
Answering Regular Path Queries in Expressive Description Logics:
An Automata-Theoretic Approach ∗

Diego Calvanese
Faculty of Computer Science

Free University of Bozen-Bolzano
Piazza Domenicani 3, Bolzano, Italy
calvanese@inf.unibz.it

Thomas Eiter and Magdalena Ortiz
Institute of Information Systems
Vienna University of Technology

Favoritenstraße 9-11, Vienna, Austria
eiter|ortiz@kr.tuwien.ac.at

Abstract

Expressive Description Logics (DLs) have been advocated as
formalisms for modeling the domain of interest in various ap-
plication areas. An important requirement is the ability to an-
swer complex queries beyond instance retrieval, taking into
account constraints expressed in a knowledge base. We con-
sider this task for positive existential path queries (which gen-
eralize conjunctive queries and unions thereof), whose atoms
are regular expressions over the roles (and concepts) of a
knowledge base in the expressive DL ALCQIbreg . Using
techniques based on two-way tree-automata, we first provide
an elegant characterization of TBox and ABox reasoning,
which gives us also a tight EXPTIME bound. We then prove
decidability (more precisely, a 2EXPTIME upper bound) of
query answering, thus significantly pushing the decidabil-
ity frontier, both with respect to the query language and the
considered DL. We also show that query answering is EXP-
SPACE-hard already in rather restricted settings.

Introduction
Description Logics (DLs) (Baader et al. 2003) are a well-
established branch of logics for knowledge representation
and reasoning, and the premier logic-based formalism for
modeling concepts (i.e., classes of objects) and roles (i.e.,
binary relationships between classes). They have gained in-
creasing attention in different areas including the Seman-
tic Web, data and information integration, peer-to-peer data
management, and ontology-based data access. In particular,
some of the standard Web ontologies from the OWL family
are based on DLs (Heflin & Hendler 2001).

In DLs, traditionally reasoning tasks had been studied that
deal with taxonomic issues like classification and instance
checking. Recently, however, the widening range of ap-
plications has led to extensive studies of answering queries
over DL knowledge bases (KBs) that require, beyond sim-
ple instance retrieval, to join pieces of information in find-
ing the answer. Specifically, conjunctive queries have been
studied in several papers, cf. (Calvanese et al., 1998; 2006;
Glimm et al., 2007; Hufstadt et al., 2004; 2005; Ortiz et al.,
2006). As shown therein, answering (classes of) conjunctive
∗Work partially supported by the Austrian Science Funds

(FWF) project P17212 and by the European Commission under
projects REWERSE (IST-2003-506779) and TONES (FP6-7603).
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

queries is decidable for several DLs, including expressive
ones. Glimm et al. (2007) proved this for arbitrary conjunc-
tive queries over SHIQ KBs, while Hustadt et al. (2004;
2005) showed this for conjunctive queries without transitive
roles and Ortiz et al. (2006) for unions of such queries.1

At present, (unions of) conjunctive queries over SHIQ
KBs is among the most expressive decidable settings. In
this paper, we push the frontier and establish decidability of
query answering for the yet more expressive class of pos-
itive (existential) two-way regular path queries (in short,
P2RPQs) over the expressive DL ALCQIbreg , which is
close to SHIQ. P2RPQs are queries inductively built, using
conjunction and disjunction, from atoms that are regular ex-
pressions over direct and inverse roles (and allow for testing
of concepts). They not only subsume conjunctive queries
and unions of conjunctive queries, but also unions of con-
junctive regular path queries (Calvanese et al. 2000).

More specifically, we make the following contributions.
• Different from previous works, which rely on reso-

lution-based transformations to disjunctive datalog or on
tableaux-based algorithms, we use automata techniques for
query answering in expressive DLs. While the application
of automata techniques in DLs is not novel, cf. (Calvanese
et al., 2002; Tobies 2001), previous work was concerned
with deciding satisfiability of a KB consisting of a TBox
only. Here we address the much more involved task of query
answering over a KB, which has data in an ABox; incorpo-
rating the query is non-obvious.
• The technique we apply is more accessible than the ex-

isting ones based on tableaux and resolution. Indeed, it is
computational in nature, and directly works on the models
of the KB. In this way, we are also able to obtain more gen-
eral results, which seems more difficult using the other ap-
proaches.
• As a first result, we present an automata-based algo-

rithm for checking the satisfiability of a KB (consisting of
TBox and ABox) in EXPTIME. This is worst-case optimal.
• Our main result then shows that answering positive ex-

istential queries over ALCQIbreg KBs is feasible in 2EXP-
TIME. By a reduction of SHIQ to ALCQIbreg , a sim-
ilar result follows for SHIQ. This compares well to the
N3EXPTIME bound for union of conjunctive queries by Or-

1Note that the technique in (Calvanese et al., 1998) for unions
of conjunctive regular path queries is actually incomplete.

tiz et al. (2006), and the 2EXPTIME bounds for (classes of)
conjunctive queries that emerge from (Glimm et al., 2007;
Hustadt et al., 2004). On the other hand, we establish an
EXPSPACE lower bound for positive existential queries.

Our results indicate that automata-techniques have high
potential for advancing the decidability frontier of query an-
swering over expressive DLs, and are a useful tool for ana-
lyzing its complexity.

Preliminaries
Description Logics. Concepts and roles in ALCQIbreg
obey the following syntax:

C,C′ −→ A | ¬C | C u C′ | C t C′ | ∀R.C |
∃R.C | > nQ.C | 6 nQ.C

Q,Q′ −→ P | P− | Q ∩Q′ | Q ∪Q′ | Q \Q′

R,R′ −→ Q | R ∪R′ | R ◦R′ | R∗ | id(C)

where A denotes an atomic concept, P an atomic role, C
an arbitrary concept, and R an arbitrary role. We use Q to
denote basic roles, which are those roles which may occur in
number restrictions. W.l.o.g., we assume that “\” is applied
only to atomic roles and their inverses.

An ALCQIbreg knowledge base (KB) is a pair K =
〈A, T 〉 whereA (the ABox) is a set of assertions of the form
A(a), P (a, b), and a 6= b, with A an atomic concept, P an
atomic role, and a, b individuals; and T (the TBox) is a set of
concept inclusion axioms C v C ′ for arbitrary concepts C
and C ′. W.l.o.g. all concepts occurring in A occur in T . We
denote by CK the set of atomic concepts occurring in K, by
RK the set of atomic roles occurring inK and their inverses,
and by JK the individuals in K.

The semantics is the standard one (Baader et al. 2003).
We note that we do not adopt the unique name assumption.
KB satisfiability consists in determining whether some inter-
pretation I = (∆I , ·I) satisfies all assertions in A and all
concept inclusion axioms in T . By internalization (Schild
1991), this is reducible to finding an interpretation I satisfy-
ing A and such that each individual in A is in the extension
of a concept CT representing T .

Definition 1 (P2RPQs) A positive 2-way regular path
query (P2RPQ) over a KB K is a formula ∃~x.ϕ(~x), where
ϕ(~x) is built using ∧ and ∨ from atoms of the form C(z)
andR(z, z′), with z, z′ variables from ~x or individuals, C is
an arbitrary concept, R is an arbitrary role, and where all
atomic concepts and roles in ϕ occur in K.

Note that positive (regular path) queries naturally general-
ize unions of conjunctive (regular path) queries (Calvanese
et al. 2000) by allowing for an unrestricted interaction of
conjunction and disjunction2, thus being in general also ex-
ponentially more compact.

Example 2 Consider the query q over a genealogy KB K:
∃x, y, z. parent∗·parent−

∗
(x, y) ∧ parent−(x, z) ∧ parent−(y, z)

∧male(x) ∧ ¬male(y) ∧ (¬deity(x) ∨ ¬deity(y))

Informally, q is true if there are relatives x and y that have a
common child, z, and if not both of them are deities.

2Instead, no negation is allowed, whence the name.

Let q be a P2RPQ, and let varind(q) denote the set of vari-
ables and individuals in q. Given an interpretation I, let
π : varind(q)→ ∆I be a total function such that π(a) = aI

for each individual a ∈ varind(q). We write I, π |= C(z) if
π(z) ∈ CI , and I, π |= R(z, z′) if (π(z), π(z′)) ∈ RI . Let
γ be the Boolean expression obtained from ϕ by replacing
each atom α in ϕ with true, if I, π |= α, and with false
otherwise. We say that π is a match for I and q, denoted
I, π |= q, if γ evaluates to true. We say that I satisfies q,
written I |= q, if there is a match π for I and q. A KB K
entails q, denoted K |= q, if I |= q for each model I of K.

Query entailment consists in verifying, given a KB K and
a P2RPQ q, whether K |= q. Note that, w.l.o.g., we consider
here query entailment for Boolean queries, i.e., queries with-
out free variables, since query answering for non-Boolean
queries is polynomially reducible to query entailment.

Automata on Infinite Trees. Infinite trees are represented
as prefix-closed (infinite) sets of words over IN (the set of
positive integers). Formally, an infinite tree is a set of words
T ⊆ IN∗, such that if x·c ∈ T , where x ∈ IN∗ and c ∈ IN,
then also x ∈ T . The elements of T are called nodes, the
empty word ε is its root. For every x ∈ T , the nodes x·c,
with c ∈ IN, are the successors of x. By convention, x·0 =
x, and x·i·−1 = x. The branching degree d(x) of a node x
is the number of its successors. If d(x) ≤ k for each node x
of T , then T has branching degree k. An infinite path P of
T is a prefix-closed set P ⊆ T where for every i ≥ 0 there
exists a unique node x ∈ P with |x| = i. A labeled tree
over an alphabet Σ is a pair (T, V), where T is a tree and
V : T → Σ maps each node of T to an element of Σ.

Let B(I) be the set of positive Boolean formulas built in-
ductively from true, false, and atoms from a set I applying
∧ and ∨. A set J ⊆ I satisfies ϕ ∈ B(I), if assigning true
to the atoms in J and false to those in I \ J makes ϕ true.

A two-way alternating tree automaton (2ATA) running
over infinite trees with branching degree k, is a tuple A =
〈Σ, Q, δ, q0, F 〉, where Σ is the input alphabet; Q is a finite
set of states; δ : Q × Σ → B([k] × Q), where [k] = {−1,
0, 1, . . . , k}, is the transition function; q0 ∈ Q is the initial
state; and F specifies the acceptance condition.

The transition function δ maps a state q ∈ Q and an input
letter σ ∈ Σ to a positive Boolean formula ϕ. Intuitively,
each atom (c, q′) in ϕ corresponds to a new copy of the au-
tomaton going in the direction given by c and starting in
state q′. E.g., let k = 2 and δ(q1, σ) = (1, q2) ∧ (1, q3) ∨
(−1, q1)∧(0, q3). If A is in the state q1 and reads the node x
labeled with σ, it proceeds by sending off either two copies,
in the states q2 and q3 respectively, to the first successor of x
(i.e., x·1), or one copy in the state q1 to the predecessor of x
(i.e., x·−1) and one copy in the state q3 to x itself (i.e., x·0).

Informally, a run of a 2ATA A over a labeled tree (T, V)
is a labeled tree (Tr, r) in which each node n is labeled by
an element r(n) = (x, q) ∈ T ×Q and describes a copy of
A that is in the state q and reads the node x of T ; the labels
of adjacent nodes must satisfy the transition function of A.
Formally, a run (Tr, r) is a T×Q-labeled tree satisfying:

1. ε ∈ Tr and r(ε) = (ε, q0).
2. Let y ∈Tr, with r(y) = (x, q) and δ(q, V (x)) = ϕ. Then

there is a set S= {(c1, q1) , . . . , (ch, qh)} ⊆ [k]×Q s.t.

• S satisfies ϕ and
• for all 1 ≤ i ≤ h, we have that y·i ∈ Tr, x·ci is defined,

and r(y·i) = (x·ci, qi).
A run (Tr, r) is accepting, if it satisfies the parity condi-
tion that for every infinite path π, there is an even i such
that Inf(π) ∩ Gi 6= ∅ and Inf(π) ∩ Gi−1 = ∅, where
F = (G1, . . . , Gm) is a finite sequence of sets of states
with G1 ⊆ · · · ⊆ Gm = Q, and Inf(π) ⊆ Q denotes the
states that occur infinitely often in π (as second components
of node labels). The nonemptiness problem for 2ATAs is
deciding whether the set L(A) of trees accepted by a given
2ATA A is nonempty. We make use of the following result.
Theorem 3 (Vardi 1998) For any 2ATA A with n states,
parity condition of length m, and input alphabet with ` el-
ements, nonemptiness of A is decidable in time exponential
in n and polynomial in m and `. There is a one-way nonde-
terministic tree automaton (1NTA) A1 with 2O(n) states and
parity condition of length O(m) such that L(A) = L(A1).

Deciding KB satisfiability via automata
For many DLs including ALCQIbreg , the standard reason-
ing tasks are naturally solvable by tree-automata, thanks to
their tree model property: each satisfiable concept C has a
tree-shaped model. This is similar in the presence of a TBox.
For an ABoxA this fails, since the assertions inAmay arbi-
trarily connect individuals. While a satisfiable ALCQIbreg
KB K = 〈A, T 〉 may lack a tree-shaped model, it always
has a forest-shaped canonical model, in which each individ-
ual is the root of a tree-shaped model of T . This property is
usually sufficient to adapt algorithms for concept satisfiabil-
ity to decide KB satisfiability. In particular, automata-based
algorithms have been adapted using the precompletion tech-
nique (Tobies 2001), in which after a reasoning step on the
ABox, automata are used to verify the existence of a tree-
shaped model rooted at each ABox individual.

Our approach is different. We represent forest-shaped in-
terpretations as trees T, and encode K into an automaton
AK that accepts T iff T corresponds to a canonical model
ofK. To the best of our knowledge, this is the first algorithm
that deals with ABox assertions and individuals directly in
the automaton. This enables us to extend the automata-based
algorithm also to query answering.

We denote by CL(CT) the (syntactic) closure of CT as
defined in (Calvanese et al., 2002). Intuitively, it contains
all the concepts and roles that may occur when CT is de-
composed during a run of an automaton on a tree represent-
ing a model of K. It contains CT and it is closed under
subconcepts and their negations. It also contains some ba-
sic roles (with their corresponding subroles and negations),
and some concepts that may occur when decomposing a
subconcept of CT in which complex concepts occur (e.g.,
if ∃(R ◦ R′).C ∈ CL(CT) then ∃R.∃R′.C ∈ CL(CT)).
We assume that CL(CT) also contains ai and ¬ai for each
ABox individual ai, plus d and ¬d, where d is a new dummy
symbol. Note that |CL(CT)| is linear in the length of K.
Sometimes we consider expressions E in negation normal
form, denoted nnf (E), in which negations are pushed in-
side as much as possible. We let CLnnf (CT) = {nnf (E) |
E ∈ CL(CT)}.

Every satisfiable ALCQIbreg concept CT has a tree-
model with branching degree kCT = O(|CL(CT)|) (Cal-
vanese et al., 2002). Satisfiable ALCQIbreg KBs have a
weaker property:

Theorem 4 Every satisfiable ALCQIbreg KB K = 〈T ,A〉
has a canonical model I that comprises a set of tree-shaped
models of CT with branching degree kCT , whose roots are
the individuals in A (which might be interconnected).

We represent such a canonical model I as a tree TI . Let
JK = {a1, . . . , am}, and let S = {t1, . . . , tn} be the set of
tree-shaped models of CT in I (each with branching degree
kCT). As in (Calvanese et al., 2002), we represent each such
tj as a labeled tree. Each node x is labeled with a set σ that
contains the atomic concepts that are true in x, and the basic
roles that connect the predecessor of x to x. The label of
the root of tj also contains the names of the individuals in
JK which it interprets, but no basic roles. The root of TI
is a new node whose children are the roots of all trees tj .
Its label is {r} ∪ {Pij | 〈aIi , aIj 〉 ∈ P I}. Since each tj is
rooted at some ai, we have n ≤ m. If n<m, the root has
m−n dummy children labeled d. Note that the branching
degree is |JK| at the root and kCT at all other levels.

We now construct from K a 2ATA AK that accepts
a given tree T iff T = TI for some canonical model
I of K. Calvanese et al. (2002) presented an automa-
ton AK= (ΣK, S, δ, s0, F) for deciding concept satisfia-
bility in ALCQIbreg . We adapt and expand AK to handle
the ABox. The alphabet is ΣK = 2CK∪RK∪JK∪{r}∪{d}∪PI ,
where PI = {Pij | ai, aj ∈ JK and P ∈ RK}; the set
of states is S = {s0} ∪ CLnnf (CT) ∪ SA ∪ SQ where
s0 is the initial state. The acceptance condition is F =
(∅, {∀R∗.C ∈ CLnnf (CT)}) (concepts ∃R∗.C are not in-
cluded in the acceptance condition, and are satisfied in all
accepting runs, see (Calvanese et al., 2002)).3

Intuitively, when AK is in a state s ∈ CLnnf (CT) and
visits a node x of the tree, it must check that s holds in
x. The set SA contains states of the form Qij to verify
whether ABox individuals ai and aj are related by a role
Q, and states of the form 〈j,∃Q.C〉 and 〈j,∀Q.C〉 to check
whether aj satisfies a concept of the form ∃Q.C and ∀Q.C.
The set SQ contains states of the form 〈≷ nQ.C, i, j〉 and
〈k,≷ nQC, i, j〉 for ≷∈ {>,6}, which check the number
restrictions. Intuitively, i stores how many successors of the
current node have been navigated, and j how many of them
are reached through Q and labeled with C. Similarly, the
states 〈k,≷ nQC, i, j〉 are used to verify that an individual
ak satisfies the concept ≷ nQC.

The transition function δ is as follows. First, for each
σ ∈ ΣK with r ∈ σ we define δ(s0, σ) = F1 ∧ · · · ∧ F7

from the initial state s0, which verifies that the root contains
r; that the level one nodes properly represent the individuals
in the ABox (F1–F3); that all ABox assertions are satisfied
(F4–F6); and that every non-dummy node at level one is the
root of a tree representing a model of CT (F7):

3We could also use a Büchi condition {∀R∗.C ∈ CLnnf (CT)}.

F1 =
∧

1≤i≤|JK|((
∨

1≤j≤|JK|(i, aj) ∧ (i,¬d)) ∨ (i, d))
F2 =

∧
1≤i≤|JK|

∨
1≤j≤|JK|(j, ai)

F3 =
∧

1≤i<j≤|JK|(
∧

1≤k≤|JK|(i,¬ak) ∨ (j,¬ak))
F4 =

∧
ai 6=aj∈A(

∧
1≤k≤|JK|(k,¬ai) ∨ (k,¬aj))

F5 =
∧
A(aj)∈A(

∨
1≤i≤|JK|(i, aj) ∧ (i, A))

F6 =
∧
P (ai,aj)∈A(0, P ij)

F7 =
∧

1≤i≤|JK|((i,nnf (CT)) ∨ (i, d))

Additional transitions ensure that r and each ai do not oc-
cur anywhere else in the tree. Then, for each concept in
CLnnf (CT) and each σ ∈ ΣK, there are transitions that
recursively decompose concepts and roles, and move to ap-
propriate states of the automaton and nodes of the tree. Con-
cepts ∀R∗.C and ∃R∗.C are propagated using the equivalent
concepts C u ∀R.∀R∗.C and C t ∃R.∃R∗.C, respectively.
Most of these transitions are as in (Calvanese et al., 2002).
To verify that a concept of the form ∀Q.C, ∃Q.C, > nQ.C
or 6 nQ.C is satisfied by a node x, all the nodes that reach
or are reachable from x must be navigated. We need dif-
ferent transitions for a node x (i) at level one and (ii) at all
other levels. In case (ii), the predecessor and the successors
of x are navigated as usual. In case (i), the transitions must
consider the other individual nodes that are connected to x
via some role, which are stored in the root label. Therefore,
the transitions must send suitable copies of the automaton to
navigate the successors, and send a copy of the automaton up
to the root. As an example, we provide the transitions for the
quantifiers; the number restrictions are handled similarly. If
σ ∩ (JK ∪ {d}) 6= ∅, we have transitions:

δ(∃Q.C, σ)=
W
aj∈σ(−1, 〈j, ∃Q.C〉) ∨

W
1≤i≤kCT

((i, Q) ∧ (i, C))

δ(∀Q.C, σ)=
V
aj∈σ(−1, 〈j, ∀Q.C〉) ∧V
1≤i≤kCT

((i,nnf (Q)) ∨ (i, C))

Further, for each σ ∈ ΣK and 〈j,∃Q.C〉, 〈j,∀Q.C〉 in SA,

δ(〈j, ∃Q.C〉, σ)=
_

0≤i≤|JK|

(
_

0≤k≤|JK|

((0, Qjk) ∧ (i, ak) ∧ (i, C)))

δ(〈j, ∀Q.C〉, σ)=
^

0≤i≤|JK|

(
^

0≤k≤|JK|

((0,nnf (Q)jk) ∨ (i,¬ak) ∨ (i, C)))

Concepts and roles are recursively decomposed. When
reaching the atomic level, it is checked whether the node
label σ contains the corresponding atomic symbol. Thus,
for each s ∈ CK ∪RK ∪ JK ∪ d:

δ(s, σ)=

true, if s ∈ σ
false, if s 6∈ σ δ(¬s, σ)=

true, if s 6∈ σ
false, if s ∈ σ

Further transitions verify whether ABox individuals are
connected via some atomic role by checking the label of the
root. For each σ ∈ ΣK and Pij ∈ SA with P ∈ RK:

δ(Pij, σ) =

true, if (Pij ∈ σ) or (P−ji ∈ σ)

false, otherwise

A run of AK on an infinite tree T starts at the root, and
moves to each individual node to check that CT holds there.
To this end, nnf (CT) is recursively decomposed while ap-
propriately navigating the tree, until AK arrives at atomic
elements, which are checked locally.

Given a labeled tree T = (T, V) accepted by AK, we
define an interpretation IT for K. The domain ∆IT is given
by the nodes x in T with ai ∈ V (x) for some individual
ai, and the nodes in T that are reachable from any such x
through the roles. The extensions of concepts and roles are
determined by the labels of the nodes in T.

Lemma 5 Let T be a labeled tree accepted by AK. Then
IT is a model of K.

Conversely, given a canonical model I of K, we can con-
struct from it a labeled tree TI that is accepted by AK.
Lemma 6 AK accepts TI for each canonical model I of K.

From Lemmas 5 and 6 and Theorem 4, we get:
Theorem 7 An ALCQIbreg KB K is satisfiable iff the set
of trees accepted by AK is nonempty.

Under unary encoding of numbers in restrictions, the
number of states of AK is polynomial in the size ofK. Since
ΣK is single exponential in the size of K, by Theorems 3
and 7 we get an optimal upper bound for KB satisfiability (a
matching lower bound holds already for much weaker DLs
(Baader et al. 2003)).
Corollary 8 For ALCQIbreg , KB satisfiability is EXP-
TIME-complete.

Query answering via automata
We address now the problem of entailment of P2RPQs in
ALCQIbreg KBs. Consider a (Boolean) P2RPQ q over a
KB K. We first show that, in order to check whether K |= q,
it is sufficient to restrict attention to canonical models. This
is a consequence of the possibility to unravel an arbitrary
counterexample model for entailment into a canonical model
(cf. Theorem 4), and the fact that since the query does not
contain negative information, there will still be no match for
the unraveled model and the query.
Lemma 9 K 6|= q if and only if there is a canonical model
I of K such that I 6|= q.

This result allows us to exploit tree-automata based tech-
niques also for query entailment. Specifically, we consider
trees representing canonical models over an alphabet ex-
tended with additional atomic concepts, one for each vari-
able in q, each of which is satisfied in a single node of the
tree. The intuition behind the use of such trees is that, since
the existentially quantified “variables” appear explicitly in
the tree, a 2ATA Aq can easily check the existence of a
match for (the interpretation corresponding to) the tree and
q. We show now how to construct such a 2ATA.

Let q = ∃~x.ϕ(~x) be a P2RPQ over K, and let atoms(q)
be the set of atoms appearing in q. We consider CK to be
enriched by the set X = {x1, . . . , xn} of variables in ~x, and
additionally may make use of the ABox individuals in JK
in place of atomic concepts.4 Let then U = (

⋃
P∈R(P ∪

P−))∗. For each α ∈ atoms(q), we define

Cα =
{
∃U .(C u z), if α = C(z)
∃U .(z1 u ∃R.z2), if α = R(z1, z2)

4We do not need to enrich the alphabet of atomic concepts by
the ABox individuals though, since they are already in it.

where z, z1, z2 ∈ JK ∪ X .
We define the 2ATA Aq = (Σq, Sq, δ, s0, F) as follows

• Σq = ΣK ∪ X ;

• Sq is defined similarly as for AK, except that we use⋃
α∈atoms(q) CLnnf (Cα) instead of CLnnf (CT).

• The transitions from the initial state are defined for all la-
bels σ containing the symbol r (identifying the root node)
as δ(s0, σ) = F1 ∧ F2 ∧ F3 ∧ Fq ∧ Fv , where:

– F1, F2, and F3 are as for AK;
– Fq is obtained from ϕ(~x) by replacing each atom α

with (0, Cα) (and by considering ∧ and ∨ as the analo-
gous connectives in a 2ATA transition);

– Fv checks that each atomic concept x∈X appears ex-
actly once in the tree (this requires new states in Aq);

• F is defined as for AK.

When Aq is in a state Cα in the root node (the only
node labeled r), it does not “decompose” Cα as usual.
Instead, it checks that the concept Cα is satisfied start-
ing from a node at level one representing ABox in-
dividuals. This is done by the following transitions,
for each α∈ atoms(q) and σ containing α:

δ(Cα, σ) =
∨

1≤i≤|JK|(i, Cα)

Then, Aq contains transitions analogous to those of AK to
check that the various concepts Cα are satisfied. Exploiting
that the concepts representing variables are enforced to be
satisfied in a single node of the tree, and that under this as-
sumption the concepts Cα correctly represent the atoms of
q, we can show the following result.

Lemma 10 Let IT be the canonical interpretation defined
from a tree T as above. Then Aq accepts T iff there is a
match for IT and q in which each variable x of q is mapped
to the (only) object that is an instance of concept x.

We then convert Aq into an equivalent 1NTA A1
q . By

Theorem 3, the number of states (resp., parity condition) of
A1
q is exponential (resp., polynomial) in the number of states

of Aq , i.e., in the sum of the size of q and K.
We project out variables from A1

q obtaining a 1NTA A2
q

of size not larger than that of A1
q . By construction, since A2

q

is a one-way automaton and it has been obtained from A1
q

by projecting away the variable symbols X , we have that a
tree T is accepted by A2

q iff there is a match for IT and q.
We complement A2

q , obtaining a 1NTA A¬q . The number
of states (resp., acceptance condition) of A¬q is exponential
(resp., polynomial) in the number of states of A2

q (Klarlund
1994), i.e., double exponential (resp., polynomial) in the size
of q and K. We have that a tree T is accepted by A¬q iff
there is no match for IT and q.

We construct a 1NTA AK6|=q that accepts the intersection
of the languages accepted by AK and A¬q . This can be done
by first converting AK to a 1NTA whose number of states
(resp., acceptance condition) is exponential (resp., linear) in
the size of K, and then constructing the product automaton

with A¬q . The number of states (resp., acceptance condi-
tion) of AK6|=q is still double exponential (resp., polynomial)
in the size of q and K.5

Since a tree T is accepted by AK iff IT is a canonical
model ofK, while it is accepted by A¬q iff there is no match
for IT and q, every tree accepted by AK6|=q represents a
counterexample to K |= q. On the other hand, if a tree T
is not accepted by AK6|=q , then either it is not accepted by
AK, in which case IT is not a model of K, or it is not ac-
cepted by A¬q , in which case it is accepted by A2

q , i.e., there
is a match for IT and q. Hence the tree does not represent a
counterexample to K |= q. As a consequence, we get:
Lemma 11 There exists a canonical counterexample to
K |= q iff the set of trees accepted by AK6|=q is not empty.

By Lemma 9, and the fact that non-emptiness of 1NTAs
can be decided in time linear in the number of states of the
automaton and exponential in the acceptance condition, see
(Vardi 1998), we get the following result.
Theorem 12 For everyALCQIbreg knowledge baseK and
P2RPQ query q, we have that K |= q iff the set of trees ac-
cepted by AK6|=q is not empty. Moreover,K |= q is decidable
in double exponential time in the size of q and the number
of atomic concepts, roles, and individuals in K and single
exponential in the size of K.

Our results apply also to SHIQ. Given a SHIQ KB K,
it can be rewritten as an ALCQIbreg KB K′ expressing the
role hierarchy with role conjunction (complex roles are not
allowed in the ABox, thus it must be closed w.r.t. the hierar-
chy) and propagating value restrictions over transitive roles
by means of TBox axioms (Tobies 2001). Although this re-
duction does not preserve query entailment, the models of
K and K′ differ only in the interpretation of transitive roles.
For a query q, deciding K |= q can be reduced to deciding
K′ |= q′, where q′ is obtained from q by replacing every
transitive role R in q with R ◦R∗.

EXPSPACE-Hardness of Query Answering
In this section, we provide a lower bound on answering
PRPQs (i.e., P2RPQs without inverses) over ALC KBs.
Theorem 13 Given a PRPQ q and a ALC knowledge base
K, deciding whether K |= q is EXPSPACE-hard.

The proof is by a reduction from tiling problems, in-
spired by a similar reduction to query containment over
semi-structured data (Calvanese et al. 2000).

A tiling problem consists of a finite set ∆ of tile types,
two binary relations H and V over ∆, representing horizon-
tal and vertical adjacency relations, respectively, and two
distinguished tile types tS , tF ∈ ∆. Deciding whether for
a given a number n in unary, a region of the integer plane
of size 2n×k, for some k, can be tiled consistently with H
and V , such that the left bottom tile of the region has type
tS and the right upper tile has type tF , can be shown to be
EXPSPACE-complete (van Emde Boas 1997).

We construct anALC KB K and a query q such that K |=
q iff there is no correct tiling, as follows. A tiling is spanned

5Note that, if only atomic concepts and (regular expressions
over) atomic roles are used in q, then the number of states of AK6|=q
is single exponential in the size of K.

row by row by a sequence of objects. Each object represents
one tile and is connected by a specific role to the next tile.
For the connections, we use the following two roles:
• N connecting tiles within the same row;
• L connecting the last tile of row i to the first of row i+1.

The properties (i.e., the atomic concepts) attached to an
object are the n bits B1, . . . , Bn of a counter for its address
within the row, and its type. For that, we use pairwise dis-
joint concepts D1, . . . , Dk, where ∆ = {t1, . . . , tk}.

We encode in K the following two conditions:
1. The first ensures that the counters progress correctly. It

consists of O(n) standard axioms involving B1, . . . , Bn
and N , which encode a counter bit by bit. Further axioms
ensure that, if at least one bit is 0, there is an N successor
but no L successor, and reset the counter otherwise.

¬B1 t · · · t ¬Bn v ∃N .> u ∀L.⊥
B1 u · · · uBn v ∃L.(¬B1 u · · · u ¬Bn) u ∀N .⊥

2. The second ensures that there are no errors w.r.t. the hori-
zontal adjacency relation H . For each tile type Di,

Di v
⊔

(Di,Dj)∈H(∀N .Dj u ∀L.Dj).

The query q checks the failure of the vertical adjacency V
on the candidate tilings given by the models of K. It asks
whether two objects exist at distance 2n (i.e., representing
vertically adjacent tiles) with an error according to V . That
the objects are exactly 2n steps apart is achieved by ensuring
that they have the same n bits and are connected by a (possi-
bly void) sequence of N -steps, followed by one L-step, and
by a (possibly void) sequence of N -steps. We have

q = ∃x, y.Vert ∧ Err ∧G1 ∧ · · · ∧Gn, where
Vert = (N∗ ◦ L ◦N∗)(x, y),
Err =

W
(Di,Dj)6∈V (Di(x) ∧Dj(y)),

Gi = (Bi(x) ∧Bi(y)) ∨ (¬Bi(x) ∧ ¬Bi(y)), for 1 ≤ i ≤ n.

The complete KB K entails q iff there is no correct tiling.
Note that only Vert uses a regular expression. If we have
transitive roles and role hierarchies, we can replace it in q by

Vert ′ = (Nt(x, z1) ∧ L(z1, z2) ∧Nt(z2, y)) ∨
(Nt(x, z1) ∧ L(z1, y)) ∨ (L(x, z2) ∧Nt(z2, y))

where Nt is a transitive super-role of N , and z1 and z2 are
existentially quantified variables. This shows that answer-
ing positive (existential) queries without regular expressions
over KBs in ALC plus transitive roles and role hierarchies,
and hence in SH, is EXPSPACE-hard.

Finally, using an encoding closer to (Calvanese et al.
2000) where each tile is a block of n+ 1 objects, and the
bits and tile types are encoded by roles, one can show that
answering conjunctive regular path queries over KBs which
only use existential roles and disjunction is EXPSPACE-hard.

Conclusion
In this paper, we have substantially pushed the frontier of
decidable query answering over expressive DLs, which is
an active area of research driven by the growing interest to
deploy DLs to various application areas related to AI. As
we have shown, the rich class of positive two-way regular

path queries (P2RPQs) is decidable forALCQIbreg KBs by
means of automata-techniques; on the other hand, query an-
swering has an EXPSPACE-lower bound already in settings
where one of K and Q is rather plain.

Recent results show that the 2EXPTIME upper bound we
provide in this paper is indeed tight (Lutz 2007). However,
such a hardness result makes essential use of inverse roles,
and the precise complexity of PRPQs remains open. Finally,
it would be interesting to see how far automata-based tech-
niques similar to the ones in this paper can be utilized to
push the decidability frontier of query answering in expres-
sive DLs, both on the side of the query and the KB.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2000. Containment of conjunctive regular path queries
with inverse. In Proc. of KR 2000, 176–185.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2006. Data complexity of query answering
in description logics. In Proc. of KR 2006, 260–270.
Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1998.
On the decidability of query containment under constraints.
In Proc. of PODS’98, 149–158.
Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 2002.
2ATAs make DLs easy. In Proc. of DL 2002, 107–118.
Glimm, B.; Horrocks, I.; Lutz, C.; and Sattler, U. 2007.
Conjunctive query answering for the description logic
SHIQ. In Proc. of IJCAI 2007, 399–404.
Heflin, J., and Hendler, J. 2001. A portrait of the Semantic
Web in action. IEEE Intelligent Systems 16(2):54–59.
Hustadt, U.; Motik, B.; and Sattler, U. 2004. A decomposi-
tion rule for decision procedures by resolution-based calculi.
In Proc. of LPAR 2004, 21–35.
Hustadt, U.; Motik, B.; and Sattler, U. 2005. Data com-
plexity of reasoning in very expressive description logics.
In Proc. of IJCAI 2005, 466–471.
Klarlund, N. 1994. Progress measures, immediate determi-
nacy, and a subset construction for tree automata. Annals of
Pure and Applied Logics 69(2–3):243–268.
Lutz, C. 2007. Inverse roles make conjunctive queries hard.
In Proc. of DL 2007.
Ortiz, M. M.; Calvanese, D.; and Eiter, T. 2006. Data
complexity of answering unions of conjunctive queries in
SHIQ. In Proc. of DL 2006.
Schild, K. 1991. A correspondence theory for terminologi-
cal logics: Preliminary report. In Proc. of IJCAI’91.
Tobies, S. 2001. Complexity Results and Practical Al-
gorithms for Logics in Knowledge Representation. Ph.D.
Dissertation, LuFG Theoretical Computer Science, RWTH-
Aachen, Germany.
van Emde Boas, P. 1997. The convenience of tilings. In
Complexity, Logic, and Recursion Theory, volume 187 of
Lecture Notes in Pure and Applied Mathematics. 331–363.
Vardi, M. Y. 1998. Reasoning about the past with two-way
automata. In Proc. of ICALP’98, volume 1443 of LNCS,
628–641. Springer.

