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Abstract
Reasoning over complex queries in the DLs under-
lying OWL 2 is of importance in several application
domains. We provide decidability and (tight) upper
bounds for the problem of checking entailment and
containment of positive regular path queries under
various combinations of constructs used in such ex-
pressive DLs; specifically: regular expressions and
(safe) Booleans over roles, and allowing for the
combination of any two constructs among inverse
roles, qualified number restrictions, and nominals.
Our results carry over also to the DLs of the SR
family, and thus have a direct impact on OWL 2.

1 Introduction
OWL 2, the upcoming W3C Web Ontology Language [Cuen-
ca Grau et al., 2008], is based on the expressive Description
Logic (DL) SROIQ [Horrocks et al., 2006] and features
several constructs considered important in ontology-based
applications. A crucial challenge is to access OWL 2 ontolo-
gies via expressive, database inspired, query languages, such
as (unions of) conjunctive queries, (U)CQs, or variants of reg-
ular path queries, RPQs (allowing for binary query atoms that
are regular expressions), used in semi-structured data.

Reasoning over complex queries had yet to be addressed
for expressive DLs that support expressive concept and role
constructs plus different combinations of qualified number re-
strictions (Q), inverse roles (I), and nominals (O). In par-
ticular, this applies to SROQ, SROI, and SRIQ, three
mutually incomparable sublogics of SROIQ. Indeed, the
only algorithms for query entailment in expressive DLs with
O are for UCQs in SHOQ [Glimm et al., 2008], and for
UCQs without transitive roles in SHOI [Ortiz et al., 2008];
none of them supports complex role assertions as in the SR
family. Calvanese et al. [2007] consider the DL ALCQIbreg
which lacks nominals but supports I, Q, and regular expres-
sions and (safe) Booleans over roles, capturing a large frag-
ment of SRIQ. Their algorithm answers positive 2-way reg-
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ular path queries (P2RPQs), which capture all the aforemen-
tioned query languages and are, to our knowledge, the most
expressive query language considered so far.

In this paper, we address KB satisfiability, as well as en-
tailment and containment of P2RPQs in the sublogics of
SROIQ that allow for any two among Q, I, and O. Specif-
ically, we show that KB satisfiability in SRIQ, SROI,
and SROQ can be solved in 2EXPTIME. For SROQ and
SROI, these are, to our knowledge, the first such bounds,
and they all hold even when the numbers in the number re-
strictions are coded in binary. We also show that P2RPQ en-
tailment is decidable, and so is containment q1⊆ q2 if the DL
has O or q1 has no regular expressions. These are the first
decidability results for reasoning on queries in the DLs of the
SR family, and hence in significant sublogics of OWL 2.

Our results are based on automata theoretic techniques, and
are achieved indirectly by reducing (with an unavoidable ex-
ponential blowup) SROIQ to the novel DL ZOIQ, and
tackling KB satisfiability and P2RPQ entailment and contain-
ment in its sublogics that allow for any two among Q, I, and
O. ZOIQ is the DL that extends ALCQIbreg with O and
concepts ∃S.Self. Specifically, we exploit the recently intro-
duced fully enriched automata (FEA) [Bonatti et al., 2008]
and reduce KB satisfiability in ZOIQ to their emptiness.
Our construction yields a decision procedure for KB satis-
fiability in all sublogics of ZOIQ that enjoy the quasi-forest
model property (see Section 3.1), and in particular for ZIQ,
ZOQ, and ZOI. This is, to our knowledge, the first au-
tomata procedure that simultaneously handles Q, I, and O;
it additionally considers Boolean role expressions and Self
concepts. Relying on the results in [Bonatti et al., 2008], we
obtain a tight EXPTIME upper bound for these logics, even
with binary coding of numbers.

We then build on the techniques in [Calvanese et al., 2007]
and reduce entailment of P2RPQs in the sublogics of ZOIQ
to automata emptiness. This requires us to show how FEAs
can be reduced to a simpler automata model. Further, we
show that in DLs with O (and regular role expressions), con-
tainment of P2RPQs can be reduced to entailment, and hence
obtain the first decidability and complexity results for con-
tainment of recursive queries in DLs. Specifically, we obtain
(with unary coding of numbers), an optimal 2EXPTIME up-
per bound for P2RPQ entailment in ZIQ, ZOQ, and ZOI,
and for P2RPQ containment in ZOQ and ZOI. For ZIQ,



the same bound holds for containment of CQs in P2RPQs.

2 Preliminaries
Description Logics (DLs). The DL ALCOIQbSelf

reg extends
the basic DL ALC with nominals (O), inverse roles (I),
qualified number restrictions (Q), regular expressions over
roles (reg), safe Boolean role expressions (b) and inclu-
sion axioms, and concepts of the form ∃S.Self (Self) as in
SROIQ [Horrocks et al., 2006]. In the following, we use Z
as an abbreviation for ALCbSelf

reg ; thus we will deal with the
logic ZOIQ and its sublogics ZIQ, ZOQ, and ZOI
Syntax. Let C, R, and I be fixed, countably infinite sets of
concept, role, and individual names, respectively. We assume
that C contains > and ⊥, denoting respectively the universal
and the empty concept, and that R contains T and B, denot-
ing respectively the universal and the empty role. Atomic con-
ceptsB, conceptsC, atomic rolesR, simple roles S, and roles
T , obey the following EBNF grammar, where a∈ I, A∈C,
P ∈R, and P 6= T:

B ::= A | {a}
C ::= B | ¬C | C u C | C t C | ∀T .C | ∃T .C |

> nS.C |6 nS.C | ∃S.Self
R ::= P | P−
S ::= R | S ∩ S | S ∪ S | S \ S
T ::= T | S | T ∪ T | T ◦ T | T ∗ | id(C)

An expression is a concept or a role. Subconcepts, subroles,
and subexpressions are defined in the natural way.

An assertion has the form C(a), S(a, b), or a 6= b, where
C and S are as above and a, b∈ I. A concept inclusion axiom
(CIA) has the formC vC ′, whereC andC ′ are concepts, and
a Boolean role inclusion axiom (BRIA) has the form SvS′,
where S and S′ are simple roles. A ZOIQ knowledge base
(KB) is a pairK= 〈A, T 〉, whereA is a finite set of assertions
(called ABox), and T is a finite set of CIAs and BRIAs (called
TBox). W.l.o.g. we assume that A is non-empty.

We also consider three sublogics of ZOIQ that result by
disallowing different constructors in concepts and roles:
– ZIQ disallows {a} (nominal concepts);
– ZOQ disallows P− (inverse roles);
– ZOI disallows > nS.C, 6 nS.C (number restrictions).

Semantics. We rely on the usual notion of interpretation
I = (∆I , ·I), consisting of a domain ∆I 6= ∅ and a valuation
function ·I [Baader et al., 2003]. The semantics of concept
and role constructs (including the constructs for regular ex-
pressions over roles) is the standard one. We just note that
(∃S.Self)I = {x | (x, x) ∈ SI} and (id(C))I = {(x, x) |
x ∈ CI}.
I is a model of a concept C, denoted I |= C, if CI 6= ∅.

Satisfaction of an assertion (resp., CIA, BRIA) γ by I, de-
noted I |= γ, is defined as usual. I is a model of an ABox
(resp., TBox) Γ, denoted I |= Γ, if I |= γ for each γ in Γ.
I is a model of a KB K = 〈A, T 〉 if I |= A and I |= T .
The knowledge base satisfiability problem consists on decid-
ing whether a given KB K has a model.

Query Entailment and Containment. A positive 2-way reg-
ular path query (P2RPQ) is a formula q = ∃~x.ϕ(~x), where

ϕ(~x) is built using ∧ and ∨ from atoms C(z) and T (z, z′),
where z, z′ are variables from ~x or individuals, C is a concept
and T a role.1 If all atomic concepts and roles in ϕ occur in a
KBK, then q is a query overK. Note that P2RPQs generalize
conjunctive RPQs [Calvanese et al., 2000], in which the for-
mula ϕ(~x) is built using only conjunction, and ordinary con-
junctive queries (CQs), where in addition only atomic con-
cepts and roles may be used in atoms.2

Given an interpretation I, a match π for I and q is an as-
signment of an element π(x) ∈ ∆I to each variable x in ~x
that makes ϕ true in the usual sense. I satisfies q, denoted
I |= q, if there is a match π for I and q.
– Query entailment is the problem of deciding, given a KB
K and a query q over K, whether I |= q for each model I
of K, denoted K |= q.

– Query containment is the problem of deciding, given a KB
K and two queries q1 and q2 over K, whether I |= q1 im-
plies I |= q2 for each model I ofK, denotedK |= q1 ⊆ q2.
We observe that KB (un)satisfiability trivially reduces to

query entailment: K is unsatisfiable iff K |= ∃x.⊥(x).

3 Reasoning with automata in the Z family
In this section, we reduce KB satisfiability to emptiness of
automata that run over infinite labeled forests.

Reducing KB to concept satisfiability. We rewrite aZOIQ
KBK= 〈A, T 〉 into a normal conceptCK, which is a concept
in negation normal form (NNF) not containing>,⊥, T, or B.

To do so, we first eliminate all BRIAs, replacing each S v
S′ in T by a CIA ∃(S \ S′).> v ⊥ (cf. [Rudolph et al.,
2008]). The special symbols >, ⊥ and B are simulated via
fresh concept names A>, A⊥ and a fresh role name PB, by
adding C t ¬C v A> and A> v ¬A⊥ for some concept C,
and adding A> v ∀PB.A⊥.

To eliminate T, we add an assertion PU (a, b) for each pair
of individuals a, b occurring in A, where PU is a fresh role
name. Then we replace inK each occurrence of T by the role
RT, where RT = (PU ∪ {P | P ∈ R occurs in K})∗ if no
inverse roles P− occur in K, and RT = (PU ∪ {P, P− | P ∈
R occurs in K})∗ otherwise.

As usual, using nominals, the ABox is internalized into
the TBox: assertions C(a), S(a, b), and a 6= b become CIAs
{a} v C, {a} v ∃S.{b}, and {a} v ¬{b}, respectively.
Finally, using the role RT, the BRIA-free TBox T is inter-
nalized into a concept CT = ∀RT.

⊔
C1vC2∈T (¬C1 t C2).

We thus obtain:
Proposition 3.1. Given a ZOIQ KB K, one can construct
in linear time a normal concept CK such that: (i) if K is in
L, then CK is in L, for L any of ZOIQ, ZOI, or ZOQ;
(ii) if K is in ZIQ, then CK is in ZOIQ and all nominals
in it stem from ABox internalization; (iii) for every P2RPQ q,
K 6|= q iff there is some I such that I |= CK and I 6|= q.

1Such queries are called Boolean; it is well known that queries
with answer variables are reducible to Boolean ones.

2The restriction in CQs to atomic concept atoms is w.l.o.g., since
complex concepts can be defined in the TBox. Instead, roles con-
taining regular expressions cannot be defined in the TBox, and hence
conjunctive RPQs and P2RPQs properly extend CQs.



3.1 Quasi-Forest Model Properties
We show now that ZIQ, ZOI, and ZOQ enjoy the quasi-
forest model property. This allows us to decide concept satis-
fiability (and query entailment) by deciding the existence of
quasi-forest models (where the query has no match).

A forest is a set F ⊆ IN∗ such that x·c∈F and x∈ IN+

imply x∈F ; its elements are called nodes. For each x∈F ,
succ(x) = {x·c∈F | c∈ IN} is the set of successors of x; x is
their predecessor. F has branching degree k, if |succ(x)| ≤ k
for each x∈F . By roots(F ) we denote the roots of F , i.e.,
the nodes with no predecessor. F is a tree if |roots(F )|= 1.
The tree of F rooted at c is Tc = {c · x |x∈ IN∗}∩F .

An (infinite) path in F is an (infinite) tree P ⊆F with bran-
ching degree 1. By convention, x · ε=x and (x · i)·−1 =x.

A Σ-labeled forest (resp. tree) is a pair 〈F, V 〉, where F is
a forest (resp. tree) and V : F → Σ is a labeling function.

Definition 3.2 (Quasi-forest models). Let C be a ZOIQ
concept. An interpretation I is a quasi-forest model of C if:
– ∆I is a forest,
– aI ∈ roots(∆I) for each individual a occurring in C,
– aI ∈CI for some individual a occurring in C, and
– for every x, y ∈ ∆I such that (x, y)∈RI for some

role R, either (i) {x, y}∩ roots(∆I) 6= ∅, (ii) x= y,
(iii) y ∈ succ(x), or (iv) x∈ succ(y).

Note that (x, y)∈RI may hold if (i) x or y is a root of ∆I
(due to nominals), (ii) y is x itself (due to ∃S.Self concepts),
or, as usual in logics with inverses, (iii) y is in succ(x) or
(iv) y is the predecessor of x.

The above definition generalizes those of related logics
(e.g., in [Bonatti et al., 2008; Calvanese et al., 2007; Sattler
& Vardi, 2001]), and accommodates all constructs ofZOIQ.

The following proposition states that to decide query en-
tailment, we only need to consider quasi-forest models.

Proposition 3.3. Let C be a normal ZOIQ concept such
that (a) C is a ZOQ or ZOI concept, or (b) C is ob-
tained from a ZIQ KB as in Proposition 3.1. Then, for every
P2RPQ q, if C has a model I with I 6|= q, then it has a quasi
forest model I ′ with I ′ 6|= q.

Proof (sketch). Every model I of C can be used to obtain a
quasi forest model I ′ of C, such that I ′ is a counterexam-
ple to query entailment whenever I is. If C is a ZOI or
ZOQ concept, we can proceed along the lines of the proofs
in [Bonatti et al., 2008; Sattler and Vardi, 2001], respecting
Boolean role constructs and Self. When C is a ZOIQ con-
cept obtained from a rewriting a ZIQ KB, the impact of its
nominals (which all stem from ABox internalization) can be
confined to the roots of the quasi-forest model. In this case,
we can proceed as in [Bonatti et al., 2008], again respecting
Boolean role constructs and Self.

Note that Proposition 3.3 does not hold for arbitrary ZOIQ
concepts, even in the absence of Boolean roles, regular ex-
pressions, and concepts of the form ∃S.Self [Tobies, 2000].3

3Prop. 3.3 fails also in the presence of arbitrary role negation, as
opposed to role difference, even if regular role expressions and all
of O, I, andQ are disallowed.

3.2 Enriched Automata
For deciding KB satisfiability in the sublogics of ZOIQ, we
build on the techniques of [Bonatti et al., 2008] that use fully
enriched automata (FEAs). FEAs extend two-way alternating
parity tree automata by adding graded and root transitions.

For a set W , let B(W ) be the set of Boolean formulas con-
structible with atomsW∪{t, f} and ∧, ∨. We say that V ⊆W
satisfies ϕ ∈ B(W ), if assigning t to all v ∈V and f to all
w∈W \V makes ϕ true. For b > 0, let Db = {−1, ε} ∪
{〈0〉, . . . , 〈b〉} ∪ {[0], . . . , [b]} ∪ {〈root〉, [root]}.

Definition 3.4. A fully enriched automaton (FEA) with index
n is a tuple A = 〈Σ, b, Q, δ, q0, F 〉, where Σ is a finite input
alphabet, b > 0 is a counting bound, Q is a finite set of states,
δ : Q × Σ → B(Db × Q) is a transition function, q0 ∈ Q
is an initial state, and F = (G1, . . . , Gn), with G1 ⊆ G2 ⊆
· · · ⊆ Gn = Q, is a parity acceptance condition.

Intuitively, a graded transition (〈i〉, q) (resp., ([i], q)),
sends off a copy of A in state q to i+1 (resp., to all but i)
successor nodes, and a root transition 〈root〉 (resp., [root]),
sends off a copy of A in state q to one (resp., to all) roots.

The acceptance of a forest F by A can be formalized
through the notion of run, which is a tree labeled by elements
of F ×Q. Intuitively, in a run, a node y labeled by (x, q)
describes a copy of A that is in state q and reads node x of
F . The conditions on a run ensure that the labels of adjacent
nodes satisfy the transition function of A.

Definition 3.5. A run of A over a labeled forest 〈F, V 〉 is a
F×Q-labeled tree 〈Tr, r〉 such that

(i) r(root(Tr)) = (c, q0) for some c ∈ roots(F ), and

(ii) for every y ∈ Tr with r(y) = (x, q), some W ⊆Db × Q
satisfying δ(q, V (x)) exists such that, for all (d, s)∈W :
– if d ∈ {−1, ε}, then x·d is defined and there is some j ∈ IN

such that x·j ∈ Tr and r(x·j) = (x·d, s);
– if d = 〈n〉, then there is some M ⊆ succ(x) with |M | > n

such that, for each z ∈ M , there is some j ∈ IN such that
x·j ∈ Tr and r(x·j) = (z, s);

– if d = [n], then there is some M ⊆ succ(x) with |M | ≤ n
such that, for each z ∈ succ(x) \M , there is some j ∈ IN
such that x·j ∈ Tr and r(x·j) = (z, s);

– if d = 〈root〉, then there is some c ∈ roots(F ) and j ∈ IN
such that x·j ∈ Tr and r(x·j) = (c, s);

– if d = [root], then for each c ∈ roots(F ) there is some
j ∈ IN such that x·j ∈ Tr and r(x·j) = (c, s).

The run 〈Tr, r〉 is accepting if, for each infinite path P
of Tr, there is an even i such that Inf(〈P, r〉)∩Gi 6= ∅ and
Inf(〈P, r〉)∩Gi−1 = ∅, where Inf(〈P, r〉) is the set of all
states q ∈Q such that {y ∈P | ∃x.r(y) = (x, q)} is infinite.

A FEA A accepts a labeled forest 〈F, V 〉 if it has some
accepting run over 〈F, V 〉. The set of all forests accepted by
A is L (A). The non-emptiness problem is the problem of
deciding whether L (A) 6= ∅ for a given FEA A.

Theorem 3.6 ([Bonatti et al., 2008]). The non-emptiness
problem for a FEA A = 〈Σ, b, Q, δ, q0, F 〉 with index k can
be solved in time (b+ 2)O(|Q|3·k2·log k·log b2).



3.3 Reducing Satisfiability to Automata Emptiness
In the rest of this section, C denotes a normal ZOIQ con-
cept. To represent a quasi-forest model I of C as a la-
beled forest, we label each individual with the set of atomic
concepts (i.e., concept names and nominals) it satisfies.
For atomic roles, we add R to the label of x whenever
(x, x′)∈RI and x′ is not a root. Arcs leading to roots are
handled as in [Bonatti et al., 2008], by adding a special sym-
bol ↑Ra to the label of x whenever (x, aI)∈RI . Finally, we
represent loops (x, x)∈RI using special labels RSelf .
Definition 3.7. We denote by RC and IC respectively the
sets of role and individual names occurring in C, by CIC the
set of atomic concepts occurring in C, and we define RC =
RC ∪ {P− |P ∈ RC}. We also define:

Θ(C) = CIC ∪RC ∪ {RSelf | R∈RC} ∪
{↑Ra | R∈RC and a∈ IC}, and

ΣC = 2Θ(C).

The forest encoding of a quasi-forest model I of C is the ΣC-
labeled forest 〈∆I , LI〉 such that for each x∈∆I :

LI(x) = {B ∈ CIC | x ∈ BI} ∪
{RSelf | R ∈ RC and (x, x) ∈ RI} ∪
{R ∈ RC | (x′, x) ∈ RI and x ∈ succ(x′)} ∪
{↑Ra | R ∈ RC , (x, aI) ∈ RI , and a ∈ IC}.

Now we define a FEA AC that accepts a labeled forest
F = 〈∆, L〉 if F represents a quasi-forest model I of C, or
if it can be homomorphically embedded into such a forest.
Note that AC can not ensure that an accepted forest is nom-
inal unique, i.e., that each a∈ IC occurs in exactly one root;
instead, it enforces that any two roots sharing a nominal are
indistinguishable by its transition function.

The construction, given for a normal ZOIQ concept,
combines in a novel way techniques that had been used sep-
arately for different combinations of nominals, inverses, and
counting [Bonatti et al., 2008; Sattler and Vardi, 2001], with
techniques for Boolean roles [Calvanese et al., 2002; 2007]
and ∃S.Self concepts [Ortiz, 2008]. As Bonatti et al., we em-
ploy FEAs; however, while they and Sattler and Vardi build
an automaton for a specific guess (a partition of the nominals
into equivalence classes that are interpreted as the same root,
and a set of atomic concepts satisfied by each class), we defer
the existence of a guess to the emptiness test of AC . This is
more convenient for query answering, although it requires ad-
ditional states and more involved transitions to properly han-
dle the connections from each node to the nominals.

In what follows, we extend the syntax to allow for nega-
tion of simple roles and of the symbols in Θ(C). We let
∼E denote the NNF of an expression E, and Inv(S) denote
the role obtained from a simple role S by replacing P by
P− and P− by P , for each P ∈ RC . The (syntactic) clo-
sure Cl(C) of a ZOIQ concept C contains all concepts and
simple roles that are relevant for deciding the satisfiability of
C. It contains C and is closed under subconcepts, subroles,
∼, and Inv(S). Concerning concepts with regular role ex-
pressions, it is analogous to the standard Fischer-Ladner clo-
sure of PDL. Formally, Cl(C) is as in [Ortiz, 2008] (where

atomic concepts may now be nominal concepts), extended
with ≥ 1S.C for each ∃S.C ∈ Cl(C), and with ≤ 0S.∼C
for each ∀S.C ∈ Cl(C), with S a simple role.
Definition 3.8. Let bC denote the maximal number n occur-
ring in a number restriction inC, and let a1, . . . ,ak be a fixed,
arbitrary enumeration of the elements of IC . The automaton
AC = 〈ΣC , bC , QC , δC , q

0
C , FC〉 is defined as follows:

• ΣC = 2Θ(C) is as in Definition 3.7;
• QC = Cl(C)∪{q0

C}∪Θ(C)∪QICl ∪ · · · ∪Qbin,

where Θ(C) = {s,¬s | s∈Θ(C)} andQICl, . . . , Qbin are ex-
plained below, along with the transition function. Below, S
and C respectively contain all simple roles S, ∼S and con-
cepts C, ∼C such that ≥ nS.C or ≤ nS.C is in Cl(C), I
contains each {a} and ¬{a} such that a ∈ IC , and CL =
Cl(C) ∪Θ(C).

QICl = {〈a, α〉, 〈a,∼α〉 | a∈ IC , α ∈ CL}
Q↑ = {↑Sa | S ∈ Cl(C) is a simple role and a∈ IC}
QSelf = {SSelf | S ∈ Cl(C) is a simple role}
QNom = {¬a ∨ ¬a′ | a, a′ ∈ IC , a 6= a′}
Qroots = {〈〈root〉i, S, C〉 | 0 ≤ i ≤ |IC |, S ∈ S, C ∈ C} ∪

{〈[root]i, S, C〉 | 0 ≤ i ≤ |IC |, S ∈ S, C ∈ C}
Qbin = {〈◦, α, C〉 | ◦ ∈ {∧,∨}, α ∈ S ∪ I, C ∈ C}

• FC = (∅, {∀R∗.C | ∀R∗.C ∈ Cl(C)}, QC) is the accep-
tance condition [Calvanese et al., 2002; 2007].
• There are transitions for each σ ∈ ΣC as defined below.

First, we have

δC(q0
C , σ) = (〈root〉, C) ∧

Vk
i=1(〈root〉, {ai}) ∧V

a∈IC ,α∈CL(([root], 〈a, α〉) ∨ ([root], 〈a,∼α〉)).

This initial transition checks that the input forest encodes a
quasi-model of C. Its three conjuncts respectively check that
(i) some root is in the interpretation of C, (ii) each nominal is
interpreted as some root, and (iii) all pairs of roots interpret-
ing the same nominals have identical labels and satisfy the
same expressions in the closure. For testing (iii), AC moves
to the states inQICl. For each such state, there are transitions

δC(〈a, α〉, σ) = (ε,¬{a}) ∨ (ε, α).

Transitions that use the states Cl(C) to inductively decom-
pose simple roles, concepts (except number restrictions and
∃S.Self concepts), and regular role expressions within con-
cepts are as usual, see e.g., [Calvanese et al., 2002; 2007].
We recall that propagation of ∀T .C (resp., ∃T .C) in the case
where T =R∗ is by δC(∀R∗.C, σ) = (ε, C)∧(ε, ∀R.∀R∗.C)
(resp., δC(∃R∗.C, σ) = (ε, C) ∨ (ε, ∃R.∃R∗.C)).
For each ∃S.Self in Cl(C), we have

δC(∃S.Self, σ) = (ε, SSelf),

as in [Ortiz, 2008]. For each ∃S.C and ∀S.C in Cl(C) where
S is simple, we respectively have

δC(∃S.C, σ) = (ε,≥ 1S.C), and
δC(∀S.C, σ) = (ε,≤ 0S.∼C).

We next give the transitions that ensure satisfaction of the
number restrictions. They are novel and differ from all pre-
vious approaches. In ZOIQ, to ensure that ≥ nS.C or



≤ nS.C is satisfied at some node x of a forestF we must take
all nodes x′ into account for which (x, x′)∈SI may hold in
the encoded interpretation I. This x′ may be (cf. Def. 3.2):
(i) a root of F , (ii) x itself, (iii) a node in succ(x), or (iv) the
predecessor of x in F . Our transitions are more involved than
those in [Bonatti et al., 2008] for two reasons. First, we must
consider the four cases above, while they consider either just
(i) and (iii) or (iii) and (iv). Second, as we are not building
an automaton for a specific guess, verifying which roots of F
take part in the satisfaction of a number restriction is more
complicated, and special care is needed to ensure that roots
interpreting more than one nominal are not counted more than
once. The transitions differ also from those in [Calvanese et
al., 2002; 2007; Ortiz, 2008], which use non-graded automata
and count the successors of x one-by-one; this requires expo-
nentially many states if n is coded in binary.
For each ≥ nS.C in Cl(C), we define:

δC(≥ nS.C, σ) =
_

0≤i≤|IC |

((ε, 〈〈root〉i, S, C〉) ∧ NR∧(n− i, S, C))

where for m ≥ 0, NR∧(m,S,C) = ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4 and
ϕ1 = (〈m〉, 〈∧, S, C〉),
ϕ2 = (ε, SSelf) ∧ (ε, C) ∧ (〈m−1〉, 〈∧, S, C〉),
ϕ3 = (ε, Inv(S)) ∧ (−1, C) ∧ (〈m−1〉, 〈∧, S, C〉),
ϕ4 = (ε, SSelf) ∧ (ε, C) ∧ (ε, Inv(S)) ∧ (−1, C) ∧

(〈m−2〉, 〈∧, S, C〉).
To understand these transitions, suppose satisfaction of
≥ nS.C is verified at node x. Then, among the nodes of type
(i) to (iv) above, there must exist distinct nodes x′1, . . . , x

′
n for

which the following holds: (*) x is related to x′j via S and x′j
satisfies C. These nodes are grouped further into two kinds:
the roots, in (i), and nodes that are not roots, in (ii) to (iv).
The first transition searches for some i such that i nodes of
the first group and m=n−i of the second group satisfy (*).
The latter check is done via NR∧(m,S,C). Its disjuncts ϕ1

to ϕ4 correspond to the four possible ways in which these m
nodes can be found among the nodes of types (ii) to (iv), viz.:

(ϕ1) m successors of x satisfy (*),
(ϕ2) x itself and (at least) m−1 successors of x satisfy (*),
(ϕ3) the predecessor of x and (at least) m−1 successors

of x satisfy (*), or
(ϕ4) x itself, the predecessor of x, and

(at least) m−2 successors of x satisfy (*).
Finally, the following transitions for each 〈〈root〉i, S, C〉 in
Qroots check whether i roots satisfy (*):
δC(〈〈root〉i, S, C〉, σ) =

W
N⊆IC ,|N|=i

`
R∧(N,S,C)

´
, where

R∧(N,S,C) =
V
a∈N ((ε, ↑Sa ) ∧ (〈root〉, 〈∧, {a}, C〉)) ∧V
ai,aj∈N,i 6=j([root],¬ai ∨ ¬aj).

The transitions for concepts ≤ nS.C are analogous. They
use states 〈[root]i, S, C〉 in Qroots, states 〈∨, α, C〉 in Qbin,
and states in QNom. Note that in the above transitions, the
automaton moves to the auxiliary states in Qroots and Qbin.
Then, for each ¬a ∨ ¬a′ in QNom, there is a transition

δC(¬a ∨ ¬a′, σ) = (ε,¬{a}) ∨ (ε,¬{a′})
and for each 〈◦, α, C〉 in Qbin, there is a transition

δC(〈◦, α, C〉, σ) = (ε, α) ◦ (ε, C).

The automaton also moves to the states SSelf in QSelf (resp.
↑Sa in Q↑), to verify whether a node x is connected by S to
itself (resp. to a root where a holds). Then the simple role S
is decomposed using, for each q ∈ Q↑,

δC(↑S∩S
′

a , σ) = (ε, ↑Sa ) ∧ (ε, ↑S
′
a ),

δC(↑S∪S
′

a , σ) = (ε, ↑Sa ) ∨ (ε, ↑S
′
a ),

δC(↑S\S
′

a , σ) = (ε, ↑Sa ) ∧ (ε,¬↑S
′
a ),

and similar transitions for all q ∈QSelf .
Finally, the automaton checks the label of the current node for
atomic expressions and special symbols. For each s∈Θ(C),

δC(s, σ) =

(
t if s ∈ σ,
f if s /∈ σ,

δC(¬s, σ) =

(
f if s ∈ σ,
t if s /∈ σ.

The automaton AC provides the desired reduction.
Lemma 3.9. Let C be a normal ZOIQ concept. If
L (AC) 6= ∅ then C is satisfiable, and if C has a quasi-forest
model, then L (AC) 6= ∅.

Proof (sketch). If C has a quasi-forest model, it is routine to
verify that AC accepts its forest encoding. The converse is
less direct, as AC also accepts forests F that are not nominal
unique. However, one can verify that if F has two subtrees
whose roots r and r′ have the same labels and satisfy the same
concepts in the closure, then a run of AC on F visiting both
can be modified into one visiting only one of them. Hence,
if L (AC) 6= ∅ then AC accepts some nominal-unique F . To
show that such an F corresponds to a model of C is easy.

From this and Propositions 3.1 and 3.3, we obtain:
Theorem 3.10. Let K be a ZIQ, ZOI, or ZOQ KB. Then
we can construct fromK a concept CK such that L (ACK) 6=
∅ iff K is satisfiable.

For a given KB K and the concept CK obtained from it, one
can easily verify that for ACK (i) the number of states is poly-
nomial in the size of K, (ii) the alphabet size and the count-
ing bound are at most single exponential, even when num-
bers are coded in binary, and (iii) the index is fixed. Hence
Theorems 3.6 and 3.10 yield an EXPTIME upper bound for
KB satisfiability in all sublogics of ZOIQ that enjoy the
quasi-forest model property. Since a matching lower bound is
known for much weaker DLs, we obtain our first main result.
Theorem 3.11. KB satisfiability in ZIQ, ZOQ, and ZOI
is EXPTIME-complete.

4 Query Entailment and Containment
To decide query entailment, we follow the ideas in [Calvanese
et al., 2007], which use complementation, projection, and in-
tersection of automata. How to complement and do projec-
tion on FEAs is open. Therefore, we exploit the fact that
root transitions can be easily removed from FEAs [Bonatti et
al., 2008], and then show how to eliminate also graded tran-
sitions, obtaining an automaton for which we know how to
perform complementation and projection.

For b > 0, let D′b = {−1, ε} ∪ {〈0〉, . . . , 〈b〉} ∪ {[0], . . . ,
[b]}. A two-way graded alternating parity tree automaton
(2GAPA) is a FEA with transition function δ : Q × Σ →
B(D′b ×Q), i.e., there are no 〈root〉 or [root] transitions.



A FEA A with counting bound b and s states is convertible
into an 2GAPA with the same index and counting bound and
with O(s·b) states, accepting the tree-encoding of each forest
in L (A) [Bonatti et al., 2008]. The tree encoding of a forest
F is the tree obtained from F by placing a new root above the
roots of F .

We now show how to eliminate graded transitions from a
2GAPA. For this, we need to restrict the attention to trees
with a bounded branching degree k ≥ 1. We call a tree T ⊆
{1, . . . , k}∗ with roots(T ) = {ε} a k-tree.
Definition 4.1. A two-way alternating parity automaton
(2APA) over infinite Σ-labeled k-trees is a tuple A =
〈Σ, k,Q, δ, q0, F 〉, where Σ, Q, q0, and F are as for FEAs,
and the transition function is δ : Q × Σ → B([−1..k] × Q),
with [−1..k] = {−1, ε, 1, . . . , k}.

A run 〈Tr, r〉 of a 2APA over a labeled k-tree 〈T, V 〉 is a
T ×Q-labeled tree satisfying: ε ∈ Tr; r(ε) = (ε, q0); and for
each y ∈ Tr with r(y) = (x, q) and δ(q, V (x)) = ϕ, there is
a (possibly empty) set {(d1, q1), . . . , (dn, qn)} ⊆ [−1..k]×Q
that satisfies ϕ and such that, for all i ∈ {1, . . . , n}, y·i ∈ Tr,
x·di is defined, and r(y·i) = (x·di, qi).
Lemma 4.2. Let A = 〈Σ, b, Q, δ, q0, F 〉 be a 2GAPA and
k ≥ 1. There is a 2APA A′ with the same index and O(|Q| ·
b ·k) states accepting the same set of Σ-labeled k-trees as A.

Proof (sketch). We let A′ = 〈Σ, k,Q]Q′, δ′, q0, F
′〉, where

Q′={〈i, q, j〉, [i, q, j] | q ∈ Q, 0 ≤ i ≤ b+1, 1 ≤ j ≤ k+1}.

For each σ ∈ Σ, the transition function δ′ is defined as fol-
lows. First, for all q ∈ Q, δ′(q, σ) is obtained from δ(q, σ) by
replacing each (〈n〉, q) with (ε, 〈n+1, q, 1〉) and each ([n], q)
with (ε, [n+1, q, 1]). For 1≤i≤b+1 and 1≤j≤k, we define:

δ′(〈i, q, j〉, σ) = ((j, q) ∧ (ε, 〈i−1, q, j+i〉)) ∨ (ε, 〈i, q, j+1〉)
δ′([i, q, j], σ) = ((j, q) ∧ (ε, [i, q, j+1])) ∨ (ε, [i−1, q, j+1])

and additionally, we have:

δ′(〈0, q, j〉, σ) = t, δ′([0, q, j], σ) = f, for 1≤ j≤ k+1;
δ′(〈i, q, k+1〉, σ) = f, δ′([i, q, k+1], σ) = t, for 1≤ i≤ b+1.

Intuitively, from state 〈i, q, j〉, a copy of A′ is sent off in state
q, to at least i successor nodes starting from the j-th one.
Similarly, from state [i, q, j], no copy of A′ is sent off in state
q, for at most i−1 successor nodes starting from the j-th one.
Finally, if F=(G1, . . . , Gn−1, Q), we have

F ′ = (G1, . . . , Gn−1, Q ]Q′).

One can show that a Σ-labeled k-tree is accepted by A′ iff it
is accepted by A.

Note that Lemma 4.2 does not ensure equivalence between
the 2GAPA and the resulting 2APA, since a 2GAPA may ac-
cept trees of arbitrary degree. However, it is sufficient for our
purposes: an analysis of the proof of Proposition 3.3 reveals
that, if K 6|= q for K in ZIQ, ZOQ, or ZOI,4 then there
is a counterexample quasi-forest model I of degree bounded

4We assume w.l.o.g. that all concepts appearing in q are atomic,
and that all concept and role names occurring in q occur also in K.

by bK·|Cl(C)|. Hence, the tree encoding of I has degree
bounded by the maximum k of bK · |Cl(C)| and |IK|.

For deciding the entailment of a P2RPQ q, we use the tech-
nique in [Calvanese et al., 2007] extended to ZOIQ (nomi-
nals in q are handled essentially as the query constants there,
while Self is handled as in [Ortiz, 2008]). For a k-tree T
whose nodes are labeled with subsets of Θ(C), let IT be the
interpretation of K represented by T . We define from q a
2APA AXq that accepts a labeled k-tree TX iff it explicitly
finds a match for ITX and q on the nodes of TX . Techni-
cally, the node labels of TX are allowed to contain, besides
elements of Θ(C), also elements of X , where X is the set of
(existentially quantified) variables in q. The elements of X
are treated as atomic concepts that are enforced to hold in a
single node of TX (on a tree-structure, such a condition can
be easily enforced by means of a 2APA), and AXq relies on
such elements to check for a match for ITX and q. We then
convert AXq to a one-way nondeterministic parity automaton
(1NPA) A1

q , from which we then project out5 the elements of
X , obtaining a 1NPA A2

q . In this way, A2
q accepts a k-tree T

whose nodes are labeled with subsets of Θ(C), iff there ex-
ists a match for IT and q. By complementing A2

q , we obtain
a 1NPA A¬q accepting a k-tree T iff there is no match for IT

and q. Finally, to check K |= q, we transform the FEA ACK
to a 2GAPA, then to a 2APA (cf. Lemma 4.2), and finally to a
1NPA, which we intersect with A¬q . A complexity analysis
of the various operations allows us to show the following:
Theorem 4.3. Given a KBK in ZIQ, ZOQ, or ZOI and a
P2PRQ q, decidingK |= q is in 2EXPTIME in the total size of
q andK (under unary number coding in number restrictions).

To address query containment, we extend the relationship
with query answering, which is well-known for plain CQs in
the relational case, to our richer setting. Indeed,K |= q1 ⊆ q2

iff Kq1 |= q2, where Kq1 = 〈Aq1 , T 〉 is the KB obtained
from K = 〈A, T 〉 by first “freezing” q1 = ∃~x.ϕ(~x), i.e.,
considering each variable in ~x as a fresh individual in Kq1 ,
and then asserting ϕ(~x) to hold in Aq1 . When ϕ(~x) is (or
can be reduced to) a conjunction

∧
1≤i≤n αi of atoms, where

each αi is of the form C(z) or S(z, z′), with S a simple role,
we have that Aq1 = A ∪ {αi | 1 ≤ i ≤ n}, i.e., the frozen
qi can be directly represented as an ABox. Otherwise, we
can represent the whole of ϕ(~x) by means of a single ABox
assertion Cϕ(~x)(a), where a is a fresh individual, and Cϕ(~x)

is the concept obtained from ϕ(~x) by replacing ∧ by u, ∨
by t, each atom C(z) by ¬{z} t C, and each atom T (z, z′)
by ¬{z} t ∃T .{z′}. Note that in the latter case we need to
introduce nominals, even when they were not present in K.
Theorem 4.4. K |= q1 ⊆ q2 is in 2EXPTIME wrt. the total
size of q1, q2, and K (i) if K is a ZOQ or ZOI KB and q1,
q2 are P2RPQs over K, or (ii) if K is a ZIQ KB, q1 is a
conjunctive query, and q2 is a P2RPQ over K.

5 Reasoning in the SR family
The automata techniques devised above can be also fruitfully
exploited for fragments of the DL.

5Projection cannot be done directly on a two-way automaton.



SROIQ is similar to ZOIQ, but lacks Boolean and reg-
ular role expressions. Instead, it has an RBox R comprising
(i) role inclusions R1 ◦ · · · ◦Rn v R under certain restric-
tions, and (ii) assertions about roles Irr(R), Ref(R), Sym(R),
Dis(R,R′) [Horrocks et al., 2008]. Its sublogics SRIQ,
SROQ, SROI are analogous to ZIQ, ZOQ, ZOI.

To exploit our automata-based algorithms for reasoning in
(sublogics of) SROIQ, we can transform each SROIQ
KB K into a ZOIQ KB Ψ(K). The rewriting Ψ(K) is
like the one in [Ortiz, 2008] from SRIQ to ZIQ (alias
ALCQIb+reg ); as nominal concepts cause no change, we do
not repeat it here. Intuitively, the rewriting replaces each role
R in K with a regular expression ρR. We note that this need
not be done for the roles in the ABox, which can be treated
by closing the role assertions wrt. the RBox. The models of
K are models of the resulting Ψ(K), and conversely, each
model I of Ψ(K) can be turned into a model of K by setting
RI = (ρR)I (cf. [Kazakov, 2008]). Assertions about roles are
simulated using BRIAs and CIAs. Based on this, we obtain:
Proposition 5.1. A SROIQ KB K can be rewritten into an
equisatisfiable ZOIQ KB Ψ(K). Further, if K is in SRIQ,
SROI, or SROQ, then Ψ(K) is in ZIQ, ZOI, or ZOQ,
respectively.

The ZOIQ KB Ψ(K) can be constructed in time polyno-
mial in the combined sizes of A, T , and the largest regular
expression ρR used, denoted by ρK (which can be exponen-
tial inR) [Ortiz, 2008]. Hence we obtain:
Theorem 5.2. Satisfiability of a KB K = 〈A, T ,R〉 in any
of SRIQ, SROI, and SROQ is in EXPTIME wrt. the total
size of T , A, and ρK, and in 2EXPTIME wrt. the size of K.

For SRIQ, this is known to be optimal [Kazakov, 2008].
Note that this holds even if the number restrictions are coded
in binary, and that we obtain a single exponential upper bound
whenever ρK is polynomial inR.

By making again use of the rewriting above, we can reduce
also query answering in SROIQ to ZOIQ.
Proposition 5.3. Let K be a SROIQ KB and q a P2RPQ
over K, and let q′ be obtained from q by replacing each oc-
currence of each role R by ρR. Then K |= q iff Ψ(K) |= q′.

Note that the rewriting of q into q′ may introduce regular
expressions, even if they were not originally present in q. To
verify K |= q1 ⊆ q2, for two P2RPQs q1 and q2, then we can
proceed by “freezing” q1 and treating it as an ABox, as de-
scribed in Section 4. We obtain the following upper bounds:
Theorem 5.4. GivenK= 〈A, T ,R〉 and q1, q2 P2RPQs over
K, K |= q2 and K |= q1 ⊆ q2 are decidable in 2EXPTIME
in the total size of A, T , ρK, q1, q2 and in 3EXPTIME in the
total size of K, q1, q2 (assuming unary coding of numbers in
the number restrictions) when (i) K is a SROQ or SROI
KB, or (ii) K is a SRIQ KB and q1 is a conjunctive query.
Our results also apply to the corresponding SR logics ex-
tended with safe Boolean roles, as in [Rudolph et al., 2008].

6 Conclusion
In this paper, we have substantially pushed the frontier of de-
cidability for query entailment and containment over very ex-
pressive DLs, and in particular for the DLs of the SR family

that underlie relevant fragments of OWL. Our techniques rely
heavily on the quasi-forest model property of the considered
DLs, and their applicability for settings where this fails is not
apparent. Indeed, the fact that Proposition 3.3 fails inALCB,
the extension of ALC with arbitrary role negation, already
implies undecidability of query entailment [Pratt-Hartmann,
2008]. We remark that [Pratt-Hartmann, 2008] shows also
decidability of CQ answering for the guarded two-variable
fragment of FOL, but the latter captures neither nominals nor
regular expressions over roles. In fact, the decidability of
ZOIQ remains open, even for KB satisfiability.
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