
Information and Computation 237 (2014) 12–55
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Answering regular path queries in expressive Description
Logics via alternating tree-automata ✩

Diego Calvanese a, Thomas Eiter b, Magdalena Ortiz b,∗
a KRDB Research Centre, Free University of Bozen-Bolzano, Via della Mostra 4, I-39100 Bolzano, Italy
b Institute of Information Systems, Vienna University of Technology, Favoritenstraße 9-11, A-1040 Vienna, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 December 2009
Received in revised form 3 April 2013
Available online 18 April 2014

Keywords:
Expressive Description Logics
Query answering
Computational complexity
Automata on infinite trees

Expressive Description Logics (DLs) have been advocated as formalisms for modeling the
domain of interest in various application areas, including the Semantic Web, data and
information integration, peer-to-peer data management, and ontology-based data access.
An important requirement there is the ability to answer complex queries beyond instance
retrieval, taking into account constraints expressed in a knowledge base. We consider
this task for positive 2-way regular path queries (P2RPQs) over knowledge bases in
the expressive DL ZIQ. P2RPQs are more general than conjunctive queries, union of
conjunctive queries, and regular path queries from the literature. They allow regular
expressions over roles and data joins that require inverse paths. The DL ZIQ extends
the core DL ALC with qualified number restrictions, inverse roles, safe Boolean role
expressions, regular expressions over roles, and concepts of the form ∃S.Self in the style
of the DL SRIQ. Using techniques based on two-way tree-automata, we first provide
as a stepping stone an elegant characterization of TBox and ABox satisfiability testing
which gives us a tight ExpTime bound for this problem (under unary number encoding).
We then establish a double exponential upper bound for answering P2RPQs over ZIQ
knowledge bases; this bound is tight. Our result significantly pushes the frontier of
2ExpTime decidability of query answering in expressive DLs, both with respect to the query
language and the considered DL. Furthermore, by reducing the well known DL SRIQ to
ZIQ (with an exponential blow-up in the size of the knowledge base), we also provide a
tight 2ExpTime upper bound for knowledge base satisfiability in SRIQ and establish the
decidability of query answering for this significant fragment of the new OWL 2 standard.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Description Logics (DLs) [2] is a well-established branch of logics for knowledge representation and reasoning, and to-
day the premier logic-based formalisms for modeling concepts (i.e., classes of objects) and roles (i.e., binary relationships
between classes). It has gained increasing attention in different areas including the Semantic Web, data and information
integration, peer-to-peer data management, and ontology-based data access. In particular, many of the standard Web on-
tologies from the OWL family are based on DLs: the new OWL 2 standard [3] is based on a DL known as SROIQ [4],
whose fragment SRIQ [5] extends the DL SHIQ underlying OWL-Lite [6].

✩ Some results of this paper have appeared, in preliminary form, in a conference paper in the Proc. of AAAI 2007 [1].

* Corresponding author.
E-mail addresses: calvanese@inf.unibz.it (D. Calvanese), eiter@kr.tuwien.ac.at (T. Eiter), ortiz@kr.tuwien.ac.at (M. Ortiz).
http://dx.doi.org/10.1016/j.ic.2014.04.002
0890-5401/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2014.04.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:calvanese@inf.unibz.it
mailto:eiter@kr.tuwien.ac.at
mailto:ortiz@kr.tuwien.ac.at
http://dx.doi.org/10.1016/j.ic.2014.04.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2014.04.002&domain=pdf

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 13
In DLs, reasoning tasks like classification and instance checking, which deal with taxonomic issues, had been tradition-
ally studied. However, the widening range of applications in which DLs are used has motivated an increasing interest in
query languages whose expressive power goes beyond that of DL concept and role expressions. The aim of such languages
is to allow one to join pieces of information in finding the query answer, thus overcoming one of the most significant
drawbacks of DLs as languages for data management. Since the initial work of Calvanese et al. [7], many further works
have addressed the problem of evaluating complex queries over DL knowledge bases. Special attention has been devoted
to (unions of) conjunctive queries (CQs and UCQs) [8], which are the formal counterpart of the most widely used fragments
of SQL (or relational algebra) queries, namely (unions of) select-project-join queries. (U)CQs over DL knowledge bases have
been studied for many DLs, ranging from weak ones that allow for efficient algorithms, like those of the EL [9–11] and
DL-Lite families [12], to the very expressive ones of the ALCH and SH families, cf. [13–16].

Another important language for querying knowledge bases is that of regular path queries (RPQs) [17–19], which allow
one to ask for pairs of objects that are connected by a path conforming to a regular expression. Due to their capability of
expressing complex navigations in graphs, RPQs are the fundamental mechanism for querying semi-structured and graph-
structured data. Indeed, as a query language, RPQs go beyond first-order logic, since they allow one to express a controlled
form of recursion. This turns out to be essential for querying graph-like structures such as those encountered in several
domains that are gaining increasing importance, notably social networks [20] and linked open data [21]. Notice that, in
a setting of incomplete information as the one encoded by means of a knowledge base, the use of unrestricted recursion
would quickly lead to undecidability, not only of intensional inference tasks such as query containment or equivalence [22],
but also of query answering [23,24]. Instead, the restricted form of recursion provided by RPQs and their extensions con-
sidered here, provides a good trade-off between the ability to flexibly traverse data whose precise structure is not defined
a priori (e.g., in terms of a relational schema), and the decidability of query answering also in the presence of complex
domain knowledge encoded in DLs. The complex paths allowed in the query allow one to find in the data complex relations
between items, without being constrained by the relations explicitly stated in the data or pre-defined in the ontology, and
without having to modify the ontology solely for query answering. Moreover, when also inverse roles are allowed to occur
in the regular expression, the complex relations expressed by the resulting two-way RPQs (2RPQs) are not restricted to the
direction initially chosen by the designer to represent relations between data items. 2RPQs are for example present in the
property paths in SPARQL 1.1 [25], the new standard RDF query language, and in the XML query language XPath [26]. We
consider here the yet more expressive class of positive (existential) two-way regular path queries (in short, P2RPQs), which are
inductively built using conjunction and disjunction from atoms that are regular expressions over direct and inverse roles and
allow for testing the objects encountered during navigation for membership in concepts. P2RPQs, which subsume CQs and
unions of CQs, are also a natural generalization of several extensions of RPQs that have been studied by different authors,
e.g., [27,28,19,29–32]. They are, to our knowledge, the most expressive query language considered so far over DL knowledge
bases [33,1].

In this paper, we describe a technique, first presented in [1], for deciding the entailment problem for P2RPQs expressed
over ZIQ knowledge bases. In query entailment, we are given a knowledge base and a Boolean query, i.e., a query that in a
given interpretation evaluates either to true or to false, expressed over that knowledge base, and we are asked to determine
whether the query evaluates to true in every model of the knowledge base. The DL ZIQ, also known as ALCQIbSelf

reg ,
extends the well known DL ALCQIb (to which reasoning in SHIQ can be reduced [34]) with regular role expressions [35],
Boolean role inclusion axioms, and concepts of the form ∃S.Self [5]. By means of a translation that reduces the query
entailment problem over SRIQ KBs to ZIQ KBs, we also obtain an algorithm for entailment of P2RPQs over SRIQ
knowledge bases. This is the first algorithm for query entailment (and hence for query answering) that allows both for
regular expressions and for conjunctions of atoms in the query, while considering, on the DL side, a logic that extends ALC
with inverses and counting and, notably, also supports the kind of complex role inclusions that have been advocated in the
new OWL standards [3].

Previously, algorithms for query answering over expressive DLs had used a variety of techniques, ranging from query
rewriting [7,13,36], over modified tableaux techniques [16], to resolution [37]. We obtain our results by exploiting techniques
based on automata on infinite trees [38], which have been developed initially in the context of modal logics and program
logics [39–43]. While the application of automata techniques in DLs is not novel, cf. [35,44,45], previous work was concerned
with deciding satisfiability of a knowledge base consisting of a taxonomy part (TBox) only. Here we address the much more
involved task of query answering over a knowledge base, which also has a data part (an ABox). Specifically, we extend
previous automata-based algorithms for TBox satisfiability [35,44] and incorporate the ABox part. Then, to decide query
entailment over DL knowledge bases, we build on the ideas of Calvanese et al. [30], which had been developed in the
context of automata on finite words, and extend them to automata over infinite trees. For deciding query entailment, we
implement automata operations that rely on transformations between different kinds of automata, which, from a technical
point of view, are more challenging in our case than in the case of finite words. The technique we present here has been
recently extended to some DLs that support nominals [33].

In this paper, we make the following contributions (all complexity results hold under unary number encoding):

• As a stepping stone to our main results, we first present an automata-based algorithm for checking the satisfiability of a
ZIQ knowledge base that comprises both a TBox and an ABox, and that runs in ExpTime, which is worst-case optimal.

14 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
• We then show that answering P2RPQs over ZIQ knowledge bases is feasible in 2ExpTime. By the aforementioned
reduction [34], the same bound holds for SHIQ. From known hardness results for answering CQs over ALCI [46]
and SH [47] KBs, it follows that this is worst case optimal. In fact, a simple adaptation of the proof in [47] shows that
the matching lower bounds hold even for answering positive queries (which do not allow regular expressions over roles
in atoms) and conjunctive RPQs (i.e., P2RPQs that use only conjunction and no inverse roles) over plain ALC KBs. This
shows that, once either inverse roles or role hierarchies and transitivity are allowed in the KB, or alternatively, regular
expressions or disjunctions are allowed in the query, one can significantly extend both the query language and the DL
considered without further increasing the worst case complexity of the query entailment problem.

• We provide a rewriting that, with an unavoidable exponential blow-up, translates a SRIQ knowledge base into a
ZIQ knowledge base. In this way we obtain a relevant result: a new tight 2ExpTime upper bound for knowledge base
satisfiability in SRIQ, the nominal free-fragment of OWL 2.

• Furthermore, we show that entailment for P2RPQs is decidable over SRIQ knowledge bases (in fact, the problem is in
3ExpTime); this is the first decidability result for query entailment in an expressive DL with complex role hierarchies,
and identifies the first expressive fragment of OWL 2 for which decidability of query entailment has been established.
For full OWL 2 (i.e., the DL SROIQ), decidability of query entailment remains open.

The rest of this article organized as follows. We first give some technical preliminaries in Section 2. Then, in Section 3,
we discuss in detail some properties of ZIQ KBs and present some transformations on them that lie at the core of our
automata algorithms. In Section 4, we describe the automata-based technique for satisfiability of ZIQ KBs, and in Section 5
its extension to query entailment. In Section 6, we present the rewriting from SRIQ to ZIQ, obtaining algorithms for
KB satisfiability and query entailment in this logic. In Section 7, we draw final conclusions. In order to increase readability,
technical details of some proofs have been moved to Appendix A.

2. Preliminaries

In this section, we define the main Description Logic (DL) and the query answering problem considered in this article.
We also provide some general preliminaries on automata on infinite trees. Throughout the paper, we use |X | to denote the
cardinality of a set X , and ‖X‖ to denote the length of some string encoding X . For any word w , |w| denotes the length
of w , i.e., the number of its symbols.

2.1. The Description Logic ZIQ

ZIQ is the short name for the DL ALCQIbSelf
reg , which extends the well known DL ALCQIb [34] with regular role

expressions, Boolean role inclusion axioms, and concepts of the form ∃S.Self in the style of SRIQ [5]. In turn, ALCQIb
extends the basic DL ALC with qualified number restrictions and inverses, which are available in SHIQ, SRIQ and
other well known DLs, and supports safe Boolean expressions over simple roles. ZIQ is a slight extension of ALCQIbreg

considered in [35,1].

Definition 2.1 (Concepts and roles). We consider fixed, countably infinite and pairwise disjoint alphabets C of concept names
(also called atomic concepts), R of role names, and I of individual names. We assume that C contains the special concepts �
(top) and ⊥ (bottom), while R contains the top (or universal) role T and the bottom (or empty) role B. Concepts C , C ′ and
roles P , S , S ′ , R , R ′ , are formed according to the following syntax, where A ∈ C and p ∈ R \ {T}1:

C, C ′ −→ A | ¬C | C
 C ′ | C � C ′ | ∀R.C | ∃R.C |�nS.C |�nS.C | ∃S.Self

P −→ p | p−

S, S ′ −→ P | S ∩ S ′ | S ∪ S ′ | S \ S ′

R, R ′ −→ T | S | R ∪ R ′ | R ◦ R ′ | R∗ | id(C)

We call roles P atomic, and roles S , S ′ simple. Note that, as p �= T, the top role T may occur in arbitrary roles R, R ′ but not
in simple roles S , S ′ . A ZIQ expression is a concept or a role. The set of subconcepts (subroles) of a given concept (resp.,
role) is defined in the natural way considering the syntactic structure of the concept (resp., role). �
Definition 2.2 (Knowledge base). A concept inclusion axiom (CIA) is of the form C � C ′ , where C and C ′ are arbitrary concepts,
while a Boolean role inclusion axiom (BRIA) is of the form S � S ′ where S and S ′ are simple roles. A TBox is a set of CIAs and
BRIAs. An assertion is of the form C(a), S(a,b), or a �≈ b, where C is a concept, S is a simple role and a,b ∈ I. An ABox is a
set of assertions.

1 We omit parentheses in expressions following the usual conventions.

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 15
A knowledge base (KB) is a pair K= 〈T ,A〉, where T is a TBox and A is a non-empty ABox.2 We denote by CK , RK , and
IK the sets of concept names, role names, and individuals occurring in K, respectively. Furthermore, we let RK = RK ∪{p− |
p ∈ RK}. �
Definition 2.3 (Semantics). An interpretation I = (�I , ·I) consists of a non-empty domain �I and a valuation function ·I
that maps each individual a ∈ I to an element aI ∈�I , each concept name A ∈ C to a set AI ⊆�I , and each role name
p ∈ R to a set pI ⊆�I ×�I , such that:

�I =�I , TI =�I ×�I

⊥I = ∅, BI = ∅.
The function ·I is inductively extended to all concepts and roles as follows:

(¬C)I =�I \ CI ,
(

p−
)I = {

(y, x)
∣∣ (x, y) ∈ pI}

(
C
 C ′

)I = CI ∩ C ′I ,
(

S ∩ S ′
)I = SI ∩ S ′I(

C � C ′
)I = CI ∪ C ′I ,

(
R ∪ R ′

)I = RI ∪ R ′I

(∀R.C)I = {
x
∣∣ ∀y.(x, y) ∈ RI → y ∈ CI}

,
(

S \ S ′
)I = SI \ S ′I

(∃R.C)I = {
x
∣∣ ∃y.(x, y) ∈ RI ∧ y ∈ CI}

,
(

R ◦ R ′
)I = RI ◦ R ′I = {

(x, y)
∣∣ ∃z.(x, z) ∈ RI ∧ (z, y) ∈ R ′I

}
(�nS.C)I = {

x
∣∣ ∣∣{y

∣∣ (x, y) ∈ SI ∧ y ∈ CI}∣∣ � n
}
,

(
R∗

)I = (
RI)∗

(�nS.C)I = {
x
∣∣ ∣∣{y

∣∣ (x, y) ∈ SI ∧ y ∈ CI}∣∣ � n
}
,

(
id(C)

)I = {
(x, x)

∣∣ x ∈ CI}
(∃S.Self)I = {

x
∣∣ (x, x) ∈ SI

}
,

where ◦ denotes composition of binary relations and ·∗ the reflexive transitive closure of a binary relation; I satisfies (or, is
a model of)

• a CIA or BRIA E � E ′ , if EI ⊆ E ′I ;
• an assertion C(a), if aI ∈ CI , an assertion S(a,b), if (aI ,bI) ∈ SI , and an assertion a �≈ b, if aI �= bI ;
• an ABox A, if it satisfies every assertion in A;
• a TBox T , if it satisfies every CIA and BRIA in T ;
• a KB K= 〈T ,A〉, if it satisfies both T and A.

Satisfaction of a CIA, BRIA, assertion, ABox, etc. η is denoted by I |� η. Knowledge base satisfiability is the problem of deciding,
given a KB K, whether there exists an interpretation I such that I |�K. �

We remark that we do not make the unique name assumption, which can be simulated using assertions of the form
a �≈ b. Note also that we do not include in the language equality assertions a ≈ b, since their addition would not provide
additional expressiveness. Indeed, they could be easily compiled away by replacing all individuals in the same equality
equivalence class with one representative.

2.2. Query answering

We next introduce P2RPQs, which generalize conjunctive regular path queries [32,30] and unions thereof.

Definition 2.4 (P2RPQs). A positive 2-way regular path query (P2RPQ) is a formula ∃�v.ϕ(�v), where �v is a tuple of variables
and ϕ(�v) is built using ∧ and ∨ from atoms of the form C(v) and R(v, v ′), where v , v ′ are variables from �v or individuals,
C is a concept, and R is a role. If all atomic concepts and roles in ϕ occur in a KB K, the query is over K. We denote by
At(q) the set of all atoms occurring in a P2RPQ q.

Let q = ∃�v.ϕ(�v) be a P2RPQ, and let Vq and Iq denote the sets of variables and individuals in q, respectively. Given
an interpretation I , let π : Vq ∪ Iq → �I be a total function such that π(a) = aI for each individual a ∈ Iq . We write
I,π |� C(v) if π(v) ∈ CI , and I,π |� R(v, v ′) if (π(v),π(v ′)) ∈ RI . Let γ be the Boolean expression obtained from ϕ by
replacing each atom α in ϕ with true, if I,π |� α, and with false otherwise. We say that π is a match for I and q, denoted
I,π |� q, if γ evaluates to true. We say that I satisfies q, written I |� q, if there exists some match π for I and q. A KB K
entails q, denoted K |� q, if I |� q for each model I of K.

Query entailment consists in verifying, given a KB K and a P2RPQ q, whether K |� q. �
2 If A= ∅, we can always add �(a) to A for some fresh individual name a.

16 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
mortal � ¬deity
� � male � female

male ≡ ¬female
� � ∃HasFather.male
 ∃HasMother.female

HasParent ≡ HasMother ∪ HasFather
∀HasParent.mortal � mortal

deity � ∀HasParent∗.deity

HasParent (Heracles,Zeus)
HasParent (Heracles,Alcmene)

HasParent (Alcmene,Electryon)

HasParent (Electryon,Perseus)
HasParent (Perseus,Zeus)

male (Zeus)
female (Alcmene)

deity (Zeus)
mortal (Alcmene)

Fig. 1. The genealogy KB Kg used in Example 2.5.

P2RPQs are a generalization of conjunctive queries (CQs), a well known query language widely studied in databases [48,8]
and, more recently, in DLs [24,49,16,13]. A CQ is a P2RPQ in which neither disjunction (∨) nor regular role expressions
occur. We observe that the possibility of using regular role expressions in the query atoms of P2RPQs significantly increases
the expressive power of the query language, since it allows one to express complex navigations in the models of the given
KB, similar to those possible with (conjunctive) regular path queries studied in graph databases [32,30,19,27].

Example 2.5. We consider a genealogy KB Kg = 〈T ,A〉, where T contains the CIAs and BRIAs in the left column of Fig. 1,
while A contains the assertions in the right column. We use E ≡ E ′ as a shortcut for E � E ′ and E ′ � E .

The following query qg is a P2RPQ over Kg :

qg = ∃v1, v2, v3.HasParent∗ ◦ HasParent−∗(v1, v2)∧ HasParent−(v1, v3)∧ HasParent−(v2, v3)∧male(v1)

∧ female(v2)∧
(¬deity(v1)∨¬deity(v2)

)
Informally, qg asks whether there are a male and female individual (represented by v1 and v2, resp.) who are relatives (i.e.,
related by the expression HasParent∗ ◦ HasParent−∗), are not both deities, and have a common child v3. Note that Kg |� qg ,
as π(v1)= ZeusI , π(v2)= AlcmeneI and π(v3)= HeraclesI is a match for qg in every model I of Kg . �

Note that we have restricted our attention to queries that are formulas without free variables, i.e., so called Boolean
queries. We can consider w.l.o.g. the entailment problem for Boolean queries, since query answering for non-Boolean queries
is polynomially reducible to query entailment.3 Note that the problem of deciding whether a given KB has a model can be
trivially reduced to query non-entailment. Indeed, a KB K is satisfiable iff K �|� ∃v.⊥(v).

2.3. Automata on infinite trees

In the rest of this section, we recall the definitions of infinite labeled trees and of two way alternating automata over
such trees [41].

Definition 2.6. An (infinite) tree is a prefix-closed set T ⊆N∗ of words over the natural numbers N. If T ⊆ {1, . . . ,k}∗ for
some k � 0, we call it a k-tree. The elements of T are called nodes, the empty word ε is its root. For every x ∈ T , the nodes
x·c with c ∈N are the successors of x, and x is the predecessor of each x·c; the ancestor relation is the transitive closure of
predecessor. By convention, x·0= x, and (x·c)·−1= x. We call T k-ary if it is a k-tree and each node in it has k successors
(i.e., T = {1, . . . ,k}∗). An infinite path π of T is a prefix-closed set π ⊆ T where for every i ≥ 0 there exists a unique node
x ∈ P with |x| = i. A labeled tree over an alphabet Σ (or simply a Σ-labeled tree) is a pair (T , L), where T is a tree and
L : T →Σ maps each node of T to an element of Σ . �
2.3.1. Two-way alternating tree automata (2ATAs)

Now we define two-way alternating tree automata (2ATAs) over infinite trees as introduced in [41], which generalize the
standard non-deterministic (one-way) automata on infinite trees (1NTAs) in two ways. First, alternation is a generalization
of non-determinism that allows for an elegant and compact encoding of decision problems in several logics [50]. Second,
two-way automata are better suited for logics that have ‘backward’ operators, like inverse roles, since they may move up on
the input tree or stay at the current position. In contrast, one-way automata navigate (infinite) trees in a strictly top-down
manner, moving always to the successors of the current node.

Definition 2.7. Given a finite set I of propositional atoms, let B(I) be the set of positive Boolean formulas built inductively
using ∧ and ∨ from true, false and atoms from I . A set J ⊆ I satisfies a formula ϕ ∈ B(I), if assigning true to the atoms in
J and false to those in I \ J makes ϕ true. A two-way alternating tree automaton (2ATA) (running over k-ary trees) is a tuple
A= 〈k,Σ,Q, δ, s0, F 〉, where:

3 Here we refer to the associated decision problem, i.e., whether a given tuple is in the query answer.

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 17
• Σ is the input alphabet;
• Q is a finite set of states;
• δ : Q×Σ → B([k] × Q), where [k] = {−1, 0, 1, . . . ,k}, is the transition function;
• s0 ∈ Q is the initial state; and
• F = (G1, . . . , Gn) with G1 ⊆ G2 ⊆ · · · ⊆ Gn = Q is a (parity) acceptance condition, whose length n, denoted by ind(A), is

called the index of A.

We refer to each component Σ , Q , etc. of A by Σ(A), Q (A), etc., respectively. �
The transition function δ maps a state s ∈ Q and an input letter σ ∈Σ to a positive Boolean formula δ(s, σ) = ϕ over

the atoms in [k] × Q. Intuitively, each atom (c, s′) in ϕ corresponds to a new copy of the automaton going in the direction
given by c and starting in state s′ . For example, let k= 2 and δ(s1, σ)= (1, s2)∧ (1, s3)∨ (−1, s1)∧ (0, s3). If A is in the state
s1 and reads a node x labeled with σ , it proceeds by sending off either (i) two copies, in the states s2 and s3 respectively,
to the first successor of x (i.e., x·1), or (ii) one copy in the state s1 to the predecessor of x (i.e., x·−1) and one copy in
the state s3 to x itself (i.e., x·0). For convenience, we may specify the transition function δ only partially, and assume that
δ(s, σ)= false if not specified otherwise.

Acceptance of 2ATAs is defined in terms of runs. Informally, a run of a 2ATA A over a Σ-labeled tree (T , L) is a labeled
tree (Tr, r) in which each node n is labeled by an element r(n)= (x, s) ∈ T ×Q and describes a copy of A that is in the state
s and reads the node x of T ; the labels of adjacent nodes must satisfy the transition function of A. Formally, we define the
following generalized notion of a run, called (x, s)-run:

Definition 2.8. Let A= 〈k,Σ,Q, δ, s0, F 〉 be a 2ATA and let (T , L) be a Σ-labeled k-ary tree. Moreover, let x ∈ T and s ∈ Q.
An (x, s)-run of A over (T , L) is a (T×Q)-labeled tree (Tr, r) satisfying:

(R1) ε ∈ Tr and r(ε)= (x, s),
(R2) Each w ∈ Tr satisfies δ, i.e., if r(w) = (y, s′) and δ(s′, L(y)) = ϕ , then there is a (possibly empty) set W =

{(c1, s1), . . . , (cn, sn)} ⊆ [k] × Q such that:
• W satisfies ϕ , and
• for every 1≤ i ≤ n, it holds that w·i ∈ Tr , y·ci is defined, and r(w·i)= (y·ci, si).

We say that (Tr, r) visits y in state s′ , if there exists some w ∈ Tr with r(w)= (y, s′). An infinite path π of Tr satisfies
the acceptance condition F of A, if there exists an even i � 0 such that Inf(π) ∩ Gi−1 = ∅ and Inf(π) ∩ Gi �= ∅, where
Inf(π)= {s ∈ Q | r(n)= (x, s) for infinitely many n ∈ π}. The (x, s)-run (Tr, r) is accepting, if all its infinite paths satisfy F .

We call an (ε, s0)-run a (full) run. A 2ATA A accepts a Σ-labeled tree T, if there exists a (full) accepting run of A over T;
L(A) denotes the set of all trees that A accepts. The nonemptiness problem is to decide whether L(A) �= ∅ for a given A. �

The following result is well-known.

Theorem 2.9. (See [41].) Nonemptiness of a given 2ATA A is decidable in time single exponential in |Q (A)| and polynomial in |Σ(A)|.

We will often take intersections of 2ATAs, relying on the fact that this operation is trivial.

Proposition 2.10. Given 2ATAs A1, . . . ,An, it is possible to construct a 2ATA A with |Q (A)| = ∑n
i=1 |Q (Ai)| + 1 and ind(A) =

maxn
i=1 ind(Ai) such that L(A)=⋂n

i=1 L(Ai).

Proof (Sketch). Assuming the state sets Q (Ai) are pairwise disjoint, introduce a new state s∗0 and let Q (A) be the union
of all Q (Ai) plus s∗0, which is the initial state of A. The transition function δ(A) consists of the union of all δ(Ai) and has
δ(s∗0, σ)=∧n

i=1 δ(s0(Ai),σ) for all σ ∈Σ . For each Ai , let F (Ai)= (Gi
1, . . . , Gi

mi
) and let m=maxn

i=1 mi =maxn
i=1 ind(Ai). To

obtain F (A), we first ‘fill up’ all F (Ai) to F ′(Ai) with index m, by setting Gi
mi+1 = Gi

mi+2 = · · · = Gi
m = Q (Ai). Then F (A)

consists of the component-wise union of all the F ′(Ai). �
Automata on infinite trees provide elegant solutions for decision problems in temporal and program logics [51], which

has been widely exploited for providing optimal complexity bounds for the satisfiability problem of many variants of PDL,
the μ-calculus, and similar logics [41,40]. They have also been explored in DLs, but mostly for deciding concept satisfiabil-
ity [45,35], given that in many DLs, concepts have tree-shaped models.

2.3.2. (One-way) non-deterministic tree automata (1NTAs)
Standard non-deterministic (one-way) automata on infinite trees can be defined as particular 2ATAs that always move to

the k successors of the current node and switch to states that are given by a tuple of k states, one for each successor. This
can be expressed as a formula in disjunctive form:

18 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
Definition 2.11. A one-way non-deterministic automaton (1NTA) is a 2ATA A= 〈k,Σ,Q, δ, s0, F 〉 such that for every s ∈ Q and
every σ ∈ Σ , δ(s, σ) is of the form ((1, s1

1) ∧ · · · ∧ (k, s1
k)) ∨ · · · ∨ ((1, s�

1) ∧ · · · ∧ (k, s�
k)), with � � 0, and si

j ∈ Q for each
1 � i � � and each 1 � �� k. �

We recall some results on 1NTAs.

Proposition 2.12. (See [41].) Given a 2ATA A, it is possible to construct a 1NTA A1 , with |Q (A1)| � 2O (|Q (A)|c) for some constant c,
and ind(A1)= O (ind(A)), such that L(A1)=L(A).

The following bounds for automata complementation are given in [52].

Proposition 2.13 (Complementation). For every 1NTA A running over k-ary trees, it is possible to construct a 1NTA A′ that ac-
cepts a k-ary Σ-labeled tree (T , L) iff (T , L) /∈ L(A), and such that |Q (A′)| � 2O (f (A)) and ind(A′) = O (f (A)), where f (A) =
ind(A)·|Q (A)|· log |Q (A)|.

Another automata theoretic operation we exploit is projection, which restricts the trees in the language of an automaton
to a smaller alphabet. For Σ = 2Φ and Σ ′ = 2Φ ′ where Φ ′ ⊆Φ , and for a Σ-labeled tree T= (T , L), the Σ ′-restriction of T
is the Σ ′-labeled tree T′ = (T , L′), where L′ is obtained by restricting L to Σ ′ . The Σ ′-projection of a set L of Σ-labeled
trees is the set consisting of the Σ ′-restrictions of all trees in L.

Proposition 2.14 (Projection). For Σ and Σ ′ as above, for every 1NTA A running over Σ-labeled trees, it is possible to construct a
1NTA AΣ ′

with |Q (AΣ ′
)|� |Q (A)| and ind(AΣ ′

) � ind(A) that accepts the Σ ′-projection of L(A).

Proof. To obtain AΣ ′
from A, simply change Σ to Σ ′ and the transition function to δ′ as follows. For each σ ∈Σ ′ and each

q ∈ Q (A), δ′(q, σ)=∨
σ ′∈Ξ(σ) δ′(q, σ ′), where Ξ(σ)= {σ ′ ∈Σ | σ ′ ∩Φ ′ = σ }. �

The following bounds for the intersection of two 1NTAs are known4:

Proposition 2.15 (Intersection). Given 1NTAs A1 and A2 , it is possible to construct a 1NTA A such that L(A)= L(A1) ∩ L(A2) with
ind(A)= O (f (A1,A2)) and |Q (A)|� 2O (f (A1,A2)2) · f (A1,A2) · |Q (A1)| · |Q (A2)|, where f (A1,A2)= ind(A1)+ ind(A2)+ 1.

Finally, testing a 1NTA for emptiness is feasible within the following bounds.

Proposition 2.16. (See [53].) Given a 1NTA A, the nonemptiness problem is decidable in time O (|Q (A)|ind(A)).

3. Normal form and canonical models

In this section we prove some properties of KBs and define key notions that allow us to develop then the automata
algorithm for reasoning in ZIQ.

3.1. Normalizing knowledge bases

First of all, we will prove a quite simple property of KBs that will be useful later: they have connected models, in which
every node can be reached from the interpretation of some ABox individual by a sequence of roles.

Let K be a KB. We say that an element d ∈�I is K-connected to an element d0 ∈�I in an interpretation I , if there is
some sequence d0, . . . ,dn such that d= dn and for each 0 � i < n we have (di,di+1) ∈ PI for some P ∈ RK . An interpretation
I is called K-connected, if each d ∈�I is K-connected to aI for some a ∈ IK .

Lemma 3.1 (Connected model property). Let K be a ZIQ KB. Then, for every P2RPQ q, K �|� q implies that there is a K-connected
model I of K with I �|� q.

Proof (Sketch). We simply take some model I of K with I �|� q and restrict it to the elements that are K-connected to aI

for some a ∈ IK; the resulting interpretation I ′ is K-connected by construction. It is trivial to verify that I ′ |�K. Indeed,
for each d ∈ �I , removing elements not reachable from d does not alter the satisfaction of any concept at d, nor the

4 To our knowledge, these bounds are unpublished. A tighter bound of |Q (A)| = f ′(A1,A2)! · f ′(A1,A2) · |Q (A1)| · |Q (A2)|, where f ′(A1,A2)= (ind(A1)+
ind(A2))/2+ 1, and ind(A)= ind(A1)+ ind(A2) was confirmed through personal communication with Yoad Lustig and Nir Piterman, to whom we are very
grateful.

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 19
participation of d in the extension RI of any role R occurring in K. Hence no CIA or BRIA is violated in I ′ . The ABox also
remains satisfied, since in I ′ all domain elements interpreting some ABox individual remain unchanged, and they participate
in the same concepts and roles as in I . Finally, since every query match in I ′ would also be a query match in I , I �|� q
implies I ′ �|� q. �

Now we present some simple reductions to rewrite a KB K= 〈T ,A〉 into a normal form in which the TBox contains only
CIAs, negation occurs only at the atomic level, and �, ⊥, B, T do not occur.

1. ABox reduction. We transform A into an extensionally reduced ABox, i.e., an ABox in which only concept and role names
are used:
• We replace each assertion C(a), where C is not a concept name, by AC (a) for a fresh AC ∈ C, and we add to T the

CIA AC � C .
• We replace each assertion S(a,b), where S is not a role name, by pS (a,b) for a fresh pS ∈ R, and we add to T the

BRIA pS � S .
2. Elimination of T. Assume that a1, . . . ,an are the individuals in IK . Using a fresh role name pU , we add to A assertions

pU (ai,ai+1), for all 1 � i < n. We add to T the BRIA
⋃

R∈RK
R � pU , and we replace in K each occurrence of T by the

role pU
∗ .

3. Elimination of �, ⊥ and B. We replace in K the empty role B is by a fresh role name pB , and we add to T the CIA
�� ∀pB.⊥. We replace the concepts � and ⊥ respectively by fresh concept names A� and A⊥ , and we add to T the
CIAs A �¬A � A� and A� �¬A⊥ , for an arbitrary concept name A.

4. BRIA elimination. We replace each BRIA S � S ′ in T by the CIA ∃(S \ S ′).��⊥ (cf. [54]).
5. Negation normal form. Finally, we transform each concept and role occurring in K into negation normal form (NNF), i.e.,

where negation is pushed inwards until ¬ is applied only to atomic concepts, and \ only to atomic roles. For this, we
first replace each concept of the form ∃S.Self by a fresh concept name A∃S.Self , and add to T the CIAs A∃S.Self � ∃S.Self
and ∃S.Self� A∃S.Self . We also replace each S \ S ′ by S ∩¬S ′ . Then we move ¬ inwards over concepts and roles using
the well-known equivalences:

¬(
C
 C ′

)=¬C �¬C ′, ¬(�nS.C)=�(n+ 1)S.C, ¬(∀R.C)= ∃R.¬C, ¬(
S ∪ S ′

)=¬S ∩¬S ′

¬(
C � C ′

)=¬C
¬C ′, ¬(�nS.C)=�(n− 1)S.C, ¬(∃R.C)= ∀R.¬C, ¬(
S ∩ S ′

)=¬S ∪¬S ′

We apply these equivalences until C ∈ C for every concept of the form ¬C , and R ∈ R ∪ {p− | p ∈ R} for every role of
the form ¬R . Afterwards we convert ¬ back to \, replacing where necessary ¬S with pU \ S , where pU is the role
introduced in item 2.

It will be convenient to assume in what follows that also queries are normalized in such a way that they do not contain
�, ⊥, T, or B, and they are in NNF. Given a KB K= 〈T ,A〉, which has already been normalized, and a query q, we normalize
q with respect to T as follows. We replace:

• each occurrence of � by the concept A� (introduced in step 3 of the normalization of K),
• each occurrence of ⊥ by the concept A⊥ (introduced in step 3 of the normalization of K),
• each occurrence of T by the role pU

∗ (introduced in step 2 of the normalization of K), and
• each occurrence of B by the role pB (introduced in step 3 of the normalization of K).

Finally, all concepts and roles in q are rewritten into NNF as explained above.

Definition 3.2 (Normalized knowledge base, normalized query). A ZIQ knowledge base K = 〈T ,A〉 is normalized, if (i) A is
extensionally reduced, (ii) T contains only CIAs, (iii) �, ⊥, T, and B do not occur in K, and (iv) all concepts and roles in K
are in NNF. A P2RPQ q is normalized, if �, ⊥, T, and B do not occur in q and all concepts and roles in q are in NNF. �

Each of the steps in the KB and query normalizations is linear and preserves all the properties enforced by the preceding
transformations. Since they also preserve query entailment, we obtain:

Proposition 3.3. Given a ZIQ KB K and a P2RPQ q, it is possible to construct in time linear in ‖K‖ and ‖q‖ a normalized knowledge
base K′ and a normalized query q′ such that K |� q iff K′ |� q′ .

Proof. We normalize K using steps 1–5 above, and then normalize q with respect to K (using the same role names to
simulate �, ⊥, T and B). A simple inspection of the transformations 1 to 5 suffices to see that the properties enforced by
the preceding transformations are always preserved. Hence it is easy to see that their application results in a normalized
KB K′ . Similarly for the query q′ .

The normalization also preserves satisfiability and query entailment. In fact, step 4 results in a logically equivalent KB,
while steps 1, 3, and 5 result in a model conservative extension of the original KB. Indeed, they introduce fresh concept and

20 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
Table 1
Syntactic closure Cl(D) of an ALCQIBSelf

reg concept D (≷∈ {�,�}, Q ∈ {∀,∃}, � ∈ {�,
}, ©∈ {∩,∪}).
if C ∈ Cl(D) then ∼ C ∈ Cl(D) if ∃S.C ∈ Cl(D) then �1S.C ∈ Cl(D)

if C � C ′ ∈ Cl(D) then C, C ′ ∈ Cl(D) if ∀S.C ∈ Cl(D) then �0S.∼ C ∈ Cl(D)

if S ∈ Cl(D) then ∼ S ∈ Cl(D) if Q(R ∪ R ′).C ∈ Cl(D) then QR.C,QR ′.C ∈ Cl(D)

if S ∈ Cl(D) then Inv(S) ∈ Cl(D) if Q(R ◦ R ′).C ∈ Cl(D) then QR.QR ′.C ∈ Cl(D)

if S © S ′ ∈ Cl(D) then S, S ′ ∈ Cl(D) if QR∗.C ∈ Cl(D) then QR.QR∗.C ∈ Cl(D)

if ∃S.Self ∈ Cl(D) then S ∈ Cl(D) if Qid(C).C ′ ∈ Cl(D) then C, C ′ ∈ Cl(D)

if ≷nS.C ∈ Cl(D) then S, C ∈ Cl(D)

role names, but every interpretation I can be extended to an interpretation I ′ by interpreting these names as AI ′
C = {aI |

a ∈ IK,aI ∈ CI}, pI
′

S = {(aI ,bI) | a,b ∈ IK, (aI ,bI) ∈ SI}, pI
′

B = ∅, AI ′� = �I , AI ′⊥ = ∅, and AI ′∃S.Self = (∃S.Self)I . In this
way we ensure that I ′ |� K′ iff I |� K, and I and I ′ coincide on all matches for q. If we use the same A� , A⊥ and
pB to replace in q respectively �, ⊥ and B, then I and I ′ also coincide on all matches for the query q′ in which �,
⊥ and B have been eliminated. Step 2 results in an extension of K that preserves K-connected models. By interpreting
pU as pI

′
U = {(aIi ,aIi+1) | ai,ai+1 occur in A} ∪ {d,d′ | (d,d′) ∈ PI for some P ∈ RK}, we can obtain from each K-connected

interpretation I a new I ′ such that (pU
∗)I ′ =�I ′ ×�I ′ , hence I ′ |�K′ iff I |�K, and I and I ′ coincide on all matches

for q. Similarly as above, they also coincide on matches for the query q′ in which T has been replaced by pU
∗ . Whenever

K �|� q, there is a K-connected model I of the original K such that I �|� q (cf. Lemma 3.1), and hence also a model I ′ of
the rewritten K′ such that I ′ �|� q. This shows that the normalization preserves query entailment.

Finally, to show that the transformation is linear, it suffices to observe that each step can be executed in linear time.
Steps 1 and 4 only replace a linear number of expressions, and they replace them by expressions of the same size plus
some small constant, hence they can be applied in linear time. Steps 2 and 3 replace a linear number of expressions by a
fixed concept or role name, add a constant number of CIAs, and step 2 adds a linear number of assertions to A. Finally, in
step 5, it is well known that pushing negation inside is feasible in linear time, and a linear number of expressions may be
replaced by an expression of constant size. �
3.2. Syntactic closure

Now we introduce the notion of syntactic closure of a concept D , which contains all concepts and simple roles (in NNF)
that are relevant for deciding its satisfiability. It contains D , is closed under subconcepts and simple subroles, negations,
and is also Fischer–Ladner closed in the style of a similarly defined closure for PDL [55]. The notion extends naturally to sets
of concepts.

We define here the closure for the DL ALCQIBSelf
reg , which is similar to ZIQ, but instead of role difference S \ S ′ , it has

negation ¬S as a simple role constructor. Semantically, ¬SI = (�I ×�I) \ SI , hence S \ S ′ can be expressed as S ∩ ¬S ′ .
We call an ALCQIBSelf

reg expression safe, if it is equivalent to an expression in ZIQ; unsafe Boolean roles are convenient
for a simple definition of syntactic closure.

In what follows, ∼ E denotes the NNF of ¬E , for every concept or simple role E . The symbol ≷ is generic for � and �;
Q for ∀ and ∃; � for
 and �; and © for ∩ and ∪. For a role name p ∈ R, the inverse of p is p− and that of p− is p. The
inverse of an atomic role P is denoted by Inv(P). For a simple role S , Inv(S) denotes the role obtained by replacing each
atomic role P occurring in S by its inverse Inv(P). As usual, C and C ′ stand for concepts, S and S ′ for simple roles, and R
and R ′ for arbitrary roles.

Definition 3.4. The closure Cl(D) of an ALCQIBSelf
reg concept D is the smallest set that contains the NNF of D and is closed

under the rules of Table 1. For a set D of concepts, Cl(D)=⋃
D∈D Cl(D). �

It is easy to see that |Cl(D)| (resp., |Cl(D)|) is linear in the length of D (resp., D). Note that Cl(D) may contain unsafe
expressions even if D is a ZIQ concept. For example, the concept D = ∃HasFather.male (which is in negation normal form)
has ¬HasFather (≡ T \ HasFather) in Cl(D), which is not expressible in ZIQ.

3.3. Canonical model property

Like many DLs, ZIQ enjoys some form of forest model property. In fact, every satisfiable concept C has a model that
can be seen as a tree, possibly having loops at some nodes. This extends to TBoxes. For knowledge bases, we must suitably
extend tree-shaped models to forest-shaped models.5

First, we observe that in ZIQ every TBox T can be internalized into a concept CT , such that the satisfiability of T can
be established by obtaining a model of CT [57].

5 Unlike the results of the previous subsection, these results do not hold for ALCQIBSelf
reg ; see [56] for discussion.

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 21
Definition 3.5 (TBox internalization, CT). Given a normalized ZIQ knowledge base K= 〈T ,A〉, we let CT be the negation
normal form of the concept

∀pU
∗.

C1�C2∈T
(¬C1 � C2),

where pU is the role introduced in step 2 of the normalization of K, or if this pU is not present in K, then pU =⋃
P∈RK

P . �
If CT holds everywhere in an interpretation I , then I |� T . Furthermore, if a domain element satisfies CT , then the

same holds for every element that is connected to it in I .

Proposition 3.6. Let I be an interpretation and let K = 〈T ,A〉 be a normalized ZIQ KB. If for each element d ∈�I there is some
d0 ∈ CI

T such that d is K-connected to d0 , then I |� T .

Proof. Suppose that d0 ∈ CI
T . Then for every sequence d0, . . . ,dn , n � 0, such that for each 0 � i < n we have (di,di+1) ∈ PI

for some P ∈ RK , it holds that dn ∈ (
C1�C2∈T (¬C1 � C2))
I . By K-connectedness, for every element d ∈�I some sequence

of this form exists such that d = dn , so it follows that (
C1�C2∈T (¬C1 � C2))
I = �I ; that is, I |� C1 � C2 for each C1 �

C2 ∈ T , which means I |� T . �
Now we define a canonical model of a normalized ZIQ KB, which has a certain forest-shaped structure that allows us

to recognize it using tree automata.

Definition 3.7. For k � 0, an interpretation I = (�I , ·I) for a ZIQ KB K= 〈T ,A〉 is k-canonical, if there exists a non-empty
finite set Roots(I)⊆�I such that:

(1) {ε} ∪�I is a tree. (Note that this implies �I ⊆N∗ .)
(2) Roots(I)= {aI | a ∈ IK} ⊆N.
(3) Each element of �I is of the form i·x with i ∈ Roots(I) and x ∈ {1, . . . ,k}∗ .
(4) For every pair x, y ∈�I with y of the form x·i, there exists some atomic role P ∈ RK such that (x, y) ∈ PI .
(5) If (x, y) ∈ pI for some role name p and some x, y ∈�I , then either (a) x, y ∈ Roots(I), or (b) for some i ∈ Roots(I), x

is of form i·w , y of form i·w ′ , and either w = w ′ , or w ′ is a successor of w , or w ′ is the predecessor of w .

The elements of Roots(I) are called the roots of I . �
Since every node in a canonical interpretation is K-connected to a root, by Proposition 3.6, satisfaction of CT at the

roots ensures satisfaction of T .

Proposition 3.8. Let I be a k-canonical interpretation for a normalized ZIQ KB K = 〈T ,A〉, for some k � 0. Then I |� T iff
Roots(I)⊆ CI

T .

Proof. (Only If) Suppose I |� T . Then for every element x ∈�I and every C1 � C2 ∈ T we have x ∈ (¬C1 � C2)
I . It follows

that (
C1�C2∈T (¬C1 � C2))
I =�I , which implies CI

T =�I ; hence Roots(I)⊆ CI
T .

(If) Suppose Roots(I) ⊆ CI
T . Observe that, as I is a k-canonical interpretation, it is K-connected by definition. That is,

for every x ∈�I , there is some a ∈ IK such that x is K-connected to aI (by conditions (2)–(4) in Definition 3.7). Moreover,
aI ∈ Roots(I) (by condition (2)), hence aI ∈ CI

T . Then I |� T follows from Proposition 3.6. �
Now we can establish the canonical model property of ZIQ, by a straightforward adaptation of a similar property of

related logics [40,45]. It states that, to decide query entailment, it suffices to consider the k-canonical models of the given
KB K. Here the branching factor k depends on the size of the closure of all concepts and roles in T and q, and on the
number restrictions and existential concepts that occur therein.

Definition 3.9 (Branching). For a set D of concepts, let br(D)= |Cl(D)| · nmax, where nmax =max({n |�nS.C ∈ Cl(D)} ∪ {0}).
Given a normalized ZIQ KB K= 〈T ,A〉 and a normalized P2RPQ q, we define kT = br({CT }) and kT ,q = br({CT }∪Dq),

where Dq = {C | C(v) ∈ At(q)} ∪ {∃R.A | R(v, v ′) ∈ At(q)} for an arbitrary concept name A.

Note that, by definition of Cl(D), if there is some concept ∃R.C ∈ Cl(D), then there is also some concept �1S.C ∈ Cl(D).
Hence br(D)= 0 only if there are no existential and universal concepts, and no number restrictions in Cl(D).

22 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
Theorem 3.10 (Canonical model property). Let K= 〈T ,A〉 be a normalized ZIQ KB, and let q be a normalized P2RPQ. If K �|� q, then
there exists some kT ,q-canonical model I of K such that I �|� q. Furthermore, if K is satisfiable, then it has a kT -canonical model.

Proof (Sketch). Following [43,41], with minor adaptations to properly handle ABoxes, Boolean role constructs and Self, one
can show that every model I of K that admits no match for q can be unraveled into a kT ,q-canonical model I ′ that also
admits no match. We refer to Appendix A for details. The second part of the claim follows from the fact that KB satisfiability
reduces to query non-entailment using a simple query q such that br(Dq)= 0. �

We remark that the reason why the branching degree of the counterexample canonical model depends on q is that we
allow for complex concepts in the query. In fact, given a KB K= 〈T ,A〉, then for every P2RPQ q where only concept names
(and arbitrary roles) occur, if K �|� q, then there is some kT -canonical model I of K such that I �|� q.

By Theorem 3.10, we can restrict to kT -canonical (resp., kT ,q-canonical) forest-shaped models for deciding KB satisfiabil-
ity (resp., query entailment). To solve these problems using tree automata, we represent canonical interpretations as infinite
labeled trees, as described in the next sections.

4. Deciding KB satisfiability via automata

The lack of tree-shaped models complicates a straight use of tree automata for KB reasoning, and adaptations are needed
to exploit the weaker canonical model property of Section 3.3. An example of such an adaptation is the pre-completion
technique [45], in which after a reasoning step on the ABox, automata are used to verify the existence of a tree-shaped
model of the TBox rooted at each ABox individual. We follow a different approach, introduced in [1], namely to represent
forest-shaped canonical interpretations as trees, and to encode K into an automaton AK that accepts exactly the set of trees
that represent canonical models of K. To the best of our knowledge, this is the first approach handling ABox assertions
and individuals directly in the automaton; importantly, the resulting automata-based algorithm can be extended to query
answering, which we do in Section 5.

4.1. Representing canonical models as trees

In the following, let K = 〈T ,A〉 be a normalized ZIQ KB, and let bK =max(kT , |IK|), where kT = br({CT }) is as in
Definition 3.9. To represent interpretations for K, we define interpretation trees, which are labeled bK-ary trees. Each node
is labeled with a (possibly empty) set of atomic concepts and roles, and special symbols pij (used to indicate that the pair
(i, j) of roots is in the extension of the role p) and pSelf (used to indicate that a pair (x, x) is in the extension of p). The
label of the root ε contains the special identifier r, and its children may contain individual names from IK in their labels; if
the latter holds we call them individual nodes.

Definition 4.1. Given K, let PIK = {pij | p ∈ RK, i, j ∈ {1, . . . ,bK}}, and PSK = {pSelf | p ∈ RK}. An interpretation tree for K is
a labeled bK-ary tree T= (T , L) over the alphabet

ΣK = 2CK∪RK∪IK∪{r}∪PIK∪PSK

such that:

(t1) r ∈ L(ε), and r /∈ L(x) for every node x ∈ T with x �= ε,
(t2) for every a ∈ IK there is exactly one node x ∈ T with 1 � x � bK and a ∈ L(x),
(t3) IK ∩ L(x· j)= ∅ for every node x �= ε and j > 0 such that x· j ∈ T . �
4.1.1. From canonical interpretations to trees

For a canonical interpretation I , we now define its tree representation TI , which informally is built as follows. Since the
domain of I is always contained in a bK-ary tree, we only need to add a root ε and enough ‘dummy’ nodes to ensure the
correct branching.

The interpretations of individuals, concepts, and roles are represented using node labels from the alphabet ΣK . Roughly
speaking, each element x ∈�I is labeled with a set L(x) that contains (i) the atomic concepts A such that x ∈ AI ; (ii) the
atomic roles P connecting the predecessor of x to x, and (iii) the special symbol pSelf for each role name p such that
(x, x) ∈ pI . The label L(i) of each root i of I contains the names of the individuals in IK it interprets, and the atomic
concepts to which i belongs, but it does not contain basic roles; the relations p between individual nodes are stored in the
root label L(ε) via symbols pij . Formally:

Definition 4.2. Let I be a canonical interpretation for K with n roots. The tree representation of I is the interpretation tree
TI = (T , L) where:

- T = {1, . . . ,bK}∗ ,

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 23
Fig. 2. The canonical model Ig of Kg (cf. Fig. 1) and its tree representation.

- L(ε)= {r} ∪ {pij | i, j ∈ Roots(I), p ∈ RK, and (i, j) ∈ pI},
- for each 1 � x � bK , L(x)= {a ∈ IK | aI = x} ∪ {A ∈ CK | x ∈ AI},
- for all other nodes x of T (i.e., those with |x| > 1), L(x) = {A ∈ CK | x ∈ AI} ∪ {p ∈ RK | (x · −1, x) ∈ pI} ∪ {pSelf | p ∈

RK and (x, x) ∈ pI}. �
Note that L(x)= ∅ for every dummy node x ∈ T \ (�I ∪ {ε}) that does not represent a domain element.

Example 4.3. The left part of Fig. 2 depicts a fragment of an infinite canonical model Ig of Kg . Its roots are 1 = ZeusIg ,
2 = HeraclesIg , 3 = AlcmeneIg , 4 = ElectryonIg , and 5 = PerseusIg . They are depicted as large dots, and each of them is
labeled with the name of the individual it interprets, and with the concept names from CK to whose interpretation it
belongs. Other domain elements are represented by smaller dots, and are also labeled with the concept names to whose
interpretation they belong. For readability, we use the following label names: L1 = {male,deity}, L2 = {female,deity}, L3 =
{female,mortal}, L4 = {male}, and L5 = {female}. Every non-root element has two successors, which are the fulfillers of the
HasMother and HasFather relations, respectively. The HasFather relation is represented by solid arrows, while HasMother is
represented by dashed arrows. HasParent is the union of HasMother and HasFather and is not depicted explicitly.

The right part of the figure depicts the tree representation of Ig . For readability, we use only the initial letter of each in-
dividual name in the labels. The label of the root is LR= {r, HasFather21, HasFather34, HasFather45, HasFather51, HasMother23,
HasParent21, HasParent34, HasParent45, HasParent51, HasParent23}. The labels of the level 1 nodes are given explicitly in
the figure, while for the other nodes we use the labels L′1 = L1 ∪ {HasFather,HasParent}, L′2 = L2 ∪ {HasMother,HasParent},
L′3 = L3 ∪ {HasMother,HasParent}, L′4 = L4 ∪ {HasFather,HasParent}, and L′5 = L5 ∪ {HasMother,HasParent}. �
4.1.2. From trees to canonical interpretations

With each interpretation tree T, we can in turn associate a canonical interpretation IT . Informally, its domain �IT is
given by (i) the set I of all the nodes x in T having some individual a in their label L(x), and (ii) the nodes in T reachable
from any such x through the roles in K. Note that each node with an empty label and all its descendants are not included
in the interpretation IT .

The extensions of individuals, concepts, and roles are determined by the node labels in T. We build the extension of
each role name p as the union of two sets of pairs R1

p and R2
p , where R1

p contains the pairs (x, y) of p-neighbors x, y

in the tree that are not both individual nodes, and R2
p contains the pairs i, j of individual nodes related by p (which is

represented by the special label pij at the root). Formally:

24 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
Definition 4.4. Let T= (T , L) be an interpretation tree. For each role name p ∈ RK , we define:

R1
p =

{
(x, x·i) ∣∣ p ∈ L(x·i)}∪ {

(x·i, x)
∣∣ Inv(p) ∈ L(x·i)}∪ {

(x, x)
∣∣ pSelf ∈ L(x)

}
R2

p =
{
(i, j)

∣∣ pij ∈ L(ε)
}

Then we let IT = {i ∈ {1, . . . ,bK} | a ∈ L(i) for some a ∈ IK} and, for each i ∈ IT ,

Di =
{

x′
∣∣∣ (

i, x′
) ∈

(⋃
p∈RK

(
R1

p ∪
(
R1

p

)−))∗}
,

where (R1
p)− denotes the inverse of relation R1

p . The interpretation IT represented by T is defined by:

�IT = IT ∪
⋃
i∈IT

Di, and

aIT = x ∈ IT such that a ∈ L(x), for each a ∈ IK

AIT = {
x ∈�IT

∣∣ A ∈ L(x)
}
�IT ∩ {

x
∣∣ A ∈ L(x)

}
for each concept name A ∈ CK,

pIT = (
�IT ×�IT

)∩ (
R1

p ∪R2
p

)
for each role name p ∈ RK �

Note that, by condition (t2) in Definition 4.1, for each a ∈ IK there is exactly one x such that aIT = x. The set IT contains
the roots of IT , and {ε} ∪�IT is a bK-tree. Note also that i is a root of IT iff IK ∩ L(i) �= ∅.

Lemma 4.5. If T is an interpretation tree, then IT is a canonical interpretation, and if I is a canonical interpretation, then I = ITI .

Proof. It is not hard to verify that IT satisfies the conditions (1)–(5) of Definition 3.7 (for k= bK):

(1) {ε} ∪�IT is a tree (note that ε is not in �IT);
(2) Roots(IT)= {aIT | a ∈ IK} ⊆ {1, . . . ,bK} ⊆N;
(3) Each element of �IT is of the form i·x with i ∈ Roots(IT) and x ∈ {1, . . . ,bK}∗;
(4) For every pair x, y ∈�IT with y of the form x·i, there exists some atomic role P such that (x, y) ∈ PIT .
(5) If (x, y) ∈ pIT for some role name p and some x, y ∈�IT , then either (a) x, y ∈ Roots(IT), or (b) for some i ∈ Roots(IT),

x is of form i·w , y of form i·w ′ , and either w = w ′ , or w ′ is a successor of w , or w ′ is the predecessor of w .

Thus IT is bK-canonical. As for the second part, the domain of ITI coincides with �I : �I is connected and hence in the
construction of ITI from TI , the set ITI coincides with Roots(I) and ITI ∪

⋃
i∈ITI

Di contains all elements of �I (and no

others). Furthermore, by construction aI = aITI for each a ∈ IK and for each x ∈ ITI and concept name A, we can verify
that x ∈ AITI iff x ∈ AI and for each x, y ∈ ITI and role name p, that (x, y) ∈ pITI iff (x, y) ∈ pI . Hence I = ITI . �
4.2. Constructing the automaton to verify KB satisfaction

In this section, we show how to construct from a normalized ZIQ KB K an automaton AK that accepts the ΣK-labeled
trees that are tree representations of canonical models of K. We thus can decide the satisfiability of K by testing AK for
emptiness.

To simplify the technical details, we construct AK in four steps: (1) We construct from K a 2ATA AI that accepts a
given tree T iff it is an interpretation tree for K. (2) We construct another 2ATA AA that accepts T iff the represented
interpretation satisfied all assertions in A. (3) We construct a third 2ATA AT which verifies whether each individual in
IK satisfies CT . (4) Finally, by intersecting the three 2ATAs, we obtain AK . We note that all these automata, which are
summarized in Table 2, run over bK-ary trees labeled with the alphabet ΣK from Definition 4.1. As we will see in the next
section, their size is polynomial in K.

4.2.1. Automaton AI verifying interpretation trees
We start with the automaton AI that verifies whether an input tree is an interpretation tree, that is, whether it correctly

represents an interpretation that is canonical for K.

Definition 4.6. Let AI = 〈bK,ΣK,QI , δI , sI0 , FI〉, where:

• The set of states is QI = {sI0 , s1, r,¬r} ∪ IK ∪ {¬s | s ∈ IK}.
• The transition function δI : QI ×ΣK→ B([bK] × QI) contains the following transitions:

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 25
Table 2
Automata for checking KB satisfiability.

Automaton Construction Language

AI Definition 4.6 Trees representing a canonical interpretation for K
AA Definition 4.8 Trees such that if they represent a (canonical) interpretation, all assertions in

A are satisfied
AT Definition 4.10 Trees such that if they represent a (canonical) interpretation, all elements

satisfy CT
AK Definition 4.16, intersection of AI , AA and AT Trees representing canonical models of K

1. for each σ ∈ΣK with r ∈ σ , a transition δI(sI0 , σ)= B1 ∧ B2 ∧ B3, where

B1

∧
a∈IK

∨
1�i�bK

(i,a)

B2

∧
1�i< j�bK

∧
a∈IK

(
(i,¬a)∨ (j,¬a)

)

B3

∧
1�i�bK

(
(i,¬r)∧ (i, s1)

)
,

and for each σ ∈ΣK , a transition δI(s1, σ)=∧
1�i�bK ((i,¬r)∧ (

∧
a∈IK (i,¬a))∧ (i, s1));

2. for each σ ∈ΣK and each s ∈ IK ∪ {r}, transitions

δI(s,σ)=
{

true, if s ∈ σ
false, if s /∈ σ

δI(¬s,σ)=
{

true, if s /∈ σ
false, if s ∈ σ

.

• The acceptance condition is FI = (∅, QI). �
The transitions in item 2 simply verify whether the label of a node reached in state s contains the symbol s. Overall, the

definition of δI ensures that every tree accepted by AI satisfies conditions (t1)–(t3) in Definition 4.1:

• B1 verifies that the label identifying each individual a occurs in some node of the first level.
• B2 verifies that a label identifying an individual does not occur in two different level 1 nodes.
• B3 checks that the labels of the nodes of level 1 do no contain r, and switches from such states to the state s1. From

s1 it further checks that r and all a ∈ IK do not occur anywhere below level 1 in the whole tree.

Lemma 4.7. L(AI)= {T | T is an interpretation tree for K}.

Proof. AI accepts an input ΣK-labeled bK-ary tree T = (T , L) iff there is an accepting run of AI over T. If T is an in-
terpretation tree, by condition (t2) in Definition 4.1, there is exactly one node x ∈ T with 1 � x � bK and a ∈ L(x), which
we denote by xa . Then we can build an accepting run (Tr, r) as follows. The root is labeled r(ε) = (ε, sI0), and it has the
following children:

1. For each a ∈ IK , there is a child ca labeled (xa,a), which is a leaf of Tr (i.e., it has no children). These ca ensure that
B1 is satisfied at the root, and since a ∈ L(xa) for each xa and δI(a, σ)= true whenever a ∈ σ , each ca already satisfies
(R2) in Definition 2.8.

2. For each a ∈ IK and each pair i, j with 1 � i < j � bK , if i �= xa then ε has a child cai j labeled (i,¬a), and if i = xa

then ε has a child cai j labeled (j,¬a). In the former case, i �= xa implies a /∈ L(i), hence δI(¬a, L(i))= true and (R2) in
Definition 2.8 holds for cai j . In the latter case, i = xa implies j �= xa , so we also have a /∈ L(j) and δI(¬a, L(j))= true as
required. Moreover, the children cai j ensure that ε satisfies B2.

3. Finally, to satisfy B3, ε has for each 1 � i � bK a child ci labeled (i,¬r) (which satisfies (R2) in Definition 2.8 as r /∈ L(i)
by condition (t1) and hence δI(¬r, L(i))= true), and a child c′i labeled (i, s1). To satisfy (R2) in Definition 2.8, each c′w
has children as follows:
(a) a leaf cw j labeled (w· j,¬r) for each 1 � j � bK . Since r /∈ L(w· j), δI(¬r, L(w· j))= true as required.
(b) a leaf caw j labeled (w· j,¬a) for each 1 � j � bK and a ∈ IK . Since a /∈ L(w· j), δI(¬s, L(w· j))= true.
(c) a node c′w j (w· j, s1) for each 1 � j � bK , which in turn has children as described by items (a)–(c).

The only infinite paths in (Tr, r) are the sequences of nodes c′w j labeled (w· j, s1). Since such a path visits s1 infinitely often
the acceptance condition is satisfied and the run is accepting.

Conversely if a run (Tr, r) accepts T, we must have r ∈ L(ε), and to satisfy the formulas B1, B2 and B3, ε must have
children analogous to those described in items 1–3 above, which enforce conditions (t1)–(t3). Namely:

26 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
1. For each a ∈ IK , a child ca labeled (x,a) for some 1 � x � bK with a ∈ L(x). This ensures part of (t2): that each a is in
L(x) for some 1 � x � bK .

2. For each pair i, j with 1 � i < j � bK and each a ∈ IK , a child cai j labeled (x,¬a) for some x ∈ {i, j} with a /∈ L(x). This
ensures that the x with a ∈ L(x) is unique, and together with item 1, it ensures (t2).

3. For 1 � i � bK a child ci labeled (i,¬r), which implies that r /∈ L(i), and a child c′i labeled (i, s1). Since each node
y in Tr with label of the form (w, s1) must have a child cw j with r(w· j,¬r) for each 1 � j � bK , and a child caw j

labeled (w· j,¬a) for each 1 � j � bK and a ∈ IK , it follows that L(w· j) ∩ (IK ∪ {r})= ∅. Moreover, y must also have a
child with label r(w· j, s1) that in turn has analogous successors, thus L(w ′) ∩ (IK ∪ {r})= ∅ for all children w ′ of w· j.
Hence r and the symbols in IK can not occur in any label below the level 1 nodes. Thus (t1) and (t3) hold and T is an
interpretation tree. �

4.2.2. Automaton AA verifying ABox satisfaction
Next, we define the automaton AA that verifies whether the interpretation represented by a given ΣK-labeled bK-ary

tree T satisfies all assertions in A, assuming that T is an interpretation tree. In what follows, we use CA and RA to denote
the sets of concept and role names occurring in A, respectively.

Definition 4.8. Let AA = 〈bK,ΣK,QA, δA, sA0 , FA〉, where:

• The set of states is QA = {sA0 } ∪ IK ∪ {¬s | s ∈ IK} ∪ CA ∪ {pij | p ∈ RA and i, j ∈ {1, . . . ,bK}}.
• The transition function δA : QA ×ΣK→ B([bK] × QA) contains the following transitions:

1. for each σ ∈ΣK with r ∈ σ , a transition δA(sA0 , σ)= B4 ∧ B5 ∧ B6, where

B4

∧
a �≈b∈A

∧
1�i�bK

(
(i,¬a)∨ (i,¬b)

)

B5

∧
A(a)∈A

∨
1�i�bK

(
(i,a)∧ (i, A)

)

B6

∧
p(a,b)∈A

∨
1�i�bK,1� j�bK

(
(0, pij)∧ (i,a)∧ (j,b)

);

2. for each σ ∈ΣK and each s ∈ IK , transitions

δA(s,σ)=
{

true, if s ∈ σ
false, if s /∈ σ

, δA(¬s,σ)=
{

true, if s /∈ σ
false, if s ∈ σ

,

and for each σ ∈ΣK and each t ∈ CA ∪ {pij | p ∈ RA and i, j ∈ {1, . . . ,bK}}, transitions

δA(t,σ)=
{

true, if t ∈ σ
false, if t /∈ σ

.

• The acceptance condition is FA = (∅, QA). �
Similarly to AI , the transitions in item 2 verify the presence of atomic symbols in the node labels. The rest of the

transitions verify the following conditions, starting from the root of the input tree:

• B4 checks, for each assertion a �≈ b in A, that a and b do not occur both in the label of the same node.
• B5 ensures that each assertion A(a) in A is satisfied, by verifying that the node labeled a is also labeled with A.
• B6 ensures that each assertion p(a,b) is satisfied, by finding the individual nodes i and j that represent the individuals

a and b, respectively, and checking pij at the root.

Hence, assuming that T is an interpretation tree, the transition function verifies that all the ABox assertions are satisfied in
the corresponding interpretation.

Lemma 4.9. If T is an interpretation tree for a KB K= 〈T ,A〉, then T ∈L(AA) iff IT |�A.

Proof (Sketch). The argument is similar to the one in the proof of Lemma 4.7. Again, by design of the formulas B4–B6, for
an interpretation tree T that encodes an interpretation IT where A is satisfied, we can find an accepting run (Tr, r) over T
(in fact, a finite such run). On the other hand, every accepting run (Tr, r) over T must satisfy B4–B6 at the root ε, and
hence by design of δI , each assertion in A must be satisfied by the interpretation IT , i.e., IT |�A. �

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 27
Table 3
State set QT of the automaton AT .

Clext = Cl(CT)∪ IK ∪ {¬s | s ∈ IK}
QSelf = {SSelf | S is a simple role in Cl(CT)} ∪ {〈a, pSelf〉 | a ∈ IK, p is a role name in Cl(CT)}
QA_role = {Sij | 1 � i, j � bK, S is a simple role in Cl(CT)}
Qnum = {〈�nS.C, i, j〉 |�nS.C ∈ Cl(CT), 0 � i � bK + 1, 0 � j � n} ∪ {〈�nS.C, i, j〉 |�nS.C ∈ Cl(CT), 0 � i � bK + 1, 0 � j � n+ 1}
QA_num = {〈a,�nS.C, i, j〉 | a ∈ IK, �nS.C ∈ Cl(CT), 1 � i � bK, 0 � j � n} ∪ {〈a,�nS.C, i, j〉 | a ∈ IK, �nS.C ∈ Cl(CT), 1 � i � bK, 0 � j � n+ 1}
QT = {sT0 } ∪ Clext ∪ QSelf ∪ QA_role ∪ Qnum ∪ QA_num

Table 4
Transitions of the automaton AT , part 1: initialization, concept and role checking, atomic checks.

(I) Initialization. For each σ ∈ΣK with r ∈ σ , we have: δT (s0, σ)=∧
1�i�bK ((

∧
a∈IK (i,¬a))∨ (i, CT)).

(II) Concept and role checking. For each σ ∈ΣK , each non-atomic concept C ∈ Cl(CT), each simple
roleS ∈ Cl(CT), each atomic role P ∈ Cl(CT), each role name p ∈ Cl(CT), and each pair
i, j ∈ {1, . . . ,bK}, we have:

δT (C
 C ′, σ)= (0, C)∧ (0, C ′) δT (S ∩ S ′, σ)= (0, S)∧ (0, S ′)
δT (C � C ′, σ)= (0, C)∨ (0, C ′) δT (S ∪ S ′, σ)= (0, S)∨ (0, S ′)

δT (S \ P , σ)= (0, S)∧ (0,¬P)

δT (∃S.Self, σ)= (0, SSelf) δT ((S ∩ S ′)i j , σ)= (0, Sij)∧ (0, S ′i j)

δT (∀(R ∪ R ′).C, σ)= (0,∀R.C)∧ (0,∀R ′.C) δT ((S ∪ S ′)i j , σ)= (0, Sij)∨ (0, S ′i j)

δT (∀(R ◦ R ′).C, σ)= (0,∀R.∀R ′.C) δT ((S \ P)i j , σ)= (0, Sij)∧ (0, (¬P)i j)

δT (∀R∗.C, σ)= (0, C)∧ (0,∀R.∀R∗.C) δT (p−i j , σ)= (0, p ji)

δT (∀id(C).C ′, σ)= (0,∼ C)∨ (0, C ′) δT ((¬p−)i j , σ)= (0, (¬p) ji)

δT (∃(R ∪ R ′).C, σ)= (0,∃R.C)∨ (0,∃R ′.C)

δT (∃(R ◦ R ′).C, σ)= (0,∃R.∃R ′.C) δT ((S ∩ S ′)Self, σ)= (0, SSelf)∧ (0, S ′Self)

δT (∃R∗.C, σ)= (0, C)∨ (0,∃R.∃R∗.C) δT ((S ∪ S ′)Self, σ)= (0, SSelf)∨ (0, S ′Self)

δT (∃id(C).C ′, σ)= (0, C)∧ (0, C ′) δT ((S \ P)Self, σ)= (0, SSelf)∧ (0,¬PSelf)

δT (∀S.C, σ)= (0,�0S.∼ C) δT (p−Self, σ)= (0, pSelf)

δT (∃S.C, σ)= (0,�1S.C) δT ((¬p−)Self, σ)= (0, (¬p)Self)

δT (pSelf, σ)=
⎧⎨
⎩

true, if σ ∩ IK = ∅ and p ∈ σ
false, if σ ∩ IK = ∅ and p /∈ σ∨

a∈σ∩IK ((0,a)∧ (−1, 〈a, pSelf〉)), if σ ∩ IK �= ∅
δT (〈a, pSelf〉, σ)=∨

1�i�bK ((i,a)∧ (0, pii)), if r ∈ σ

(III) Atomic checks. For each σ ∈ΣK and each s ∈ CK ∪ RK ∪ IK ∪ PIK , we have:

δT (s, σ)=
{

true, if s ∈ σ
false, if s /∈ σ

δT (¬s, σ)=
{

true, if s /∈ σ
false, if s ∈ σ

4.2.3. Automaton AT verifying TBox satisfaction
Next we define the automaton AT that ensures the satisfaction of the TBox T . Recall that T is satisfied by a canonical

interpretation I iff i ∈ CI
T for each root i (see Proposition 3.6). This will be verified by the 2ATA AT for the interpretation

IT represented by an input tree T. The definition of AT is rather involved, given that CT might be a complex concept that
is formed using many of the different constructors available in ZIQ.

Definition 4.10. Let AT = 〈bK,ΣK,QT , δT , sT0 , FT 〉, where:

• The set of states QT is shown in Table 3.
• The transition function δT : QT ×ΣK→ B([bK] × QT) is given by the following groups of transitions:

(I) initialization (Table 4),
(II) concept and role checking (Table 4),

(III) atomic checks (Table 4), and
(IV) number restriction checking (Table 5).

• The acceptance condition is FT = (∅, {∀R∗.C | ∀R∗.C ∈ Cl(CT)}, QT). �
Informally, the states in Clext are used to check whether the node satisfies the corresponding concept, resp. it is (not)

a particular ABox individual. The states in QSelf are used to check whether a role connects a non-ABox individual with itself;
the states in QA_role are used to check whether a role connects two ABox individuals (i.e., level 1 nodes); and the states in
Qnum (resp., QA_num) serve for checking number restrictions of a non-ABox individual (resp., ABox individual) node.

To explain the state set in more detail, and the intuition behind the transition function of AT , we describe informally a
run on a given interpretation tree T.

I. Initialization. AT starts a run over T at the root ε, in state s0, and reading some σ ∈ΣK such that r ∈ σ . Then, by the
initialization transitions in item I of Table 4, it moves to each successor i and switches to the state CT if i represents
some ABox individual a (which is the case if i has some a in its label); otherwise, no further steps from i are made, as
the label of i is empty.

28 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
Table 5
Transitions of the automaton AT , part 2: number restriction checking.

(IV) Number restriction checking.
1. For each ≷nS.C in Cl(CT) and σ ∈ΣK , we have: δT (≷nS.C, σ)= (0, 〈≷nS.C,0,0〉)
2. For each state 〈≷nS.C, i, j〉 ∈ Qnum and σ ∈ΣK , we have:

2.1. δT (〈≷nS.C, i, j〉, σ)= (((i + 1,∼ S)∨ (i + 1,∼ C))∧ (0, 〈≷nS.C, i + 1, j〉))∨ ((i + 1, S)∧ (i + 1, C)∧ (0, 〈≷nS.C, i + 1, j + 1〉))
Additionally, if σ ∩ IK = ∅, we have:
2.2. δT (〈≷nS.C,bK, j〉, σ)= (((0,∼ SSelf)∨ (0,∼ C))∧ (0, 〈≷nS.C,bK + 1, j〉))∨ ((0, SSelf)∧ (0, C)∧ (0, 〈≷nS.C,bK + 1, j+ 1〉))
2.3. δT (〈≷nS.C,bK + 1, j〉, σ)= (((0,∼ Inv(S))∨ (−1,∼ C))∧ (0, 〈≷nS.C,bK + 2, j〉))∨ ((0, Inv(S))∧ (−1, C)∧ (0, 〈≷nS.C,bK + 2, j + 1〉))
Otherwise, if σ ∩ IK �= ∅, we have:
2.4. δT (〈≷nS.C,bK, j〉, σ)=∨

a∈σ∩IK ((−1, 〈a,≷nS.C,0, j〉))
For all states in QA_num and all σ ∈ΣK with r ∈ σ , we have:
2.5. δT (〈a,≷nS.C, i, j〉, σ)= ((

∧
1���bK ((0,∼ S�(i+1))∨ (�,¬a))∨ (i + 1,¬C)∨ (

∧
b∈IK (i + 1,¬b)))∧ (0, 〈a,≷nS.C, i + 1, j〉))∨

(
∨

1���bK ((0, S�(i+1))∧ (�,a))∧ (i + 1, C)∧ (
∨

b∈IK (i + 1,b))∧ (0, 〈a,≷nS.C, i + 1, j + 1〉))
where the counters i and j range over the following values:

0 � i < bK,

{
0 � j < n, if ≷ is �
0 � j � n, if ≷ is �

3. For each σ ∈ΣK , we have:
δT (〈�nS.C, i,n〉, σ)= true, for 0 � i � bK + 2
δT (〈�nS.C,bK + 2, j〉, σ)= false, for 0 � j � n− 1
δT (〈�nS.C, i,n+ 1〉, σ)= false, for 0 � i � bK + 2
δT (〈�nS.C,bK + 2, j〉, σ)= true, for 0 � j � n
δT (〈a,�nS.C, i,n〉, σ)= true, for 1 � i � bK
δT (〈a,�nS.C,bK + 1, j〉, σ)= false, for 0 � j � n− 1
δT (〈a,�nS.C, i,n+ 1〉, σ)= false, for 1 � i � bK + 1
δT (〈a,�nS.C,bK + 1, j〉, σ)= true, for 0 � j � n

II. Concept and role checking. Next, from state CT and each node representing an individual, AT recursively decomposes CT
and navigates its formula tree, in order to establish its satisfaction. This recursive decomposition comprises the ‘core’ of
the run. It uses the states in Cl(CT) and the transitions in the left column of item II in Table 4. The automaton moves
to a state C ∈ Cl(CT) and a node x in order to check whether x represents an instance of C . Complex concepts and the
non-simple roles occurring in them are decomposed, and T is navigated accordingly. Please note that AT decomposes
non-simple roles inside universal and existential restrictions until it reaches expressions of the form ∃S.C and ∀S.C
with S simple, then it verifies their satisfaction by moving to states �1S.C and �0S. ∼ C , respectively, and uses the
transitions for number restrictions from Table 5 (which are explained below). Observe also that all transitions in item II
of Table 4 move to states with strictly less complex expressions, except for the transitions that move from states of
the form ∀R∗.C and ∃R∗.C to states of the form ∀R.∀R∗.C and ∃R.∃R∗.C . As we will discuss below, these are the only
transitions that may cause infinite runs.
The transitions for number restrictions, which will be explained next, may move to a state S corresponding to a simple
role in Cl(CT), in order to verify whether S holds between a node x and its predecessor. To this aim, S is also recursively
decomposed using the first group of transitions in the right column of item II in Table 4 (note that S and all its subroles
are in Clext and thus are states of AT). If AT must verify S between individual nodes i and j, it proceeds similarly but
uses the second group of transitions and the states in QA_role . Finally, if the automaton must verify whether S connects
a node to itself (this is relevant for the satisfaction of the number restrictions, and of the concepts of the form ∃S.Self),
it uses the last group of transitions and the states in QSelf .

III. Atomic checks. Modulo the generation of possibly infinite sequences of states containing ∃R∗.C and ∀R∗.C , the decompo-
sition of concepts and roles (item (II)) always stops when AT reaches the ‘atomic level’ that comprises possibly negated
atomic concepts and roles, special symbols in PIK , and individual names IK . These are checked locally at the node
labels, using corresponding states, by the respective transitions given in Table 4.

IV. Number restriction checking. To verify the satisfaction of a number restriction, AT needs to navigate all nodes to which
the current node can be connected via some role. We say that a node y is a potential neighbor of a node x �= ε, if either
(i) y = x, (ii) y is a successor of x, (iii) y �= ε is the predecessor of x, or (iv) both x and y are level one nodes. Note
that, by definition, the potential neighbors include all successors of a node, also the ‘dummy’ nodes in T that do not
correspond to an object in �IT . For a level 1 node, its potential neighbors also include all the level 1 nodes, both actual
individual nodes and ‘dummy’ nodes. We order the potential neighbors of a node x as follows: the first bK ones are
its successors, in the order they occur in T. If x is not a level 1 node, then the (bK + 1)-th potential neighbor of x is x
itself, and the (bK + 2)-th is its predecessor. Otherwise, the (bK + 1)-th to (2bK)-th potential neighbors are the level 1
nodes, in the order they appear in T.
Moreover, for a simple role S and a concept C , we say that a node y is an (S, C)-neighbor of a node x, if (x, y) is in
SIT and y is in CIT . Note that for every S and C , the (S, C)-neighbors of x are contained in the potential neighbors of
x and, in contrast to the latter, the (S, C)-neighbors are necessarily elements of �IT . Moreover, we order the potential
neighbors of a node x as follows: the first bK ones are its successors, in the order they occur in T. If there is no
a ∈ IK such that aIT = x, then the (bK + 1)-th potential neighbor of x is x itself, and the (bK + 2)-th is its predecessor.
Otherwise, the (bK + 1)-th to (2bK)-th potential neighbors are the level 1 nodes, in the order they appear in T.

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 29
Fig. 3. A fragment of an interpretation and its tree representation.

To verify that a node x satisfies a number restriction, the automaton traverses all potential neighbors of x, and counts
how many of them are actually its (S, C)-neighbors. This requires us to encode counters using the auxiliary states in
Qnum and QA_num . Intuitively, in a state 〈≷nS.C, i, j〉 of Qnum , the number i records how many potential neighbors
have been navigated, and j how many of them are actually (S, C)-neighbors. More precisely, when the automaton is
in the state ≷nS.C and visits a node x, it changes to the state 〈≷nS.C,0,0〉 (item IV1 in Table 5) and then navigates
the potential neighbors of x. The automaton navigates first the at most kT many successors of the node, using the
transitions in item IV(2)1. While doing this, it increases the counters accordingly. It will be in state 〈≷nS.C, i, j〉, if
exactly j among the first i − 1 potential neighbors of x are (S, C)-neighbors of x. Each transition of this kind has two
disjuncts. The first disjunct covers the case when the i-successor is not an (S, C)-neighbor of x, hence only the j-counter
is increased. The second disjunct covers the case where the i-successor is an (S, C)-neighbor of x and increases both
counters.
After all successors have been navigated, if x is a non-individual node, the automaton checks whether x is its own
(S, C)-neighbor with the transitions in item IV(2)2, and finally it checks the predecessor of x using the transitions
in item IV(2)3. Otherwise, the current node x is an individual node, and the automaton must navigate all individual
nodes at level 1 (including x) to count the (S, C)-neighbors of the node. This is done by the transitions in items IV(2)4
and IV(2)5, which use the states in QA_num of the form 〈a,≷nQ .C, i, j〉. From an individual node �, the automaton
moves to some state 〈a,≷nQ .C,0, j〉 for some a represented by � (item IV(2)4). From this state, it uses the counter
i to navigate all the level 1 nodes looking for (S, C)-neighbors of �, and stores in j how many of them it has found
(item IV(2)5). Note that a can be any individual represented by �, since we only use it to identify it. At each i the
automaton verifies whether the root is labeled S�i , and i is labeled C and represents some individual b. It increases the
value of i and j if this is the case, and only the value of i otherwise.
In all the transitions of item IV2, the counters i and j range over the following values:
• 0 � i < bK: successors (resp., level 1 nodes) 1,2, . . . , i − 1 have been navigated;
• if ≷ is �, then 0 � j < n: we stop counting if we reach n, as we already know that the at-least restriction is satisfied;
• otherwise, if ≷ is �, then 0 � j � n: similarly, we can stop counting if we reach n+ 1, as we know that the at-most

restrictions is not satisfied.
Once all the necessary nodes have been navigated, the (non-)satisfaction of the number restrictions is established with
the transitions of item IV3 in Table 5.

Example 4.11. We give an example of how satisfaction of the concept �2p2.B is verified at node x of some canonical inter-
pretation. The relevant fragment of the interpretation is depicted on the left hand side of Fig. 3, and its tree representation
on the right hand side. Here, we assume bK = 2. Note that �2p2.B is satisfied at x, since its only (p2, B)-neighbor is x
itself.

To verify this, the automaton uses the following transitions. First, it sets the counters to zero with a transition as in
item IV1 of Table 5:

δT
(
�2p2.B, {A, B, p1, p2Self}

)= (
0, 〈�2p2.B,0,0〉)

Then, it checks whether x·1 is a (p2, B)-neighbor of x using a transition from item IV(2)1 in Table 5:

δT
(〈�2p2.B,0,0〉, {A, B, p1, p2Self}

)
= ((

(1,¬p2)∨ (1,¬B)
)∧ (

0, 〈�2p2.B,1,0〉))∨ (
(1, p2)∧ (1, B)∧ (

0, 〈�2p2.B,1,1〉))
Since this is not the case, the first disjunct, ((1,¬p2)∨ (1,¬B))∧ (0, 〈�2p2.B,1,0〉), is chosen to satisfy the transition, and
only the first counter i is increased, switching to state 〈�2p2.B,1,0〉. To satisfy the first conjunct (1,¬p2)∨ (1,¬B) within
the chosen disjunct, the automaton can in turn choose either of its disjuncts, so it chooses the first, (1,¬p2). That is, it
moves to x·1 at state ¬p2, and checks the satisfaction of this atomic concept using a transition in item III of Table 4.

δT
(¬p2, {A, p1}

)= true

30 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
From state 〈�2p2.B,1,0〉 the automaton proceeds to the second successor, x·2, and checks it similarly to x·1:

δT
(〈�2p2.B,1,0〉, {A, B, p1, p2Self}

)
= ((

(2,¬p2)∨ (2,¬B)
)∧ (

0, 〈�2p2.B,2,0〉))∨ (
(2, p2)∧ (2, B)∧ (

0, 〈�2p2.B,2,1〉))
Again, since x·2 is not a (p2, B)-neighbor of x, the automaton chooses the first disjunct and switches to the state
〈�2p2.B,2,0〉. Now to satisfy the first disjunct it can choose as above state ¬p2 and verify its satisfaction:

δT
(¬p2, {A, B, p1}

)= true

Now that the automaton has navigated all children, it proceeds with x itself. Since x is indeed its own (p2, B)-neighbor,
it chooses the second disjunct; both counters are increased, and the automaton switches to 〈�2p2.B,3,1〉. It also verifies,
using the atomic transitions, that both p2Self and B are in the label of x:

δT
(〈�2p2.B,2,0〉, {A, B, p1, p2Self}

)
= ((

(0,¬p2Self)∨ (0,¬B)
)∧ (

0, 〈�2p2.B,3,0〉))∨ (
(0, p2Self)∧ (0, B)∧ (

0, 〈�2p2.B,3,1〉))
δT

(
p2Self, {A, B, p1, p2Self}

)= true

δT
(

B, {A, B, p1, p2Self}
)= true

Finally, from 〈�2p2.B,3,1〉, the automaton uses a transition from item IV(2)3 in Table 5 to verify whether the parent of x
is also its (p2, B)-neighbor:

δT
(〈�2p2.B,3,1〉, {A, B, p1, p2Self}

)
= (((

0,¬p−2
)∨ (−1,¬B)

)∧ (
0, 〈�2p2.B,4,1〉))∨ ((

0, p−2
)∧ (−1, B)∧ (

0, 〈a�2p2.B,4,2〉))
Since it is not, the automaton chooses the first disjunct and increases the first counter switching to 〈�2p2.B,4,1〉. It also
verifies that x is not a p2-successor of its parent by moving to the state ¬p−2 ; it then has a transition (as in item IV3 of Ta-
ble 5) which ensures that x satisfies �2p2.B , if among the four potential neighbors of x we have only one (p2, B)-neighbor:

δT
(¬p−2 , {A, B, p1, p2Self}

)= true

δT
(〈�2p2.B,4,1〉, {A, B, p1, p2Self}

)= true �
Example 4.12 (Continued). For the same interpretation and tree representation as in the previous example, let us now verify
that x satisfies the concept �3(p1 ∪ p2).A.

The automaton again starts by setting the counters to zero:

δT
(
�3(p1 ∪ p2).A, {A, B, p1, p2Self}

)= (
0,

〈
�3(p1 ∪ p2).A,0,0

〉)
It moves to the first successor x·1 and verifies that it is indeed a (p1 ∪ p2, A)-neighbor of x, and increases both counters by
one:

δT
(〈
�3(p1 ∪ p2).A,0,0

〉
, {A, B, p1, p2Self}

)
= ((

(1,¬p1 ∩¬p2)∨ (1,¬A)
)∧ (

0,
〈
�3(p1 ∪ p2).A,1,0

〉))
∨ ((

1, (p1 ∪ p2)
)∧ (1, A)∧ (

0,
〈
�3(p1 ∪ p2).A,1,1

〉))
Here, the right disjunct is chosen for satisfaction. To check that x·1 is a (p1 ∪ p2, A)-neighbor of x, the automaton needs to
decompose the simple role (p1 ∪ p2) and choose one of its disjuncts:

δT
(

p1 ∪ p2, {A, p1}
)= (0, p1)∨ (0, p2)

δT
(

p1, {A, p1}
)= true

δT
(

A, {A, p1}
)= true

In this case, let it choose p1. From 〈�3(p1 ∪ p2).A,1,1〉 the automaton proceeds similarly and verifies that x·2 is also a
(p1 ∪ p2, A)-neighbor of x:

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 31
Fig. 4. Another fragment of an interpretation and its tree representation.

δT
(〈
�3(p1 ∪ p2).A,1,1

〉
, {A, B, p1, p2Self}

)
= ((

(2,¬p1 ∩¬p2)∨ (2,¬A)
)∧ (

0,
〈
�3(p1 ∪ p2).A,2,1

〉))
∨ ((

2, (p1 ∪ p2)
)∧ (2, A)∧ (

0,
〈
�3(p1 ∪ p2).A,2,2

〉))
δT

(
p1 ∪ p2, {A, B, p1}

)= (0, p1)∨ (0, p2)

δT
(

p1, {A, B, p1}
)= true

δT
(

A, {A, B, p1}
)= true

As above, the right disjunct is chosen for satisfaction. From 〈�3(p1 ∪ p2).A,2,2〉 the automaton verifies that x is its own
(p1 ∪ p2, A)-neighbor using item IV(2)2 in Table 5:

δT
(〈
�3(p1 ∪ p2).A,2,2

〉
, {A, B, p1, p2Self}

)
= (((

0,¬(p1 ∪ p2)Self

)∨ (0,¬A)
)∧ (

0,
〈
�3(p1 ∪ p2).A,3,2

〉))
∨ ((

0, (p1 ∪ p2)Self

)∧ (0, A)∧ (
0,

〈
�3(p1 ∪ p2).A,3,3

〉))
That is, the right disjunct is chosen and the automaton verifies that x satisfies (p1 ∪ p2)Self using role decomposition and
atomic checks:

δT
(
(p1 ∪ p2)Self, {A, B, p1, p2Self}

)= (0, p1Self)∨ (0, p2Self)

δT
(

p2Self, {A, B, p1, p2Self}
)= true

δT
(

A, {A, B, p1, p2Self}
)= true

Finally, it checks the number restriction 〈�3(p1 ∪ p2).A,3,3〉 using a transition of item IV3 in Table 5:

δT
(〈
�3(p1 ∪ p2).A,3,3

〉
, {A, B, p1, p2Self}

)= true

This suffices to establish that x satisfies �3(p1 ∪ p2).A. Note that in this case, there is no need to navigate the parent of x
(item IV(2)3 in Table 5). �
Example 4.13. Finally, to illustrate the way the automaton AT verifies the satisfaction of universal restrictions by ABox
individuals, we consider the partial interpretation depicted on the left hand side of Fig. 4. Its tree representation, assuming
bK = 3 and IK = {a,b, c}, is given on the right hand side.

To verify whether the concept ∀p.¬A is satisfied at the node 1 interpreting a (that is, when the automaton is in node 1
and state ∀p.¬A), it moves to the state �0p.A using the corresponding transition in item II of Table 4. Then, it proceeds
similarly to the examples above. First it sets the counters to zero:

δT
(
�0p.A, {a})= (

0, 〈�0p.A,0,0〉)
Then it successively checks that none of 1·1, 1·2, and 1·3 is a (p, A)-neighbor of 1. It always chooses the first disjunct of
the corresponding transition and increases only the first counter:

δT
(〈�0p.A,0,0〉, {a})= ((

(1,¬p)∨ (1,¬A)
)∧ (

0, 〈�0p.A,1,0〉))∨ (
(1, p)∧ (1, A)∧ (

0, 〈�0p.A,1,1〉))
δT

(¬A, {p, B})= true

δT
(〈�0p.A,1,0〉, {a})= ((

(2,¬p)∨ (2,¬A)
)∧ (

0, 〈�0p.A,2,0〉))∨ (
(2, p)∧ (2, A)∧ (

0, 〈�0p.A,2,1〉))
δT

(¬p, {s, A, B})= true

δT
(〈�0p.A,2,0〉, {a})= ((

(3,¬p)∨ (3,¬A)
)∧ (

0, 〈�0p.A,3,0〉))∨ (
(3, p)∧ (3, A)∧ (

0, 〈�0p.A,3,1〉))
δT

(¬p, {})= true

32 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
Since L(1) ∩ IK = {a}, from 〈�0p.A,3,0〉, the automaton uses a transition as in item IV(2)4 of Table 5 to move to the root
and to the state 〈a,�0p.A,0,0〉, resetting the first counter to 0:

δT
(〈�0p.A,3,0〉, {a})= (−1, 〈a,�0p.A,0,0〉)

From here, it verifies whether each of the nodes 1 to 3 is a (p, A)-neighbor of the node labeled a, using transitions as in
item IV(2)5 of Table 5. For node 1, the transition is as follows:

δT
(〈a,�0p.A,0,0〉, {r, p12, p13}

)
= ((((

(0,∼ p11)∨ (1,¬a)
)∧ (

(0,∼ p21)∨ (2,¬a)
)∧ (

(0,∼ p31)∨ (3,¬a)
))∨ (1,¬A)∨ (

(1,¬a)∧ (1,¬b)

∧ (1,¬c)
))∧ (

0, 〈a,�0p.A,1,0〉))∨ ((
(0, p11)∧ (1,a)

)∨ (
(0, p21)∧ (2,a)

)∨ (
(0, p31)∧ (3,a)

)∧ (1, A)

∧ (
(1,a)∨ (1,b)∨ (1, c)

)∧ (
0, 〈a,�0p.A,1,1〉))

A is not in the label of 1, and this is enough to ensure that 1 is not a (p, A)-neighbor of any node. Hence the automaton
needs to choose the first big disjunct, and satisfy it by moving to 1 in state ¬A. It increases only the first counter to stay at
the root in state 〈a,�0p.A,1,0〉, from which it verifies node 2:

δT
(¬A, {a})= true

δT
(〈a,�0p.A,1,0〉, {r, p12, p13}

)
= ((((

(0,∼ p12)∨ (1,¬a)
)∧ (

(0,∼ p22)∨ (2,¬a)
)∧ (

(0,∼ p32)∨ (3,¬a)
))∨ (2,¬A)

∨ (
(2,¬a)∧ (2,¬b)∧ (2,¬c)

))∧ (
0, 〈a,�0p.A,2,0〉))∨ (((

(0, p12)∧ (1,a)
)∨ (

(0, p22)∧ (2,a)
)

∨ (
(0, p32)∧ (3,a)

))∧ (2, A)∧ (
(2,a)∨ (2,b)∨ (2, c)

)∧ (
0, 〈a,�0p.A,2,1〉))

Again, as 2 is not a (p, A)-neighbor of any node, the automaton must choose to move to 2 in state ¬A and to increase only
the first counter:

δT
(¬A, {b, B})= true

δT
(〈a,�0p.A,2,0〉, {r, p12, p13}

)
= ((((

(0,∼ p13)∨ (1,¬a)
)∧ (

(0,∼ p23)∨ (2,¬a)
)∧ (

(0,∼ p33)∨ (3,¬a)
))∨ (3,¬A)

∨ (
(3,¬a)∧ (3,¬b)∧ (3,¬c)

))∧ (
0, 〈a,�0p.A,3,0〉))∨ (((

(0, p13)∧ (1,a)
)∨ (

(0, p23)∧ (2,a)
)

∨ (
(0, p33)∧ (3,a)

))∧ (3, A)∧ (
(3,a)∨ (3,b)∨ (3, c)

)∧ (
0, 〈a,�0p.A,3,1〉))

Now the automaton can not choose the first disjunct: it cannot satisfy the first part as p13 is in the label of the root and a
is in the label of node 1. It cannot move to node 3 in state ¬A either, as its label contains A, and it cannot satisfy the third
part as c is in the label of node 3. If it chooses the second disjunct, it needs to move to state p13, to state a in node 1, and
to states A and c in node 3. But then it would have to increase both counters; by item IV3 in Table 5, all transitions from
state 〈a,�0p.A,3,1〉 are false:

δT
(

p13, {r, p12, p13}
)= true

δT
(
a, {a})= true

δT
(

A, {c, A})= true

δT
(〈a,�0p.A,3,1〉, {r, p12, p13}

)= false

This shows that the number restriction �0p.A, and hence ∀p.¬A, is not satisfied at node 1, as node 3 is indeed a
(p, A)-neighbor of 1. �

As we have mentioned, infinite paths in the runs of AT only arise from the transitions that move from states of the
form ∀R∗.C and ∃R∗.C to states of the form ∀R.∀R∗.C and ∃R.∃R∗.C , and then move to all or to some successors of the
current node in the preceding state, that is, to states ∀R∗.C and ∃R∗.C , respectively. Hence, in every infinite path of a
run, a state of either (i) the form ∀R∗.C or (ii) the form ∃R∗.C occurs infinitely often. Case (i) amounts to the existence
of an infinite sequence of R-neighbors in the represented interpretation, over which the satisfaction of the concept ∀R∗.C
is correctly ensured. Paths of case (ii) are also caused by infinite sequences of R-neighbors in interpretations, but do not
correctly ensure the satisfaction of the concept ∃R∗.C . To satisfy ∃R∗.C at some node x, we need to ensure that on every
infinite sequence of R-neighbors starting from x, an instance of C is eventually reached. Hence we disallow paths where
∃R∗.C occurs infinitely often, requiring that the disjunct C is eventually chosen and the satisfaction of C is not indefinitely
postponed; this is achieved by the acceptance condition (cf. [35]).

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 33
Summing up, the core property of the automaton AT is that it correctly verifies the satisfaction of the concepts in the
closure of CT : an accepting run of AT over an interpretation tree T can have a node labeled (x, C) iff x is an instance of C
in the interpretation IT . To formalize this argument, recall that an (x, s)-run is just like a (full) run, but the root must be
labeled with a given pair of an arbitrary node x of the input tree and a state s (see Definition 2.8). We now show:

Lemma 4.14. Let T= (T , L) be an interpretation tree for K and let x ∈�IT . Furthermore, let C ∈ Q(AT) be a concept in Cl(CT). Then
there is an accepting (x, C)-run of AT over T iff x ∈ CIT .

Proof (Sketch). We give only a short sketch here; a more detailed proof can be found in Appendix A. We first show similar
properties for simple roles and for the states in QSelf and QA_role . In the following claims, T = (T , L) is an interpretation
tree for K, as above.

(C1) Let x · i ∈�IT and let S be a simple role in Cl(CT). Then there is an accepting (x · i, S)-run of AT over T iff (x, x · i) ∈ SIT .
(C2) Let x ∈�IT and let SSelf ∈ QSelf . Then there is an accepting (x, S)-run of AT over T iff (x, x) ∈ SIT .
(C3) Let i, j ∈�IT and Sij ∈ QA_role . Then there is an accepting (ε, Sij)-run of AT over T iff (i, j) ∈ SIT .

Each of these claims is shown by a straightforward structural induction on the role S . Then, using (C1)–(C3), one can
show Lemma 4.14 by structural induction on C . The induction is rather tedious, due to the large number of constructors
of ZIQ. Most cases are straightforward, since the transitions in the left column of item II in Table 4 decompose complex
concepts correctly, according to the semantics of the different constructors. The only interesting cases are (i) C = �nS.D ,
(ii) C = �nS.D , (iii) C = ∀R∗.D , and (iv) C = ∃R∗.D . For (i) and (ii), we rely on the following auxiliary claims, where we
use the notions of potential neighbors and (S, D)-neighbors defined above:

(C4) Let x ∈�IT and let 〈�nS.D, i, j〉 ∈ Qnum (resp., 〈�nS.D, i, j〉 ∈ Qnum). Then there is an accepting (x, 〈�nS.D, i, j〉)-run
(resp., (x, 〈�nS.D, i, j〉)-run) of AT over T iff there are at least (resp., at most) n− j many (S, D)-neighbors of x among
its potential neighbors beyond the i-th one.

(C5) Let 〈a,�nS.D, i, j〉 ∈ QA_num (resp., 〈a,�nS.D, i, j〉 ∈ QA_num). Then there is an accepting (ε, 〈a,≷nS.D, i, j〉)-run of
AT over T iff there are at least (resp., at most) n − j many (S, D)-neighbors of aIT among its potential neighbors
beyond the (bK + i)-th.

The interesting feature of (iii) and (iv) is that a run can repeatedly generate successors labeled with (x′, C). As discussed
above, this is handled in the usual way by the termination condition. If C = ∀R∗.D is satisfied, the generation of nodes
(x′, C) may be infinitely repeated, but the resulting branch is accepting as Inf(π)= {∀R∗.D,∀R.∀R∗.D}, and FT is satisfied.
For ∃R∗.D , this will happen only finitely often: as x ∈ (∃R∗.D)IT , D must be eventually reached on some finite path, and
some x′ ∈ DIT will be encountered; we then can add (x′, D) to the run. �

Now we can easily show that L(AT) accepts exactly the interpretation trees that represent a model of T .

Lemma 4.15. If T is an interpretation tree for K, then T ∈L(AT) iff IT |� T .

Proof (Sketch). Since T is an interpretation tree for K, IT is a bK-canonical interpretation. By the transitions in item I
of Table 4, AT first moves to each node i ∈ Roots(IT) in state CT . Then, by Lemma 4.14, it will succeed in completely
decomposing CT at i iff i ∈ CIT

T . Hence, AT has an accepting run on T (i.e., T ∈ L(AT)) iff Roots(IT)⊆ CIT
T , and it follows

from Proposition 3.8 that T ∈L(AT) iff IT |� T . �
4.2.4. Automaton AK verifying KB satisfaction

Finally, by intersecting the automata defined above, we obtain the desired automaton AK .

Definition 4.16. Given K, let AK be a 2ATA such that L(AK)=L(AI)∩L(AA)∩L(AT), as in Proposition 2.10. �
4.3. Soundness and completeness

The following proposition states soundness and completeness of AK with respect to canonical models of K.

Proposition 4.17. For a given normalized ZIQ KB K, L(AK)= {T | T is an interpretation tree and IT |�K}.

Proof. (⊆). By definition, T ∈ L(AK) implies T ∈ L(AI) ∩ L(AA) ∩ L(AT). As T ∈ L(AI), by Lemmas 4.5 and 4.7 T is an
interpretation tree for K and IT is a canonical interpretation for K. Furthermore, by Lemma 4.9, T ∈L(AA) implies IT |�A,
and by Lemma 4.15, T ∈L(AT) implies IT |� T . Consequently, IT is a canonical model of K.

34 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
(⊇). Let T be an interpretation tree such that IT is a model of K. By Lemma 4.7, AI accepts T. As IT |�A, Lemma 4.9
implies that AA accepts T, and as IT |� T , Lemma 4.15 implies that AT accepts T. Consequently, T ∈ L(AI) ∩ L(AA) ∩
L(AT)=L(AK). �

From Proposition 4.17 and the canonical model property of ZIQ in Theorem 3.10, we obtain:

Theorem 4.18. A normalized ZIQ KB K is satisfiable iff L(AK) �= ∅.

Proof. If L(AK) �= ∅, then by Proposition 4.17 K has some model, hence K is satisfiable. Conversely, if K is satisfiable, then
by Theorem 3.10 it has some canonical model I , and as I = ITI (by Lemma 4.5), by Proposition 4.17 TI ∈ L(AK), hence
L(AK) �= ∅. �

Thus, checking satisfiability of a normalized ZIQ KB K reduces to testing the automaton AK for emptiness.

4.4. Complexity

By ‖K‖ we denote the size of a (string) representation of K; we assume here unary number encoding, i.e., the numbers n
in number restrictions are encoded by a string of length Θ(n). Recall that CK and RK denote the atomic concepts and roles,
respectively, that occur in K, and IK denotes the ABox individuals; bK denotes max(kT , |IK|) where kT = |Cl(CT)| ·max({n |
�nS.C ∈ Cl(CT)} ∪ {0}). Furthermore, let n′max =max({n | ≷nS.C ∈ Cl(CT)} ∪ {0}). Note that |CK|, |RK|, |IK|, and |Cl(CT)|
are linear in ‖K‖. Under unary number encoding, this holds also for n′max, and bK is quadratic in ‖K‖. We thus obtain:

Lemma 4.19. For AK , we have |Σ(AK)|� 2O (‖K‖5) , |Q (AK)|� O (‖K‖5), and ind(AK)= 3.

Proof. Recall that Σ(AK)=ΣK and Q (AK)= Q K . The result is a consequence of the following simple estimates:

• |ΣK| = 2M(K) , where M(K)= |CK|+ |RK|+ |IK|+ |PI|+ |PS|+1, and we have |PI| = |RK| · |bK|2 and |PS| = |RK|. Clearly,
M(K)= O (‖K‖5).

• |QK|� |QT | + |QA| + |QI | + 1, where the following bounds hold:

|QA|� 1+ 2|IK| + |CA| + |RA| · |IK|2
|QI |� 2+ 2(|IK| + 1)

QT	� 1+	Clext	+	QSelf	+	QA_role	+	Qnum	+	QA_num
Clext	�	Cl(CT)	+ 2	IK						
QSelf	�	Cl(CT)	+	IK	·	Cl(CT)				
QA_role	�	Cl(CT)	·	bK	2					
Qnum	�	Cl(CT)	· (bK + 1) · (n′max + 1							

)
|QA_num|� |IK| · |Cl(CT)| · bK ·

(
n′max + 1

)
Hence, it is easy to see that |QK| = O (‖K‖5) (cf. |QA_num|).

• ind(A)=max(ind(AI), ind(AA), ind(AT))=max(2,2,3)= 3. �
Thus, by Theorems 2.9 and 4.18, we get an optimal upper bound for KB satisfiability.

Corollary 4.20. Deciding whether a given KB in ZIQ is satisfiable is in ExpTime under unary number encoding.

This is worst-case optimal, since a matching hardness result holds already for much weaker DLs, e.g., ALC [2].

5. Query answering via automata

We now turn to entailment of P2RPQs in KBs. As follows from Theorem 3.10, to decide whether K |� q for a normalized
P2RPQ q and a normalized KB K in this DL, it is sufficient to decide whether K has a canonical model in which q has
no match. We show how to do this using tree automata. Specifically, we build an automaton AK �|�q that accepts all trees
that represent a canonical model of K in which q has no match; hence, deciding query entailment reduces to checking
L(AK �|�q)= ∅. Roughly speaking, AK �|�q is obtained by intersecting two automata: AK from Section 4.2 (which accepts the
trees representing a canonical model of K), and A¬q , which is constructed in this section and accepts the trees representing

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 35
Fig. 5. Overview of the automata algorithm for query entailment.

an interpretation that admits no match for q. We first construct an automaton Aq that accepts a tree T iff q has a match in
the interpretation IT; we then show how to obtain from Aq the desired A¬q . Fig. 5 gives a general overview of the query
answering technique; each of the steps will be discussed in detail below. More information about the construction of the
automata in Fig. 5 is summarized in Tables 6 and 8.

All automata we have constructed in Section 4 run over bK-ary trees, where bK = max(kT , |IK|) for kT = br(CT).
By Theorem 3.10, we know that to decide query entailment it suffices to consider the kT ,q-canonical models of K, for
kT ,q = br({CT } ∪Dq) as in Definition 3.9. To be able to use the same automata constructions for query answering, in this
section we assume that kT ,q � bK . Note that this is trivially true for queries in which complex concepts are disallowed. It
also holds if the numbers n in number restrictions �nS.C and �nS.C occurring in q are not greater than those in the query
(and in the absence of number restrictions, if K contains some existential or universal concept whenever q does). For an
arbitrary q and K, we can ensure this condition by simply adding C � C to the TBox of K for every concept C that occurs
in q and contains a number restriction, or a universal or existential concept.

5.1. Representing query matches

Prior to defining Aq , we extend the tree representation of interpretations to include also query matches. In what follows,
we assume a given normalized P2RPQ q = ∃�v.ϕ(�v). We assume w.l.o.g. that in q each atom C(v) has been equivalently
replaced with id(C)(v, v), so that all atoms in At(q) are of the form R(v, v ′), where R is in NNF. Let Vq = {v1, . . . , v�} be
the variables in �v . We denote by Cq , Rq , and Iq the sets of atomic concepts, role names, and individuals, respectively, that
occur in q, and define Rq = Rq ∪ {p− | p ∈ Rq}.

We need the following notion, combining an interpretation I with a possible match π for q.

Definition 5.1. An extended (canonical) interpretation is a pair J = (I,π) consisting of a (canonical) interpretation I and a
total function π : Vq ∪ Iq →�I such that π(a)= aI for each a ∈ Iq . If I,π |� q, we write J |� q. �
Example 5.2. Recall the interpretation Ig given in Example 4.3, and the mapping π(v1)= ZeusIg , π(v2)= AlcmeneIg and
π(v3)= HeraclesIg for the query qg in Example 2.5; the pair (Ig ,π) is an extended interpretation. �

Extended canonical interpretations are represented by extended interpretation trees that are labeled using an alphabet
ΣK,q . The latter enriches ΣK with the variables in Vq and for each v ∈ Vq allows us to include the symbol v in the label
of the node π(v). We construct below an automaton Aq that accepts a ΣK,q-labeled tree iff it represents an extended
interpretation (I,π) such that π is actually a match for I and q, i.e., I,π |� q.

Definition 5.3. Let ΣK,q = {σ ∪ σ ′ | σ ∈ ΣK and σ ′ ∈ 2Vq }. An extended interpretation tree is a ΣK,q-labeled bK-ary tree
T= (T , L) such that:

(e1) Its ΣK-restriction T|ΣK = (T , L|ΣK), where L|ΣK(x) = L(x) ∩ ΣK for each x ∈ T , is an interpretation tree. Abusing
notation, we use IT to denote IT|ΣK

.
(e2) for each v ∈ Vq there is exactly one x ∈ T with v ∈ L(x), called the candidate match for v; furthermore, x is such that

x ∈�IT (i.e., it is connected to an individual node via the roles in RK).

We let πT : Vq ∪ Iq → T be the function that maps each v ∈ Vq to its candidate match, and each a ∈ Iq to the (unique) node
i ∈ T with a ∈ L(i). �

36 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
Fig. 6. The tree representation of the extended interpretation (Ig ,π) (cf. Fig. 2).

Table 6
Automata for finding query matches.

Automaton Construction Language

A′I Definition 5.7 adaption of AI Trees whose ΣK restriction represents an interpretation I
AV Definition 5.7 Trees in which each query variable has one candidate match
AT Definition 5.7 intersection of AV and A′I Trees representing an extended interpretation (I,π)

Aπ Definition 5.12 Trees such that if they represent an extended interpretation (I,π), then π is a
match for q in I

Aq Definition 5.12, intersection of AT and Aπ Trees representing an interpretation I together with a match π for q

We associate extended interpretation trees with extended interpretations and vice-versa as follows.

Definition 5.4. The extended interpretation represented by an extended interpretation tree T is JT = (IT,πT). The tree rep-
resentation TJ of an extended canonical interpretation J = (I,π) is the extended interpretation tree TJ = (T , L) whose
ΣK-restriction is TI and such that, for each v ∈ Vq and each x ∈ T , v ∈ L(x) iff x= π(v). �

Analogously to Lemma 4.5, we have:

Lemma 5.5. If T is an extended interpretation tree, then JT is an extended canonical interpretation.

Proof. If T is an extended interpretation tree, then by condition (e1) in Definition 5.3, T|ΣK is an interpretation tree and
by Lemma 4.5, IT is an extended interpretation. By condition (t2) in Definition 4.1, for each individual a ∈ IK there is
exactly one i ∈ T|ΣK such that a ∈ L(i). Furthermore, i ∈ �IT and aIT = i. Similarly, for each v ∈ Vq , by condition (e2) in
Definition 5.3, there is exactly one x ∈ T|ΣK such that x ∈�IT and v ∈ L(x). Therefore the mapping πT is well-defined and it
defines a total function from Vq∪Iq to �IT , with π(a)= aIT . This proves that JT is an extended canonical interpretation. �
Example 5.6. The tree representation of the extended interpretation (Ig ,π) (see Examples 5.2 and 4.3) is shown in Fig. 6.
It extends the tree representation of Fig. 2 with the variables Vq = {v1, v2, v3}. �
5.2. Constructing the automaton that checks query matches

Now we construct the automaton Aq that accepts a ΣK,q-labeled tree T iff (i) T is an extended interpretation tree and
(ii) the map πT represents a match for the query q in the associated interpretation IT . We define Aq as the intersection of
automata AT and Aπ for (i) and (ii), respectively; they are summarized in Table 6. All these automata are 2ATAs that run
over bK-ary trees. As seen later, their size (in terms of states) is polynomial in ‖K‖.

As for AT , we can easily define first a 2ATA AV that verifies whether a given tree satisfies condition (e2) of Definition 5.3.
We then obtain the desired AT by intersecting AV with an adaptation A′I of AI from Section 4.2, such that its alphabet is
ΣK,q and it accepts all trees whose ΣK-restrictions are interpretation trees.

Definition 5.7. The 2ATA AV = 〈bK,ΣK,q,QV , δV , sV
0 , F V 〉 is defined as follows:

• QV = {sV
0 } ∪ Vq ∪⋃

v∈Vq
{¬v, v+, v−} ∪ RK . Intuitively, the state v is used to check that the label of the current node

contains v , and the state ¬v that it doesn’t. The state v+ is used to check that the node labeled v is in the tree rooted
at the current node, and the state v− that it is not.

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 37
• F V = (∅, {v− | v ∈ Vq},QV).
• The transition function δV : QV ×ΣK,q → B([bK] × QV) contains three groups of transitions:

1. For each σ ∈ΣK,q with r ∈ σ , a transition from the initial state:

δV
(
sV

0 ,σ
)= ∧

v∈Vq

(
(0,¬v)∧

∨
1� j�bK

(∨
a∈IK

(j,a)∧ (
j, v+

)∧ ∧
1� j′�bK, j′ �= j

))

2. For each v ∈ Vq and each σ ∈ΣK,q , transitions to the subtrees:

δV
(

v+,σ
)=

(
(0, v)∧

∧
1�i�bK

(
i, v−

))∨
(

(0,¬v)∧
∨

1�i�bK

((
i, v+

)∧ ∨
P∈RK

(i, P)∧
∧

1� j�bK, j �=i

(
j, v−

)))

δV
(

v−,σ
)= (0,¬v)∧

∧
1�i�bK

(
i, v−

)

3. For each σ ∈ΣK,q and each v ∈ Vq , transitions that check the labeling with v:

δV (v,σ)=
{

true, if v ∈ σ
false, if v /∈ σ

δV (¬v,σ)=
{

true, if v /∈ σ
false, if v ∈ σ

.

4. For each σ ∈ΣK,q and each P ∈ RK , transitions that check the labeling with P :

δV (P ,σ)=
{

true, if P ∈ σ
false, if P /∈ σ

The automaton AI in Definition 4.6 is modified to A′I = 〈bK,ΣK,q,QI , δ′I , sI0 , FI〉, by changing ΣK to ΣK,q and setting, for
each σ ∈ΣK,q and each state q′ ∈ QI , δ′I(σ ,q′)= δI(σ ′,q′) whenever σ ′ = σ \ Vq . Then, AT is an automaton that accepts
the intersection of AV and A′I , as in Lemma 2.10. �
Lemma 5.8. L(AT)= {T | T is an extended interpretation tree for K}.

Proof. L(AT) is the intersection of L(A′I) and L(AV). By construction, for every ΣK,q-labeled bK-ary tree T = (T , L), we
have T ∈L(A′I) iff T|ΣK ∈L(AI). Hence T ∈L(A′I) iff it satisfies (e1) in Definition 5.3. It is then enough to prove that there
is an accepting run of AV over T iff T satisfies (e2) in Definition 5.3. To this aim, we first observe that, by item 3 in the
definition of δV , the following hold for every x ∈ T and v ∈ Vq:

• There is an accepting (x, v)-run of AV over T iff v ∈ L(x).
• There is an accepting (x,¬v)-run of AV over T iff v /∈ L(x).

Similarly, by item 4, for every x ∈ T and P ∈ RK:

• There is an accepting (x, P)-run of AV over T iff P ∈ L(x).

Then we can use the second item in the definition of δV to show the following:

• There is an accepting (x, v−)-run of AV over T iff v /∈ L(x·w) for every x·w ∈ T with w ∈N∗ . This is an easy con-
sequence of the fact that the transition function ensures that there exists an accepting (x, v−)-run iff there exists an
accepting (x,¬v)-run and, for each child x·i of x there exists an accepting (x·i, v−)-run.

• Assume x ∈�IT . There is an accepting (x, v+)-run of AV over T iff there is exactly one x·w ∈ T with w ∈N∗ such that
v ∈ L(x·w), and for this x·w , we have x·w ∈�IT . This holds because the transition function ensures that there exists an
accepting (x, v+)-run iff either: (i) there is an accepting (x, v)-run, and for every child x·i of x, there exists an accepting
(x·i, v−)-run; or (ii) there is an accepting (x,¬v)-run, there is one child x·i of x such that there exists an accepting
(x·i, v+)-run and an accepting (x·i, P)-run for some P ∈ RK , and for all remaining children x· j, j �= i, there exists an
accepting (x· j, v−)-run. Note that x ∈�IT and the existence of the (x·i, P)-run for some P ∈ RK imply that x·i ∈�IT .

Item 1 in the definition of δV ensures that, in every run starting at ε and sV
0 , for each v ∈ Vq , (after checking that v /∈ L(ε))

the automaton moves to one individual node in state v+ , and to all remaining level one nodes in state v− (AV does not
check that the labels a ∈ IK correctly identify a unique individual node, but this is verified by A′I so we can assume it is
the case). From this and the items shown above, it follows that there exists an accepting (ε, sV

0)-run iff for each v ∈ Vq ,
there exists some individual node i and exactly one i·w ∈ T with w ∈ N∗ such that v ∈ L(i·w), and for this i·w , we

38 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
have i·w ∈�IT . Moreover, v /∈ L(x) for every x ∈ T , x �= i·xv . This shows that there exists an accepting (ε, sV
0)-run iff (e2)

holds. �
To define the 2ATA Aπ we use q-concepts. They are like regular concepts, but may use the individuals and variables in q

as atomic concepts.

Definition 5.9. A q-concept C is defined as a regular ZIQ concept, but allows also the elements of Vq∪ Iq in place of atomic
concepts. The semantics of a q-concept C in a extended interpretation J = (I,π) is as follows:

• if C = A for some A ∈ C, then CJ = AI ;
• if C = v for some v ∈ Vq ∪ Iq , then CJ = {π(v)}.

This inductively extends to complex q-concepts as in Definition 2.3 (i.e., like for a regular interpretation). For each atom α =
R(v, v ′) in q, we define the q-concept Cα = ∃pU

∗.(v
∃R.v ′), where pU is the role introduced in step 2 of the normalization
of K, or if this pU is not present in K, then pU =⋃

P∈RK
P . �

Intuitively, Cα expresses that somewhere (reachable by any chain of roles) there is an object labeled v , which is related
via R to an object labeled v ′ . Since the interpretations represented in extended interpretation trees are K-connected, and
every node is reachable from a root, we have that I,π |� α iff Cα is satisfied at some root. Hence, we can check whether
π is a match for q by checking the satisfaction of the q-concepts for its atoms at the roots.

Example 5.10. Recall the query qg from Example 2.5, with atoms α1 = HasParent∗ ◦HasParent−∗(v1, v2), α2 = HasParent−(v1,

v3), α3 = HasParent−(v2, v3), α4 = male(v1), α5 = female(v2), α6 = ¬deity(v1), and α7 = ¬deity(v2). In order to
have only binary atoms, we consider α′4 = id(male)(v1, v1), α′5 = id(female)(v2, v2), α′6 = id(¬deity)(v1, v1), and α′7 =
id(¬deity)(v2, v2). The respective q-concepts are:

Cα1 = ∃pU
∗.

(
v1
 ∃HasParent∗ ◦ HasParent−∗.v2

)
Cα′4 = ∃pU

∗.
(

v1
 ∃id(male).v1
)

Cα2 = ∃pU
∗.

(
v1
 ∃HasParent−.v3

)
Cα′5 = ∃pU

∗.
(

v2
 ∃id(female).v2
)

Cα3 = ∃pU
∗.

(
v2
 ∃HasParent−.v3

)
Cα′6 = ∃pU

∗.
(

v1
 ∃id(¬deity).v1
)

Cα′7 = ∃pU
∗.

(
v2
 ∃id(¬deity).v2

)
Consider the extended interpretation J = (Ig ,π) represented in Fig. 6, which has roots {1, . . . 5}. Since the root label is
LR = {r, HasFather21, HasFather34, HasFather45, HasFather51, HasMother23, HasParent21, HasParent34, HasParent45, HasParent51,
HasParent23}, we have that:

(
v1
 ∃HasParent∗ ◦ HasParent−∗.v2

)J = {1} (
v1
 ∃id(male).v1

)J = {1}(
v1
 ∃HasParent−.v3

)J = {1} (
v2
 ∃id(female).v2

)J = {3}(
v2
 ∃HasParent−.v3

)J = {3} (
v1
 ∃id(¬deity).v1

)J = ∅(
v2
 ∃id(¬deity).v2

)J = {3}
Hence CJ

α1
= CJ

α2
= CJ

α3
= CJ

α′4
= CJ

α′5
= CJ

α′7
=�J , and in particular we have i ∈=J CJ

α2
= CJ

α3
= CJ

α′4
= CJ

α′5
= CJ

α′7
for every

root i of Ig . In contrast, CJ
α′6
= ∅, so i /∈ CJ

α′6
for every root i. �

As discussed above, the following holds.

Lemma 5.11. For every extended canonical interpretation J = (I,π) and atom α = R(v, v ′) occurring in q, we have I,π |� α iff
there is some root i ∈�I such that i ∈ Cα

J .

Proof. (Only If) Assume I,π |� R(v, v ′). Then (π(v),π(v ′)) ∈ RI , and by the semantics of q-concepts, π(v) ∈ (∃R.v ′)J . As
vJ = {π(v)} by definition, we get π(v) ∈ (v
 ∃R.v ′)J . Since I is a canonical interpretation, there is some i ∈ Roots(I)

such that π(v) is K-connected to i, that is, (i,π(v)) ∈ (pU
∗)I . By the semantics of q-concepts, this implies i ∈ (∃pU

∗.v)J .
This, together with vJ = {π(v)} and π(v) ∈ (v
 ∃R.v ′)J gives i ∈ (∃pU

∗.(v
 ∃R.v ′))J as desired.
(If) Assume i ∈ (∃pU

∗.(v
 ∃R.v ′))J for some i. Then (v
 ∃R.v ′)J �= ∅. As (v
 ∃R.v ′)J ⊆ vJ and vJ = {π(v)} by
definition, we have π(v) ∈ (v
 ∃R.v ′)J . Hence π(v) ∈ (∃R.v ′)J , which by (v ′)J = {π(v ′)} gives (π(v),π(v ′)) ∈ RJ , so
(π(v),π(v ′)) ∈ RI and I,π |� R(v, v ′). �

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 39
Table 7
State set Qπ of the automaton Aπ .

Clqext = Clq ∪ Vq ∪ Iq ∪ {¬s | s ∈ Vq ∪ Iq}
Qq,Self = {SSelf | S is a simple role in Clq} ∪ {〈a, pSelf〉 | a ∈ Iq, p is a role name in Clq}
Qq,A_role = {Sij | i, j ∈ {1, . . . ,bK} and S is a simple role in Clq}
Qq,num = {〈�nS.C, i, j〉 |�nS.C ∈ Clq, 0 � i � bK + 1, 0 � j � n} ∪ {〈�nS.C, i, j〉 |�nS.C ∈ Clq, 0 � i � bK + 1, 0 � j � n+ 1}
Qq,A_num = {〈a,�nS.C, i, j〉 | a ∈ Iq, �nS.C ∈ Clq, 1 � i � bK, 0 � j � n} ∪ {〈a,�nS.C, i, j〉 | a ∈ Iq, �nS.C ∈ Clq, 1 � i � bK;0 � j � n+ 1}
Qπ = {sπ0 } ∪ Clqext ∪ Qq,Self ∪ Qq,A_role ∪ Qq,num ∪ Qq,A_num

By this lemma, we only need to verify that each of Cα1 , . . . , Cαk holds at some root for query atoms α1, . . . ,αk that make
the query q true. The satisfaction of the concepts Cαi is verified by an automaton Aπ that decomposes them via transitions
analogous to those of AT . Modulo the initial transition from the root node, Aπ and AT are very similar. We recall that
q= ∃�v.ϕ(�v), and that all atoms in ϕ are of the form R(v, v ′) with R a ZIQ role in NNF.

Definition 5.12. Let Clq =⋃
α∈At(q) Cl(Cα). We define the 2ATA Aπ = 〈bK,ΣK,q,Qπ , δπ , sπ0 , Fπ 〉 as follows:

• Qπ is like QT in AT , but defined using Clq and Iq instead of Cl(CT) and IK , and treating the symbols in Vq analogously
to the concept names in Cq , see Table 7.

• Fπ = (∅, {∀R∗.C | ∀R∗.C ∈ Clq},Qπ), analogously to AT .
• The transitions from the initial state are defined for each label σ containing r (identifying the root node) as

δπ (s0,σ)= Bϕ,

where Bϕ results from ϕ(�v) by replacing each atom α with (0, Cα).
When Aπ is at the root node and in a state Cα for some α ∈ At(q), it checks that the concept Cα is satisfied at some
individual node, via the following transitions, for each α ∈ q and each σ containing r:

δπ (Cα,σ)=
∨

1�i�bK

(
(i, Cα)∧

∨
a∈IK

(i,a)

)

To further check that Cα is satisfied, Aπ has transitions similar to those of AT , viz. for each σ ∈ΣK ,
1. transitions that recursively decompose complex concepts and non-simple roles in Clq , and that handle all simple

roles in Clq and the states in Qq,Self and Qq,A_role , as in group (II) of δT ;
2. transitions δπ (s, σ) for each s ∈ Clq of the form ≷nS.C , and for each s ∈ Qq,num ∪ Qq,A_num to verify the satisfaction

of the number restrictions, as in group (IV) of δT ;
3. transitions δπ (s, σ) for each s ∈ Cq ∪ Rq ∪ Iq ∪ {pij | p ∈ Rq, i, j ∈ {1, . . . ,bK}}, as in group (III) of δT , and for each

s ∈ Vq ∪ Iq , as in group 3 of δV , to check symbol occurrences in node labels.

Finally, we define Aq as a 2ATA accepting the intersection of AT and Aπ . �
Given an extended interpretation tree, Aπ correctly checks the satisfaction of complex concepts in Clq .

Lemma 5.13. (Cf. Lemma 4.14.) Let T= (T , L) be an extended interpretation tree and let x ∈�IT . Furthermore, let C ∈ Clq. Then there
is an accepting (x, C)-run of Aπ over T iff x ∈ CJT .

Proof (Sketch). The proof is analogous to that of Lemma 4.14. The only difference is that in the base case and in the case
of atomic negation, C may also be a possibly negated variable or individual t ∈ Iq ∪ Vq . In this case the last group of atomic
transitions ensures that an accepting (x, t)-run (resp., an accepting (x,¬t)-run) exists iff t ∈ L(x) (resp., t /∈ L(x)). �

Hence a run of Aπ on an extended interpretation tree that visits a state Cα correctly verifies the existence of a match
for the atom α. By this and Lemma 5.11, the initial transition from the root is sufficient to verify whether this holds for a
set of atoms that makes q true:

Lemma 5.14. An extended interpretation tree T= (T , L) is accepted by Aπ iff there exists some B ⊆ At(q) such that

(a) by assigning true to the atoms in B and false to those in At(q) \ B, ϕ evaluates to true, and
(b) for every α ∈ B, there is some root i ∈�IT such that i ∈ Cα

JT .

Proof. The result follows straightforwardly from the definition of δπ and Lemma 5.13. Indeed, suppose that there is an
accepting run (Tr, r) of Aπ over T. Since δπ (s0, σ)= Bϕ is the only given transition from state s0, there is a set B ⊆ At(q)

such that B satisfies condition (a), and the root of Tr has a child labeled (ε, Cα) for each α ∈ B . By the transitions of the

40 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
Table 8
Automata for deciding query entailment.

Automaton Construction Language of trees representing Type, number of states

AK Definition 4.16 canonical models of K 2ATA, polynomial in ‖K‖
Aq Definition 5.12 intersection of AT and Aπ canonical interpretations for K

together with a match for q
2ATA, polynomial in ‖K‖ + ‖q‖

A¬q Lemma 5.17 complement of the projection of Aq

to ΣK , after transforming to 1NTA.
canonical interpretations of K where
q has no match

1NTA, double exponential in ‖K‖ + ‖q‖

AK�|�q Lemma 5.18 intersection of A¬q with AK , after
transforming to 1NTA.

canonical models of K where q has
no match

1NTA, double exponential in ‖K‖ + ‖q‖

form δπ (Cα,σ)=∨
1�i�bK ((i, Cα)∧∨

a∈IK (i,a)), each such child with label (ε, Cα) must in turn have a child (i,a) and a
child (i, Cα). Since the run is accepting, it must be the case that a ∈ L(i), which implies that i is a root of IT , and that, by
Lemma 5.13, i ∈ CJT

α , so B satisfies condition (b) as well. For the converse, assume a set B as in the claim. Then we know
that for each α ∈ B there is a root iα of TI such that iα ∈ CJT

α . As iα is a root of TI , there exists some a ∈ L(iα) and an
accepting (iα,a)-run Ta,α of Aπ on T. As iα ∈ CJT

α , by Lemma 5.13 there is an accepting (iα, Cα)-run TC,α of Aπ on T. We
can obtain an accepting run of Aπ on T by taking a root labeled (ε, s0), creating a child yα labeled (ε, Cα) for each α ∈ B ,
and adding to each yα the whole Ta,α and TC,α as subruns (that is, adding descendants and labels as in the respective
runs). This shows that an accepting run of Aπ over T exists. �

The following is a simple corollary of Lemmas 5.11 and 5.14:

Corollary 5.15. Let T be an extended interpretation tree. Then T ∈L(Aπ) iff JT |� q.

Now we can easily show that Aq accepts the trees representing interpretations where q has a match:

Proposition 5.16. L(Aq)= {T | T is an extended interpretation tree and JT |� q}

Proof (Sketch). (⊆) Assume T is a ΣK,q labeled bK-ary tree that T ∈L(Aq). Then T ∈L(AT). By Lemma 5.8, T is an extended
interpretation tree. Furthermore, T ∈L(Aπ), so by Corollary 5.15 JT |� q.

(⊇) Assume T is an extended interpretation tree such that JT |� q. Then T ∈ L(AT) by Lemma 5.8. As JT |� q, by Corol-
lary 5.15 we have T ∈L(Aπ). Hence T ∈L(AT)∩L(Aπ)=L(Aq). �
5.3. Deciding query entailment

Our algorithm for deciding K |� q roughly works as follows (cf. Fig. 5). The automaton Aq accepts a tree over the
alphabet ΣK,q , if it represents an extended canonical interpretation (I,π) for K in which π is a match for q. We project
the query variables Vq from Aq ’s alphabet and obtain an automaton that accepts the same trees, but restricted to ΣK; they
correspond to the interpretation trees for K in which q has a match, no matter where it is. The next step is to complement
this automaton, such that the resulting automaton A¬q accepts an interpretation tree exactly when there is no match for
q in it. Finally, we intersect this automaton with the automaton AK to obtain an automaton AK �|�q that accepts the trees
that represent a canonical model of K in which q has no match. By Theorem 3.10, K �|� q iff such a model exists. Hence,
deciding K |� q reduces to testing the automaton AK �|�q for emptiness. For easier reference, we summarize in Table 8 the
characteristics of the different automata which the query entailment algorithm comprises (recall Fig. 5).

We now show in detail how AK �|�q can be obtained and analyze its size. We start by transforming Aq into a 1NTA whose
language we can project to the alphabet ΣK . Note that the transformation to 1NTA causes an exponential blow-up in the
number of states (Proposition 2.12), but after it the projection can be easily done (Proposition 2.14). Then we complement
the resulting automaton in order to construct a 1NTA that accepts exactly the set of trees such that, if they represent an
interpretation for K, it is an interpretation where q has no match. The complementation also causes yet another exponential
blow-up in the states, and it makes the index as large as the original state set (Proposition 2.13). More precisely, we have:

Lemma 5.17. Given K and q, it is possible to construct a 1NTA A¬q such that

1. If T is an interpretation tree for K, then T ∈L(A¬q) iff IT �|� q.

2. |Q (A¬q)|� 22O (nc
q)

and ind(A¬q) � 2O (nc
q) for nq = |Q (Aq)| and some constant c, i.e., A¬q has double exponentially many states

and index single exponential in the number of states of Q (Aq).

Proof. Let A0 = Aq and nq = |Q (Aq)|. By Proposition 2.12, we can construct from A0 a 1NTA A1 with L(A1)= L(A0) such

that |Q (A1)|� 2O (n
c0
q) for some constant c0 and ind(A1)= O (ind(A0))= O (1). By Lemma 2.14, we can transform A1 into a

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 41
1NTA A2 that accepts the ΣK-projection of L(A1) such that |Q (A2)|� |Q (A1)|� 2O (|Q (A0)|c0) and ind(A2) � ind(A1)= O (1).
By Lemma 2.13, we can construct from A2 an automaton A3 = A¬q accepting the complement of L(A2) such that
|Q (A3)| � 2O (f (A2)) and ind(A3) = O (f (A2)), where f (A2) = ind(A2)·|Q (A2)|· log |Q (A2)| � 2O (|Q (A0)|c2)·O (|Q (A0)|c2), for

some constant c2. It follows that |Q (A¬q)| � 22O (nc
q)

and ind(A¬q) � 2O (nc
q) for some constant c. This shows the second

item.
For the first item, we know from Proposition 5.16 that L(Aq) = L(A1) = {T | T is an extended interpretation tree and

JT |� q}. By construction, A2 accepts the ΣK-projection of L(A1), i.e., L(A2)= {T|ΣK | T is an extended interpretation tree
and JT |� q}. Recall that, by definition, T|ΣK is an interpretation tree. Moreover, for an arbitrary interpretation tree T such
that there exists some π : Vq ∪ Iq →�IT with IT,π |� q, we have that (IT,π) is an extended canonical interpretation and
there is an extended interpretation tree T′ such that JT′ = (IT,π) (obtained by adding in T the variable v to the label of
the node π(v), for all query variables v). This implies that T is accepted by A2. Hence, we can equivalently describe L(A2)

as {T | T is an interpretation tree and there exists some π : Vq ∪ Iq →�IT with IT,π |� q}. Then the complement A3 = A¬q

of A2 accepts an interpretation tree T iff there exists no π : Vq ∪ Iq →�IT with IT,π |� q, i.e., iff IT �|� q. This shows the
first item. �

We can now transform AK into a 1NTA and intersect it with A¬q , to obtain the automaton AK �|�q . It accepts exactly the
canonical models of K for which there is no match for q, as desired.

Lemma 5.18. Given K and q, it is possible to construct via AK and A¬q a 1NTA AK �|�q such that:

1. L(AK �|�q)= {T | T is an interpretation tree such that IT |�K and IT �|� q}.
2. |Q (AK �|�q)|� 22O ((nK+nq)c)

and ind(AK �|�q) � 2O (nc
q) for some constant c where nK = |Q (AK)| and nq = |Q (Aq)|, i.e., AK �|�q has

double exponentially many states in the number of states of AK and Aq, and index single exponential in the number of states of Aq.

Proof. By Proposition 2.12 we can construct from AK a 1NTA A1, with |Q (A1)| � 2O (|Q (AK)|c1) for some constant c1 and
ind(A1) = O (ind(AK)) = O (1), such that L(AK) = L(A1). We then construct a 1NTA A3 = AK �|�q as the intersection of A1
and A2 = A¬q , which by Lemma 2.15 has

ind(A3)= O
(

f (A1,A2)
)
,∣∣Q (A3)

∣∣ � 2O (f (A1,A2)2) · f (A1,A2) ·
∣∣Q (A1)

∣∣ · ∣∣Q (A2)
∣∣,

where f (A1,A2)= ind(A1)+ ind(A2)+1. Since by Lemma 5.17, |Q (A2)|� 22O (n
c2
q)

and ind(A2) � 2O (n
c2
q) for some constant c2,

we have that

ind(A3) � 2O (n
c2
q) + O (1),

∣∣Q (A3)
∣∣ � 2O (f (A1,A2)2) · f (A1,A2) · 2O (|Q (AK)|c1) · 22O (n

c2
q)

,

where f (A1,A2) = ind(A1) + ind(A2) + 1 � 2O (n
c2
q) + O (1) + 1. It follows from this that |Q (AK �|�q)| � 22O ((nK+nq)c)

and

ind(AK �|�q) � 2O (nc
q) for some constant c. This shows the second item. Now we show the first item, i.e., that L(AK �|�q) =

L(AK) ∩ L(A¬q) is the set of trees representing models of K where q has no match. (⊆) Suppose T ∈ L(AK �|�q). Then
T ∈ L(AK), which by Proposition 4.17 means that T is an interpretation tree and IT |�K. We also have T ∈ L(A¬q), which
by Lemma 5.17 means that IT �|� q. (⊇) Conversely, if T is an interpretation tree such that IT |� K and IT �|� q, then by
Proposition 4.17 T ∈L(AK), and by Lemma 5.17 T ∈L(A¬q). This implies that T ∈L(AK)∩L(A¬q)=L(AK �|�q). �

Therefore we can decide whether K |� q by testing AK �|�q for emptiness.

Theorem 5.19. For every normalized P2RPQ q over a normalized KB K in ALCQIbreg, it holds that K |� q iff L(AK �|�q)= ∅.

Proof. It follows from Lemma 5.18 that if L(AK �|�q) �= ∅, there exists some interpretation I such that I |�K and I �|� q, so
K �|� q. For the converse, if K �|� q, by Theorem 3.10 and our assumption that bK � kT ,q (see the beginning of Section 5),
there exists some bK-canonical interpretation I such that I |�K and I �|� q. Since by Lemma 4.5 I = ITI , we can apply
Lemma 5.18 to conclude that TI ∈L(AK �|�q) hence L(AK �|�q) �= ∅. �
5.4. Complexity

We now show that the reduction of query entailment to automata emptiness in Theorem 5.19 gives a tight upper
complexity bound for the problem. By ‖q‖ we denote the size of a (string) representation of a query q, and by ‖K,q‖ =
‖K‖ + ‖q‖ the combined size of a KB K and q (assuming unary number encoding).

42 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
It is not difficult to show that Aq has polynomially many states in ‖K,q‖, and a short acceptance condition (i.e., its index
is a small constant).

Lemma 5.20. |Q (Aq)| = O (‖K,q‖c), for some constant c, and ind(Aq)= 3.

Proof. Recall that under unary number encoding in K (cf. Section 4.4), bK is quadratic in ‖K‖ (and hence in ‖K,q‖).
Likewise for q we have that |Clq|, |Vq|, and nq

max = max({n | �nS.C ∈ Clq} ∪ {0}) are linear in ‖q‖ (and in ‖K,q‖). As
Aq = Aπ ∩ AT = Aπ ∩ (AV ∩ A′I), it follows from Proposition 2.10 that |Q (Aq)|� |Qπ | + |QV | + |QI | + 2, where:

|QI |� 2+ 2(|IK| + 1)

|QV |� 1+ 4|Vq|
|Qπ |� 1+ ∣∣Clqext

∣∣+ |Qq,Self| + |Qq,A_role| + |Qq,num| + |Qq,A_num|∣∣Clqext

∣∣� |Clq| + 2(|IK| + |Vq|)
|Qq,Self|� |Clq|
|Qq,A_role|� |Clq| · |bK|2
|Qq,num|� |Clq| · (bK + 1) · (nq

max + 1
)

|Qq,A_num|� |IK| · |Clq| · bK · nq
max

Hence, |Q (Aq)| = O (‖K,q‖5). Moreover, by Proposition 2.10, ind(Aq)=max(ind(Aπ), ind(AV), ind(AI))= 3. �
We next establish that the number of states of AK �|�q is double exponential in ‖K,q‖.

Lemma 5.21. |Q (AK �|�q)| = 22O (‖K,q‖c)
and ind(AK �|�q) = 2O (‖K,q‖c) for some constant c. Furthermore, AK �|�q can be constructed in

time double exponential in ‖K,q‖.

Proof. The first part follows from Lemmas 4.19, 5.18, and 5.20. The second part holds since in all the automata constructions
given in Section 5.3, the time required to construct an automaton is polynomial in its size plus the size of the input. �

Using Proposition 2.16, we obtain the main result of this section.

Theorem 5.22. Given a P2RPQ q over a KB K in ALCQIbreg and a P2RPQ q over K, deciding whether K |� q is in 2ExpTime under
unary number encoding.

This bound is worst case optimal. Indeed, it was shown in [46] that answering CQs over KBs in ALCI (i.e., P2RPQs built
only with conjunction ∧, where no regular role expressions, but only concept and role names are allowed) is 2ExpTime-hard,
and the same lower bound was established in [47] for SH, a DL with transitive roles but lacking inverse roles. It is not hard
to see that the proof for SH in [47] can be adapted to show hardness already for ALC , for two restricted classes of P2RPQs
that generalize CQs: (i) positive queries (PQs), which allow conjunction and disjunction, but atoms contain only concept and
role names and no regular role expressions, and (ii) conjunctive RPQs (CRPQs), which do not allow for either disjunctions
between atoms or inverse roles in the regular expressions (this latter lower bound was recently observed in [58]). Hence
we obtain the following result.

Theorem 5.23. Let LK ⊆ ZIQ be a DL, Lq ⊆ P2RPQs a query language, q in Lq, and K in LK . Then deciding K |� q is 2ExpTime-
complete under unary number encoding if any of the following holds:

(i) Lq ⊆ CQs, and either ALCI ⊆LK or SH ⊆LK .
(ii) ALC ⊆LK , and either Lq ⊆ CRPQs or Lq ⊆ PQs.

6. Complex role inclusion axioms

The DL SRIQ was introduced in [5] as an extension of RIQ [59], which in turn extends the well-known DL
SHIQ [60] underlying OWL-Lite. SRIQ has gained considerable attention in the last years as the nominal-free frag-
ment of the DL SROIQ underlying the new OWL 2 standard [3]. In this section, we show that our algorithm can also be
utilized for query answering in SRIQ by means of a suitable reduction to the logic ZIQ.

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 43
mortal � ¬deity
� � ∃HasFather.male
 ∃HasMother.female

∀HasParent.mortal � mortal
deity � ∀hasAncestor.deity

Dis(HasMother,HasFather)
Irr(HasParent)

HasMother � HasParent
HasFather � HasParent
HasParent � hasAncestor

hasAncestor ◦ hasAncestor � hasAncestor

Fig. 7. Some SRIQ axioms for a genealogy KB.

The most prominent feature of SRIQ are complex role inclusion axioms of the form R1 ◦ · · · ◦ Rn � R subject to some
regularity restrictions. The latter, which are necessary to guarantee decidability of reasoning, make it also possible to sim-
ulate such axioms with regular expressions. SRIQ also allows one to explicitly state certain properties of roles, including
(ir)reflexivity, symmetry, and disjointness, which can be simulated in ZIQ using BRIAs and CIAs. To recall SRIQ KBs, we
follow [5] and [61]. Let R= R∪ {R− | R ∈ R}.

Definition 6.1 (SRIQ knowledge base). A SRIQ role inclusion axiom (SRIA) is an expression of the form R1 ◦ · · · ◦ Rn � R ,
n � 1, where R and all Ri , 1 � i � n, are from R, and different from T if n > 1.

A set R of SRIAs is regular, if there exists a strict partial order ≺ on R such that

(i) for every R, R ′ ∈ R, Inv(R)≺ R ′ iff R ≺ R ′ , and
(ii) every SRIA in R is of one of the forms (a) R ◦ R � R , (b) Inv(R)� R , (c) w � R , (d) w ◦ R � R , or (e) R ◦ w � R , where

w = R1 ◦ · · · ◦ Rn and Ri ≺ R for each 1 � i � n.

For a given set R of SRIAs, the relation �R is the smallest relation such that

(i) R �R R for every R ∈ R such that either R or Inv(R) occurs in R, and
(ii) if w1 ◦ R ′ ◦ w2 �R R , where wi = Ri

1 ◦ · · · ◦ Ri
n2

, ni � 0 for i = 1,2 and R contains either w � R ′ or Inv(w)� R ′ , where
w = R1 ◦ · · · ◦ Rn , n � 1 and Inv(w)= Inv(Rn) ◦ · · · ◦ Inv(R1), then w1 ◦ w ◦ w2 �R R (i.e., �R is closed with respect to
unfolding roles on the left hand side with SRIAs).

A role is simple in R, if no roles R1, . . . , Rn , n � 2, exist such that R1 ◦ · · · ◦ Rn �R R .
An assertion about roles is an expression of the form Sym(R), Ref(R), Irr(R), or Dis(R, R ′), for roles R, R ′ ∈ R.6 It is simple

w.r.t. to a set R of SRIAs, if all roles occurring in it are simple in R or it is of the form Sym(R).
A SRIQ RBox is a finite set R=Ri ∪Ra of SRIAs Ri and assertions about roles Ra such that Ri is regular and each

assertion in Ra is simple w.r.t. to Ri . To define SRIQ TBoxes and ABoxes, we assume a given SRIQ RBox R containing
the set Ri of SRIAs. Then SRIQ concepts C, C ′ obey the following syntax:

C, C ′ −→ A | ¬C | C
 C ′ | C � C ′ | ∀R.C | ∃R.C |�nS.C |�nS.C | ∃S.Self,

where A ∈ C, R, S ∈ R, and S is simple in Ri . A SRIQ concept inclusion axiom (SCIA) is an expression C � C ′ for arbitrary
SRIQ concepts C and C ′; a SRIQ TBox is a set of SCIAs. A SRIQ assertion is an expression C(a), R(a,b), ¬S(a,b), or
a �≈ b, where C is a SRIQ concept, S, R are SRIQ roles, S is simple in Ri , and a,b ∈ I; a SRIQ ABox is a set of SRIQ
assertions. Finally, a SRIQ knowledge base is a triple K= 〈T ,R,A〉 where A is a non-empty ABox, T is a TBox, and R is
a SRIQ RBox as above.7 �

The semantics of SRIQ TBoxes and ABoxes is defined analogously to that of ZIQ. An interpretation I satisfies an
assertion about roles Sym(R), Ref(R), or Irr(R), if RI is symmetric, reflexive, or irreflexive, respectively; I satisfies Dis(R, R ′),
if the relations RI and R ′I are disjoint, i.e., RI ∩ R ′I = ∅; I satisfies a SRIA R1 ◦ · · · ◦ Rn � R if RI

1 ◦ · · · ◦ RI
n ⊆ RI

(where again the symbol ◦ denotes composition of binary roles). An interpretation I satisfies (or is a model of) an RBox R,
if it satisfies all SRIAs and all assertions about roles in R, written I |� R; it satisfies (or is a model of) a SRIQ KB
K= 〈T ,R,A〉, denoted I |�K, if I |�A, I |� T , and I |�R.

Example 6.2. In Fig. 7, we give part of a genealogy KB in SRIQ syntax. The first group in the left column is a TBox
T ′g consisting of four SCIAs. They are almost identical to (some of) the CIAs of the KB Kg from Example 2.5, but in
deity � ∀HasParent∗.deity the complex ZIQ role HasParent∗ , which is not allowed in SRIQ, has been replaced by the

6 We use the term assertion about roles instead of role assertions as in [5], since the latter is often used to refer to ABox assertions of the form R(a,b).
In [5] also the assertion Tra(R), stating that R is transitive, is allowed. We omit this as it is expressible with the SRIA R ◦ R � R .

7 As in Definition 2.2, we only consider w.l.o.g. non-empty ABoxes.

44 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
role hasAncestor. In the second group in the left column we give a set Ra
g of (two) assertions about roles, and the right

column contains a set Ri
g of SRIAs.

6.1. Reducing SRIQ to ZIQ

We describe a rewriting that transforms a SRIQ KB K into a ZIQ KB Ψ (K) in a way that will allow us to exploit our
automata-based algorithms for reasoning in SRIQ. It builds on the fact that the restriction to regular sets of SRIAs, which
is crucial for the decidability of SRIQ, ensures that the implications between roles define a regular language. Hence they
can be simulated using the regular expressions over roles present in ZIQ. More precisely:

Lemma 6.3. (See [59].) If R is a regular set of SRIAs, then for each R ∈ R occurring in K, the set LR(R)= {R1 ◦ · · · ◦ Rn | R1 ◦ · · · ◦
Rn �R R} is a regular language.

Furthermore, the authors of [59] show how to construct a finite state automaton representing LR(R), which is equivalent
to a regular expression ρR(R) over the alphabet R. That is, LR(R) can be written as a ZIQ role ρR(R). In particular, if
a role S is simple in R, the resulting expression is ρR(S) =⋃

S ′�R S S ′ , which is a simple ZIQ role. It is easy to see

that RI ⊆ (ρR(R))I in every interpretation I , since R �R R trivially holds. The converse, (ρR(R))I ⊆ RI , holds in every
interpretation in which w �R R implies wI ⊆ RI , that is, in every model of R. Hence we obtain the following.

Corollary 6.4. Given a regular set R of SRIAs and R ∈ R, we can construct a ZIQ role ρR(R) such that (ρR(R))I =⋃
R1◦···◦Rn�RR(R1 ◦ · · · ◦ Rn)I in every interpretation I , and hence (ρR(R))I = RI whenever I |�R. Moreover, ρR(R) is simple

whenever R is simple in R.

Example 6.5. Given the SRIAs Ri
g in Fig. 7, we can construct the following ZIQ roles for the role names in

Ri
g : ρR(HasMother) = HasMother, ρR(HasFather) = HasFather, ρR(HasParent) = HasMother ∪ HasFather ∪ HasParent, and

ρR(hasAncestor)= (HasMother ∪ HasFather ∪ HasParent ∪ hasAncestor)+ . �
In what follows, we assume a fixed regular set R of SRIAs, and for each R ∈ R, ρR(R) is an arbitrary but fixed regular

expression as above. The rewriting Ψ of a SRIQ KB exploits Lemma 6.3 above, and has the following steps:

1. TBox rewriting. In every concept occurring in the TBox, we replace the role R by the regular expression ρR(R). We
show below that this ensures that the interpretation of concepts in the rewritten TBox respects the restrictions that
arise from the SRIAs.

2. ABox rewriting. Similarly as above, we replace in every concept assertion of the form C(a) each role R occurring in C
by ρR(R). We furthermore remove the negated role membership assertions ¬S(a,b), which are not allowed in ZIQ, and
simulate them using a fresh role name P¬S for each role S . We replace ¬S(a,b) by P¬S (a,b), and add BRIAs which
ensure that P¬S is interpreted as a role that is disjoint from S .

3. RBox rewriting. SRIAs are dropped, and assertions about roles are simulated using BRIAs and CIAs.

More formally, the rewriting Ψ (K) is as follows.

Definition 6.6. Consider a SRIQ KB 〈T ,R∪Ra,A〉, where Ra is a set of assertions about roles.

(1) For a SRIQ concept C , we denote by ΨR(C) the ZIQ concept that results from replacing every occurrence of a role
R by ρR(R). Then ΨR(T) is the ZIQ TBox {ΨR(C)� ΨR(D) | C � D ∈ T }.

(2) ΨR(A) is the ZIQ ABox obtained by replacing in A (i) each assertion C(a) by ΨR(C)(a), and (ii) each assertion
¬S(a,b) by P¬S(a,b), for a fresh role name P¬S . T R

A is the TBox containing P¬S ∩ ρR(S)� B for each ¬S(a,b) in A
(note that ρR(S) is a simple role).

(3) ΨR(Ra) is the ZIQ TBox

ΨR(
Ra)= {

Inv
(
ρR(R)

)� R
∣∣ Sym(R) ∈Ra}∪ {�� ∃R.Self

∣∣ Ref(R) ∈Ra}
∪ {∃ρR(R).Self�⊥ ∣∣ Irr(R) ∈Ra}∪ {

ρR(R)∩ ρR(
R ′

)� B
∣∣ Dis

(
R, R ′

) ∈Ra},
where the notation Inv(R) (defined for simple roles in Section 3.2) is extended to arbitrary ZIQ roles as follows:
Inv(R ∪ R ′)= Inv(R)∪ Inv(R ′), Inv(R ◦ R ′)= Inv(R ′) ◦ Inv(R), Inv(R∗)= Inv(R)∗ , and Inv(id(C))= id(C).

(4) Finally, Ψ (K) is the ZIQ KB 〈ΨR(T)∪ T R
A ∪ΨR(Ra),ΨR(A)〉. �

The rewriting of ABoxes and TBoxes preserves the semantics in the models of R. The final step, rewriting assertions
about roles, has the stronger property of preserving equivalence in all models. Hence, by suitably interpreting the added

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 45
role names P¬S , all models of Ψ (K) become models of K. The converse holds only in a slightly weaker form, as the SRIAs
of K need not be satisfied in every model I of Ψ (K). However, each such I can be transformed into a model of the SRIAs
by adding all implied pairs of individuals to the extension of the roles.

Proposition 6.7. Let K= 〈T ,R∪Ra,A〉 be a SRIQ KB as above. Then:

1. For every interpretation I , if I |� K, then there is an interpretation I ′ such that I ′ |� Ψ (K), and I ′ coincides with I on all
concepts and roles over the signature of K.

2. Let I be an interpretation such that I |� Ψ (K), and let I ′ be the interpretation that has RI ′ = (ρR(R))I for each role R ∈ R
occurring in K, and is identical to I otherwise. Then I ′ |�K.

Proof. For the first item, we start by proving the following three claims, for an arbitrary interpretation I:

(i) I |�R implies CI = (ΨR(C))I for each SRIQ concept C ; hence, if I |�R and I |� T then I |� ΨR(T).
(ii) If I |�R and I |�A, then there is an interpretation I ′ such that I ′ |� ΨR(A), I ′ |� T R

A , and I ′ coincides with I on
all concepts and roles over the signature of K.

(iii) If I |�R and I |�Ra , then I |� ΨR(Ra).

Assume I |� R. To show item (i), we start by showing that CI = (ΨR(C))I by structural induction on C . The
claim is trivial for atomic concepts and for concepts of the forms ¬D , D
 D ′ , and D � D ′ , since ΨR(C) coincides
with ¬ΨR(D), ΨR(D)
 ΨR(D ′), and ΨR(D) � ΨR(D ′), respectively. For C of the form ∃R.D , we have ΨR(C) =
∃ρR(R).ΨR(D). Then (∃R.D)I ⊆ (∃ρR(R).ΨR(D))I follows from the induction hypothesis and RI ⊆ (ρR(R))I . For the
converse, (∃ρR(R).ΨR(D))I ⊆ (∃R.D)I , we need to use the induction hypothesis and the assumption that I |�R to infer
(ρR(R))I ⊆ RI . The cases for C of the forms �nS.D and ∃S.Self are analogous. For C of the form ∀R.D or �nS.D the
proof is similar, but now ΨR(C)I ⊆ CI follows directly from the induction hypothesis and RI ⊆ (ρR(R))I , while showing
CI ⊆ ΨR(C)I requires the assumption that I |�R and hence (ρR(R))I ⊆ RI . Once we have shown CI = (ΨR(C))I , it
follows that I |� T implies I |� ΨR(T), and item (i) holds.

For item (ii), assume I |�R and I |�A. We let I ′ be the interpretation that has (P¬S)
I ′ = (�I ×�I) \ SI for each

fresh role name P¬S in ΨR(A), and is identical to I otherwise. As I and I ′ coincide on all symbols in K, I ′ |�R and
I ′ |�A. To show I ′ |� ΨR(A), we only need to show that I ′ satisfies each assertion from ΨR(A). We distinguish three
cases:

• The assertion is of the form ΨR(C)(a), and it replaced some C(a) ∈A in step (2i). As I ′ |�R, CI ′ = ΨR(C)I
′
, and as

I ′ |�A and C(a) ∈A, aI
′ ∈ CI ′ . Hence aI

′ ∈ ΨR(C)I
′

and I ′ satisfies ΨR(C)(a).
• If the assertion is of the form R(a,b), then R(a,b) ∈A (i.e., it is an assertion from the original ABox). Then I ′ satisfies

R(a,b) because I ′ |�A.
• If the assertion is of the form P¬S(a,b), then it replaced some ¬S(a,b) in step (2ii). Since I |�A and ¬S(a,b) ∈A, it

follows that (aI ,bI) /∈ SI , and hence (aI
′
,bI

′
) ∈ P¬S

I ′ by construction of I ′ . Hence I ′ satisfies P¬S(a,b)

This proves I ′ |� ΨR(A). To show I ′ |� T R
A , we consider an arbitrary P¬S ∩ ρR(S)� B with ¬S(a,b) in A. Since I |�R,

by Corollary 6.4 (x, y) ∈ ρR(S)
I

implies (x, y) ∈ SI , and by construction of I ′ , (x, y) /∈ P¬S
I ′ . As ρR(S)

I = ρR(S)
I ′

, this

shows that (x, y) ∈ ρR(S)
I ′

implies (x, y) /∈ P¬S
I ′ for every pair (x, y) ∈�I ′ ×�I ′ , so I ′ satisfies P¬S ∩ ρR(S)� B and

I ′ |� T R
A as desired.

For item (iii), we assume I |�R and I |�Ra , and show that I satisfies the different forms of inclusions in ΨR(Ra):

• Inv(ρR(R)) � R with Sym(R) ∈Ra . Consider an arbitrary (x, y) ∈ Inv(ρR(R))I . Then (y, x) ∈ ρR(R)
I

. Since I |�R,
from Corollary 6.4 we have (y, x) ∈ RI . From this and the fact that I satisfies Sym(R), it follows that (x, y) ∈ RI and I
satisfies the inclusion as desired.

• �� ∃R.Self with Ref(R) ∈Ra . Since I satisfies Ref(R), ∃R.SelfI =�I and I satisfies �� ∃R.Self as desired.
• ∃ρR(R).Self�⊥ with Irr(R) ∈Ra . This case is similar to the previous one: since I satisfies Irr(R), ∃R.SelfI = ∅. Since
I |�R, from Corollary 6.4 it follows that ∃ρR(R).SelfI = ∅, and I satisfies ∃ρR(R).Self�⊥ as desired.

• ρR(R) ∩ ρR(R ′) � B with Dis(R, R ′) ∈Ra . We consider an arbitrary pair (x, y) ∈ ρR(R)
I

. Since I |�R, from Corol-
lary 6.4 it follows that (x, y) ∈ RI . Since I satisfies Dis(R, R ′), this means (x, y) /∈ R ′I . We can now use again

Corollary 6.4 to infer (x, y) /∈ ρR(R ′)I . Hence I satisfies ρR(R)∩ ρR(R ′)� B.

This concludes the proof of item (iii). Item (1) in the claim now follows easily: consider an arbitrary I such that I |�K,
and let I ′ be as in the proof of item (ii), i.e., (P¬S)

I ′ = (�I × �I) \ SI for each fresh role name P¬S in ΨR(A) and
I ′ is identical to I otherwise. We have shown in item (ii) that I ′ |� ΨR(A) and I ′ |� T R . Since I ′ coincides with I on
A

46 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
mortal � ¬deity
� � ∃HasFather.male
 ∃HasMother.female

∀(HasMother ∪ HasFather ∪ HasParent).mortal � mortal
deity � ∀(HasMother ∪ HasFather ∪ HasParent ∪ hasAncestor)+.deity

HasMother ∩ HasFather � B

∃(HasMother ∪ HasFather ∪ HasParent).Self � ⊥

Fig. 8. Axioms for a genealogy KB translated to ZIQ.

all concepts and roles over the signature of K and I |�K, it follows that I ′ |�R, I ′ |� T and I ′ |�Ra , and by items (i)
and (iii), we can conclude I ′ |� ΨR(T) and I ′ |� ΨR(Ra). Hence I ′ |� ΨR(K).

For the second item of Proposition 6.7, take an arbitrary I and let I ′ be as in the claim, i.e., RI ′ = (ρR(R))I for each
role R ∈ R occurring in K and I ′ is identical to I otherwise. Observe that since RI ′ = (ρR(R))I by construction, I ′ |�R
holds. Now we assume I |� Ψ (K) and show that I ′ |� K. First, to show that I ′ |� T , we observe that since I ′ |�R, we
have RI ′ = (ρR(R))I

′
for every R occurring in K. From this and RI ′ = (ρR(R))I , it follows that (ρR(R))I

′ = (ρR(R))I .
It is then easy to show that for all concepts C , ΨR(C)I = ΨR(C)I

′
. Hence I |� ΨR(T) implies I ′ |� ΨR(T), and this

together with I ′ |�R and item (i) above implies I ′ |� T .
It is only left to show that I ′ |�A and I ′ |�Ra . For the former, we again distinguish between the different forms of

assertions in A:

• For an assertion of the form C(a) ∈A, we again use the fact that ΨR(C)I = ΨR(C)I
′
, and the fact that I ′ |�R implies

CI ′ = ΨR(C)I
′

by item (i) above. It follows from I |� ΨR(A) that aI ∈ ΨRCI , so aI
′ ∈ ΨRCI ′ , and aI

′ ∈ CI ′ . Hence
I ′ |� C(a) as desired.

• For an assertion of the form R(a,b) ∈ A, we have that R(a,b) ∈ ΨR(A) and I |� ΨR(A), so I |� R(a,b) and
(aI ,bI) ∈ RI , which implies (aI

′
,bI

′
) ∈ RI ′ , hence I ′ |� R(a,b).

• For an assertion of the form ¬S(a,b) ∈A, we have that P¬S(a,b) ∈ ΨR(A) and I |� ΨR(A), so (aI ,bI) ∈ P¬S
I . More-

over, since I |� T R
A and P¬S ∩ ρR(S) � B ∈ T R

A , (aI ,bI) ∈ P¬S
I implies (aI ,bI) /∈ ρR(S)I . Hence (aI

′
,bI

′
) /∈ SI

′
,

and I ′ |� ¬S(a,b).

This proves I ′ |�A. Finally, to show I ′ |�Ra , we consider the different forms of assertions about roles in Ra:

• For Sym(R) ∈ Ra , we have Inv(ρR(R)) � R ∈ ΨR(Ra). Assume (x, y) ∈ RI ′ . Then (x, y) ∈ ρR(R)I , so (y, x) ∈
Inv(ρR(R))I , and as I satisfies Inv(ρR(R)) � R , we have (y, x) ∈ RI , and thus (y, x) ∈ RI ′ . This shows that RI ′ is
symmetric, so I ′ satisfies Sym(R).

• For Ref(R) ∈ Ra , we have � � ∃R.Self ∈ ΨR(Ra). Consider an arbitrary x ∈ �I . Since I satisfies � � ∃R.Self, x ∈
∃R.SelfI , hence (x, x) ∈ RI and (x, x) ∈ RI ′ . This shows that RI ′ is reflexive and I ′ satisfies Ref(R).

• For Irr(R) ∈Ra , we have ∃ρR(R).Self�⊥∈ ΨR(Ra). Consider an arbitrary x ∈�I , and assume towards a contradiction
that (x, x) ∈ RI ′ . Then (x, x) ∈ ρR(R)I , which implies x ∈ ∃ρR(R).SelfI . But since I |� ΨR(Ra) and ∃ρR(R).Self �
⊥∈ ΨR(Ra), we have ∃ρR(R).SelfI = ∅, which contradicts x ∈ ∃ρR(R).SelfI . This shows that RI ′ is irreflexive and I ′
satisfies Irr(R).

• For Dis(R, R ′) ∈Ra , we have ρR(R) ∩ ρR(R ′)� B ∈ ΨR(Ra). We consider an arbitrary pair (x, y) ∈ RI ′ . Then (x, y) ∈
ρR(R)I , and since I satisfies ρR(R) ∩ ρR(R ′) � B, (x, y) /∈ ρR(R ′)I , so (x, y) /∈ R ′I ′ . This shows that RI ′ and R ′I ′

are disjoint, and I ′ satisfies Dis(R, R ′) ∈Ra .

This proves I ′ |�Ra . We have shown that I ′ |� T , I ′ |�R, I ′ |�Ra , and I ′ |�A, so I ′ |�K. This concludes the proof of
the claim. �

As a consequence, we have a reduction from KB satisfiability in SRIQ to KB satisfiability in ZIQ.

Corollary 6.8. For every SRIQ KB K, K is satisfiable iff Ψ (K) is satisfiable.

In the rewriting above, we have replaced R by ρR(R) for all roles R . It would also be possible to do this replacement
only for non-simple roles, while leaving simple roles untouched and keeping in the resulting ZIQ TBox the corresponding
inclusions (note that every SRIA with a simple role on the right hand side is syntactically a ZIQ BRIA). We have also
replaced R by ρR(R) everywhere in T and A. This is not strictly necessary, and an alternative translation from SRIQ to
ZIQ can be defined by replacing R by ρR(R) only in concepts of the forms ∃R.C , ∃R.Self, and �nR.C on the left hand side
of inclusions, and in concepts of the forms ∀R.C and �nR.C on the right hand side of inclusions and in ABox assertions.
Such a translation would resemble more the one in [61] and similar ones. However, it would require us to rewrite the
KB into NNF, and to eliminate complex concepts C that occur inside concepts of the forms ∃R.C , ∀R.C �nR.C , or �nR.C
(which can be easily done by introducing a fresh concept name AC and adding CIAs AC � C , C � AC to the TBox). In such

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 47
a translation the negated role assertions in the ABox and the assertions about roles in the RBox can be handled exactly as
in Definition 6.6.

Example 6.9. Fig. 8 shows the result of applying the transformation Ψ to the axioms in Fig. 7, using the regular expressions
in Example 6.5. Note that the result is a ZIQ TBox containing one CIA and one BRIA. �
6.2. Deciding KB satisfiability

By Corollary 6.8, the automata algorithm in Section 4 can be used to decide the satisfiability of SRIQ knowledge bases;
under unary number encoding, the resulting algorithm is worst-case optimal. Let ρR

max be from the set {ρR
R | R ∈ RR} such

that its length is maximal, i.e., |ρR
max| =maxR∈RR

|ρR
R |. Each step of the rewriting Ψ is clearly polynomial in the size of A,

T , and ρR
max; however, the size of ρR

max can be exponential in the size of R [59].

Theorem 6.10. Under unary number encoding, the satisfiability of a given SRIQ knowledge base K = 〈T ,R,A〉 is decidable in
time exponential in the combined size of T , A, and ρR

max, and in time double exponential in the size of K.

As shown in [61], KB satisfiability for SRIQ is 2ExpTime-hard. Hence our bound is optimal under the assumption
of unary number encoding. Note that the blow-up in complexity w.r.t. ZIQ is due to the size of ρR

max , and that the
algorithm is single exponential whenever ρR

max has size polynomial in R, e.g., for simple role hierarchies as defined in [59].
This compares well to the SRIQ algorithm given in [5], which, even for such hierarchies may require non-deterministic
double exponential time in the size of K.

6.3. Query answering in SRIQ

We also obtain an algorithm to decide query entailment in SRIQ. To this end, we rewrite a P2RPQ q over K into a
new query over Ψ (K) in a way such that query entailment is preserved.

Definition 6.11. For every P2RPQ q over a SRIQ knowledge base K= 〈T ,R,A〉, ΨR(q) is the P2RPQ obtained from q by
replacing each role R with ρR(R). �

Note that ΨR(q) may contain regular expressions even when q does not, i.e., our technique reduces positive (resp.,
conjunctive) queries over SRIQ to positive (resp., conjunctive) regular path queries over ZIQ.

Lemma 6.12. Let q be a P2RPQ over a SRIQ knowledge base K= 〈T ,R,A〉. Then K |� q iff Ψ (K) |� ΨR(q).

Proof. For the (Only If) direction, suppose K |� q and consider an interpretation I such that I |� Ψ (K). Let I ′ be the
variant of I in which each R is interpreted as (ρR(R))I . Then, by item (2) of Proposition 6.7, I ′ |� K, hence I ′ |� q. As
every match for q in I ′ is a match for ΨR(q) in I , it follows I |� ΨR(q); hence, Ψ (K) |� ΨR(q).

For the (If) direction, suppose Ψ (K) |� ΨR(q). Consider an interpretation I such that I |� K. By item (1) of Proposi-
tion 6.7, we know that I ′ |� Ψ (K) for some I ′ that only differs from I in the interpretation of the fresh role names P¬S

that do not occur in K or q, which means I ′ |� ΨR(q). Hence, it follows I |� ΨR(q). Since I |�R, Corollary 6.4 implies
that RI = (ρR(R))I for each R ∈ RR , and since I |� ΨR(q) it follows I |� q. This shows that K |� q as desired. �

Again, the length of the longest regular expression ρR
max over all role names R in RR affects the overall complexity of

the algorithm.

Theorem 6.13. Under unary number encoding, query entailment K |� q for a given SRIQ KB K and a P2RPQ q over K is decidable
in double exponential time in the combined size of q, CK , IK , and ρR

max, and in triple exponential time in the combined size of q and K.

7. Conclusion

In this paper, we have substantially pushed the frontier of decidable query answering over expressive Description Logics
(DLs), which is an active area of research driven by the growing interest in deploying DLs to various application areas.
Exploiting automata-theoretic results and methods, we have shown that query entailment for a very rich class of queries
beyond (union of) conjunctive queries, namely the positive (existential) two-way regular path queries (P2RPQs), is decidable
over knowledge bases in the DL ZIQ. Making use of this result, we also show decidability of query entailment over
knowledge bases in the DL SRIQ, which underlies the nominal-free fragment of the OWL 2 ontology standard by the
W3C [3].

48 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
Our results also yield some novel complexity bounds, namely that the entailment problem of P2RPQs is 2Exp-

Time-complete for ZIQ and in 3ExpTime for SRIQ. Given that conjunctive query entailment is 2ExpTime-hard already
for the DLs ALCI [46] and SH [47], and that CRPQ/PQ entailment is equally hard already for ALC , our results show that
both on the query and on the knowledge base side, one can increase the expressiveness substantially without a further in-
crease in worst-case complexity. In particular, this applies to queries that allow one to navigate the models of a knowledge
base in order to connect distant elements of the model, which is for instance desired in applications of semi-structured data
and graph databases [32,30,19,27,62].

The automata-based technique we apply is, in a sense, more accessible than other techniques that are based on tableaux
[59,63] or resolution-based transformations to disjunctive datalog [64]. It is computational in nature and works directly
on models of a knowledge base, processing them with flexible local operations; furthermore, subtasks can be modularly
combined. This allows us to accommodate different DL constructors and obtain results for more expressive knowledge bases
and queries than had been considered before, which seems to be more difficult using other approaches.

The viability of the automata approach has been confirmed by [33], where along the lines and ideas of this paper, the
decidability frontier for entailment of P2RPQs has been orthogonally extended to ZOQ and ZOI as well as to SROQ
and SROI . Furthermore, also decidability results for query containment are given there, which are obtained by a reduction
to query answering, extending well-known relationships between query containment and conjunctive query answering to
the richer setting of P2RPQs. However, the results in [33] use richer, tailored automata models which directly support
features such as counting and forest shaped structures. This makes the encoding simpler, but at the same time leaves out
essential technical aspects in handling, for instance, number restrictions and ABoxes. The encoding in this paper is from first
principles using classical automata on infinite trees; it is more illustrative on the technical issues that have to be resolved.

Unlike [35,44] we have considered qualified number restrictions. To incorporate them into the automata algorithm as
simply as possible, we have assumed that numbers are encoded in unary and have used a natural encoding of counters into
the states of the automaton. It is still somewhat cumbersome, as the simultaneous presence of inverses, concepts ∃S.Self,
and arbitrary ABoxes requires to navigate different parts of an interpretation to establish the satisfaction of a number
restriction. We conjecture that one can obtain the same complexity bounds even if numbers are encoded in binary; however,
this might require a significantly more involved encoding using binary counters.

Our results indicate that automata-techniques have high potential for advancing the decidability frontier of query an-
swering over expressive DLs, and are a useful tool for analyzing the complexity of this problem. However, they seem to be
of more limited use for assessing its data complexity, i.e., the complexity measured in terms of the ABox (data), assuming
that the TBox and the query are fixed. Indeed, the set of states of the automaton Aq depends polynomially on the size of
the ABox A, hence the set of states of AK �|�q can be double exponential in the size of A (more specifically, in the number of
individuals occurring in A). This means that the algorithm only gives a double exponential bound for data complexity. It is
important to note, however, that this is due to the way the ABox is incorporated into interpretation trees, which uses states
that check the relations for each pair of ABox individuals. The automata-theoretic operations used to build AK �|�q and the
emptiness test on it treat all automata states equally, which does not allow us to distinguish the complexity arising from
a specific kind of states. Although this is indeed an intrinsic limitation of our approach, there is no reason to believe that
the query entailment problem itself has such a high data complexity. Indeed, we would not be surprised if query entail-
ment in ZIQ and SRIQ is coNP-complete like for other expressive DLs [13,16]. However, other approaches may be more
promising in order to establish such a result. The automata approach may still be viable, but requires a different handling
of ABoxes, decoupling them from the infinite model tree, similarly as in [65].

Another drawback of the approaches based on automata on infinite trees is that they have so far resisted implementation.
Although for simpler problems, such as TBox satisfiability some initial proposals for automata-based implementations have
been made [66]. Hence, we do not expect the results presented here to lead to practicable algorithms in the near future. It
now becomes interesting to look for alternative techniques that are better suited for implementation. We are confident that
the tight complexity bounds that we have established will provide a valuable guidance in this direction, and may provide
interesting insights to exploit, for instance, tableaux as in [16] or knots as considered in [67].

Acknowledgments

This work has been partially supported by the FWF projects T515 Recursive Queries over Semantically Enriched Data Repos-
itories and P20480 Reasoning in Hybrid Knowledge Bases, and the EU large-scale Integrating Project Optique Scalable End-user
Access to Big Data, grant agreement No. FP7-318338.

We are very grateful to Oliver Carton, Orna Kupferman, and Moshe Vardi for their kind and valuable advise on automata-
theoretic questions. We owe particular thanks to Yoad Lustig and Nir Piterman for providing a proof sketch connected to
Lemma 2.15. Furthermore, we thank the reviewers for their helpful comments and suggestions to improve this paper.

Appendix A

In this appendix, we provide a proof of the canonical model property of ZIQ stated in Theorem 3.10, and of the
correctness of the automata construction stated in Lemma 4.14.

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 49
Table 9
Concept atom At⊆ ClC(T ,q).

if A is a concept name in ClC(T ,q), then A ∈ At iff ¬A /∈ At
if C
 C ′ ∈ ClC(T ,q), then C
 C ′ ∈ At iff {C, C ′} ⊆ At
if C � C ′ ∈ ClC(T ,q), then C � C ′ ∈ At iff {C, C ′} ∩ At �= ∅
if ∃S.C ∈ ClC(T ,q), then ∃S.C ∈ At iff �1S.C ∈ At
if ∀S.C ∈ ClC(T ,q), then ∀S.C ∈ At iff �0S.∼ C ∈ At
if ∃(R ∪ R ′).C ∈ ClC(T ,q), then ∃(R ∪ R ′).C ∈ At iff {∃R.C, ∃R ′.C} ∩ At �= ∅
if ∃(R ◦ R ′).C ∈ ClC(T ,q), then ∃(R ◦ R ′).C ∈ At iff ∃R.∃R ′.C ∈ At
if ∃R∗.C ∈ ClC(T ,q), then ∃R∗.C ∈ At iff {C,∃R.∃R∗.C} ∩ At �= ∅
if ∃id(C).C ′ ∈ ClC(T ,q), then ∃id(C).C ′ ∈ At then {C, C ′} ⊆ At
if ∀(R ∪ R ′).C ∈ ClC(T ,q), then ∀(R ∪ R ′).C ∈ At iff {∀R.C , ∀R ′.C} ⊆ At
if ∀(R ◦ R ′).C ∈ ClC(T ,q), then ∀(R ◦ R ′).C ∈ At iff ∀R.∀R ′.C ∈ At
if ∀R∗.C ∈ ClC(T ,q), then ∀R∗.C ∈ At iff {C,∀R.∀R∗.C} ⊆ At
if ∀id(C).C ′ ∈ ClC(T ,q), then ∀id(C).C ′ ∈ At iff {∼ C, C ′} ∩ At �= ∅

Table 10
Role atom AtR⊆ ClR(T ,q).

if p is a role name in ClR(T ,q), then p ∈ AtR iff ¬p /∈ AtR
if S ∩ S ′ ∈ ClR(T ,q), then S ∩ S ′ ∈ AtR iff {S, S ′} ⊆ AtR
if S ∪ S ′ ∈ ClR(T ,q), then S ∪ S ′ ∈ AtR iff {S, S ′} ∩ AtR �= ∅

A.1. Proof of the canonical model property

In what follows, we assume a fixed KB K = 〈T ,A〉 and a P2RPQ q. Recall that kT ,q = br(CT ∪Dq), where Dq = {C |
C(v) ∈ At(q)} ∪ {∃R.A | R(v, v ′) ∈ At(q)} for an arbitrary concept name A, and br(M)= |Cl(M)| · nmax where nmax =max({n |
�nS.C ∈ Cl(M)} ∪ {0}). To simplify the notation, we use Cl(T ,q) as a shorthand for Cl(CT ∪ Dq). To show that K has a
kT ,q-canonical model, we will follow the lines of similar proofs for the μ-calculus in [43,41] (which in turn, are adaptations
of the original proof in [68]), and adapt them to the syntax of ZIQ, while accommodating the ABox, Booleans over roles,
and Self. We will show that if K has a model, then it has a well-founded adorned pre-model. Roughly, the latter is a model
enhanced with additional information that allows us to ‘trace’ the satisfaction of the ∃R∗.C concepts. Then we show that
an adorned well-founded pre-model can be unraveled into an adorned well-founded pre-model that is kT ,q-canonical, and
that we can easily extract a kT ,q-canonical model of K from it. Moreover, since the unraveling preserves the satisfaction of
all expressions in Cl(T ,q) for every domain element, any match for q in the resulting model would already be present in
the original one, hence the entailment of q is preserved.

We start by defining concept and role atoms, which are consistent sets of concepts and roles from Cl(T ,q). In what
follows, we denote by ClC(T ,q) and ClR(T ,q) the set of concepts and the set of roles in Cl(T ,q), respectively. A concept
atom is a set At⊆ ClC(T ,q) of concepts closed under the rules of Table 9, while a role atom of K is a set AtR⊆ ClR(T ,q) of
simple roles closed under the rules of Table 10. The set of all concept and the set of all role atoms are respectively denoted
by atC(T ,q) and atR(T ,q).

A pre-model is an interpretation I in which each object is mapped to a concept atom and each pair of objects to a role
atom. Formally, a pre-model of K is a pair 〈I, θ〉 where I = (�I , ·I) is an interpretation for K and θ is a function that
maps each d ∈�I to a concept atom θ(d) ∈ atC(T ,q) and each pair (d,d′) ∈�I ×�I to a role atom θ(d,d′) ∈ atR(T ,q),
such that

(1) CT ∈ θ(aI), for each a ∈ IK ,
(2) A(a) ∈A implies A ∈ θ(aI), and p(a,b) ∈A implies p ∈ θ(aI ,bI),
(3) for each d,d′ ∈�I and p ∈ Cl(T ,q), p ∈ θ(d,d′) implies (d,d′) ∈ pI , and ¬p ∈ θ(d,d′) implies (d,d′) /∈ pI ,
(4) for each d,d′ ∈�I and p ∈ Cl(T ,q), p ∈ θ(d,d′) iff p− ∈ θ(d′,d), and
(5) for each d ∈�I

(a) A ∈ θ(d) implies d ∈ AI and ¬A ∈ θ(d) implies d /∈ AI , for each concept name A ∈ Cl(T ,q),
(b) ∃S.Self ∈ θ(d) implies S ∈ θ(d,d),
(c) if �nS.C ∈ θ(d), then there is some V ⊆ neighI,θ (S,d) such that |V |� n and C ∈ θ(d′) for every d′ ∈ V , and
(d) if �nS.C ∈ θ(d), then there is some V ⊆ neighI,θ (S,d) such that |V | � n and ∼ C ∈ θ(d′) for every d′ ∈

neighI,θ (S,d) \ V ,
where neighI,θ (S,d)= {d′ ∈�I | S ∈ θ(d,d′)}.

Intuitively, 〈I, θ〉 is almost a model of K, except that it is not ensured that concepts of the form ∃R∗.C are satisfied.
Instead, if ∃R∗.C must hold at some element d, we only require that some R neighbor of d satisfies ∃R∗.C , and allow
that the satisfaction of C may be infinitely postponed. To trace the evaluation of ∃R∗.C concepts and to distinguish pre-
models that represent models of K, we introduce adorned pre-models 〈I, θ, ch〉 that extend pre-models 〈I, θ〉 with a choice
function.

50 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
A choice function for a pre-model 〈I, θ〉 of K is a partial function ch such that:

• for each pair (d, C � C ′) with d ∈�I and C � C ′ ∈ θ(d), ch(d, C � C ′) is a concept in {C, C ′} ∩ θ(d);
• for each pair (d,�nS.C) with d ∈�I and �nS.C ∈ θ(d), ch(d,�nS.C) is a subset V of neighI,θ (S,d) such that |V |� n

and C ∈ θ(d′) for every d′ ∈ V ; and
• for each pair (d,�nS.C) with d ∈�I and �nS.C ∈ θ(d), ch(d,�nS.C) is a subset V of neighI,θ (S,d) such that |V |� n

and ∼ C ∈ θ(d′) for every d′ ∈ neighI,θ (S,d) \ V .

For an adorned pre-model 〈I, θ, ch〉 of K, the derivation relation #⊆ (�I × Cl(T ,q))× (�I × Cl(T ,q)) is the smallest
relation such that for every d ∈�I :

• C � C ′ ∈ θ(d) implies (d, C � C ′) # (d, ch(d, C � C ′)),
• C
 C ′ ∈ θ(d) implies (d, C
 C ′) # (d, C) and (d, C
 C ′) # (d, C ′),
• �nS.C ∈ θ(d) implies (d,�nS.C) # (d′, C) for every d′ ∈ ch(d,�nS.C),
• �nS.C ∈ θ(d) implies (d,�nS.C) # (d′,¬C) for every d′ ∈ neighI,θ (S,d) \ ch(d,�nS.C),
• ∃R∗.C ∈ θ(d) implies (d,∃R∗.C) # (d, C � ∃R.∃R∗.C), and
• ∀R∗.C ∈ θ(d) implies (d,∀R∗.C) # (d, C
 ∀R.∀R∗.C).

We say that a concept ∃R∗.C is regenerated from d to d′ in 〈I, θ, ch〉, if there is a sequence (d1, C1), . . . , (dk, Ck) with
k > 1 such that d1 = d, dk = d′ , C1 = Ck = ∃R∗.C , ∃R∗.C is a subconcept of every Ci and (di, Ci) # (di+1, Ci+1) for each
1 � i < k. We also say that 〈I, θ, ch〉 is well-founded, if there is no ∃R∗.C ∈ Cl(T ,q) and infinite sequence d1,d2, . . . such
that ∃R∗.C is regenerated from di to di+1 for every i � 1. Then one can show:

Lemma A.1. For every normalized ZIQ KB K, the following holds.

1. If K �|� q for some q, then K has a well-founded adorned pre-model 〈I, θ, ch〉 such that I �|� q.
2. If 〈I, θ, ch〉 is a well-founded adorned pre-model of K, then I is a model of K.

Proof (Sketch). The proof is essentially an adaptation of similar proofs in [43,41], which extend the original proof for the
μ-calculus in [68]. The absence of alternating fixpoints makes our setting simpler, and the presence of the ABox and the
additional constructs are not hard to accommodate.

1: If K �|� q for some q, then there exists some I such that I |�K and I �|� q. The existence of a θ such that 〈I, θ〉 is a
pre-model is straightforward: simply set θ(d)= {C ∈ ClC(T ,q) | d ∈ CI} and θ(d,d′)= {S ∈ ClC(T ,q) | (d,d′) ∈ SI} for every
d,d′ ∈�I . The existence of a choice function ch that makes 〈I, θ, ch〉 a well-founded adorned pre-model is also proved in
the standard way. Roughly speaking, while a choice function trivially exists, to prove well-foundedness one observes that
for every formula ∃R∗.C such that d ∈ ∃R∗.CI , there exists in I some finite sequence of elements reachable from d via R
that leads to some d′ ∈ CI ; selecting such a path for the choice function avoids infinite regeneration of ∃R∗.C .

2: One can show by structural induction that

(†) if 〈I, θ, ch〉 is a well-founded adorned pre-model, then d ∈ CI for every C ∈ θ(d) and (d,d′) ∈ SI for every S ∈ θ(d,d′).

We remark that Boolean role expressions are handled analogously to concept expressions, while items (4) and (5b) of a
pre-model ensure the correct interpretation of inverse roles and Self concepts, respectively. For concepts of the form ∃R∗.C ,
we rely on the well-foundedness of 〈I, θ, ch〉, which ensures that ∃R∗.C is not infinitely regenerated and that C is eventually
satisfied. Once (†) has been shown, it is easy to see that I |� K: item (1) of a pre-model ensures the satisfaction of the
TBox, and item (2) of the ABox. �

Now we are ready to prove Theorem 3.10, i.e., that for every normalized ZIQ KB K and P2RPQ q such that K �|� q, there
exists a kT ,q-canonical model of K that admits no match for q.

Proof of Theorem 3.10. Assume K �|� q. By item 1 of Lemma A.1, there exists some well-founded adorned pre-model
〈I, θ, ch〉 of K such that I �|� q. We unravel 〈I, θ, ch〉 into an adorned pre-model 〈I ′, θ ′, ch′〉 that is also well-founded,
such that I ′ is a kT ,q-canonical interpretation and I ′ �|� q. By item 2 of Lemma A.1, it follows that I ′ is a kT ,q-canonical
model of K with I ′ �|� q, which proves the result.

We will inductively build the domain �I ′ of I ′ as a tree, and define a mapping τ :�I ′ →�I that keeps track of the
correspondence between nodes of the tree and elements of I , which we use for defining the interpretation of concepts and
roles in I ′ . The functions θ ′ and ch′ are defined simultaneously.

Let R(I) = {aI | a ∈ IK}. Intuitively, to build the tree �I ′ , we start with the roots 1, . . . , |R(I)|, and then continue
building trees rooted at these roots, by inductively adding new levels.

For the base case, we let �I ′ = {1, . . . , |R(I)|} and let τ : {1, . . . , |R(I)|} → R(I) be an arbitrary bijection. Then we set,
for each j, j′ ∈�I ′ :

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 51
• θ ′(j)= θ(τ (j)),
• θ ′(j, j′)= θ(τ (j), τ (j′)), and
• for each C � C ′ ∈ θ ′(j), ch′(j, C � C ′)= ch(τ (j), C � C ′).

Choices for concepts �nS.C and �nS.C are defined in the induction step.
For the induction step, consider an x ∈�I ′ of maximal length, and let (�n1 S1.C1, e1), . . . , (�nm Sm.Cm, em) be all pairs

of a formula �ni Si .Ci ∈ θ ′(x) and an ei ∈ ch(τ (x),�ni Si .Ci). For each 1 � i � m, we define:

φ(ei)=
{

y, if ei = τ (y) for y = x or y = x·−1,

x·i, otherwise.

Then we set �I ′ :=�I ′ ∪ {φ(e1), . . . , φ(em)} and τ (x·i)= ei , for each x·i ∈�I ′ . To extend θ ′ , we set for each x·i ∈�I ′ :

• θ ′(x·i)= θ(τ (x·i)),
• θ ′(y, x·i)= θ(τ (y), τ (x·i)) if y = x or y = x·i,
• θ ′(x·i, x)= θ(τ (x·i), τ (x)), and
• θ ′(y, x·i)= t∅ , for every other y, where t∅ is a type such that ¬p ∈ t∅ for every p ∈ R.

We also extend the choice function to concepts of the form C � C ′ in the new θ ′(x·i), and to concepts �nS.C and �nS.C in
θ ′(x):

• for each x·i ∈�I ′ and each C � C ′ ∈ θ ′(x·i), ch′(x·i, C � C ′)= ch(τ (x·i), C � C ′);
• for each �nS.C ∈ θ ′(x), ch′(x,�nS.C)= {φ(e) | e ∈ ch(τ (x),�nS.C)}; and
• for each �nS.C ∈ θ ′(x), ch′(x,�nS.C)= {φ(e) | e ∈ ch(τ (x),�nS.C)∩ {e1, . . . , en}}.

Finally, the interpretation I ′ is defined using the mapping τ :

• for each A ∈ CK , AI ′ = {x ∈�I ′ | τ (x) ∈ AI}, and
• for each p ∈ RK , pI

′ = {(x, y) ∈�I ′ ×�I ′ | (τ (x), τ (y)) ∈ pI}.

We now verify that the conditions (1)–(5) of Definition 3.7 hold. Clearly, (1) {ε} ∪�I ′ is a tree, and (2) Roots(I)= {aI |
a ∈ IK} ⊆N. Next, m is bounded by kT ,q for every sequence φ(e1), . . . , φ(em) above. Hence by the induction hypothesis,
each y ∈ �I ′ is of the form i·x with i ∈ Roots(I ′) and x ∈ {1, . . . ,kT ,q}∗ , and (3) holds. Also, for each x ∈ �I ′ , each new
element added to �I ′ as a child of x is of the form x·i = φ(ei) with ei ∈ ch(τ (x),�ni Si .Ci)⊆ neighI,θ (Si, x), hence (x, x·i) ∈
(Si)

I ′ . Since Si is safe, this implies the existence of some atomic role P such that (x, x·i) ∈ PI ′ , as required by (4). For (5),
it only remains to observe that for every pair (x, y) such that neither (a) x= y, nor (b) y is a successor of x, nor (c) x is
the predecessor of y, the construction above ensures that θ ′(x, y)= t∅ is such that ¬p ∈ θ ′(x, y) for every p ∈ R and hence
(x, y) /∈ pI

′
. Therefore, I ′ is a kT ,q-canonical interpretation. Furthermore, as 〈I, θ, ch〉 is an adorned pre-model of K, it is

readily checked that 〈I ′, θ ′, ch′〉 is also an adorned pre-model of K. Finally, if a concept ∃R∗.C is regenerated from x to y in
〈I ′, θ ′, ch′〉, then ∃R∗.C is also regenerated from τ (x) to τ (y) in 〈I, θ, ch〉. As a consequence, well-foundedness of 〈I, θ, ch〉
implies well-foundedness of 〈I ′, θ ′, ch′〉.

Finally, we show that I ′ �|� q. Assume towards a contradiction that I ′,π |� q for some π . Then the following claim
implies that π̂ = π ◦ τ is a match for q in I , contradicting the assumption that I �|� q.

Claim. Let R(t, t′) be an atom in q and let x, y be nodes in �I ′ . If (x, y) ∈ RI ′ then (τ (x), τ (y)) ∈ RI . Similarly, for an atom C(t) of
q and x in �I ′ , x ∈ CI ′ implies τ (x) ∈ CI .

It is only left to prove the claim. To this end we exploit the following two properties, which state that all concepts and
roles in the query are preserved during the construction of I ′:

• Let (x, y) ∈�I ′ ×�I ′ and let S be a simple role in ClR(T ,q). Then (x, y) ∈ SI
′

implies (τ (x), τ (y)) ∈ SI .
• Let x ∈�I ′ and let C be a concept in ClC(T ,q). Then x ∈ CI ′ implies τ (x) ∈ CI .

The proof of both statements is easy, since the construction of I ′ ensures that each pair of objects x, y (resp., each
object x) preserves all roles (resp., concepts) in the closure that are satisfied by τ (x), τ (y) (resp., τ (x)). Formally, they can
be shown by a straightforward induction on the structure of S and C , respectively. To prove the claim, it then suffices to
observe that by construction of I ′ , if a sequence of objects in I ′ may participate in the satisfaction of some atom in q, the
image of this sequence under τ would satisfy the same atom in I . �

52 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
A.2. Correctness of the main automata construction

Proof of Lemma 4.14. We first show similar properties for simple roles and for the states in QSelf and QA_role . In the
following claims, T= (T , L) is an interpretation tree for K, as above.

(C1) Let x · i ∈�IT and let S be a simple role in Cl(CT). Then there is an accepting (x · i, S)-run of AT over T iff (x, x · i) ∈ SIT .
(C2) Let x ∈�IT and let SSelf ∈ QSelf . Then there is an accepting (x, S)-run of AT over T iff (x, x) ∈ SIT .
(C3) Let i, j ∈�IT and Sij ∈ QA_role . Then there is an accepting (ε, Sij)-run of AT over T iff (i, j) ∈ SIT .

Each of these properties is shown by a straightforward structural induction on the role S .

(C1) Induction base: Let S = P ∈ RK . (If) Assume (x, x · i) ∈ PIT . By construction of IT , (x, x · i) ∈ PIT implies that either
P = p ∈ R and (x, x · i) ∈R1

p or P = p− for some p ∈ R and (x · i, x) ∈R1
p . In the former case, p = P ∈ L(x · i), while in

the latter Inv(p)= p− = P ∈ L(x · i). Since P ∈ L(x · i), δT (P , L(x · i))= true and the run with one single node ε labeled
r(ε)= (x · i, P) is an accepting (x · i, S)-run of AT over T.
(Only If) Assume that there is an accepting (x · i, S)-run of AT over T. Then the root is labeled r(ε) = (x · i, P). By
construction of AT , δT (P , L(x · i))= true if P ∈ L(x · i) and false otherwise. Hence, since condition (R2) in Definition 2.8
holds, it follows that P ∈ L(x · i). If P = p ∈ R, this implies (x, x · i) ∈R1

p , and if P = p− for some p ∈ R, this implies

(x · i, x) ∈R1
p . Since x · i ∈�IT , in both cases this implies (x, x · i) ∈ PIT .

(C1) Inductive step:
• First we consider the case of role difference. Recall that all roles in Cl(CT) are in NNF, hence we can assume that

S = S ′ \ P for an atomic role P .
(If) Assume (x, x · i) ∈ SIT . Then (x, x · i) ∈ S ′IT , and (x, x · i) /∈ PIT . By definition of IT , (x, x · i) /∈ PIT implies
P /∈ L(x · i). By the inductive hypothesis, (x, x · i) ∈ S ′IT implies that there is an accepting (x · i, S ′)-run (Tr, r) of
AT over T. To extend it into an accepting (x · i, S)-run, we first introduce the following notation: for n ∈ N, let
n · Tr = {n · w | w ∈ Tr} (note that n · Tr is practically a tree, but its root is n rather than ε). Then we build a new
run (T ′r, r′) by taking T ′r = {ε,1} ∪ (2 · Tr), and setting r′(ε) = (x · i, S), r′(1) = (x · i,¬P) and r′(2 · w) = r(w) for
every w ∈ Tr . Condition (R2) in Definition 2.8 holds for all 2 · w with w ∈ Tr by construction. It also holds for 1 ∈ T ′r
since P /∈ L(x · i), as mentioned above, and hence δT (P , L(x · i))= true by item (III) in the definition of δT . Finally,
condition (R2) also holds for ε as δT (S, σ)= (0, S ′)∧ (0,¬P ′) (by item (II)). This shows that (T ′r, r′) is an accepting
(x · i, S)-run.
(Only If) Assume that there is an accepting (x · i, S)-run (Tr, r) of AT on T. Then we have r(ε) = (x · i, S), and the
only transition that can be used to satisfy condition (R2) is δT (S, σ) = (0, S ′) ∧ (0,¬P ′). This means that ε must
have children j, � such that r(j)= (x · i · 0, S ′) and r(�)= (x · i · 0,¬P). It is not hard to see that if we restrict (Tr, r)
to the subtrees rooted at j and �, we obtain an accepting (x · i, S ′)-run and an accepting (x · i,¬P)-run of AT on T.
By the induction hypothesis, this implies (x, x · i) ∈ S ′IT and (x, x · i) /∈ PIT , hence (x, x · i) ∈ SIT as desired.

• The cases of S = S1 ∩ S2 and S = S1 ∪ S2 are analogous. We only sketch the former.
(If) Assume (x, x · i) ∈ SIT . Then (x, x · i) ∈ SIT

1 , and (x, x · i) ∈ SIT
2 . Then by the inductive hypothesis, (x, x · i) ∈ SIT

1
implies that there are an accepting (x · i, S1)-run (T 1

r , r1) and an accepting (x · i, S2)-run (T 2
r , r2) of AT over T. We

can then build an accepting (x · i, S)-run (T ′r, r′) by taking T ′r = {ε} ∪ (1 · T 1
r) ∪ (2 · T 2

r), and setting r′(ε)= (x · i, S),

r′(j · w)= r(w) for every w ∈ T j
r , j ∈ {1,2}.

(Only If) If there exists an accepting (x · i, S)-run (Tr, r) of AT on T, then δT (S, σ) = (0, S1) ∧ (0, S ′2) must be
satisfied, which means that ε must have children j, � such that r(j)= (x · i · 0, S1) and r(�)= (x · i · 0, S2). It is not
hard to see that if we restrict (Tr, r) to the subtrees rooted at j and �, we obtain an accepting (x · i, S1)-run and an
accepting (x · i, S2)-run of AT on T. By the induction hypothesis, this implies (x, x · i) ∈ SIT

1 and (x, x · i) /∈ PIT , hence
(x, x · i) ∈ SIT as desired.

(C2) Induction base: First we assume a role name p ∈ R. If IK ∩ L(x) �= ∅ then x is an individual node. Otherwise, if x ∈�IT

and IK ∩ L(x)= ∅, then it is not a level one node. Accordingly, we distinguish two cases:
• x is not a level one node. Then it suffices to observe that pSelf ∈ L(x) iff (x, x) ∈ pIT . Then it can be shown as above

that the existence of an accepting (x, pSelf)-run implies pSelf ∈ L(x) and conversely, if pSelf ∈ L(x), then there is an
accepting (x, pSelf)-run (comprising a single node ε with r(ε)= (x, pSelf)).

• x ∈ N is an individual node, i.e., there is some a ∈ IK such that a ∈ L(x). Note that aIT = x, and (x, x) ∈ pIT iff
pxx ∈ L(ε). Hence, if (x, x) ∈ pIT , then we can build an accepting (x, pSelf)-run by taking a root ε with r(ε)= (x, pSelf),
adding to it children 1 and 2 with r(1)= (x,a) and r(2)= (ε, 〈a, pSelf〉), and then adding nodes 2 ·1 and 2 ·2, children
of 2, which respectively have r(2 · 1) = (x,a) and r(2 · 2) = (ε, pxx). Since a ∈ L(x) and pxx ∈ L(ε), the transition
function is satisfied.
Conversely, if there is an accepting (x, pSelf)-run, then its root must have children i and j with r(i) = (x,b) and
r(j)= (ε, 〈b, pSelf〉) for some b ∈ IK . Since the run is accepting, this b must be such that b ∈ L(x). The node j must
have children with r(j · i′) = (y,b) and r(j · j′) = (ε, p yy). Again, since the run is accepting, we can conclude that
b ∈ L(y), which implies y = x (since T is an interpretation tree, there is be exactly one node with b in its label). Since

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 53
the accepting run has a node labeled (ε, pxx), it follows that pxx ∈ L(ε), which implies (x, x) ∈ pIT by construction
of IT .

For S of the form p− with p ∈ R, we have that in an accepting (x, p−Self)-run the root has a child j such that r(j)=
(x, pSelf), which implies (x, x) ∈ pIT and hence (x, x) ∈ SIT and x ∈ ∃S.SelfIT . This shows the (If) direction. For the
(Only If) direction, x ∈ ∃S.SelfIT implies (x, x) ∈ pIT and, as shown above, there is an accepting (x, pSelf)-run, which can
be easily extended to an (x, p−Self)-run by adding to it a root labeled (x, p−Self) (note that δT (p−Self, L(x))= (0, pSelf)

by definition).
(C2) Inductive step: This step is practically identical the one of (C1). In the case of role difference one needs to make a case

distinction between a role name p and its inverse p− , analogously to the induction base.
(C3) Induction base: For a role name p ∈ R, we observe that, since i, j ∈ �IT and by the construction of IT , pij ∈ L(ε) iff

(i, j) ∈ pIT . Then the rest is as above: the existence of an accepting (ε, pij)-run implies pij ∈ L(ε) and conversely, if
pij ∈ L(ε), then there is an accepting (ε, pij)-run (comprising a single node ε with r(ε)= (ε, pij)). For S of the form
p− with p ∈ R: (If) In an accepting (ε, p−i j)-run the root has a child k such that r(k)= (ε, p ji), which implies p ji ∈ L(ε)

and hence (j, i) ∈ pIT and (i, j) ∈ p−IT . (Only If) Since (i, j) ∈ p−IT implies (j, i) ∈ pIT , we know we have p ji ∈ L(ε)

and, as shown above, there is an accepting (ε, p ji)-run, which can be easily extended to an (ε, p−i j)-run by adding to

it a root labeled (ε, p−i j) (note that δT (p−i j , L(ε))= (0, p ji) by definition).
(C3) Inductive step: This is again analogous to (C1) and (C2).

Using these claims, one can show the lemma by structural induction on C .
Induction base: Let C = A ∈ C. By the transitions in item III of Table 4 (which are the only ones given for states A ∈ C)

there is an accepting (x, A)-run iff A ∈ L(x), and by construction of IT we have A ∈ L(x) iff x ∈ AIT .
Inductive step: We must distinguish several cases due to the large number of constructors of ZIQ.

• C is of the form ¬A, for a concept name A (recall that all concepts in Cl(CT) are in NNF). The proof is analogous to the
base case: we have A /∈ L(x) iff x ∈ ¬AIT , and by the transitions in item III of Table 4 there is an accepting (x,¬A)-run
iff A /∈ L(x).

• C is of the form D
 D ′ or D � D ′ . The proof is analogous as for intersection and union of simple roles.
• C is of the form �nS.D or of the form �nS.D .

We rely on the following auxiliary claims. Here, we use the notion of potential neighbors and (S, D)-neighbors defined
above. Note that, by definition, the potential neighbors include all successors of a node, also the ‘dummy’ nodes in T that
do not correspond to an object in �IT . For an individual node, its potential neighbors also include all the level 1 nodes,
both actual individual nodes and ‘dummy’ nodes. Note that, in contrast, the (S, D)-neighbors are necessarily elements
of �IT . Moreover, we order the potential neighbors of a node x as follows: the first bK ones are its successors, in the
order they occur in T. If there is no a ∈ IK such that aIT = x, then the (bK+1)-th is the node itself, and the (bK+2)-th
is its predecessor. Otherwise, the (bK + 1)-th to (2bK)-th are the level 1 nodes, in the order they appear in T.
(C4) Let x ∈ �IT and let 〈�nS.D, i, j〉 ∈ Qnum (resp., 〈�nS.D, i, j〉 ∈ Qnum). Then there is an accepting (x, 〈�nS.D, i,

j〉)-run (resp., (x, 〈�nS.D, i, j〉)-run) of AT over T iff there are at least (resp., at most) n− j many (S, D)-neighbors
of x among its potential neighbors beyond the i-th one.

(C5) Let 〈a,�nS.D, i, j〉 ∈ QA_num (resp., 〈a,�nS.D, i, j〉 ∈ QA_num). Then there is an accepting (ε, 〈a,≷nS.D, i, j〉)-run
of AT over T iff there are at least (resp., at most) n− j many (S, D)-neighbors of aIT among its potential neighbors
beyond the (bK + i)-th.

Both claims are easy to show, since the transitions in item IV2 of Table 5 ensure that all potential neighbors are
navigated in the right order. The i counter is always increased, while the j counter is increased iff the i-th potential
neighbor is actually an (S, D)-neighbor. The correctness of the latter check follows easily from the way both disjuncts
are defined, relying on the Claims (C1)–(C3) for S and on the inductive hypothesis for D .
For each number restriction ≷nS.C , the automaton will first switch to 〈≷nS.C,0,0〉. From there, by Claims (C4)
and (C5), it will correctly count its potential neighbors. An inspection of the transitions in item IV3 of Table 5 reveals
that the run can be successfully completed iff the number restriction holds at the corresponding node.

• C is of the form ∃S.Self. Recall that x ∈ ∃S.SelfIT iff (x, x) ∈ SIT , and that δT (∃S.Self, σ)= (0, SSelf) is the only transition
specified for states of the form ∃S.Self. We can apply Claim (C2). For the (If) direction, we have that x ∈ ∃S.SelfIT

implies the existence of an accepting (x, SSelf)-run, which can be extended into an (x,∃S.Self)-run by simply adding
a root labeled (x,∃S.Self). For the converse, in an accepting (x,∃S.Self)-run the root necessarily has a child labeled
(x, SSelf), which can be viewed as the root of an accepting (x, SSelf)-run.

• C is of the form ∃S.D or ∀S.D for a simple role S . Then the claim follows from the fact that the transition function
treats these concepts as equivalent number restrictions.
(If) x ∈ (∃S.D)IT , then x ∈ (�1S.D)IT , so we can take an accepting (x,�1S.D)-run, which we have shown to exist and
extend it into an accepting (x,∃S.D)-run by adding a root with label (x,∃S.D). Similarly, adding an (x,∀S.D)-labeled
root to an accepting (x,�0S.∼ D)-run yields an accepting (x,∀S.D)-run. (Only If) Conversely, if we remove the root of
an accepting (x,∃S.D)-run we obtain a subtree that is an accepting (x,�1S.D)-run. As we have shown, this implies that

54 D. Calvanese et al. / Information and Computation 237 (2014) 12–55
x ∈ (�1S.D)IT and thus x ∈ (∃S.D)IT . Similarly, an accepting (x,∀S.D)-run contains an (x,�0S. ∼ D)-run as subtree
which implies x ∈ (�0S.∼ D)IT and x ∈ (∀S.D)IT .

• C is of the form ∀(R ∪ R ′).D , ∀(R ◦ R ′).D , ∀id(D).D ′ , ∃(R ∪ R ′).D , ∃(R ◦ R ′).D , or ∃id(D).D ′ . From these states δT
moves to states corresponding to syntactically simpler but semantically equivalent expressions, for which the induction
hypothesis applies. The proof for all of all these cases is analogous to the previous case: we can build an accepting
(x, D)-run by adding a root to runs for the equivalent expressions, and every (x, D)-run contains sub-runs for the
corresponding expressions.

• C is of the form ∀R∗.D . We know that x ∈ (∀R∗.D)IT iff it holds that x ∈ (D)IT and x ∈ (∀R.∀R∗.D)IT . Showing that
there is a (possibly infinite) accepting (x,∀R∗.D)-run iff x ∈ (D)IT and x ∈ (∀R.∀R∗.D)IT is not hard. For the only-if
direction, we start from a root ε with r(ε) = (x,∀R∗.D), and give it a child 1 with r(1) = (x, D) and a child 2 with
r(2) = (x,∀R.∀R∗.D). We use the induction hypothesis to argue that (i) there exists an (x, D)-run, and (ii) if there
exists an accepting (x,∀R∗.D)-run, then there exists an accepting (x,∀R.∀R∗.D)-run. We add these as subruns, and
when we reach the (x,∀R.∀R∗.D) run, we simply repeat the above construction. Also the converse can be shown in a
straightforward way, by using the structure of an accepting (x,∀R∗.D)-run to show that x ∈ (D)IT and x ∈ (∀R.∀R∗.D)IT .
Note that the accepting (x,∀R∗.D)-run may contain arbitrarily many (x,∀R∗.D)-runs as subruns.

• C is of the form ∃R∗.D . One can proceed analogously to the previous case to show that the existence of a possibly
infinite (not necessarily accepting) (x,∃R∗.D)-run is equivalent to having x ∈ (D)IT or x ∈ (∃R.∃R∗.D)IT . It is only left
to observe that the acceptance condition is satisfied iff there is no path in the (x,∃R∗.D)-run where r(w)= (x,∃R∗.D)

for infinitely many nodes w . By inspecting the transition function we see that this is the case iff there is some w ′
with r(w ′)= (y, D) (which implies y ∈ (D)IT), and there is a path from x to y in IT (which may contain only x itself)
such that the run visited all elements z on this path and verified (x, z) ∈ (R∗)IT . This shows that there is an accepting
(x,∃R∗.D)-run iff there is some y such that (x, y) ∈ (R∗)IT and y ∈ (D)IT , as desired. �

References

[1] D. Calvanese, T. Eiter, M. Ortiz, Answering regular path queries in expressive description logics: An automata-theoretic approach, in: Proc. of the 22nd
Nat. Conf. on Artificial Intelligence (AAAI 2007), 2007, pp. 391–396.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation and Applications,
Cambridge University Press, 2003.

[3] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P.P.-S.U. Sattler, OWL 2: The next step for OWL, J. Web Semant. 6 (4) (2008) 309–322.
[4] I. Horrocks, O. Kutz, U. Sattler, The even more irresistible SROIQ, in: Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and

Reasoning (KR 2006), AAAI Press, 2006, pp. 57–67.
[5] I. Horrocks, O. Kutz, U. Sattler, The irresistible SRIQ, in: Proc. of the 1st Int. Workshop on OWL: Experiences and Directions (OWLED 2005), 2005.
[6] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider, L.A. Stein, OWL Web Ontology Language reference – W3C

recommendation, Tech. rep., World Wide Web Consortium, available at, http://www.w3.org/TR/owl-ref/, February 2004.
[7] D. Calvanese, G. De Giacomo, M. Lenzerini, On the decidability of query containment under constraints, in: Proc. of the 17th ACM SIGACT SIGMOD

SIGART Symp. on Principles of Database Systems (PODS’98), 1998, pp. 149–158.
[8] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison Wesley Publ. Co., 1995.
[9] M. Krötzsch, S. Rudolph, P. Hitzler, Conjunctive queries for a tractable fragment of OWL 1.1, in: Proc. of the 6th Int. Semantic Web Conf. (ISWC 2007),

in: Lect. Notes Comput. Sci., vol. 4825, Springer, 2007, pp. 310–323.
[10] R. Rosati, On conjunctive query answering in EL, in: Proc. of the 20th Int. Workshop on Description Logic (DL 2007), in: CEUR Electronic Workshop

Proc., vol. 250, 2007, pp. 451–458, http://ceur-ws.org/.
[11] A. Krisnadhi, C. Lutz, Data complexity in the EL family of description logics, in: Proc. of the 20th Int. Workshop on Description Logic (DL 2007), in:

CEUR Electronic Workshop Proc., vol. 250, 2007, pp. 88–99, http://ceur-ws.org/.
[12] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: The DL-Lite

family, J. Autom. Reason. 39 (3) (2007) 385–429.
[13] B. Glimm, I. Horrocks, C. Lutz, U. Sattler, Conjunctive query answering for the description logic SHIQ, J. Artif. Intell. Res. 31 (2008) 151–198.
[14] B. Glimm, S. Rudolph, Nominals, inverses, counting, and conjunctive queries or: Why infinity is your friend, J. Artif. Intell. Res. 39 (2010) 429–481.
[15] U. Hustadt, B. Motik, U. Sattler, Data complexity of reasoning in very expressive description logics, in: Proc. of the 19th Int. Joint Conf. on Artificial

Intelligence (IJCAI 2005), 2005, pp. 466–471.
[16] M. Ortiz, D. Calvanese, T. Eiter, Data complexity of query answering in expressive description logics via tableaux, J. Autom. Reason. 41 (1) (2008) 61–98.
[17] P. Buneman, Semistructured data, in: Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS’97), 1997,

pp. 117–121.
[18] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: From Relations to Semistructured Data and XML, Morgan Kaufmann, 2000.
[19] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, Rewriting of regular expressions and regular path queries, J. Comput. Syst. Sci. 64 (3) (2002)

443–465.
[20] M. San Martin, C. Gutierrez, Representing, querying and transforming social networks with RDF/SPARQL, in: Proc. of the 6th European Semantic Web

Conf. (ESWC 2009), in: Lect. Notes Comput. Sci., vol. 5554, Springer, 2009, pp. 293–307.
[21] S. Hagedorn, K.-U. Sattler, Discovery querying in Linked Open Data, in: Workshop Proc. of the Joint 2013 EDBT/ICDT Conferences, ACM Press, 2013,

pp. 38–44.
[22] O. Shmueli, Equivalence of Datalog queries is undecidable, J. Log. Program. 15 (3) (1993) 231–241.
[23] D. Calvanese, R. Rosati, Answering recursive queries under keys and foreign keys is undecidable, in: Proc. of the 10th Int. Workshop on Knowledge

Representation meets Databases (KRDB 2003), in: CEUR Electronic Workshop Proc., vol. 79, 2003, http://ceur-ws.org/.
[24] A.Y. Levy, M.-C. Rousset, Combining Horn rules and description logics in CARIN, Artif. Intell. 104 (1–2) (1998) 165–209.
[25] S. Harris, A. Seaborne, SPARQL 1.1 Query Language, W3C Recommendation, World Wide Web Consortium, available at http://www.w3.org/TR/

sparql11-query, March 2013.
[26] A. Berglund, et al., XML Path Language (XPath) 2.0 (Second Edition), W3C Recommendation, World Wide Web Consortium, available at

http://www.w3.org/TR/xpath20, December 2010.
[27] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, Reasoning on regular path queries, SIGMOD Rec. 32 (4) (2003) 83–92.

http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4361454F3037s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4361454F3037s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib42434D4E503033s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib42434D4E503033s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib43484D502A3038s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib486F4B53303661s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib486F4B53303661s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib486F4B533035s1
http://www.w3.org/TR/owl-ref/
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4361444C3938s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4361444C3938s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib416248563935s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4B726F747A73636852483037s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4B726F747A73636852483037s1
http://ceur-ws.org/
http://ceur-ws.org/
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib43616C76616E657365474C4C523037s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib43616C76616E657365474C4C523037s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib47484C533038s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib476C52753130s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib48754D533035s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib48754D533035s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4F7243453038s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib42756E653937s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib42756E653937s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib416242533030s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib43444C56303263s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib43444C56303263s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib536147753039s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib536147753039s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib486153613133s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib486153613133s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib53686D753933s1
http://ceur-ws.org/
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4C65526F393862s1
http://www.w3.org/TR/sparql11-query
http://www.w3.org/TR/sparql11-query
http://www.w3.org/TR/xpath20
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib43444C56303363s1

D. Calvanese et al. / Information and Computation 237 (2014) 12–55 55
[28] G. Grahne, A. Thomo, Query containment and rewriting using views for regular path queries under constraints, in: Proc. of the 22nd ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2003), 2003, pp. 111–122.

[29] A. Deutsch, V. Tannen, Optimization properties for classes of conjunctive regular path queries, in: G. Ghelli, G. Grahne (Eds.), Proc. of the 8th Int.
Workshop on Database Programming Languages (DBPL 2001), in: Lect. Notes Comput. Sci., vol. 2397, Springer, 2001, pp. 21–39.

[30] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, Containment of conjunctive regular path queries with inverse, in: Proc. of the 7th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR 2000), 2000, pp. 176–185.

[31] S. Abiteboul, V. Vianu, Regular path queries with constraints, J. Comput. Syst. Sci. 58 (3) (1999) 428–452.
[32] D. Florescu, A. Levy, D. Suciu, Query containment for conjunctive queries with regular expressions, in: Proc. of the 17th ACM SIGACT SIGMOD SIGART

Symp. on Principles of Database Systems (PODS’98), 1998, pp. 139–148.
[33] D. Calvanese, T. Eiter, M. Ortiz, Regular path queries in expressive description logics with nominals, in: C. Boutilier (Ed.), Proc. of the 21st Int. Joint

Conf. on Artificial Intelligence (IJCAI 2009), 2009, pp. 714–720.
[34] S. Tobies, PSPACE reasoning for graded modal logics, J. Log. Comput. 11 (1) (2001) 85–106.
[35] D. Calvanese, G. De Giacomo, M. Lenzerini, 2ATAs make DLs easy, in: Proc. of the 15th Int. Workshop on Description Logic (DL 2002), CEUR Electronic

Workshop Proceedings, 2002, pp. 107–118, http://ceur-ws.org/Vol-53/.
[36] I. Horrocks, S. Tessaris, A conjunctive query language for description logic ABoxes, in: Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000),

2000, pp. 399–404.
[37] U. Hustadt, B. Motik, U. Sattler, A decomposition rule for decision procedures by resolution-based calculi, in: Proc. of the 11th Int. Conf. on Logic for

Programming, Artificial Intelligence, and Reasoning (LPAR 2004), 2004, pp. 21–35.
[38] W. Thomas, Automata on infinite objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Vol. B, Elsevier Science Publishers, 1990,

pp. 133–192, Ch. 4.
[39] M.Y. Vardi, The taming of converse: Reasoning about two-way computations, in: R. Parikh (Ed.), Proc. of the 4th Workshop on Logics of Programs, in:

Lect. Notes Comput. Sci., vol. 193, Springer, 1985, pp. 413–424.
[40] M.Y. Vardi, P. Wolper, Automata-theoretic techniques for modal logics of programs, J. Comput. Syst. Sci. 32 (1986) 183–221.
[41] M.Y. Vardi, Reasoning about the past with two-way automata, in: Proc. of the 25th Int. Coll. on Automata, Languages and Programming (ICALP’98), in:

Lect. Notes Comput. Sci., vol. 1443, Springer, 1998, pp. 628–641.
[42] O. Kupferman, U. Sattler, M.Y. Vardi, The complexity of the graded μ-calculus, in: Proc. of the 18th Int. Conf. on Automated Deduction (CADE 2002),

in: Lect. Notes Comput. Sci., vol. 2392, Springer, 2002, pp. 423–437.
[43] P. Bonatti, C. Lutz, A. Murano, M.Y. Vardi, The complexity of enriched μ-calculi, Log. Methods Comput. Sci. 4 (3:11) (2008) 1–27.
[44] D. Calvanese, G. De Giacomo, M. Lenzerini, Reasoning in expressive description logics with fixpoints based on automata on infinite trees, in: Proc. of

the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI’99), 1999, pp. 84–89.
[45] S. Tobies, Complexity results and practical algorithms for logics in knowledge representation, Ph.D. thesis, LuFG Theoretical Computer Science RWTH-

Aachen, Germany, 2001.
[46] C. Lutz, Inverse roles make conjunctive queries hard, in: Proc. of the 20th Int. Workshop on Description Logic (DL 2007), in: CEUR Electronic Workshop

Proc., vol. 250, 2007, pp. 100–111, http://ceur-ws.org/.
[47] T. Eiter, C. Lutz, M. Ortiz, M. Šimkus, Query answering in description logics with transitive roles, in: C. Boutilier (Ed.), Proc. of the 21st Int. Joint Conf.

on Artificial Intelligence (IJCAI 2009), 2009, pp. 759–764.
[48] A.K. Chandra, P.M. Merlin, Optimal implementation of conjunctive queries in relational data bases, in: Proc. of the 9th ACM Symp. on Theory of

Computing (STOC’77), 1977, pp. 77–90.
[49] D. Calvanese, G. De Giacomo, M. Lenzerini, Conjunctive query containment and answering under description logics constraints, ACM Trans. Comput.

Log. 9 (3) (2008) 22.1–22.31.
[50] D.E. Muller, P.E. Schupp, Alternating automata on infinite trees, Theor. Comput. Sci. 54 (1987) 267–276.
[51] E.A. Emerson, C.S. Jutla, Tree automata, mu-calculus and determinacy, in: Proc. of the 32nd Annual Symp. on the Foundations of Computer Science

(FOCS’91), 1991, pp. 368–377.
[52] D.E. Muller, P.E. Schupp, Simulating alternating tree automata by nondeterministic automata: New results and new proofs of the theorems of Rabin,

McNaughton and Safra, Theor. Comput. Sci. 141 (1–2) (1995) 69–107.
[53] O. Kupferman, M.Y. Vardi, Weak alternating automata and tree automata emptiness, in: Proc. of the 30th ACM SIGACT Symp. on Theory of Computing

(STOC’98), ACM Press, 1998, pp. 224–233.
[54] S. Rudolph, M. Krötzsch, P. Hitzler, Cheap Boolean role constructors for description logics, in: Proc. of the 11th Eur. Conference on Logics in Artificial

Intelligence (JELIA 2008), in: Lect. Notes Comput. Sci., vol. 5293, 2008, pp. 362–374.
[55] M.J. Fischer, R.E. Ladner, Propositional dynamic logic of regular programs, J. Comput. Syst. Sci. 18 (1979) 194–211.
[56] M. Ortiz, An automata-based algorithm for description logics around SRIQ, in: Proc. of the 4th Latin American Workshop on Non-Monotonic

Reasoning (LANMR 2008), in: CEUR Electronic Workshop Proc., vol. 408, 2008, pp. 1–15, http://ceur-ws.org/.
[57] K. Schild, A correspondence theory for terminological logics: Preliminary report, in: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91),

1991, pp. 466–471.
[58] M. Bienvenu, D. Calvanese, M. Ortiz, M. Šimkus, Nested regular path queries in description logics, in: Proc. of the 14th Int. Conf. on the Principles of

Knowledge Representation and Reasoning (KR 2014), AAAI Press, 2014.
[59] I. Horrocks, U. Sattler, Decidability of SHIQ with complex role inclusion axioms, Artif. Intell. 160 (1) (2004) 79–104.
[60] I. Horrocks, U. Sattler, S. Tobies, Reasoning with individuals for the description logic SHIQ, in: D. McAllester (Ed.), Proc. of the 17th Int. Conf. on

Automated Deduction (CADE 2000), in: Lect. Notes Comput. Sci., vol. 1831, Springer, 2000, pp. 482–496.
[61] Y. Kazakov, RIQ and SROIQ are harder than SHOIQ, in: Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation and

Reasoning (KR 2008), 2008, pp. 274–284.
[62] P. Barcelò, L. Libkin, A.W. Lin, P.T. Wood, Expressive languages for path queries over graph-structured data, ACM Trans. Database Syst. 37 (4) (2012) 31.
[63] I. Horrocks, U. Sattler, A tableau decision procedure for SHOIQ, J. Autom. Reason. 39 (3) (2007) 249–276.
[64] U. Hustadt, B. Motik, U. Sattler, Reasoning in description logics by a reduction to Disjunctive Datalog, J. Autom. Reason. 39 (3) (2007) 351–384.
[65] M. Ortiz, S. Rudolph, M. Simkus, Query answering in the Horn fragments of the description logics SHOIQ and SROIQ, in: Proc. of the 22nd Int.

Joint Conf. on Artificial Intelligence (IJCAI 2011), 2011, pp. 1039–1044.
[66] D. Calvanese, D. Carbotta, M. Ortiz, A practical automata-based technique for reasoning in expressive description logics, in: Proc. of the 22nd Int. Joint

Conf. on Artificial Intelligence (IJCAI 2011), 2011, pp. 798–804.
[67] T. Eiter, C. Lutz, M. Ortiz, M. Simkus, Query answering in description logics: The knots approach, in: H. Ono, M. Kanazawa, R.J.G.B. de Queiroz (Eds.),

Proc. of the 16th Int. Workshop on Logic, Language, Information and Computation (WoLLIC 2009), in: Lect. Notes Comput. Sci., vol. 5514, Springer,
2009, pp. 26–36.

[68] R.S. Streett, E.A. Emerson, An automata theoretic decision procedure for the propositional μ-calculus, Inf. Comput. 81 (1989) 249–264.

http://refhub.elsevier.com/S0890-5401(14)00061-3/bib477254683033s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib477254683033s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib446554613031s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib446554613031s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib43444C56303062s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib43444C56303062s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib416256693939s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib466C4C533938s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib466C4C533938s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib63616C762D6574616C2D3039s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib63616C762D6574616C2D3039s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib746F62693031s1
http://ceur-ws.org/Vol-53/
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib486F54653030s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib486F54653030s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib48754D53303462s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib48754D53303462s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib54686F6D3930s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib54686F6D3930s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib566172643835s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib566172643835s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib5661576F3836s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib566172643938s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib566172643938s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4B7553563032s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4B7553563032s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib424C4D563038s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4361444C3939s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4361444C3939s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib546F6269303162s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib546F6269303162s1
http://ceur-ws.org/
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib454C4F532D494A4341493039s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib454C4F532D494A4341493039s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib43684D653737s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib43684D653737s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4361444C3038s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4361444C3038s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4D7553633837s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib456D4A753931s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib456D4A753931s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4D7553633935s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4D7553633935s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4B75706665726D616E39387765616B616C7465726E6174696E67s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4B75706665726D616E39387765616B616C7465726E6174696E67s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib52754B483038s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib52754B483038s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib46694C613739s1
http://ceur-ws.org/
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib536368693931s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib536368693931s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib6B7231342D6E6573746564s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib6B7231342D6E6573746564s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib486F53613034s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib486F5354303062s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib486F5354303062s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4B617A3038s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4B617A3038s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib424C4C573132s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib486F53613037s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib48754D533037s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4F7274697A52533131s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4F7274697A52533131s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4361434F3131s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib4361434F3131s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib45697465724C4F533039s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib45697465724C4F533039s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib45697465724C4F533039s1
http://refhub.elsevier.com/S0890-5401(14)00061-3/bib5374456D3839s1

	Answering regular path queries in expressive Description Logics via alternating tree-automata
	1 Introduction
	2 Preliminaries
	2.1 The Description Logic ZIQ
	2.2 Query answering
	2.3 Automata on inﬁnite trees
	2.3.1 Two-way alternating tree automata (2ATAs)
	2.3.2 (One-way) non-deterministic tree automata (1NTAs)

	3 Normal form and canonical models
	3.1 Normalizing knowledge bases
	3.2 Syntactic closure
	3.3 Canonical model property

	4 Deciding KB satisﬁability via automata
	4.1 Representing canonical models as trees
	4.1.1 From canonical interpretations to trees
	4.1.2 From trees to canonical interpretations

	4.2 Constructing the automaton to verify KB satisfaction
	4.2.1 Automaton AI verifying interpretation trees
	4.2.2 Automaton AA verifying ABox satisfaction
	4.2.3 Automaton AT verifying TBox satisfaction
	4.2.4 Automaton AK verifying KB satisfaction

	4.3 Soundness and completeness
	4.4 Complexity

	5 Query answering via automata
	5.1 Representing query matches
	5.2 Constructing the automaton that checks query matches
	5.3 Deciding query entailment
	5.4 Complexity

	6 Complex role inclusion axioms
	6.1 Reducing SRIQ to ZIQ
	6.2 Deciding KB satisﬁability
	6.3 Query answering in SRIQ

	7 Conclusion
	Acknowledgments
	References

