), by ap-
plying Professor v ∃TeachesTo to TeachesTo(x, ), and
then, at a further execution of step (a), it generates the query
q(x) ← HasTutor( , x) by applying ∃HasTutor− v
Professor to Professor(x). The set constituted by the
above five queries and the original query q is then returned
by the algorithm.

Query evaluation In order to compute the answers to q
over the KB K = (T ,A), we need to evaluate the set of
conjunctive queries P produced by the algorithm Perfec-
tRef over the ABox A. Obviously, in doing so we want to
exploit the relational database DB(A). To this aim, we need
to transform each query q in P into an SQL query expressed
over DB(A). The transformation (which we omit for lack
of space) is conceptually very simple. The only non-trivial



case concerns binary atoms with unbound terms: for an atom
of the form R( , x), we introduce a view predicate that rep-
resents the union of tabR[2] with tab∃R− , where tabR[2]
indicates projection of tabR on its second column (similarly
for R(x, )). All SQL queries obtained from P , together
with the views introduced in the transformation, denoted by
SQL(P ), can be easily dispatched to an SQL query engine
and evaluated over DB(A).

Below we define the algorithm Answer that, given a sat-
isfiable KB K and a query q, computes ans(q,K)6. In the
algorithm, Eval(Q,D) denotes the evaluation of the SQL
query Q over the database D.

Algorithm Answer(q,K)
Input: CQ q, DL-Lite KB K = (T ,A)
Output: ans(q,K)
K := Normalize(K);
return Eval(SQL(PerfectRef(q, T )), DB(A))

Example 1 (contd.). Since our ABox A contains only the
assertion HasTutor(John,Mary), it is trivial to establish
satisfiability of K (which can be done by means of the algo-
rithm Consistent). Then, by executing Answer(q,K), we
first obtain Normalize(K), which is computed by adding to
T all NIs implied by T , i.e.,:

∃TeachesTo− v ¬Professor ∃HasTutor− v ¬Student .

Then, Eval(SQL(PerfectRef(q, T )), DB(A)) returns the
set {Mary}. In particular, Mary is returned by the eval-
uation of the SQL transformation of the query q(x) ←
HasTutor( , x).

Correctness We now prove correctness of the above de-
scribed query answering technique. To this aim, we use
a chase-like technique [2]. Given a normalized KB K =
(T ,A), we call chase of K (denoted by chase(K)) the (pos-
sibly infinite) ABox obtained starting from A and clos-
ing it with respect to the following chase rules: (i) if
B1(a) ∈ chase(K) and B1 v B2 ∈ T , then add
B2(a) to chase(K); (ii) if ∃R(a) ∈ chase(K) (respectively,
∃R−(a) ∈ chase(K)) and there exists no individual b such
that R(a, b) ∈ chase(K) (resp., R(b, a) ∈ chase(K)), then
add the assertions R(a, n) and ∃R−(n) (resp., R(n, a) and
∃R(n)) to chase(K), where n is a new constant of ∆ not
already occurring in chase(K).

Intuitively, the correctness of our query processing tech-
nique is based on a crucial property of chase(K): ifK is sat-
isfiable, then chase(K) is a representative of all models ofK.
This property implies that query answering can be in prin-
ciple done by evaluating the query over chase(K) seen as a
database. However, since chase(K) is in general infinite, we
obviously avoid the construction of the chase. Rather, as we
said before, we are able to compile the TBox into the query,
thus simulating the evaluation of the query over the (in gen-
eral infinite) chase by evaluating a finite reformulation of the
query over the initial ABox.

We first establish correctness of the technique for deciding
satisfiability of a DL-Lite KB.

6Notice that, if K is unsatisfiable, query answering is meaning-
less, since every tuple is in the answer to every query.

Theorem 2 Let K = (T ,A) be a normalized DL-Lite KB.
K is satisfiable iff the algorithm Consistent returns true.

We now establish correctness of the algoritm Answer un-
der the assumption that the KB is satisfiable.

Theorem 3 LetK = (T ,A) be a satisfiable DL-Lite KB, let
q be a CQ, and let ~c be a tuple of constants from ∆. Then,
~c ∈ ans(q,K) iff ~c ∈ Answer(q,K).

Complexity First, we analyze complexity of KB satisfia-
bility in DL-Lite.

Theorem 4 Satisfiability of a DL-Lite KBK can be decided
in time polynomial in the size of K.

Proof (sketch). The proof immediately follows from the
following facts: (i) the algorithm Normalize runs in time
polynomial in the size of K; (ii) the algorithm Consistent
is correct; (iii) the algorithm Consistent runs in time poly-
nomial in the size of the input.

Then, from correctness of the algorithm Answer, we are
immediately able to characterize complexity of conjunctive
query answering in DL-Lite w.r.t. data complexity.

Theorem 5 Conjunctive query answering in DL-Lite is in
PTIME in data complexity.

We are also able to characterize the combined complexity
(i.e., the complexity w.r.t. the size ofK and q) of conjunctive
query answering in DL-Lite.

Theorem 6 Conjunctive query answering in DL-Lite is NP-
complete in combined complexity.

Proof (sketch). Membership in NP is a consequence of
the fact that, given any DL-Lite KB K, if ~c ∈ ans(q,K),
then it is possible to nondeterministically construct a poly-
nomial fragment of chase(K) which contains an image of
q(~c). NP-hardness follows from NP-hardness of conjunctive
query evaluation over relational databases.

Finally, since in DL-Lite it is possibile to polynomially
reduce containment between CQs to query answering, from
the above results it follows that containment of conjunctive
queries in DL-Lite is NP-complete.

Summarizing, the above results show a very nice compu-
tational behavior of queries in DL-Lite: reasoning in DL-Lite
is computationally no worse than standard conjunctive query
answering (and containment) in relational databases.

Discussion and related work
DL-Lite is a fragment of expressive DLs with assertions and
inverses studied in the 90’s (see [4] for an overview), which
are at the base of current ontology languages such as OWL,
and for which optimized automated reasoning systems such
as Fact and Racer have been developed. Indeed, one could
use, off-the-shelf, a system like Racer to perform KB sat-
isfiability, instance checking (of concepts), and logical im-
plication of inclusion assertions in DL-Lite. Also, reasoning
with conjunctive queries in these DLs has been studied (see
e.g. [11]), although not yet implemented in systems. Un-
fortunately, the reasoning procedures for these DLs are all
EXPTIME-hard, and more importantly they are not tailored



towards obtaining tight complexity bounds with respect to
data complexity. Conjunctive queries combined with DLs
were also considered in [16, 13], but again data complexity
was not the main concern.

There has been a lot of work in DLs on the boundary
between polynomial and exponential reasoning. This work
first concentrated on DLs without the TBox component of
the KB, and led to the development of simple DLs, such as
ALN , that admit polynomial instance checking. However,
for minor variants of ALN , such as ALE (where we in-
troduce qualified existential and drop number restrictions),
FLE− (where we additionally drop negated atomic con-
cept), and ALU (where we introduce union and drop num-
ber restrictions), instance checking, and therefore conjunc-
tive query answering, is coNP-complete in data complex-
ity [12]. Indeed, the argument used in the proof of coNP-
hardness of ALE , FLE−, and ALU in [12], immediately
implies the following theorem.
Theorem 7 Answering conjunctive queries is coNP-hard in
data complexity (even in KBs with empty TBoxes), if we ex-
tend DL-Lite with one of the following features: (1) either
∀R.A or ¬A can appear in left-hand sides of inclusion as-
sertions; (2) either ∀R.A or ¬A can appear as atoms in the
query; (3) union of concepts can appear in the right-hand
side of inclusion assertions.

If we allow for cyclic inclusion assertions in the KB,
then even subsumption in CLASSIC andALN becomes in-
tractable [9]7. Observe that DL-Lite does allow for cyclic
assertions without falling into intractability. Indeed, we can
enforce the cyclic propagation of the existence of an R-
successor using the two DL-Lite inclusion assertions A v
∃R, ∃R− v A. The constraint imposed on a model is
similar to the one imposed by the ALN cyclic assertion
A v ∃R u ∀R.A, though stronger, since it additionally en-
forces the second component of R to be typed by A. In
order to keep tractability even in the presence of cycles,
DL-Lite imposes restrictions on the use of the ∀R.C con-
struct, which, if used together with inclusion assertions, im-
mediately would lead to intractability [9].

Our work is also tightly related to work in databases on
implication of integrity constraints (ICs) [2] and on query
answering in the presence of ICs under an open world se-
mantics (see, e.g., [8, 3, 14, 7]). Rephrased as ICs, DL-Lite
TBoxes allow for expressing special forms of inclusion de-
pendencies (i.e., ISA, role typing, and participation con-
straints), multiple keys on relations (i.e., functionality re-
strictions), and exclusion dependencies (i.e., disjointness
and non-participation constraints)8. The results that we re-
port here show that DL-Lite inclusion assertions form one of
the largest class of ICs for which query answering remains
polynomial.

Conclusions
We have described DL-Lite, a new DL specifically tailored
to capture conceptual data models and basic ontology lan-

7Note that a TBox with only acyclic inclusion assertions can
always be transformed into an empty TBox.

8Notice that this combination of ICs has only been studied in
[7], but under a different semantics wrt the one adopted in DLs.

guages, while keeping the worst-case complexity of sound
and complete reasoning tractable.

In this paper we focused on binary roles only, but it is pos-
sible to extend our reasoning techniques to n-ary relations
without loosing their nice computational properties. We are
working on other interesting extensions to DL-Lite, such as
the introduction of subset constraints on roles. The results
of [10] imply that finding an adaptation of our query answer-
ing technique is going to be a hard problem.
Acknowledgments This research has been partially sup-
ported by the Projects INFOMIX (IST-2001-33570) and SE-
WASIE (IST-2001-34825) funded by the EU.
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