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Abstract

The Decision Model and Notation (DMN) is a recent Object Management Group standard for
the elicitation and representation of decision models and for managing their interconnection
with business processes. DMN builds on the notion of decision tables and their combination into
more complex decision requirements graphs (DRGs), which bridge between business process
models and decision logic models. DRGs may rely on additional, external business knowledge
models, whose functioning is not part of the standard. In this work, we consider one of the
most important types of business knowledge, namely, background knowledge that conceptually
accounts for the structural aspects of the domain of interest, and propose decision knowledge
bases (DKBs), which semantically combine DRGs modeled in DMN, and domain knowledge
captured by means of first-order logic with datatypes. We provide a logic-based semantics for
such an integration, and formalize different DMN reasoning tasks for DKBs. We then consider
background knowledge formulated as a description logic (DL) ontology with datatypes, and show
how the main verification tasks for DMN in this enriched setting can be formalized as standard
DL reasoning services and actually carried out in ExpTime. We discuss the effectiveness of our
framework on a case study in maritime security.

KEYWORDS: decision model and notation, decision tables, description logics, datatypes

1 Introduction

The Decision Model and Notation (DMN) is a recent Object Management Group (OMG)

standard for the representation and enactment of decision models (OMG 2016). The
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2 D. Calvanese et al.

standard proposes a model and notation for capturing single decision tables as well as

the interconnection of multiple decision tables and their relationship with other forms

of business knowledge. In addition, it proposes a clean integration with business process

models, with particular reference to BPMN, so as to achieve a suitable separation of

concerns between the process logic and the decision logic (Batoulis et al . 2015).

For all these reasons, the standard has attracted the attention of both academia and

industry, giving a new momentum to the field of decision and rule management and its in-

terplay with business process management. The standard is already receiving widespread

adoption in the industry, and an increasing number of tools and techniques is being de-

veloped to assist users in modeling, verifying, and applying DMN models. This is, for

example, witnessed by the incorporation of DMN inside the Signavio toolchain for busi-

ness process management1 and inside the open-source OpenRules business rules and

decision management system.2

DMN builds on the notion of decision table,3 defined as “the act of determining an

output value (the chosen option), from a number of input values, using logic defining

how the output is determined from the inputs” (OMG 2016). This is diagrammatically

related to the long-standing notion of decision table (Pooch 1974; Vanthienen and Dries

1993), which consists of columns representing the inputs and outputs of a decision and

rows denoting the rules. Concretely, the DMN comes with two languages for capturing

the decision logic. The most sophisticated language, called Friendly Enough Expression

Language (FEEL), is a complex, textual specification language not apt to be used and

understood by domain experts, and that does not come with a graphical notation. It

is Turing-powerful, since it relies on various mechanisms to specify rules using complex

arithmetic expressions and generic functions, in turn, expressed in FEEL itself or in ex-

ternal languages such as Java. The second decision logic specification language supported

by DMN, the one we are actually considering in this paper, is called Simplified-FEEL (S-

FEEL). S-FEEL is equipped with a graphical notation that is also defined in the standard.

It is a simple rule-based language that employs comparison operators between attributes

and constants as atomic expressions, which are then combined into more general condi-

tions using boolean operators (with a restricted usage of negation). Interestingly, S-FEEL

emerged as a suitable trade-off between expressiveness and simplicity, and its main prin-

ciples come from previous, long-standing research in decision and rule management (e.g.,

a very similar language is adopted in the well-established Prologa tool4).

While DMN decision tables are rooted in mainstream approaches to decision manage-

ment, a distinctive feature of the DMN standard itself is the combination of multiple

decision tables into more complex so-called decision requirements graphs (DRGs), graph-

ically depicted using decision requirements diagrams (DRDs). The DRGs provide “a

bridge between business process models and decision logic models” (OMG 2016): for ev-

ery task in the process model of interest where decision-making is required, a dedicated

DRG provides a separate definition of which decisions must be made within such a task,

1 https://www.signavio.com/.
2 http://openrules.com/.
3 The DMN standard uses the term decision, but we prefer to use here decision table to avoid ambiguity
between the technical notion defined by DMN and the general notion of decision.

4 https://feb.kuleuven.be/prologa/.
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Semantic DMN 3

together with the interrelationships of such decisions and their requirements for decision

logic. In particular, DRGs may rely on additional so-called business knowledge models for

their functioning. Business knowledge models are external to the DRG, and consequently,

the standard does not dictate how they should be specified, nor how they semantically

interact with the internal decision logic expressed by the DRG.

In this work, we consider one of the most important types of business knowledge,

namely, background knowledge that conceptually accounts for the relevant, structural

aspects of the domain of interest (such as entities and their main relationships). As

customary, we assume that this background knowledge is explicitly encapsulated inside

an ontology. The main issue that arises when a DRG is integrated with an ontology is

that the DRG should not any longer be interpreted under the assumption of complete

information. Interestingly, this not only affects the way the DRG is applied on specific

input data to compute corresponding outputs, but also impacts on the intrinsic properties

of the DRG, such as completeness [defined as the ability of “providing a decision result for

any possible set of values of the input data” (OMG 2016)]. To tackle this fundamental

challenge, we introduce a combined framework, called semantic DMN, based on the

notion of decision knowledge base (DKB). A DKB semantically combines a decision logic,

modeled as a DMN DRG whose decision tables are expressed in S-FEEL, with a general

ontology formalized using multi-sorted first-order logic. The different sorts are used to

seamlessly integrate abstract domain objects with data values belonging to the concrete

domains used in the DMN rules (such as strings, integers, and reals).

We provide a logic-based semantics for DKBs, thus proposing, to the best of our

knowledge, the first formalization of DRGs and of their integration with background

knowledge. Due to the specific challenges posed by such an integration, the formalization

of the DMN decision tables contained in the DRG is of independent interest, and rep-

resents a conceptual refinement of the logic-based formalization proposed by Calvanese

et al . (2016). We then approach the problem of actually reasoning on DKBs, on the

one hand providing a formalization of the most fundamental reasoning tasks, and on

the other hand giving insights on how they can be actually carried out and with which

complexity. To this end, we need to restrict the expressive power of the ontology lan-

guage. In fact, we target the significant case where the ontology consists of a description

logic (DL) (Baader et al . 2007) knowledge base equipped with datatypes (Lutz 2002b;

Savkovic and Calvanese 2012; Artale et al . 2012; W3C OWL Working Group 2012). In

such a DL, besides the domain of abstract objects, one can refer to concrete domains of

data values (such as strings, integers, and reals) accessed through functional relations.

Complex conditions on such values can be formulated by making use of unary predicates

over the concrete domains. The restriction to unary predicates only is what distinguishes

DLs with datatypes from the richer setting of DLs with concrete domains, where, in

general, arbitrary predicates over the datatype/concrete domain can be specified. We

demonstrate that these constructs are expressive enough to encode DRGs.

Then, we exploit this encoding to show that all the introduced reasoning tasks can

be decided in ExpTime in the case where background knowledge is represented using

the DL ALCH(D). This DL is a strict sub-language of the ontology language OWL2,

which has been standardized by the W3C (W3C OWL Working Group 2012); hence, one

can rely on standard OWL2 reasoners (Tsarkov and Horrocks 2006; Sirin and Parsia 2006;
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4 D. Calvanese et al.

Shearer et al . 2008) for all reasoning tasks in ALCH(D) and on DKBs. However, this

does not provide us with computationally optimal complexity bounds. On the one hand,

while OWL2 and ALCH(D) are equipped with multiple datatypes (which is also indi-

cated by the letter D in the name of the latter logic), reasoning in the very expressive DL

SROIQ(D), which is the formal counterpart of OWL2, was initially studied for a single

datatype only (which is indicated by the letter D in the name) (Horrocks et al . 2006). As

pointed out already by Horrocks et al . (2006), the proposed reasoning technique can be

extended to multiple datatypes by following the proposal by Pan and Horrocks (2003).

Still, the adopted algorithms are tableaux-based, and while typically effective in practi-

cal scenarios, they do not provide worst-case optimal computational complexity bounds

(Baader and Sattler 2000). To show that reasoning in ALCH(D) can indeed be carried out

in worst-case single exponential time, we develop a novel algorithm that is based on the

knot technique proposed by Ortiz et al . (2008) for query answering in expressive DLs.

To introduce the main motivations behind our proposal and show its effectiveness, we

consider a complex case study in maritime security extracted from one of the challenges of

the decision management community,5 arguing that our approach facilitates modularity,

separation of concerns, and understanding of how a decision logic can be contextualized

in a specific setting.

This article is an extended version of an article by Calvanese et al . (2017). Differently

from that work, we consider here the new version of the standard (i.e., DMN 1.1), and we

deal not only with single decision tables, but also with their interconnection in a DRG.

By considering DRGs, we extend the logic-based formalization proposed by Calvanese

et al. (2017), expand our case study accordingly, and introduce new interesting properties

that refer to the overall decision logic encapsulated in a DRG.

The article is organized as follows. In Section 2, we present the case study in maritime

security. In Section 3, we introduce the two formalism we use in our formalization of

DMN DRGs, namely, multi-sorted first-order logic, and DLs extended with datatypes,

and we define DMN decision tables according to DMN 1.1. In Section 4, we introduce

and formalize DKBs, and discuss the reasoning tasks over them. In Section 5, we address

the problem of reasoning over DKBs by resorting to a translation in DLs. In Section 6,

we discuss related work, and in Section 7, we draw final conclusions.

2 Case study

Our case study is inspired by the international Ship and Port Facility Security Code,6

used by port authorities to determine whether a (cargo) ship can enter a Dutch port. On

the one hand, this requires to decide ship clearance, that is, whether a ship approaching

the port can enter or not. On the other hand, we also consider the communication of

where the refueling station is located for the approaching ship. Both such interrelated

decisions depend on a combination of ship-related data, some focusing on the physical

characteristics of the ship, and others on contingent information such as the transported

cargo and certificates exhibited by the owner of the ship.

5 https://dmcommunity.org/.
6 https://dmcommunity.wordpress.com/challenge/challenge-march-2016/.
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(c)

(a)

(b)

Fig. 1. Three knowledge models used by a port authority to determine clearance and location
of the refuel area for a ship: (a) capture the business process using BPMN; (b) show a DMN
DRD encapsulating the decision logic underlying the decide clearance business rule task used in
the process; the decision logic has to be understood in the context of the ship ontology depicted
in (c), which provides the background knowledge to understand the relationship between ship
types and their corresponding characteristics. The ship ontology is hence depicted as a business
knowledge model in the DRD.

2.1 Domain description

To describe how ship clearance is handled by a port authority, three main knowledge

models, reported in Figure 1, have to be suitably integrated:

• background domain knowledge, describing the different types of cargo ships and

their physical characteristics [see Figure 1(c)];

• the clearance process, describing when clearance has to be assessed, how the

different clearance-related tasks can unfold over time, which data must be collected,

and which possible ending states exist [see Figure 1(a)];

• the clearance decision, capturing the decision logic that relates all the important

ship data with the determination of whether the ship can enter or not, and where

its refuel station is located [see Figure 1(b)].

It is important to notice that the different knowledge models are not necessarily developed

and maintained by the same responsible authority, nor co-evolve in a synchronous way.

For example, the background knowledge may be obtained by combining the catalogues

produced by the different ship vendors, and updated when vendors change the physical
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6 D. Calvanese et al.

characteristics of the types of ship they produce. The process may vary from port to port,

still ensuring that its functioning behaves in accordance with national regulations. Finally,

the clearance decision may contain decisions with different authorities: the decision of

whether a ship can enter into a port or not may be in fact handled at the national level,

keeping it aligned with the evolution of laws and norms, whereas the determination of

the refuel area may vary from port to port, so as to reflect its physical characteristics

and internal operational rules.

In the following, we detail each of the three knowledge models mentioned above.

Business process. The process adopted by the port authority is shown in Figure 1(a)

using the BPMN notation. An instance of this process is created whenever an entrance

request is received by the port authority from an approaching ship. The process

management system immediately extracts the main data associated with the ship,

namely, its identification code, as well as its type. Then, two branches are executed

in parallel. The first branch is about performing a physical inspection of the ship, in

particular, to determine the amount of cargo residuals carried by the ship. The second

branch deals instead with the acquisition of the ship certificate of registry, in particular,

to extract its expiration date (for simplicity, we do not handle here the case where the

ship does not own a valid certificate).

Once all these data are obtained, a business rule task is used to decide about whether

the ship can enter into the port or not and, if so, where the refuel area for that ship is

located. If the resulting decision concludes that the ship cannot enter, the process termi-

nates by communicating the refusal to the ship. If instead the ship is allowed to enter, the

dock is opened, and the process terminates by informing the ship about the refuel area.

Background domain knowledge. In our setting, we consider background knowledge de-

scribing the different types of ships that may enter the port, together with their physical

characteristics:

• length of the ship (in m);

• draft size (in m);

• capacity of the ship (in TEU , which stands for Twenty-foot Equivalent Units).

The taxonomy of ship types, together with the relationship between types and physical

characteristics, is captured in a ship ontology, depicted in Figure 1(c) using an informal

tabular format.

Decision logic. The decision logic consists of two decision tables: a ship clearance deci-

sion table used to determine whether a ship can enter a port or not, and a refuel area

determination decision table used to compute which refuel area should be used by a ship.

As pointed out before, we assume that the first table is fixed nationally, while the second

is defined on a per-port basis.

Let us first focus on ship clearance. A ship can enter the port only if the ship complies

with the requirements of the inspection. This is the case if the ship is equipped with a

valid certificate of registry, and the ship meets the safety requirements. The certificate of

registry owned by the ship is considered valid if the certificate expiration date is after

the current date. The rules for establishing whether a ship meets the safety requirements

depend on the characteristics of the ship and the amount of residual cargo present in the
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Semantic DMN 7

ship. The limitation concerning residuals is specified in terms of concentration per space

unit, fixing thresholds that depend on the capacity of the ship. This is because residual

cargo has to be manually inspected by the port authority. Thresholds are then put to

limit the amount of resources and time for the inspection. In addition, the concentration

limits vary depending on the ship capacity so as to level the maximum amount of overall

residuals to be inspected, irrespectively of the ship type.

In particular, small ships (with maximum length 260m and maximum draft 10m)

may enter provided that their capacity does not exceed 1000TEU. Ships with a small

length (maximum 260m), medium draft comprised between 10 and 12m, and capacity

not exceeding 4000TEU may enter only if the carried cargo residuals do not exceed

0.75mg dry weight per cm2. Ships of medium size (with length comprised between 260

and 320m excluded, and draft strictly bigger than 10m and not exceeding 13m), and

with a cargo capacity below 6000TEU, may enter only if their cargo residuals do not

exceed 0.5mg dry weight per cm2. Finally, big ships with length comprised between 320

and 400m excluded, draft larger than 13m, and capacity exceeding 4000TEU may enter

only if their carried residuals are at most 0.25mg dry weight per cm2. Larger ships are

not explicitly mentioned in the rules, and are, therefore, implicitly considered as not

eligible for entering.

Let us now focus on the determination of the refuel area. This decision table depends

on ship clearance and on some of the physical characteristics of the ship, in particular,

length and draft size. On the one hand, if clearance is rejected, then no area is assigned

(this is represented using string none). On the other hand, the indoor refuel area is

preferred over the outdoor area, but it is not possible for too big ships to refuel indoor,

due to physical constraints. In particular, ships that are longer than 350m can only refuel

indoor if their cargo does not carry more than 3mg dry weight per cm2.

2.2 Challenges

The first challenge posed by this case study concerns modeling, representation, man-

agement, and actual application of the clearance and refuel decision logic, as well as its

integration with business processes. All these issues are tackled by the DMN standard.

In particular, the standard defines clear guidelines on how to encode and graphically

represent the input/output attributes and the rules of interest in the form of decision

tables, as well as to aggregate them into a DRG that highlights how they interact with

each other and with other business knowledge models.

Specifically, the DRG of our case study is graphically rendered using the DRD of

Figure 1(b). In this DRD:

• Rounded rectangles represent input data, to be assigned externally when the deci-

sion logic has to be applied in a specific context.

• Rectangles represent decision tables, which may require as input either input data

provided externally or the output produced by other decision tables; decision tables

producing output results that must be returned to the external world are repre-

sented with bold contour (in our case study, both decision tables are of this form).

• Solid arrows represent information requirements, indicating which input data or

decision tables are used as input to other decision tables.
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8 D. Calvanese et al.

• Rectangles with two clipped corners represent business knowledge models, which

may be used by decision tables to properly compute their input/output relation

(see Figure 4).

Additional constructs are available to interconnect different DRGs and describe authori-

ties, that is, sources of knowledge, but they are orthogonal to the core aspects introduced

above, so we do not consider such additional constructs here.

Each DMN decision table can be decorated with meta-information capturing its hit

policy, that is, declare whether its contained rules are non-overlapping or, if they do, how

to reconcile the output values produced by multiple rules that simultaneously trigger. In

addition, both single decision tables and complete DRGs shall be understood in terms of

their completeness, that is, whether they are able to produce a final output for each pos-

sible configuration of the input data, or whether there are inputs for which the decision

table is undefined. This is particularly critical in the case of DRGs, since incompleteness

may be caused by internal mismatches between decision tables interconnected via infor-

mation requirements. The main issue when it comes to such properties is that there is no

guarantee that they are actually reflected by the actual decision logic (Calvanese et al .

2016). In addition, while these are the main properties mentioned by the DMN standard,

there are many more properties that should be checked so as to ascertain the correctness

of a DRG. For example, one could check whether all rules may potentially trigger. In the

case of a single decision table, this problem boils down to check whether certain rules are

masked by others (Calvanese et al . 2016). However, in the more general case of a DRG,

the fact that a rule never triggers may be related again to the complex interconnection

among multiple decision tables.

The main point of this work, though, is that the investigation of such properties and,

more in general, the meaning of a decision logic cannot be understood in isolation from

background knowledge, but has instead to be analyzed in the light of such knowledge.

Conceptually, this requires to lift from an approach working under complete information

to one that works under incomplete information, and where the background knowledge is

used to constrain, complement, and contextualize the decision logic. This interplay is far

from trivial, and impacts on the properties of a DRG and its contained decision tables,

their input–output semantics as well as, ultimately, their correctness.

Here, we discuss, using our case study, two of the most critical challenges when it comes

to understand DMN in the presence of background knowledge. First and foremost, let

us consider, in more detail, the interplay between the BPMN process in Figure 1(a) and

the DRG in Figure 1(b). According to the standard, the integration between a process

and a DRG is realized by introducing a business rule task in the process, then linking

such a task to the DRG. This implicitly assumes a clear information exchange between

these two knowledge models. On the one hand, when an instance of the business rule

task is created in the context of a specific process instance, the input data of the DRG

are bound to actual values obtained from the state process instance. On the other hand,

the output values produced by the DRG are made visible to the process instance, which

may rely on them to decide how to consequently route the instance.

In our case study, it is clear that, syntactically, the process and the DRG do not

properly integrate with each other, in particular for what concerns the input data of the

DRG. On the one hand, the DRG applies a comprehensive strategy, where all physical

parameters of the ship are requested as input. On the other hand, the process adopts a
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Semantic DMN 9

pragmatic approach, in which only the ship type and the cargo residuals are recorded,

without requiring the port personnel to measure each single physical parameter of the

ship. While it is clear that a syntactic interconnection between the two knowledge models

would not work, what about a semantic interconnection that considers the ship ontology

as background knowledge? It turns out, interestingly, that once the ship ontology is

inserted into the picture, the process and the DRG can properly interoperate. In fact,

once the type of a ship is acquired, the ontology allows one to infer partial, but sufficient

information about the physical characteristics of the ship, so as to properly apply the

DRG once also the expiration date of the certificate, and the amount of cargo residuals, is

obtained. It is worth noting that the ship ontology could not be reduced to an additional

decision table component of the DRG: Figure 1(c) is not a decision table, since it is

not always possible to univocally compute the ship characteristics from the type (see,

e.g., the case of Post Panamax ship type). In fact, the domain knowledge captured by

Figure 1(c) is a set of constraints, implicitly discriminating combinations of ship types

and characteristics that are allowed from those that are impossible.

A second, open challenge relates to how the formal properties of single tables change

when they are interconnected in a DRG, and/or interpreted in the presence of back-

ground knowledge. Consider the ship clearance decision table and its associated rules

described above. By elaborating on such rules, one would conclude that such rules are

non-overlapping, and that they are incomplete, since, for example, they do not handle

clearance of a long ship (≥ 320m) with small draft (≤ 10m). While the non-overlapping

property clearly holds also when the ship ontology is considered, this is not the case for

incompleteness. In fact, under the assumption that all possible ship types are those listed

in Figure 1(c), one would infer that all the allowed combinations of physical parameters as

captured by the ontology are actually covered by the ship clearance decision table, which

is, in fact, complete with respect to the ship ontology. For example, the table clearly shows

that the aforementioned combination of parameters is impossible: long ships cannot have

such a small draft.

Finally, consider the decision table for refuel area determination. It is easy to see

that the rules encapsulated in such a decision table are complete and non-overlapping.

However, once this decision table is interconnected to ship clearance, it turns out that

the outdoor station is never selected. In fact, such a station is selected for ships whose

physical characteristics lead to reject the entrance request and, in turn, to be assigned

to none refuel area independently of the actual physical characteristics.

Identifying all such issues is extremely challenging, and this is why we propose a

framework that, on the one hand, formally defines the interplay between the different

knowledge models, and, on the other hand, provides automated reasoning capabilities to

actually check the overall properties of a DRG in the presence of background knowledge,

as well as compute the consequences of a decision table when input data are only partially

specified, if possible.

3 Sources of decision knowledge

We now generalize the case study presented in Section 2, and introduce the two main

knowledge models of semantic DMN: background knowledge expressed using a logical

theory enriched with datatypes and decision logic captured as a DMN DRG.
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3.1 Logics with datatypes

To capture background knowledge, we resort to a variant of multi-sorted first-order logic

(see, e.g., Enderton 2001), which we call FOL(D), where one sort Δ denotes a domain of

abstract objects, while the remaining sorts represent a finite collection D of datatypes.

We consider a countably infinite set Σ of predicates, where each p ∈ Σ comes with an

arity n, and a signature Sigp : {1, . . . , n} → D � {Δ}, mapping each position of p to one

of the sorts. FOL(D) contains unary and binary predicates only. A unary predicate N

with SigN (1) = Δ is called a concept, a binary predicates P with SigP (1) = SigP (2) = Δ

a role, and a binary predicate F with SigF (1) = Δ and SigF (2) ∈ D a feature.

Example 1

The cargo ship ontology in Figure 1(c) should be interpreted as follows: each entry

applies to a ship, and expresses how the specific ship type constrains the other features

of the ship, namely, length, draft, and capacity. Thus, the first table entry is encoded in

FOL(D) as

∀s.stype(s, “CCV ”) → Ship(s) ∧ ∀�.(length(s, �) → � = 135) ∧
∀d.(draft(s, d) → d ≥ 0 ∧ d ≤ 9) ∧ ∀c.(capacity(s, c) → c = 500)

where Ship is a concept, stype is a feature of sort string, while length, draft, and capacity

are all features of sort real. �

We also consider well-behaved fragments of FOL(D) that are captured by DLs extended

with datatypes. For details on DLs, we refer to Baader et al . (2007), and, for a survey

of DLs equipped with datatypes (also called, in fact, concrete domain), to Lutz (2002b).

Here, we adopt the DL ALCH(D), which is an extension of the well-known DL ALC(D)

(Lutz 2002b) in two orthogonal directions: on the one hand, ALCH(D) allows one to

express inclusions between two roles and between two features, which is denoted by the

presence in the name of the logic of the letter H, for role/features hierarchies; on the

other hand, ALCH(D) is equipped with multiple datatypes, instead of a single one. As

for datatypes, we follow the proposal by Motik and Horrocks (2008), on which the OWL 2

datatype maps are based (Motik et al . 2012, Section 4), but we adopt some simplifications

that suffice for our purposes.

Datatypes. A (primitive) datatype D is a pair 〈ΔD,ΓD〉, where ΔD is the domain of

values7 of D, and ΓD is a (possibly infinite) set of facets, denoting unary predicate

symbols. Each facet S ∈ ΓD comes with a set SD ⊆ ΔD that rigidly defines the semantics

of S as a subset of ΔD. Given a primitive datatype D, datatypes E derived from D are

defined according to the following syntax

E −→ D | E1 ∪ E2 | E1 ∩ E2 | E1 \ E2 | {v1, . . . , vm} | D[S]

where S is a facet for D, and v1, . . . , vm are datatype values in ΔD. The domain of a

derived datatype is obtained for ∪, ∩, and \, by applying the corresponding set operator

to the domains of the component datatypes, for {v1, . . . , vm} as the set {v1, . . . , vm},
and for D[S] as SD. In the remainder of the paper, we consider the (primitive) datatypes

7 We blur the distinction between value space and lexical space of OWL 2 datatypes, and consider the
datatype domain elements as elements of the lexical space interpreted as themselves.
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Semantic DMN 11

present in the S-FEEL language of the DMN standard: strings equipped with equality,

and numerical datatypes, that is, naturals, integers, rationals, and reals equipped with

their usual comparison operators (which, for simplicity, we all illustrate using the same

set of standard symbols =, <, ≤, >, and ≥). We denote this core set of datatypes as D.

Other S-FEEL datatypes, such as that of datetime, are syntactic sugar on top of D.

A facet for one of these datatypes D ∈ D is specified using a binary comparison

predicate �, together with a constraining value v, and is denoted as �v. For example,

using the facet ≤9 of the primitive datatype real, we can define the derived datatype

real[≤9], whose value domains are the real numbers that are ≤ 9. In the following, we

abbreviate D[S1] ∩ D[S2] as D[S1∧S2], D[S1] ∪ D[S2] as D[S1∨S2], and D[S1] \ D[S2]

as D[S1∧¬S2], where S1 and S2 are either facets or their combinations with Boolean

operators.

Let Δ be a countably infinite universe of objects. A (DL) knowledge base with datatypes

(KB hereafter) is a tuple 〈Σ, T, A〉, where Σ is the KB signature, T is the TBox (capturing

the intensional knowledge of the domain of interest), and A is the ABox (capturing

extensional knowledge). When the focus is on the intensional knowledge only, we omit

the ABox, and call the pair 〈Σ, T 〉 intensional KB (IKB). The form of T and A depends

on the specific DL of interest. Next, we introduce each component for the DL ALCH(D),

which is equipped with multiple datatypes.

Signature. In a DL with datatypes, the signature Σ = Σc�Σr�Σf of a KB is partitioned

into three disjoint sets: (i) a finite set Σc of concept names, which are unary predicates

interpreted over Δ, each denoting a set of objects, called the instances of the concept; (ii)

a finite set Σr of role names, which are binary predicates connecting pairs of objects in Δ;

and (iii) a finite set Σf of features, which are binary functional predicates, connecting an

object to at most one typed value. In particular, each feature F comes with its datatype

DF ∈ D, which constrains the values to which the feature can connect an object. When

a feature F connects an object o to a value v (of type DF ), we say that F is defined for

o and that v is the F -value of o.

Concepts and roles. Each DL is characterized by a set of constructs that allow one to

obtain complex concept and role expressions, by starting from concept and role names,

and inductively applying such constructs. The DL ALCH(D) provides only concept con-

structs, and no constructs for roles or features. Hence, the only roles and features that

might be used are atomic ones, given simply by a role name R ∈ Σr or a feature name

F ∈ Σf , respectively. Instead, concepts C are defined according to the following grammar,

where N ∈ Σc denotes a concept name:

C −→ � | ⊥ | N | ¬C | C1 � C2 | C1 � C2 | ∃R.C | ∀R.C | ∃F.E | F↑ .

The intuitive meaning of the concept constructs is as follows.

• N denotes an atomic concept, given simply by a concept name in Σc.

• � is called the top concept, denoting the set of all objects in Δ.

• ⊥ is called the empty concept, denoting the empty set.

• ¬C is called the complement of concept C, and it denotes the set of all objects in

Δ that are not instances of C.

• C1 � C2 is the conjunction and C1 � C2 the disjunction of concepts C1 and C2,

respectively denoting intersection and union of the corresponding sets of instances.
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• ∃R.C is called a qualified existential restriction. Intuitively, it allows the modeler

to single out those objects that are connected via (an instance of) role R to some

object that is an instance of concept C.

• ∀R.C is called a value restriction. Intuitively, it denotes the set of all those objects

that are connected via role R only to objects that are instances of concept C.

• ∃F.E, where F ∈ Σf is a feature, and E a datatype that is either DF or a datatype

derived fromDF , is called a feature restriction. Intuitively, it denotes the set of those

objects for which the F -value satisfies condition E, interpreted in accordance with

the underlying datatype.

• F↑ denotes the set of those objects for which feature F is not defined.

Notice that the above constructs are not all independent from each other. Indeed:

• � is equivalent to ¬⊥;

• by De Morgan’s laws, we have that C1 � C2 is equivalent to ¬(¬C1 � ¬C2);

• qualified existential restriction and value restriction are dual constructs, since ∀R.C

is equivalent to ¬∃R.¬C;

• F↑ is equivalent to ¬∃F.DF .

We also observe that, since features are functional relations, we do not need a coun-

terpart of value restriction for features. Indeed, we have that ¬∃F.E is equivalent to

F↑ �∃F. (DF \ E).

TBox. T is a finite set of universal FO axioms based on predicates in Σ and on predicates

and values of datatypes in D. Specifically, an ALCH(D) TBox is a finite set of assertions

of the following forms:

C1 � C2 (concept inclusion),

R1 � R2 (role inclusion),

F1 � F2 (feature inclusion),

R1 � ¬R2 (role disjointness),

F1 � ¬F2 (feature disjointness),

where C1 and C2 are two ALCH(D) concepts, R1 and R2 two roles, and F1 and F2 two

features. Intuitively, the first type of inclusion assertion models that whenever an object

is an instance of C1, then it is also an instance of C2, and similarly for the other two types

of inclusion assertions, considering respectively pairs of objects, and pairs consisting of

an object and a value. Instead, disjointness assertions are used to model that no pair

that is an instance of a role/feature can also be an instance of another role/feature.

Notice that there is no need for a separate concept disjointness assertion, since it can be

mimicked by using negation in the concept appearing in the right-hand side of a concept

inclusion.

Example 2

The ALCH(D) encoding of the first entry in Figure 1(c) is:

∃stype. string[=“CCV”] � Ship � ∀length. real[=135]

� ∀draft. real[≥0 ∧ ≤9] � ∀capacity. real[=500].

All other table entries can be formalized in a similar way. The entire table is then captured

by the union of all so-obtained inclusion assertions, plus an assertion expressing that the

types mentioned in Figure 1(c) exhaustively cover all possible ship types:

Ship � ∃stype. string[=“CCV”] � ∃stype. string[=“CT”] � · · · � ∃stype. string[=“NP”].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068418000479
Downloaded from https://www.cambridge.org/core. Library Free University of Bolzano/Bozen, on 18 Jan 2019 at 18:37:20, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068418000479
https://www.cambridge.org/core


Semantic DMN 13

�I = Δ
⊥I = ∅

(¬C)I = Δ \ CI

(C1 � C2)
I = C1

I ∩ C2
I

(C1 � C2)
I = C1

I ∪ C2
I

(∃R.C)I = {x ∈ Δ | ∃y ∈ Δ such that 〈x, y〉 ∈ RI and y ∈ CI}
(∀R.C)I = {x ∈ Δ | ∀y ∈ Δ, if 〈x, y〉 ∈ RI then y ∈ CI}
(∃F.E)I = {x ∈ Δ | ∃v ∈ ΔDF such that 〈x, v〉 ∈ F I and v ∈ E}

(F↑)I = {x ∈ Δ | ¬∃v ∈ ΔDF such that 〈x, v〉 ∈ F I}
Fig. 2. Semantics of the ALCH(D) concept constructs.

C1 � C2 if C1
I ⊆ C2

I ;
R1 � R2 if R1

I ⊆ R2
I ;

F1 � F2 if F1
I ⊆ F2

I ;
R1 � ¬R2 if R1

I ∩R2
I = ∅;

F1 � ¬F2 if F1
I ∩ F2

I = ∅;
N(o) if o ∈ N I ;

R(o, o′) if 〈o, o′〉 ∈ RI ;
F (o, v) if 〈o, v〉 ∈ F I .

Fig. 3. Satisfaction of ALCH(D) TBox and ABox assertions.

ABox. The ABox A is a finite set of assertions, or facts, of the form N(o), P (o, o′), or
F (o, v), where N is a concept name, P a role name, F a feature, o, o′ ∈ Δ, and v ∈ ΔDF

.8

Semantics. The semantics of an ALCH(D) KB K = 〈Σ, T, A〉 relies, as usual, on the

notion of first-order interpretation I = 〈ΔI , ·I〉 over the domain ΔI ⊆ Δ, where ·I is an

interpretation function mapping each atomic concept N in T to a set N I ⊆ ΔI , each role

R to a binary relation RI ⊆ ΔI×ΔI , and each feature F to a relation F I ⊆ ΔI×ΔDF
that

is functional, that is, such that, if {〈d, v〉1, 〈d, v〉2} ⊆ F I , then v1 = v2. Complex concepts

are interpreted as shown in Figure 2. The semantics of TBox and ABox assertions is shown

in Figure 3, which specifies for the assertions of different forms when they are satisfied

by an interpretation I. Finally, we say that I is a model of T if it satisfies all inclusion

assertions of T and a model of K if it satisfies all assertions of T and A.

Reasoning in ALCH(D). We first recall the definition of the main reasoning tasks over

DL KBs, which we will use later to formalize reasoning over DMN DRGs:

• TBox satisfiability : given a TBox T , determine whether T admits a model.

• Concept satisfiability with respect to a TBox : given a TBox T and a concept C,

determine whether T admits a model I, such that CI �= ∅.
• KB satisfiability : given a KB K, determine whether K admits a model.

• Instance checking :

– for concepts: given a KB K, a concept C, and an object o, determine whether

o ∈ CI , for every model I of K;

– for roles: given a KB K, a role R, and a pair of objects o, o′, determine whether

〈o, o′〉 ∈ RI , for every model I of K;

– for features: given a KB K, a feature F , an object o, and a value v, determine

whether 〈o, v〉 ∈ F I , for every model I of K.

8 For simplicity, we have assumed that the objects occurring in an ABox are elements of the domain Δ.
In other words, we have made the standard name assumption.
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TBox reasoning in ALC with a single concrete domain D is decidable in ExpTime (and

hence is ExpTime-complete) under the assumption that (i) the logic allows for unary

concrete domain predicates only, (ii) the concrete domain D is admissible (Haarslev

et al. 2001; Horrocks and Sattler 2001), and (iii) checking D-satisfiability, that is, the

satisfiability of conjunctions of predicates of D, is decidable in ExpTime. This follows

from a slightly more general result shown by (Lutz 2002a, Section 2.4.1). Admissibility

requires that the set of predicate names is closed under negation and that it contains

a predicate name denoting the entire domain. Hence, TBox reasoning in ALC extended

with one of the concrete domains used in DMN (e.g., integers or reals, with facets based

on comparison predicates together with a constraining value) is ExpTime-complete. The

variant of DL with concrete domains that we consider here, ALCH(D), makes only use

of unary concrete domain (i.e., datatype) predicates, but allows for multiple datatypes,

and also for role and feature inclusions. Moreover, we are also interested in reasoning

in the presence of an ABox. Hence, the above decidability and complexity results do

not directly apply. However, we can adapt to our needs a technique proposed by Ortiz

et al. (2008) and refined by Eiter et al . (2009) and Ortiz (2010) for reasoning over a KB

(actually, to answer queries over a KB), to show the following result.

Theorem 1

Let D be a set of datatypes, such that for all datatypes D ∈ D, checking D-satisfiability

is decidable in ExpTime. Then, for ALCH(D) KBs, the problems of concept satisfia-

bility with respect to a TBox, KB satisfiability, and instance checking are decidable in

ExpTime, and actually ExpTime-complete.

Proof

It is well known that a concept C is satisfiable with respect to a TBox T iff the KB

〈Σ ∪ {Nn}〉, T ∪ {Nn � C}, {Nn(on)} is satisfiable, where Nn is a fresh concept not ap-

pearing in T , and on is a fresh object (see, e.g., Baader et al . 2007). Also, an ob-

ject o is an instance of a concept C with respect to a KB K = 〈Σ, T, A〉 iff the KB

〈Σ ∪ {Nn}〉, T ∪ {Nn � ¬C}, A ∪ {Nn(o)} is unsatisfiable, where Nn is a fresh concept

name. (Similarly, for role and feature instance checking, exploiting the fact that in the

TBox, we can express role and feature disjointness.) Hence, both concept satisfiability

and instance checking can be polynomially reduced to KB satisfiability, and we need to

consider only the latter problem.

In the rest of the proof, we show how to check the satisfiability of an ALCH(D) KB

K = 〈Σ, T, A〉. We make use of a variation of the mosaic technique commonly adopted

in modal logics (Németi 1986), and which is based on the search for small components of

an interpretation that can be composed to construct a model of a given KB. Specifically,

we borrow and adapt to our needs the technique based on knots introduced for query

answering in expressive DLs by Ortiz et al . (2008), and later refined by Eiter et al . (2009)

and Ortiz (2010).

As a first step, for each object o such that F (o, v) ∈ A, for some F ∈ Σf and value v,

we modify K as follows: (i) we add to Σ a fresh concept name No; (ii) we remove from

A the assertion F (o, v), and replace it with the assertion No(o); and (iii) we add to the

TBox the concept inclusion No � ∃F. {v}. Hence, in the following, we assume that the

ABox contains only membership assertions for concepts and roles (and not for features).

We also assume w.l.o.g. that all concepts appearing in T are in negation-normal form
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(NNF), that is, negation has been pushed inside so as to appear only in front of concept

names and as difference inside datatypes. Indeed, as is well known, one can convert every

concept of ALC into an equivalent one in NNF by exploiting De Morgan’s laws and the

duality between qualified existential restriction and value restriction. Moreover, as we

have observed above, ¬∃F.E is equivalent to F↑ �∃F. (DF \ E), and ¬F↑ is equivalent

to ∃F.DF . Finally, we consider ⊥ as an abbreviation for A�¬A, and � as an abbreviation

for A � ¬A, for some concept name A ∈ Σc.

We use cl(K) to denote the smallest set of concepts and objects that contains every

concept and every object in K and that is closed under sub-expressions and negation in

NNF (denoted ∼) applied to concepts. Moreover, for each concrete domain D ∈ D, we

define the set ΓD of D-expressions used in K as

ΓD = {E | ∃F.E occurs in T for some F ∈ Σf s.t. DF = D}.
Adapting a definition by Eiter et al . (2009), we define now suitable forms of types :

• A concept-type for K is a set τ ⊆ cl(K) that contains at most one object and such

that, for all concepts, C1, C2 ∈ cl(K):

– if C1 ∈ τ , then ∼C1 /∈ τ ;

– if C1 � C2 ∈ τ , then {C1, C2} ⊆ τ ;

– if C1 � C2 ∈ τ , then C1 ∈ τ or C2 ∈ τ ;

– if C1 � C2 ∈ T , then ∼C1 ∈ τ or C2 ∈ τ ;

– if N(o) ∈ A, then o /∈ τ or N ∈ τ .

• For each D ∈ D, a D-type is a set τ ⊆ ΓD, such that
∧

E∈τ E(x) is satisfiable in D.

• A role-type for K is a set ρ ⊆ Σr, such that, for all R1, R2 ∈ Σr:

– if R1 � R2 ∈ T , then R1 /∈ ρ or R2 ∈ ρ;

– if R1 � ¬R2 ∈ T , then R1 /∈ ρ or R2 /∈ ρ.

• A feature-type for K is a set ρ ⊆ Σf , such that, for all F1, F2 ∈ Σf :

– if F1 � F2 ∈ T , then F1 /∈ ρ or F2 ∈ ρ;

– if F1 � ¬F2 ∈ T , then F1 /∈ ρ or F2 /∈ ρ.

We use the different forms of types to define knots for K, each of which can be viewed

as a tree of depth ≤ 1: the root represents an object labeled with a subset of cl(K); each

leaf represents either an object labeled with a subset of cl(K) or a value of a datatype D

labeled with a satisfiable conjunction of datatype expression for D; each edge is labeled

either with a role-type or with a feature-type. Formally, a knot is a pair κ = 〈τ, S〉 that
consists of a concept-type τ for K (called root-type) and a set S with |S| ≤ |cl(K)|. The
set S consists of pairs 〈ρ, τ ′〉, where either ρ is a role-type and τ ′ a concept-type for K,

or ρ is a feature-type and τ ′ a D-type (for some D ∈ D) for K.

We first define local consistency conditions for knots, ensuring that the knot does

not contain internal contradictions. A knot κ = 〈τ, S〉 is K-consistent if the following

conditions hold:

• if ∃R.C ∈ τ , then there is some 〈ρ, τ ′〉 ∈ S, such that R ∈ ρ and C ∈ τ ′;
• if ∀R.C ∈ τ , then for all 〈ρ, τ ′〉 ∈ S with R ∈ ρ, we have that C ∈ τ ′;
• if ∃F.E ∈ τ , then there is a unique 〈ρ, τ ′〉 ∈ S, such that F ∈ ρ, and moreover

E ∈ τ ′;
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• if F↑ ∈ τ , then there is no 〈ρ, τ ′〉 ∈ S, such that F ∈ ρ;

• if o ∈ τ and R(o, o′) ∈ A, then there is a unique 〈ρ, τ ′〉 ∈ S, such that o′ ∈ τ ′, and
moreover R ∈ ρ.

A knot that is K-consistent respects the constraints that T and A impose locally, but this

does not ensure that the knot can be part of a model of K, as there could be non-local

constraints that cannot be satisfied in a model in which the knot is present. Therefore, we

introduce a global condition that ensures that a set of knots can be combined in a model

of K. Given a set Ψ of knots, a knot 〈τ, S〉 ∈ Ψ is Ψ-consistent if for each 〈ρ, τ ′〉 ∈ S

there is a knot 〈τ ′, S′〉 ∈ Ψ, for some S′. The set Ψ is K-coherent if (i) each knot in Ψ

is both K-consistent and Ψ-consistent and (ii) for each object o appearing in A, there is

exactly one knot 〈τ, S〉 ∈ Ψ such that o ∈ τ .

We show that K is satisfiable iff there exists a K-coherent set of knots. For the “if”

direction, we construct a model I of K from a K-coherent set Ψ of knots. By item (ii)

in the definition of K-coherence, for each object o appearing in A, Ψ contains exactly

one knot κo whose root-type satisfies the local conditions imposed by K on o. We start

by introducing such knots, and we repeatedly connect suitable successor knots 〈τ ′, S′〉
to the leaves of the trees that have concept-type or D-type (for a suitable D ∈ D) equal

to τ ′. The existence of such successors is guaranteed by the fact that all knots in Ψ are

Ψ-consistent. Notice also that, since for an object o′ the knot that has o′ in its concept-

type is unique, in this way, we will introduce in the model exactly one knot (i.e., object)

representing o′. It is easy to verify that the resulting interpretation is indeed a model

of K. For the “only-if” direction, consider a model I = 〈ΔI , ·I〉 of K, and define the

following mapping μ that assigns to each object o ∈ ΔI a knot μ(o) = 〈τo, So〉, where:
• τo = {C ∈ cl(K) | o ∈ CI}, and
• So is obtained as follows:

– for each object o′ ∈ ΔI such that 〈o, o′〉 ∈ RI , for some role R ∈ Σr, the set So

contains 〈ρo′ , τo′〉, where ρo′ = {R ∈ Σr | 〈o, o′〉 ∈ RI}, and τo′ = {C ∈ cl(K) |
o′ ∈ CI};

– for each value v ∈ ΔI
D, for some D ∈ D, such that 〈o, v〉 ∈ F I , for some

feature F ∈ Σf , the set So contains 〈ρv〉, τv, where ρv = {F | 〈o, v〉 ∈ F I}, and
τv = {E ∈ ΓD | v ∈ E}.

It is straightforward to check that Ψ = {μ(o) | o ∈ ΔI} is a K-coherent set of knots.

It remains to show that the existence of a K-coherent set of knots can be verified in

time exponential in the size of K. Let c = |cl(K)|, r = |Σr|, and f = |Σf |. Notice that

cl(K) contains a number of concepts that is linear in the size of K. Then, the number of

knots for K is bounded by 2c · (2r + 2f ) · 2c, that is, by an exponential in the size of K.

Moreover, each knot κ is of size polynomial in the size of K, and one can check in time

polynomial in the combined sizes of κ and K whether κ is K-consistent. The number of

K-coherent sets of knots is doubly exponential in the size of K. However, the existence

of a K-coherent set of knots can be checked in time single exponential in the size of

K as follows. First, we say that a knot 〈τ, S′〉 is a reduct of a knot 〈τ, S〉 if there are

enumerations S = {〈ρ1, τ1〉, . . . , 〈ρ�, τ�〉} and S′ = {〈ρ′1, τ ′1〉, . . . , 〈ρ′h, τ ′h〉}, such that (i)

h ≤ �, (ii) ρ′i∪τ ′i ⊆ ρi∪τi for all i ∈ {1, . . . , h}, and (iii) h < �, or ρ′i∪τ ′i ⊂ ρi∪τi for some
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i ∈ {1, . . . , h}. A knot κ is K-min-consistent if it is K-consistent and no reduct of κ is

K-consistent. Intuitively, each K-min-consistent knot is a self-contained model building

block for minimal models of K. With this notion in place, we construct a K-coherent set

Ψ, all of whose knots are K-min-consistent. To do so, we enumerate, for each object o ap-

pearing in K, over the knots 〈τ, S〉 that are K-min-consistent and such that o ∈ τ . Specif-

ically, for each o, we exhaustively consider for τ all subsets of cl(K) containing o, and

extend both τ and S so as to satisfy the conditions of K-consistency. K-min-consistency

of the obtained 〈τ, S〉 is then checked by considering all reducts of 〈τ, S〉 and verifying

that none is K-consistent. If K contains n objects, there are at most cn sets consisting of

n knots that we have to consider in the above enumeration. From each such set Ψobj , we

then try to construct a K-coherent set of knots as follows: we first construct a set ΨK
obj of

knots by adding to Ψobj all those knots 〈τ, S〉 for which τ does not contain any object and

that are K-min-consistent. (Such knots are generated similarly to the ones in the above

enumeration, except that we exhaustively consider all subsets of cl(K) not containing any

object.) We then repeatedly remove from ΨK
obj those knots that are not ΨK

obj -consistent.

If we are not forced to remove from ΨK
obj any of the knots initially in Ψobj (i.e., whose τ

contains an object), then the resulting set of knots is K-coherent. Instead, if we are forced

to do so for each set Ψobj in the enumeration, then there is no K-coherent set of knots.

Given that there are cn sets in the enumeration, and that for each such set, the check

for the existence of a K-coherent set of knots requires to iterate over exponentially many

knots, the overall algorithm runs in time single exponential in the size ofK. Together with

the well-known ExpTime lower-bound for reasoning in ALC, this shows the claim.

Rich KBs. We also consider rich KBs where axioms are specified in full FOL(D) (and

the signature is that of a FOL(D) theory). We call such KBs FOL(D) KBs.

3.2 DMN decision table

To capture the business logic of a simple decision table, we rely on the DMN 1.1 standard,

and, in particular, DMN 1.1 decision tables expressed in the S-FEEL language.

As for single decision tables, we resort to the formal definitions introduced by Calvanese

et al. (2016) to capture the standard, but we update them so as to target DMN 1.1. We

concentrate here on single-hit policies only, that is, policies that define an interpretation

of decision tables for which at most one rule triggers and produces an output for an

arbitrary configuration of the input attributes. This is because in the case of multiple-hit

policies, multiple output values may be collected at once in a list. However, S-FEEL does

not provide list-handling constructs (which are instead covered by the full FEEL), and

hence, only single-hit policies combine well with S-FEEL within a DRG. As for single-hit

policies, we consider:

• unique hit policy (u) – indicating that rules do not overlap;

• any hit policy (a) – indicating that whenever multiple overlapping rules simultane-

ously trigger, they compute exactly the same output values;

• priority hit policy (p) – indicating that whenever multiple overlapping rules si-

multaneously trigger, the matching rule with highest output priority is considered

(details are given next).
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We do not consider the first policy, as it is considered bad practice in the standard, and

from the technical point of view, it can be simulated using the priority hit policy.

An S-FEEL DMN decision table M (called simply decision table in the following) is a

tuple 〈Name, I, O,AType, InFacet,ORange,ODef, R,H〉, where:
• Name is the table name.

• I and O are disjoint, finite ordered sets of input/output attributes, respectively.

• AType : I �O → D is a typing function that associates each input/output attribute

to its corresponding datatype.9

• InFacet is a facet function that associates each input attribute a ∈ I to an S-FEEL

condition over AType(a) (see below), which identifies the allowed input values for s.

• ORange is an output range function that associates each output attribute b ∈ O to

an n-tuple over AType(b)n of possible output values (equipped with an ordering).

• ODef : O → D is a default assignment (partial) function mapping some output

attributes to corresponding default values.

• R is a finite set {r1, . . . , rp} of rules. Each rule rk is a pair 〈Ifk,Thenk〉, where Ifk
is an input entry function that associates each input attribute a ∈ I to an S-FEEL

condition over AType(a), and Thenk is an output entry function that associates each

output attribute b ∈ O to an object in AType(b).

• H ∈ {u, a, p} is the (single) hit policy indicator for the decision table.

Notice that the ordering induced by the attributes in O, followed, attribute by attribute,

by the ordering of values in ORange, is the one upon which the priority hit indicator is

defined, where the ordering is interpreted by decreasing priority. Notice that rules with

exactly the same output values have the same priority, but this is harmless, since they

produce the same result. To simplify the treatment, we introduce a total ordering ≺ over

rules that respects the partial ordering induced by the output priority and that fixes an

(arbitrary) ordering over equal-priority rules.

In the following, we use a dot notation to single out an element of a decision table. For

example, M .I denotes the set of input attributes for decision table M .

An (S-FEEL) condition ϕ over type D is inductively defined as follows:

• “−” is the any value condition (i.e., it matches every object in ΔD);

• given a constant v, expressions “v” and “not(v)” are S-FEEL conditions respec-

tively denoting that the value shall and shall not match with v;

• ifD is numerical, given two numbers v1, v2 ∈ ΔD, the interval expressions “[v1, v2]”,

“[v1, v2)”, “(v1, v2]”, and “(v1, v2)” are S-FEEL conditions (interpreted in the stan-

dard way as closed, open, and half-open intervals);

• given two S-FEEL conditions ϕ1 and ϕ2, “ϕ1, ϕ2” is a disjunctive S-FEEL condition

that evaluates to true for a value v ∈ ΔD if either ϕ1 or ϕ2 evaluates to true for v.

Example 3

Tables 1 and 2, respectively, show the DMN encoding of the ship clearance and refuel

area determination decision tables of our case study (cf. Section 2). The tabular

representation of decision tables obeys to the following standard conventions. The first

9 We use � to denote the disjoint union between two sets.
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Table 1. DMN representation of the ship clearance decision of Figure 1(b)

Ship Clearance

Cer. Exp. Length Draft Capacity Cargo
(date) (m) (m) (TEU) (mg/cm2) Enter

U ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 y, n

1 ≤ today − − − − n

2 > today < 260 < 10 < 1000 − y

3 > today < 260 < 10 ≥ 1000 − n

4 > today < 260 [10, 12] < 4000 ≤ 0.75 y

5 > today < 260 [10, 12] < 4000 > 0.75 n

6 > today [260, 320) (10, 13] < 6000 ≤ 0.5 y

7 > today [260, 320) (10, 13] < 6000 > 0.5 n

8 > today [320, 400) ≥ 13 > 4000 ≤ 0.25 y

9 > today [320, 400) ≥ 13 > 4000 > 0.25 n

Table 2. DMN representation of the refuel area determination decision of Figure 1(b)

Refuel Area Determination

Length Cargo
Enter (m) (mg/cm2) Refuel Area

U y, n ≥ 0 ≥ 0 none, indoor, outdoor

1 n − − none

2 y ≥ 350 − indoor

3 y > 350 ≤ 0.3 indoor

4 y > 350 > 0.3 outdoor

two rows (below the table title) indicate the table meta-information. In particular, the

leftmost cell reports the hit indicator, which, in both tables, corresponds to unique hit.

Blue-colored cells (i.e., all other cells but the rightmost one), together with the cells be-

low, respectively, model the input attributes of the decision table, and which values they

may assume. This latter aspect is captured by facets over their corresponding datatypes.

In Table 1, the input attributes are (i) the certificate expiration date, (ii) the length,

(iii) the size, (iv) the capacity, and (v) the amount of cargo residuals of a ship. Such

attributes are nonnegative real numbers; this is captured by typing them as reals, adding

restriction “≥ 0” as facet. The rightmost, red cell represents the output attribute. In

both cases, there is only one output attribute, of type string. The cell below enumerates

the possible output values produced by the decision table, in descending priority order. If

a default output is defined, it is underlined. This is the case for the none string in Table 2.

Every other row models a rule. The intuitive interpretation of such rules relies on the

usual “if . . . then . . . ” pattern. For example, the first rule of Table 1 states that, if the

certificate of the ship is expired, then the ship cannot enter the port, that is, the enter

output attribute is set to n (regardless of the other input attributes). The second rule,
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instead, states that if the ship has a valid certificate, a length shorter than 260m, a draft

smaller than 10m, and a capacity smaller than 1000TEU, then the ship is allowed to enter

the port (regardless of the cargo residuals it carries). Other rules are interpreted similarly.

3.3 Decision requirements graphs

We now formally define the notion of DRG in accordance with DMN 1.1. As pointed out

before, we do not consider the contribution of authorities, but we accommodate business

knowledge models. Since they are considered external elements to DRGs, in this phase,

they are simply introduced without a further definition. We will come back to this in

Section 4.

A DRG is a tuple 〈I, InFacet,M,Mout,K,⇒,→〉, where:
• I is a set of input data, and InFacet is a facet function defined over I.

• M is a set of decision tables, as defined in Section 3.2, and Mout ⊆ M are the output

decision tables. We assume that each decision table in M has a distinct name that

can be used to unambiguously refer to it within the DRG.

• K is a set of business knowledge models.

• ⇒: (I ∪ ⋃
M∈M M .O) × ⋃

M∈M M .I is an information flow, that is, an output-

unambiguous relation connecting input data and output attributes of the decision

tables in M to input attributes of decision tables in M, where output-unambiguity

is defined as follows:

• for every input attribute a ∈ ⋃
M∈M M .I, there is at most one element e, such

that e ⇒ a.

• → ⊆ I × M ∪ M × M ∪ K × K ∪ K × M is a set of information requirements,

relating knowledge models to decision tables, knowledge models to other knowledge

models, input attributes of the DRG to decision tables, and decision tables to

other decision tables. Information requirements must guarantee compatibility with

⇒, defined as follows:

• for every i ∈ I and every M ∈ M, we have i → M if and only if there exists an

attribute b ∈ M .I, such that i ⇒ b;

• for every Mo,Mi ∈ M, we have Mo → Mi if and only if there exist an attribute

b ∈ Mo.O and an attribute a ∈ Mi.I, such that b ⇒ a.

In accordance with the standard, the directed graph induced by → over the decision ta-

bles in M must be acyclic. This ensures that there are well-defined dependencies among

decision tables. While the standard introduces information requirement variables to cap-

ture the data flow across decision tables, here, we opt for the simpler mathematical

formalization based on the information flow relation.

Also for DRGs, we employ a dot notation to single out their constitutive elements

(when clear from the context, though, we simply use ⇒ and → directly). Given a DRG

G, we identify the set of free inputs of G, written FreeInputs(G), as the set of input

data of G together with the input attributes of tables in G that are not pointed by the

information flow of G:

FreeInputs(G) = G.I ∪ {a | a ∈ M .I for some M ∈ G.M, and there is no x s.t. x ⇒ a}
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where ⇒ is the information flow of G. Complementarily, we call bound attributes of

G, written BoundAttr(G), all the attributes appearing in G that do not belong to

FreeInputs(G). Such attributes are all the output attributes used inside the decision tables

of G, but also the input attributes that are bound to an incoming information flow.

Finally, we say that e1
∗⇒ en if there exists a sequence 〈e2, . . . , en−1〉 such that for each

i ∈ {1, . . . , n− 1}, we have ei ⇒ ei+1.

Example 4

The DRG of our case study, shown in Figure 1(b), interconnects the input data and

the two decision tables of ship clearance and refuel area determination, by setting as

information flow the one that simply maps input data and output attributes to input

attributes sharing the same name. For example, the Enter output attribute of ship

clearance is mapped to the Enter input attribute of refuel area determination.

4 Semantic decision models

We now substantiate the integration between decision logic and background knowledge,

by introducing the notion of DKB, which combines DMN DRGs with FOL(D) knowledge

bases, so as to empower DMN with semantics.

4.1 Decision knowledge bases

The intuition behind our proposal for integration is to consider the decision logic as a

sort of enrichment of a KB describing the structural aspects of a domain of interest. In

this respect, the DRG is linked to a specific concept of the KB. The idea is that given

an object o that is a member of that concept, M inspects the feature of o that matches

the input data of the DRG, triggering the corresponding decision logic. Depending on

which rule(s) match, M then dictates which are the values to which o must be connected

via those features that correspond to the output attributes M .O. Hence, the KB and

the DRG interact on (some of) the free inputs of the overall, complex decision, while

the output attributes and the bound inputs are exclusively present in the DRG, and are

in fact used to infer new knowledge about the domain. Since we work under incomplete

information, we also accept DRGs in which not all input attributes are fed by input data

or by the output of other decisions.

Formally, a DKB over datatypes D (D-DKB, or DKB for short) is a tuple

〈Σ, T,G, C,A〉, where:
• T is a FOL(D) IKB with signature Σ.

• G is a decision table that satisfies the following two typing conditions:

(free input type compatibility) For every binary predicate P ∈ Σ whose name

appears in FreeInputs(G), their datatypes coincide.

(uniqueness of bound attributes) For every bound attribute a in BoundAttr(G), we

have that no predicate P ∈ Σ corresponds to a.

• C ∈ Σc is a bridge concept, that is, a concept from Σ that links T with G.

• A is an ABox over the extended signature Σ ∪ BoundAttr(G).
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Fig. 4. Graphical representation of an IDKB by extending the DMN notation for DRGs.

When the focus is on the intensional decision knowledge only, we omit the ABox, and

call the tuple 〈Σ, T,G, C〉 intensional DKB (IDKB).

From the notational point of view, we can depict an IDKB X = 〈Σ, T,G, C〉 by slightly

extending the DMN notation for DRDs as follows:

1. The knowledge base T is represented as a special business knowledge model.

2. Pictorially, this business knowledge model adopts the standard notation, using a

small distinctive icon on the top right, and containing an indication about the bridge

concept C.

3. There is an information requirement connecting the knowledge base to:

• all input data of G that are also used by the knowledge base (thus highlighting the

possible interaction between the input data and the background knowledge);

• all decisions of G that have at least one (free) input attribute different from all

input data, and in common with the knowledge base (thus highlighting possible

additional interactions with decision inputs that are not bound within the DRG).

Notice that connecting a business knowledge model to input data of a DRG is forbidden

by the standard. However, it is essential in our setting, so as to graphically highlight that

the knowledge base may interact with certain input data.

Example 5

By considering our running example, the DKB for the ship clearance domain can be

obtained by combining the knowledge base of Figure 1(c) with the DRG of Figure 1(b)

(whose constitutive decisions are shown in Tables 1 and 2), using Ship as bridge concept.

On the one hand, Figure 1(c) introduces different types of ships, which can be modeled as

subtype concepts of the generic concept of ship, together with a set of axioms constraining

the length, draft, and capacity features depending on the specific subtype (cf. Example 1).

On the other hand, Tables 1 and 2 extend the signature of Figure 1(c) with four additional

features for ships, namely, certificate expiration and cargo, as well as the indication of

whether a ship can enter a port or not, and what its refuel area is. These two last

features are produced as the output of the DRG in Figure 1(b), and are, in fact, inferred

by applying the DRG on a specific ship.

This DKB is graphically shown in Figure 4 using the extended DRD notation. Notice

how the diagram marks the possible interaction points of the knowledge base and the

DRG.
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4.2 Formalizing DKBs

From the formal point of view, the integration between a KB and a DRG is obtained

by encoding the latter into FOL(D), consequently enriching the KB with additional

axioms that formally capture the decision logic. We provide the encoding in this section.

Obviously, to encode a DRG, we first need to encode the decisions contained therein. To

this purpose, we build on the logic-based formalization of DMN introduced in Calvanese

et al. (2016). However, we cannot simply apply it as it is defined in Calvanese et al .

(2016), since it does not follow the “object-oriented” approach required to interpret

the application of a DRG in the presence of background knowledge. Specifically, that

encoding formalizes decisions as formulae relating tuples of input values to tuples of

output values, assuming no additional structure. In this work, we need to “objectify”

the approach in Calvanese et al . (2016), considering decisions as axioms that predicate

on the features of a certain object, and that, in particular, postulate that whenever

certain (input) features satisfy given conditions, then the object must be connected to

certain other values through corresponding (output) features. This approach is useful

to handle the integration with background knowledge, but also to simply interpret

the interconnection of multiple decisions into a DRG, making our object-oriented

formalization of DMN decisions and DRGs is of independent interest.

Technically, we introduce an encoding τ that translates an IDKB X = 〈Σ, T,G, C〉
into a corresponding FOL(D) IKB τ(X). The encoding can also be applied to a DKB,

translating its intensional part as before while leaving its extensional part unaltered,

that is, given a DKB X = 〈Σ, T,G, C,A〉, such that τ(〈Σ, T,G, C〉) = 〈Σ′, T ′〉, we have

τ(X) = 〈Σ′, T ′, A〉. We next describe how Σ′ and T ′ are actually constructed.

4.2.1 Encoding of the signature

The signature corresponds to the original signature of T , augmented with a set of features

that are obtained from the input data and the table attributes mentioned in G. To avoid

potential name clashes coming from repeated attribute names in different decision tables,

each attribute corresponds to a feature whose name is obtained by concatenating the

name of such an attribute with the name of its decision table. Given a decision M and an

attribute a of M , we use notation M ·a to denote such a concatenated name. Formally,

we get:

Σ′ = Σ ∪ {P/2 | P ∈ G.I} ∪
⋃

M∈G.M

{M ·a/2 | a ∈ M .I ∪M .O}.

Each so-generated feature has its first component typed with Δ, and its second compo-

nent typed with the datatype that is assigned by G to its corresponding input data/at-

tribute.

4.2.2 Encoding of the TBox

The TBox extends the original axioms in T with additional axioms obtained by modularly

encoding each decision and information flow of G:

T ′ = T ∪
⋃

M∈G.M

(
τC(M )

) ∪
⋃

f∈G.⇒

(
τ(f)

)
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where the encoding τC(M ) of a decision table M (parameterized by the bridge concept

of X) and the encoding τ(f) of an information flow f are detailed next.

Encoding of decisions. Let us consider the encoding τC(M ) of decision M , parameterized

by bridge concept C. The encoding consists of the union of axioms obtained by trans-

lating (i) the input/output attributes of M ; (ii) the facet conditions or output ranges

attached to such attributes; and (iii) the rules inM (also considering priorities and default

outputs).

Encoding of attributes. For each attribute a ∈ M .I∪M .O, the encoding τC produces two

axioms: (i) a typing formula ∀x, y.M ·a(x, y) → C(x), binding the domain of the attribute

to the bridge concept and (ii) a functionality formula ∀x, y, z.M ·a(x, y) ∧M ·a(x, z) →
y = z, declaring that every object of the bridge concept cannot be connected to more

than one value through M ·a. If a is an input attribute, functionality guarantees that the

application of the decision table is unambiguous. If a is an output attribute, functionality

simply captures that there is a single value present in an output cell of the decision. In

general, multiple outputs for the same column may, in fact, be obtained when applying

a decision but, if so, they would be still generated by different rules.

The exact same formalization does not only apply to the input attributes of a decision

table, but also to the input data G.I of the overall DRG G.

Example 6

Consider the DKB in Example 5. The typing and functionality for the Enter input

attribute for the refuel area determination decision (shown in Table 2, and for which we

use the compact name Rad) are:

∀x, y.Rad·Enter(x, y) → Ship(x) ∀x, y, z.Rad·Enter(x, y)∧Rad·Enter(x, z) → y=z.

Encoding of facet conditions and output ranges. For each input attribute a ∈ M .I,

function τC produces a facet axiom imposing that the range of the feature must satisfy

the restrictions imposed by the S-FEEL condition M .InFacet(a). In formulae:

∀x, y.M ·a(x, y) → τy(M .InFacet(a)),

where, given an S-FEEL condition ϕ and a variable x, function τx(ϕ) builds a unary

FOL(D) formula that encodes the application of ϕ to x. This is defined as follows:

τx(ϕ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if ϕ = “−”

x �= v if ϕ = “not(v)”

x = v if ϕ = “v”

x� v if ϕ = “� v” and � ∈ {<,>,≤,≥}
x > v1 ∧ x < v2 if ϕ = “(v1..v2)”

. . . (similarly for the other types of intervals)

τx(ϕ1) ∨ τx(ϕ2) if ϕ = “ϕ1,ϕ2”.

The same mechanism is applied to the feature generated from each output attribute

b ∈ M .O, reinterpreting its output range ORange(b) = 〈v1, . . . , vn〉 as the S-FEEL facet

“(v1, . . . ,vn)”. Also in this case, the exact same formalization does not only apply to the

attributes of a decision table, but also to the input data G.I of the overall DRG G.
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Example 7

Consider again the DKB in Example 5 and, in particular, the length attribute in Table 1

(for which we use the compact name Sc). The facet FOL(D) axioms for length is:

∀x, y.Sc·length(x, y) → y ≥ 0.

Encoding of rules. Each rule is translated into an axiom expressing that, given an object:

if the object has features for the input attributes of the rule whose values satisfy,

attribute-wise, the S-FEEL conditions associated by the rule to such input

attributes,

then that object is also related, via output features, to the values associated by the rule

to the output attributes.

Consider now a rule r = 〈If,Then〉 in M . We first encode separately the input entry

function If and the output entry function Then. Similarly to the case of single S-FEEL

conditions, the encoding of If and Then is parameterized by a variable x, representing an

object to which the input/output entries are applied. Formally, we thus get:

τx(If) =
∧

a∈M .I

∃y.
(
M ·a(x, y) ∧ τy(If(a))

)

τx(Then) =
∧

b∈M .O

∃y.
(
M ·b(x, y) ∧ τy(Then(b))

)

where τy(If(a)) applies the encoding for S-FEEL conditions defined before, on top of

condition If(a) and using variable y, obtained from x by navigating the feature corre-

sponding to a. The selection of y obtained via existential quantification is unambiguous,

as features are functional. A similar observation holds for τy(Then(b)), noting that it

simply produces a formula of the form y = v, where v is the value assigned by rule r to

output attribute b.

We now bind together the encoding of the rule premise and the rule conclusion into

the overall encoding of rule r, which combines them into an implication formula. The

body of this implication formula indicates when the rule trigger, which is partly based

on the encoding of r.If, and partly on the priority ≺ (cf. Section 3.2). Such a priority

is, in fact, used to determine whether r should really trigger on a given input object, or

should instead stay quiescent, because there is a higher-priority rule that triggers on the

same object. With this notion at hand, we get:

τ(r) = ∀x.τx(r.If) ∧
∧

r2∈M .R and r2≺r

¬(τx(r2.If)) → τx(r.Then).

Due to the “prioritization formula” used in the last part of the body, the overall encoding

of all rules in the DRG is at most quadratic in the number of rules. This priority-

preserving encoding correctly captures the semantics of rules irrespectively of which

single hit indicator is used in M , possibly introducing some unnecessary conjuncts:

• If M semantically obeys to the unique hit strategy, then the input conditions of

its rules are all mutually exclusive, and hence, the prioritization formula is always

trivially satisfied.
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• If M semantically obeys to the any hit strategy, then in case of multiple possible

matches, all matching rules would actually return the same output values, and so

the highest-priority matching rule can be safely selected.

• IfM adopts the priority hit policy, then the prioritization formula is actually needed

to guarantee that the overall decision behaves according to what priority dictates.

Example 8

Let us consider rule 2 in Table 1. Priority is, in this decision, irrelevant, as rules are indeed

all non-overlapping. We can, therefore, ignore the prioritization formula, and simply get:

∀x. (∃e.Sc·cerExp(x, e) ∧ e > today) ∧ (∃l.Sc·length(x, l) ∧ l < 260)

∧ (∃d.Sc·draft(x, d) ∧ d < 10) ∧ (∃c.Sc·capacity(x, c) ∧ c < 1000)

→ ∃o.Sc·enter(x, o) ∧ o = y.

Since rules capture the intended input–output behavior of the decision, we also have to

consider the case of default values for output attributes. Since default values are assigned

when no rule triggers, we capture the “default output behavior” of decision M as follows:

∀x.
∧

r∈M .R

¬(τx(r.If)) →
∧

b∈M .O s.t. M .ODef(b) is defined

(
∃y.M ·b(x, y) ∧ y = M .ODef(b)

)
.

Note that it is not guaranteed that all attributes have a default value. If this is not the

case, the formula above only binds those output facets whose corresponding attribute

has a default value, leaving the other unspecified. This is perfectly compatible with the

setting of DKBs, which indeed work under incomplete information.

Encoding of information flows. The encoding of information flows amounts to indicate

that the source of an information flow feeds the target of the same information flow. This

means that whenever a value is produced by the source, then this value is transferred into

the target. Let 〈P,a〉 be an information flow from input datum P ∈ G.I to decision input

attribute a ∈ M .I for some decision table M ∈ G.M, and let 〈b,a〉 be an information

flow from decision output attribute b ∈ M1.O to decision input attribute a ∈ M2.I for

some M1,M2 ∈ G.M. Then, we get:

τ(〈P,a〉) = ∀x, y.P (x, y) → M ·a(x, y) τ(〈b,a〉) = ∀x, y.M1 ·b(x, y) → M2 ·a(x, y).

Example 9

Consider the DRG of Figure 1(b), observing that the information requirement connecting

the input datum length and the clearance decision is due to the underlying information

flow between such an input datum and the length attribute of the ship clearance decision

in Table 1. Such an information flow is captured by the formula:

∀x, y.length(x,y) → Sc·length(x, y).

4.3 Reasoning tasks

We now formally revisit and extend the main reasoning tasks introduced by Calvanese

et al. (2016) for DMN, considering here DKBs equipped with complex decisions captured

in a DRG. In the following, we generically refer to all such reasoning tasks as DKB

reasoning tasks.
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By considering a single decision table inside the DRG, we focus on the compatibility of

the decision with its policy hit, considering the semantics of its rules in the context of the

overall DKB. At the level of the whole DRG, we instead focus on the input–output (I/O)

relationship induced by the DRG, arising from its internal decisions, information flows,

and background knowledge. A related property is that of output coverage, which checks

whether all mentioned output values of the DRG can possibly be produced. We also

consider the two key properties of completeness and output determinability. Completeness

of a DKB captures its ability of producing an overall output for the DRG for every

configuration of values for its input data. Given a so-called template describing a set

of objects, output determinability checks whether the template is informative enough

to allow the DKB determining an overall output for the DRG given an object that

instantiates the template. Recall that a DRG has some decision tables marked as outputs

of the DRG. In this light, an output of the DRG consists of the combination of an output

for each one of its output tables.

Compatibility with “unique hit”. Unique hit is declared in a decision table M by setting

M .H = u, and dictates that for every input object, at most one rule of M triggers. To

check whether this is indeed the case, we introduce the problem of compatibility with

unique hit as:

Input: IDKB X, decision table M ∈ X.G.M.

Question: Is it the case that rules in M .R do not overlap, that is, never trigger on the

same input? Formally:

τ(X)
?|=

∧
r1,r2∈M .R s.t. r1 	=r2

¬∃x.
(
τx(r1.If) ∧ τx(r2.If)

)
.

Compatibility with “any hit”. Any hit is declared in a decision table M by setting

M .H = a, and postulates that whenever multiple rules may simultaneously trigger, they

need to agree on the produced output. In this light, checking whether M is compatible

with this policy can be directly reduced to the case of unique hit, but considering only

those pairs of rules in M that differ in at least one output value.

Compatibility with “priority hit”. Priority hit is declared in a decision table M by setting

M .H = p, and postulates that whenever multiple rules may simultaneously trigger, the

one with the highest priority is selected. This is directly incorporated in the formalization

of rules, so rules are by design compatible with priority hit. However, selecting this policy

may lead to the situation where a rule ismasked by a higher-priority rule, and hence would

never trigger (Calvanese et al . 2016). We thus consider that M is compatible with the

priority hit policy if none of its rules is masked. In this light, we introduce the problem

of compatibility with priority hit as:

Input: IDKB X, decision table M ∈ X.G.M.

Question: Is it the case that no rule in M .R is masked, that is, there is at least one input

object for which the rule triggers and no higher priority rule does? Formally:

τ(X)
?|=

∧
r1,r2∈M .R s.t. r1≺r2

∃x.
(
τx(r2.If) ∧ ¬τx(r1.If)

)
.

I/O relationship. A fundamental decision problem is to check whether the decision logic

of a DKB induces a certain I/O relationship for a given object, in the presence of an
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ABox that captures additional extensional data about the domain of interest (such as

values assigned to that object for the input attributes of the DKB). Specifically, the I/O

relationship problem for a decision is defined as:

Input: (i) DKB X, (ii) object o ∈ Δ, (iii) decision table M ∈ X.G.Mout, (iv) output

attribute b ∈ M .O, and (v) value v ∈ M .AType(b).

Question: Is it the case that X relates object c to value v via feature M · b?
Formally:

τ(X)
?|= M ·b(o, v).

Output coverage. Output coverage refers to the I/O relationship induced by an IDKB,

in this case, focusing on the possibility of actually deriving a specific value for one of the

output attributes of the DRG contained in the IDKB. If this is not possible, then it means

that, due to the interplay between different decision tables and their information flows,

as well as the contribution of the background knowledge, some output configurations are

never obtained. Specifically, we define the output coverage problem as:

Input: (i) IDKB X, (ii) decision table M ∈ X.G.Mout, (iii) output attribute b ∈ M .O,

(iv) value v ∈ M .AType(b).

Question: Does X cover the possibility of outputting v for output attribute b of

decision table M ? Formally:

τ(X)
?|= ∃x, y.M ·b(x, y) ∧ y = v.

Example 10

Consider the IDKB Xship of our running example, in particular, as defined in Example 5.

By focusing on the RefuelArea attribute of the output decision table refuel area deter-

mination (cf. Table 2), we can see that value outdoor is not covered by Xship. In fact,

to produce such an output, rule 4 should trigger, which, in turn, requires length and

cargo to, respectively, be > 350 and > 0.3, and as well as enter to be y. While the first

two attributes are set by input data, the last is produced by the ship clearance table,

which is defined on the same input data, plus further ones (cf. Table 1). However, the

only rule of ship clearance that matches with the aforementioned conditions for length

and cargo, is, in fact, rule 9, which however computes n for enter, in turn, falsifying the

first condition of rule 4 in refuel area determination. This formally confirms the infor-

mal discussion of Section 2.2. Notice that this issue does not depend on the background

knowledge, but on the (partial) incompatibility between the two decision tables.

Completeness. Completeness asserts that the application of an IDKB to an arbitrary

input object assigning values for the inputs of the DRG contained in the IDKB is guar-

anteed to properly derive corresponding outputs. The DRG completeness problem is then

defined as follows:

Input: IDKB X.

Question: Is it the case that, for every object that assigns a value to each input of

X.G.I, X derives an output for each one of the output decision tables X.G.Mout?

Formally:
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τ(X)
?|= ∀x.

( ∧

P∈X.G.I

∃y.P (x, y)
)
→

∧

M∈X.G.Mout

∧
b∈M .O

∃y.M ·b(x, y).

Output determinability. Output determinability is a refinement of completeness. It

amounts at checking whether, given a template describing a set of objects (encoded

as a unary FOL(D) formula), that template description is detailed enough to ensure that

the IDKB properly derives the outputs of its DRG for every object that belongs to the

template. This is, in fact, the only decision problem that only makes sense in the presence

of background knowledge. Specifically, the output determinability problem is defined as

follows:

Input: IDKB X, unary FOL(D) formula ϕ(x) over signature X.Σ (called template).

Question: Is it the case that, for every object that satisfies template ϕ(x), X derives

an output for each one of the output decision tables X.G.Mout? Formally:

τ(X)
?|= ∀x.ϕ(x) →

∧

M∈X.G.Mout

∧
b∈M .O

∃y.M ·b(x, y).

It is easy to see that completeness is a special case of output determinability, where the

template simply describes objects that have all input data attached to them: ϕ(x) =∧
P∈X.G.I ∃y.P (x, y).

Example 11

Consider again the IDKB Xship of Example 5. We have already discussed in Section 2.2

that to properly apply the decision logic formalized in Xship, it is sufficient to know its

type, cargo residuals, and certificate expiration date. This can be formalized as an output

determinability problem, using as template the unary formula:

ϕship(x) = ∃e, c, t.cerExp(x, e) ∧ capacity(x, c) ∧ stype(x, t).

DMN reasoning tasks. We stress that, with the exception of output determinacy, all

the decision problems identified here are relevant also when background knowledge is

not present, and consequently, a given DRG is interpreted under the assumption of

complete information. In this case, compatibility with the different hit indicators, output

coverage, and completeness can all be captured as explained above, by simply setting

T = ∅. To account for I/O relationship, we have to put T = ∅, and fix A to contain

exactly the following facts: (i) a fact C(o) for the selected object o and (ii) a set of facts

of the form {P (o, vj) | P ∈ X.G.I}, denoting the assignment of input attributes for o to

the corresponding values of interest, one per input data of the DRG. In addition, all the

identified decision problems can also be studied in the case of a single decision table M ,

not immersed inside a DRG. This requires to construct the trivial DRG GM that contains

M as the only decision table, marks it also as output table, and contains input data that

exactly match (and feed via information flows) the input attributes of M . Properties of

M in the presence of background knowledge can then be assessed by studying a DKB or

IDKB that uses GM as DRG.

5 Reasoning on DKBs

While the translation from DKBs to FOL(D) presented in Section 4.2 provides a logic-

based semantics for DKBs, it does not give any insight on how to actually approach
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the different decision problems of Section 4.3. In fact, none of such problems can be

solved in the general case of full FOL(D). Specifically, decidability and complexity of such

reasoning tasks depend on the background knowledge and on the decision component.

Since the decision component comes with the fixed S-FEEL language and DRG structure,

we approach this problem as follows. First, we show that the DMN decision tables written

in S-FEEL, and interconnected in a DRG, can be encoded in ALCH(D). Then, we show

that all reasoning tasks defined in Section 4.3 can be reduced to (un)satisfiability of an

ALCH(D) concept w.r.t. a KB consisting of the union of the background knowledge with

the ALCH(D) formalization of the DRG. This implies that all such reasoning tasks can

be carried out in ExpTime, if the background knowledge is expressed in ALCH(D).

5.1 Encoding DRGs in ALCH(D)

We revisit the translation from DKBs to FOL(D) introduced in Section 4.2, showing that

the translation of DRGs can be reconstructed so as to obtain an ALCH(D) IKB.

Given a bridge concept C and a DRG G, we introduce a translation function ρC that

encodes M into the corresponding ALCH(D) IKB ρC(G) = 〈ΣG, TG〉, using C to provide

a context for the encoding. The signature is obtained as in Section 4.2.1. The encoding of

TG reconstructs that of Section 4.2, and, in fact, deals with input data and information

flows of the G, as well as input/output attributes, facets, and rules of decision tables

G.M.

Encoding of attributes and input data. For each decision table M ∈ G.M and each

attribute a ∈ M .I ∪M .O, encoding ρC produces the typing axiom ∃M ·a � C. The same

holds for all input data G.I. Functionality is not explicitly asserted, since ALCH(D)

features are functional by default.

Encoding of facet conditions. For each decision table M ∈ G.M and each input attribute

a ∈ M .I, encoding ρC produces a derived datatype declaration of the form

∃M ·a � ρM·a,AType(a)(M .InFacet(a))

where, given an S-FEEL condition ϕ, a facet P , and a datatype type, function ρP,type

produces an ALCH(D) concept capturing objects that have an outgoing facet of type P ,

whose range satisfies ϕ. This is defined as follows:

ρP,type(ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if ϕ = “−”

¬∃P.type[=v] if ϕ = “not(v)”

∃P.type[=v] if ϕ = “v”

∃P.type[�v] if ϕ = “� v” and � ∈ {<,>,≤,≥}
∃P.type[>v1 ∧ <v2 ] if ϕ = “(v1..v2)”

. . . (similarly for the other types of intervals)

ρP,type(ϕ1) � ρP,type(ϕ2) if ϕ = “ϕ1,ϕ2”.

The same encoding is applied by ρC to each input data P ∈ G.I with its facet

G.InFacet(P ), and, for every decision table M ∈ G.M, to each output attribute b ∈ M .O

with its range M .ORange(b).
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Example 12

Consider the length attribute of the ship clearance decision table (cf. Table 1). With

Ship as bridge concept, the typing and facet ALCH(D) formulae for length are:

∃length � Ship ∃length � ∃length.real[>0].

Encoding of rules. Consider a decision table M , and one of its rules r = 〈If,Then〉. The
encoding of If (resp., Then) constructs an ALCH(D) concept that has all features men-

tioned by the input (resp., output) attributes, restricted so as to satisfy the corresponding

input condition (resp., output value) imposed by If (resp., Then):

ρC(If) =
�

a∈M .I

ρM ·a,M .AType(a)(If(a)) ρC(Then) =
�

b∈M .O

ρM ·b,M .AType(b)(If(b)).

We combine these two encodings into a global encoding of rule r, imposing that the rule

indeed triggers only if no higher-priority rule triggers:

ρC(r) = ρC(r.If) �
�

r2∈M .R and r2≺r

¬ρC(r2.If) � ρC(r.Then).

Example 13

Consider the ship clearance decision table, referred by name Sc. In particular, consider

rule 2 of this decision table, as shown in Table 1. By assuming that this is the top-priority

rule, it is encoded in ALCH(D) as:

∃Sc·cerExp.real[>today] � ∃Sc·length.real[<260]

� ∃Sc·draft.real[<10] � ∃Sc·cap.real[<1000] � ∃Sc·enter.string[=Y].

We also have to handle the generation of default values, when no rule in M triggers. This

is captured by the following, additional axiom:

�

r∈M .R

¬ρC(r.If) �
�

b∈M .O s.t. M .ODef(b) is defined

(
∃M ·b[=M .ODef(b)]

)
.

Encoding of information flows. Let 〈P,a〉 be an information flow from input datum

P ∈ G.I to decision input attribute a ∈ M .I for some decision table M ∈ G.M, and let

〈b,a〉 be an information flow from decision output attribute b ∈ M1.O to decision input

attribute a ∈ M2.I for some M1,M2 ∈ G.M. Their ALCH(D) encoding consists of the

following facet inclusion assertions:

ρC(〈P,a〉) = P � M ·a ρC(〈b,a〉) = M1 ·b � M2 ·a.

Correctness of the encoding. Thanks to the fact that ALCH(D) can be seen as a well-

behaved fragment of FOL(D), we can directly establish that the ALCH(D) encoding of

DRGs properly reconstructs the original FOL(D) encoding.

Theorem 2

For every DRG G, and every (bridge) concept C, we have that the FOL(D) IKB τC(G)

is logically equivalent to the ALCH(D) IKB ρC(G).
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Proof

Direct by definition of the encodings τC and ρC , noting that, once the ALCH(D) IKB

ρC(M ) is represented in FOL(D) using the standard FOL(D) encoding of ALCH(D), it

becomes identical to the FOL(D) IKB τC(M ).

5.2 Reasoning over ALCH(D) DKBs

By exploiting the ALCH(D) encoding of a DRG, we now have the possibility of studying if

and how the different reasoning tasks introduced in Section 4.3 can be effectively carried

out in the case where the background knowledge is also represented as an ALCH(D)

(I)KB.

We say that an IDKB X is an ALCH(D) IDKB if its TBox X.T is an ALCH(D) TBox.

As for a DKB X, we require the same, and also that and its ABox X.A is an ALCH(D)

ABox. Given an ALCH(D) DKB X, we extend the encoding function ρX.C introduced

in Section 5.1 so as to make it applicable over the entire DKB, as follows: ρC(X) =

〈X.Σ ∪ Σ′,X.T ∪ T ′,X.A〉, where 〈Σ′, T ′〉 = ρC(X.G) (similarly for an ALCH(D) IKB).

With these notions at hand, we show the following.

Theorem 3

In the case of ALCH(D) DKBs, all DKB reasoning tasks can be reduced to standard

ALCH(D) reasoning tasks.

Proof

We show, for each DKB reasoning task, how it can be reduced to a polynomial number

of ALCH(D) concept (un)satisfiability or instance checking tests w.r.t. an ALCH(D) KB.

Compatibility with “unique hit”. We use the following algorithm, relying on ALCH(D)

satisfiability checking. In the following algorithm, the usage of ≺ is not needed for cor-

rectness, but actually matters to reduce the number of checks (being the notion of overlap

symmetric).

1 boolean compatibleWithU(IDKB X, Table M ∈ X.M) {
2 for each r1, r2 ∈ M .R such that r1 ≺ r2 {

3 if ρX.C(r1.If) � ρX.C(r2.If) is satisfiable w.r.t. ρX.C(X)
4 return false;
5 }
6 return true;
7 }

Compatibility with “any hit”. We use exactly the same algorithm used for compatibility

with “unique hit”, with the only difference that in line 2, we add r1.Then = r2.Then as

a further condition, to ensure that the output values produced by r1 and r2 coincide.

Compatibility with “priority hit”. We use the following algorithm, relying on ALCH(D)

unsatisfiability checking.

1 boolean compatibleWithP(IDKB X, Table M ∈ X.M) {
2 for each r1, r2 ∈ M .R such that r1 ≺ r2 {

3 if ¬ρX.C(r1.If) � ρX.C(r2.If) is unsatisfiable w.r.t. ρX.C(X)
4 return false;
5 }
6 return true;
7 }
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I/O relationship. We use the following algorithm, relying on ALCH(D) instance checking.

1 boolean IORelationship (DKB X, Table M ∈ X.Mout, Object o ∈ Δ,
2 Attribute b ∈ M .O, Value v ∈ M .AType(b))

{
3 return 〈o, v〉 instance of M ·b w.r.t. ρX.C(X);
4 }

Output coverage. We use the following algorithm, relying on ALCH(D) satisfiability

checking.

1 boolean CoversOutput(IDKB X, Table M ∈ X.Mout,
2 Attribute b ∈ M .O, Value v ∈ M .AType(b)) {

3 return ∃M ·b[=v] is satisfiable w.r.t. ρX.C(X);
4 }

Completeness. We use the following algorithm, relying on ALCH(D) satisfiability

checking.

1 boolean Complete(IDKB X) {

2 for each M ∈ X.G.Mout {
3 for each b ∈ M .O {

4 if
�

P∈X.G.I ∃P � ¬∃M ·b is satisfiable w.r.t. ρX.C(X)
5 return false;
6 }
7 }
8 return true;
9 }

Output determinability. We use the following algorithm, relying on ALCH(D) satisfiability

checking. Obviously, we consider templates described by ALCH(D) concepts.

1 boolean DeterminesOutput (IDKB X, ALCH(D) Concept Φ) {

2 for each M ∈ X.G.Mout {
3 for each b ∈ M .O {

4 if Φ � ¬∃M ·b is satisfiable w.r.t. ρX.C(X)
5 return false;
6 }
7 }
8 return true;
9 }

It is straightforward to check that all the presented algorithms correctly reconstruct the

corresponding FOL(D) decision problems.

Example 14

As discussed in Example 2, the ship ontology in Figure 1(c) can be formalized in

ALCH(D). Hence, the maritime security DKB of Example 5 is actually an ALCH(D)

DKB. Thanks to Theorem 3, standard ALCH(D) reasoning tasks can then be used to

carry out all the introduced reasoning tasks over such a DKB.

Thanks to Theorems 1 and 3, we obtain two additional key results. The first result

characterizes the complexity of DKB reasoning in the case of ALCH(D) DKBs.
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Corollary 1

All DKB reasoning tasks over ALCH(D) DKBs can be decided in ExpTime.

Notice that the complexity of reasoning in DKBs that employ different ontology lan-

guages to capture the background knowledge depends on the actual ontology language

of choice, considering that the encoding of DRGs brings an ALCH(D) component. In

general, since ALCH(D) datatypes come with unary predicates, our approach naturally

lends itself to be combined with OWL2 ontologies, and the ALCH(D) encoding of DRGs

can, in fact, be directly represented in OWL2.

Corollary 2

All DKB reasoning tasks over ALCH(D) DKBs can be tackled by standard OWL2 rea-

soners.

This is an important observation, since one can then resort to state-of-the-art reasoners

for OWL2 that have been developed and optimized over the years (Tsarkov and Horrocks

2006; Sirin and Parsia 2006; Shearer et al . 2008). When considering reasoning tasks that

only focus on intensional knowledge, that is, all reasoning tasks introduced in Section 4.3

with the exception of I/O relationship, it is also possible to rely on reasoners for OWL2

TBoxes that do not support datatypes. In fact, we can reconstruct the technique intro-

duced by Lutz (2002a, Theorem 2.14) to encode away unary concrete domains, so as

to compile away datatypes from IDKBs, finally obtaining a pure ALCH TBox. However,

this requires to exhaustively apply datatype reasoning during the compilation process.

Hence, it remains open whether this introduces an effective improvement over full OWL2

reasoners, which typically apply datatype reasoning lazily, only when needed.

A second open problem is to show whether DRGs can be encoded in weaker ontology

languages, so as to obtain more refined complexity bounds for the different DKB rea-

soning tasks. The main difficulty here stems from the fact that extensions of lightweight

DLs with datatypes have been so far much less investigated than their corresponding

expressive counterparts. In particular, currently known lightweight DLs with datatypes

are equipped with an ontology language that is too weak to encode DRGs (Artale et al .

2012; Savkovic and Calvanese 2012).

6 Related work

To the best of our knowledge, this work is the first approach that combines DMN DRGs

with background knowledge, building on the preliminary results obtained by Calvanese

et al. (2017) for the case of single decision tables. In addition, it is also the first approach

that considers reasoning tasks over DMN DRGs, even without considering the contribu-

tion of background knowledge. In this light, it can be considered as a natural extension

of the formalization effort carried out by Calvanese et al . (2016).

Reasoning on single decision tables has instead attracted a lot of interest in the litera-

ture, an interest recently revived by the introduction of the DMN standard. In particular,

reasoning tasks that aim at assessing completeness, consistency, and redundancy of de-

cision tables are widely recognized (CODASYL Decision Table Task Group 1982). The

literature flourishes of ad-hoc, algorithmic techniques to account for such decision prob-

lems, considering specific datatypes. In particular, one long-standing line of research
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comprises techniques to reason about decision tables whose attributes are either boolean

or enumerative (i.e., categorical) (Pawlak 1987; Hoover and Chen 1995; Zaidi and Levis

1997). Some of these techniques have been actually implemented inside well-known tools

like Prologa (Vanthienen and Dries 1994; Vanthienen et al . 1998).

The main drawback of these approaches is that they do not directly account for numer-

ical datatypes: in the presence of conditions expressing numerical intervals, they require

to restructure their corresponding rules so as to ensure that all intervals are disjoint.

Calvanese et al . (2016) introduce ad-hoc algorithmic techniques based on a geometric

interpretation of rules, and show that such techniques outperform previous approaches,

while being able to naturally handle numerical domains. The DMN component of Sig-

navio10 detects overlapping and missing rules by natively dealing with numerical data

types. However, the actual algorithms used to conduct such checks have not been dis-

closed. OpenRules11 builds instead on constraint satisfaction techniques to analyze rules

containing numerical attributes.

Differently from all these approaches, we consider here full DMN DRGs in the presence

of background knowledge. This richer setting also demands a wider and more sophisti-

cated set of reasoning tasks, going beyond completeness and consistency of single decision

tables. For such advanced reasoning tasks, we do not develop ad-hoc algorithmic tech-

niques, but instead rely on a fully automated encoding of the input specification, and of

the tasks of interest, into standard reasoning tasks for the DL ALCH(D). Efficient, state-

of-the-art reasoners have been devised for expressive DLs, such as OWL 2 (Horrocks

et al. 2006; W3C OWL Working Group 2012), that fully capture ALCH(D) (Tsarkov

and Horrocks 2006; Sirin and Parsia 2006; Shearer et al . 2008), setting the baseline for

a future experimental evaluation of the techniques presented in this paper, considering

real and synthetic data. In addition, by inspecting the proof of Theorem 3, it is easy to

see that all the presented algorithms can be easily modified so as to return the actual,

involved rules whenever a property is not satisfied.

From the knowledge representation point of view, this work touches the widely stud-

ied, and still debated, problem of integrating rules and ontologies. This problem has

been approached in different ways, depending on the expressiveness of the rule and of

the ontology languages (Drabent et al . 2009; Krisnadhi et al . 2011). On the one hand,

several proposals have been devised to integrate rules and ontologies by defining suitable

“hybrid” semantics (Motik and Rosati 2010), or by considering rules accessing ontologies

as an external knowledge component (Eiter et al . 2017). On the other hand, “controlled”

forms of rules have been integrated with ontologies by reformulating them as additional

ontological axioms (Krisnadhi et al . 2011). Our contribution belongs to the latter family,

thanks to the interesting trade-off between expressiveness and simplicity offered by the

DMN S-FEEL language.

7 Conclusions

In this work, we have provided a threefold contribution to the area of decision manage-

ment, recently revived by the introduction of the DMN OMG standard. First, we have

10 https://www.signavio.com/.
11 http://openrules.com/.
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introduced DKBs as a conceptual framework to integrate DMN complex decisions with

background knowledge, expressed as a DL knowledge base. On top of this conceptual

framework, we have then introduced key reasoning tasks to ascertain the correctness of

a DKB. Second, we have provided a logic-based formalization of DKBs and their corre-

sponding reasoning tasks, using multi-sorted FOL equipped with datatypes. Third, we

have focused our attention on the interesting case where the background knowledge is ex-

pressed using ALCH(D), an extension of the well-known DL ALC with multiple datatypes,

and a sublanguage of the standard ontology language OWL2. In this setting, we have

shown that all the aforementioned reasoning tasks are decidable in ExpTime, and lend

themselves to be carried out using standard reasoners for expressive DLs. On the way of

proving this result, we have shown that TBox and ABox reasoning for ALCH extended

with multiple datatypes stays within ExpTime, which is of independent interest.

These three contributions pave the ways toward a concrete implementation of the

presented framework and techniques. We plan to realize this implementation and to

consequently carry out an experimental evaluation by considering not only full DKBs,

but also DKBs consisting of a single decision table, as well as complex decisions without

background knowledge, so as to better identify the sources of complexity, and to see how

well a general approach of this form compares with the ad-hoc algorithms developed in

the literature. In spite of the ExpTime upper bound for reasoning on DKBs, we believe

that an effective, scalable implementation is actually at reach, thanks to the availability

of solid, optimized reasoners for OWL2.

In addition to the implementation effort, we are interested in refining our complexity

analysis, in particular aiming at tighter bounds on the complexity caused by the decision

component. Specifically, we plan to systematically study how lightweight DLs equipped

with datatypes (Savkovic and Calvanese 2012; Artale et al . 2012), for which currently

the ontology language is too weak to capture complex DMN decision tables, can be

extended, focusing on their ability of dealing with datatypes and features. We would like

to single out more precisely the complexity brought in by a DMN complex decision table,

with the aim of capturing more complex forms of tables, without compromising the low

computational complexity of reasoning in lightweight DLs (AC0 in the size of the data).

As a consequence, this would pave the way toward lightweight DKBs.
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