
Semantic DMN: Formalizing Decision Models
with Domain Knowledge

Diego Calvanese1(B), Marlon Dumas2, Fabrizio M. Maggi2,
and Marco Montali1

1 Free University of Bozen-Bolzano, Bolzano, Italy
{calvanese,montali}@inf.unibz.it
2 University of Tartu, Tartu, Estonia
{marlon.dumas,f.m.maggi}@uu.ee

Abstract. The Decision Model and Notation (DMN) is a recent OMG
standard for the elicitation and representation of decision models. DMN
builds on the notion of decision table, which consists of columns repre-
senting the inputs and outputs of a decision, and rows denoting rules.
DMN models work under the assumption of complete information, and
do not support integration with background domain knowledge. In this
paper, we overcome these issues, by proposing decision knowledge bases
(DKBs), where decisions are modeled in DMN, and domain knowledge is
captured by means of first-order logic with datatypes. We provide a logic-
based semantics for such an integration, and formalize how the different
DMN reasoning tasks introduced in the literature can be lifted to DKBs.
We then consider the case where background knowledge is expressed as
an ALC description logic ontology equipped with datatypes, and show
that in this setting, all reasoning tasks can be actually decided in Exp-
Time. We discuss the effectiveness of our framework on a case study in
maritime security.

1 Introduction

The Decision Model and Notation (DMN) [11] is a recent OMG standard for the
elicitation and representation of decision models, and for managing their inter-
connection with business processes, separating decision and control-flow logic
[4]. The standard is already receiving widespread adoption in the industry, and
an increasing number of tools and techniques are being developed to assist users
in modeling, checking, and applying DMN models. DMN builds on the notion
of a decision table (cf. [13]), which consists of columns representing the inputs
and outputs of a decision, and rows denoting rules. Each rule is a conjunction
of basic expressions, which in our case are captured in a language known as
S-FEEL, which is also part of the DMN standard itself.

According to the standard, DMN models work under the assumption of
complete information, and do not support integration with background domain
knowledge. In this paper, we overcome this limitation, by proposing a com-
bined framework, which we call Semantic DMN, that is based on decision
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Table 1. Ontology of cargo ships and their features.

Ship type Short name Length (m) Draft (m) Capacity (TEU)

Converted Cargo Vessel CCV 135 0–9 500

Converted Tanker CT 200 0–9 800

Cellular Containership CC 215 10 1000–2500

Small Panamax Class SPC 250 11–12 3000

Large Panamax Class LPC 290 11–12 4000

Post Panamax PP 275–305 11–13 4000–5000

Post Panamax Plus PPP 335 13–14 5000–8000

New Panamax NP 397 15.5 11000–14500

knowledge bases (DKBs). In a DKB, decisions are modeled in DMN, and
background domain knowledge1 is captured by means of an ontology expressed
in multi-sorted first-order logic. The different sorts are used to seamlessly inte-
grate abstract domain objects with the data values belonging to the concrete
domains used in the DMN rules (such as strings, integers, and reals).

For the enriched setting of Semantic DMN, we provide a logic-based seman-
tics, and we formalize how the different DMN reasoning tasks that have been
introduced in the literature can be lifted to DKBs. We then approach the prob-
lem of actually reasoning on DKBs, and of devising effective algorithms for the
different reasoning tasks captured by our formalization. For this purpose, we need
to put restrictions on how to express background knowledge, and we consider
the significant case where such knowledge is formulated in terms of an ontology
expressed in a description logic (DL) [3] equipped with datatypes [2,9,10,14].
In such a DL, besides the domain of abstract objects, one can refer to concrete
domains of data values (such as strings, integers, and reals) accessed through
functional relations, and one can express conditions on such values by making
use of unary predicates2 over the concrete domains. Specifically, we prove that
for the case where the DL ontology is epressed in ALC(D), i.e., ALC [3] extended
with multiple datatypes, all reasoning tasks can be actually decided in ExpTime.

We show the effectiveness of our framework by considering a case study in
maritime security, arguing that our approach facilitates modularity and separa-
tion of concerns.

1 We remark that our notion of domain knowledge is different from that of business
knowledge model in DMN. The latter is a reusable decision logic, with a purely
operational meaning.

2 The restriction to unary predicates only, is what distinguishes DLs with datatypes
from the richer setting of DLs with concrete domains, where in general arbitrary
predicates over the datatype/concrete domain can be specified.
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2 Case Study

Our case study is inspired by the international Ship and Port Facility Security
Code3, used by port authories to determine whether a ship can enter a Dutch port.

2.1 Domain Description

As shown in Table 1, there are several types of cargo ships that may enter a
port, with different characteristics: (i) Length of the ship (in m); (ii) Draft size
(in m); (iii) Capacity of the ship (in TEU , for Twenty-foot Equivalent Units).
Such characteristics, together with other data about the ships, allow the port
managers to decide whether to grant entrance permission to an incoming ship
or not. More specifically, a ship can enter the port only if it complies with the
requirements of the inspection, which is the case if it is equipped with a valid
certificate of registry, and it meets the safety requirements.

The ship’s certificate is valid if its expiration date is after the current date.
The rules for establishing whether a ship meets the safety requirements depend
on its characteristics, and the amount of its residual cargo. In particular, small
ships (with length ≤260 m and draft ≤10 m) may enter only if their capacity is
≤1000 TEU. Ships with a small length (≤260 m), medium draft >10 and ≤12 m,
and capacity ≤4000 TEU, may enter only if cargo residuals have ≤0.75 mg dry
weight per cm2. Medium-sized ships (with length >260 m and <320 m, and draft
>10 m and ≤13 m), and with a cargo capacity <6000 TEU, may enter only if
their residuals have ≤0.5 mg dry weight per cm2. Big ships with length between
320 m and 400 m, draft >13 m, and capacity >4000 TEU, may enter only if their
carried residuals have ≤0.25 mg dry weight per cm2.

2.2 Challenges

The first challenge posed by this case study concerns modeling, representation,
management, and actual application of the decision rules that relate the numeri-
cal inputs capturing the characteristics of ships, to the boolean, clearance output.
All these issues are tackled by the DMN standard. In particular, the standard
defines clear guidelines to encode and graphically represent the input/output
attributes and the rules of interest in the form of a DMN decision table. This
table, in turn, may be used to document the decision logic for clearance deter-
mination, and to match the data of a ship with the modeled rules, computing
the corresponding output(s), i.e., whether the ship can enter or not. this latter
mechanism is backed up by a formal semantics in predicate logic [5].

In addition, DMN allows the modeler to decorate the decision with meta-
information: completeness indicates that rules cover all possible input config-
urations, while the hit policy describes how input may match with the rules.
Different hit policies are used to declare whether rules are non-overlapping, or
may instead simultaneously match with the same input, then also specifying how
to calculate the final output.

3 https://dmcommunity.wordpress.com/challenge/challenge-march-2016/.

https://dmcommunity.wordpress.com/challenge/challenge-march-2016/
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A crucial aspect is that such meta-information is declared in DMN without
actually checking whether it suitably captures how the decision logic behaves.
Dedicated algorithms have been thus developed to accomplish this task (see, e.g.,
[5,12,15–17]). There are, however, a number of additional crucial challenges that
cannot be tackled by capturing the decision logic alone. Let us imagine how a
decision table for ship clearance could actually be employed in an actual Dutch
port, when a ship is approaching the port. How would the port authority know
about all ship characteristics needed to take the decision? An immediate, but
quite inconvenient, solution would be to measure all required characteristics on
a per ship basis, then applying the decision table directly so as to compute
the clearance outcome. A more pragmatic and feasible approach is to exploit
the domain knowledge captured in Table 1, by acquiring from the ship only
the information regarding ship type and cargo residuals, while using Table 1
to infer from the ship type the information about length, draft, and capacity.
It is important to stress that the possibility of interconnecting multiple DMN
tables (so that the output of one table is used as input of another table), also
supported by the standard, is not applicable here: Table 1 is not a decision table,
since it is not always possible to univocally compute the ship characteristics from
the type (see, e.g., the case of Post Panamax ship type). In fact, the domain
knowledge captured by Table 1 is a set of constraints, implicitly discriminating
between allowed combinations of ship types and characteristics, from those that
are impossible. In this light, Table 1 captures a domain ontology.

The interplay between such a domain ontology and the ship clearance decision
model is far from trivial. On the one hand, it requires to lift from an approach
working under complete information to one that works under incomplete infor-
mation, and where the background knowledge is used to complement the known
inputs, before the corresponding outputs are inferred. On the other hand, it does
not only impact how decision table outputs are computed, but it also changes
the interpretation of the completeness and hit policy indicators: they cannot be
checked anymore by analyzing the decision table in isolation (as in [5]), but in
the context of the domain knowledge.

In particular, by elaborating on the rules above, one would understand that
rules are non-overlapping regardless of the domain knowledge, since their input
conditions are mutually exclusive. However, one would also conclude, by mistake,
that they are not complete, since, e.g., they do not cover the case of a long
ship (≥320 m) with small draft (≤10 m). However, under the assumption that
all possible ship types are those listed in Table 1, one would know that such a
combination of parameters is impossible and, more in general, that the set of
rules is indeed complete w.r.t. the domain knowledge.

3 Sources of Decision Knowledge

We now generalize the discussion in Sect. 2 by introducing the two main sources
of decision knowledge: background knowledge expressed using a logical theory
enriched with datatypes, and decision logic captured in DMN.
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3.1 Logics with Datatypes

To capture background knowledge, we resort to a variant of multi-sorted first-
order logic (see, e.g., [6]), which we call FOL(D), where one sort Δ denotes a
domain of abstract objects, while the remaining sorts represent a finite collection
D of datatypes. We consider a countably infinite set Σ of predicates, where each
p ∈ Σ comes with an arity n, and a signature Sigp : {1, . . . , n} → D � {Δ},
mapping each position of p to one of the sorts. FOL(D) contains unary and binary
predicates only. A unary predicate N with SigN (1) = Δ is called a concept, a
binary predicates P with SigP (1) = SigP (2) = Δ a role, and a binary predicate
F with SigF (1) = Δ and SigF (2) ∈ D a feature.

Example 1. The cargo ship ontology in Table 1 should be interpreted as follows:
each entry applies to a ship, and expresses how the specific ship type constrains
the other features of the ship, namely length, draft, and capacity. Thus the first
table entry is encoded in FOL(D) as

∀s.CCV(s) → Ship(s) ∧ ∀l.(length(s, l) → l = 135) ∧
∀d.(draft(s, d) → d ≥ 0 ∧ d ≤ 9) ∧ ∀c.(capacity(s, c) → c = 500),

where CCV and Ship are concepts, while length, draft, and capacity are features
whose second component is of sort real. �

We consider also well-behaved fragments of FOL(D) that are captured by
description logics (DLs) extended with datatypes. For details on DLs, we refer
to [3], and for a survey of DLs equipped with datatypes (also called, in fact,
concrete domain), to [9]. Here we adopt the DL ALC(D), a slight extension of
the DL ALC(D) [9] with multiple datatypes. As for datatypes, we follow [1],
which is based on the OWL 2 datatype map [10, Sect. 4], but we adopt some
simplifications that suffice for our purposes.

A (primitive) datatype D is a pair 〈ΔD, ΓD〉, where ΔD is the domain of
values4 of D, and ΓD is a (possibly infinite) set of facets, denoting unary predicate
symbols. Each facet S ∈ ΓD comes with a set SD ⊆ ΔD that rigidly defines the
semantics of S as a subset of ΔD. Given a primitive datatype D, datatypes E
derived from D are defined according to the following syntax

E −→ D | E1 ∪ E2 | E1 ∩ E2 | E1 \ E2 | {d1, . . . , dm} | D[S]

where S is a facet for D, and d1, . . . , dm are datatype values in ΔD. The domain
of a derived datatype is obtained for ∪, ∩, and \, by applying the corresponding
set operator to the domains of the component datatypes, for {d1, . . . , dm} as the
set {d1, . . . , dm}, and for D[S] as SD. In the remainder of the paper, we consider
the (primitive) datatypes present in the S-FEEL language of the DMN standard:
strings equipped with equality, and numerical datatypes, i.e., naturals, integers,

4 We blur the distinction between value space and lexical space of OWL 2 datatypes,
and consider the datatype domain elements as elements of the lexical space inter-
preted as themselves.
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rationals, and reals equipped with their usual comparison operators (which, for
simplicity, we all illustrate using the same set of standard symbols =, <, ≤,
>, ≥). We denote this core set of datatypes as D. Other S-FEEL datatypes,
such as that of datetime, are syntactic sugar on top of D.

A facet for one of these datatypes D is specified using a binary comparison
predicate ≈, together with a constraining value v, and is denoted as ≈v. E.g.,
using the facet ≤9 of the primitive datatype real, we can define the derived
datatype real[≤9], whose value domain are the real numbers that are ≤ 9. In the
following, we abbreviate D[S1] ∩ D[S2] as D[S1∧S2], D[S1] ∪ D[S2] as D[S1∨S2],
and D[S1] \ D[S2] as D[S1∧¬S2], where S1 and S2 are either facets or their
combinations with boolean/set operators.

Let Δ be a countably infinite universe of objects. A (DL) knowledge base
with datatypes (KB hereafter) is a tuple 〈Σ,T,A〉, where Σ is the KB signature,
T is the TBox (capturing the intensional knowledge of the domain of interest),
and A is the ABox (capturing extensional knowledge). When the focus is on
the intensional knowledge only, we omit the ABox, and call the pair 〈Σ,T 〉
intensional KB (IKB). The form of T and A depends on the specific DL of
interest. We review each component next.

Signature. Σ = ΣC �ΣR �ΣF consists of: (i) a finite set ΣC of concept names,
i.e., unary predicates interpreted over Δ, (ii) a finite set ΣR of role names,
binary predicates connecting pairs of objects in Δ; and (iii) a finite set ΣF of
features, i.e., binary predicates connecting objects to corresponding typed values.
In particular, each feature F comes with its datatype DF ∈ D.

TBox. T is a finite set of universal FO axioms based on predicates in Σ, and
on predicates and values of datatypes in D. To capture such axioms, we employ
the usual DL syntax, using the boolean connectives �, � and ¬ for intersection,
union and complement, and ∃R.C for qualified existential restriction. In the case
of ALC(D), such axioms are built from ALC(D) concepts, inductively defined as
follows:

• An atomic concept N ∈ ΣC is a concept;
• � and ⊥ are concepts, respectively denoting the top and empty concepts;
• given a concept C, its complement ¬C is a concept;
• given two concepts C and D, their conjunction C � D is a concept;
• given a role R ∈ ΣR and a concept C, the qualified existential restriction

∃R.C is a concept;
• given a feature F ∈ ΣF , and a datatype r that is either DF or a datatype

derived from DF , the feature restriction ∃F. r is a concept.

Intuitively, ∃F. r allows the modeler to single out those objects having an F -
feature that satisfies condition r, interpreted in accordance with the underlying
datatype. We adopt the usual abbreviations C � D for ¬(¬C � ¬D), and ∀R.C
for ¬∃R.¬C.

An ALC(D) TBox is a finite set of inclusion assertions of the form C � D,
where C and D are ALC(D) concepts. Intuitively, such assertions model that
whenever an individual is an instance of C, then it is also an instance of D.
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Example 2. The ALC(D) encoding of the first entry in Table 1 is:

CCV � Ship � ∀length. real[=135] � ∀draft. real[≥0 ∧ ≤9] � ∀capacity. real[=500]

All other table entries can be formalized in a similar way. The entire table is then
captured by the union of all so-obtained inclusion assertions, plus an assertion
expressing that the types mentioned in Table 1 exhaustively cover all possible
ship types:

Ship � CCV � CT � CC � SPC � LPC � PP � PPP � NP �

ABox. The ABox A is a finite set of assertions, or facts, of the form N(d),
P (d, d′), or F (d, v), with N a concept name, P a role name, F a feature, d, d′ ∈ Δ,
and v ∈ ΔDF

.

Semantics. The semantics of an ALC(D) KB K = 〈Σ,T,A〉 relies, as usual, on
first-order interpretations I = 〈Δ, ·I〉 over the fixed domain Δ, where ·I is an
interpretation function mapping each atomic concept N in T to a set NI ⊆ Δ,
� to Δ, ⊥ to ∅, each role R to a relation RI ⊆ Δ × Δ, and each feature F to a
relation F I ⊆ Δ × ΔDF

. Complex concepts are interpreted as follows:

• (¬C)I = Δ \ CI ;
• (C � D)I = CI ∩ DI ;
• (∃R.C)I = {x ∈ Δ | ∃y ∈ Δ s.t. 〈x, y〉 ∈ RI and y ∈ CI};
• (∃F. r)I = {x ∈ Δ | ∃v ∈ ΔDF

s.t. 〈x, v〉 ∈ F I and r(v) holds}.

When an interpretation I satisfies an assertion is defined as follows:

C � D if CI ⊆ DI ; P (d1, d2) if 〈d1, d2〉 ∈ P I ;
N(d) if d ∈ NI ; F (d, v) if 〈d, v〉 ∈ F I .

Finally, we say that I is a model of T if it satisfies all inclusion assertions of T ,
and a model of K if it satisfies all assertions of T and A.

Reasoning in ALC(D). Reasoning in ALC with a single concrete domain is
decidable in ExpTime (and hence ExpTime-complete) under the assumption
that (i) the logic allows for unary concrete domain predicates only, (ii) the
concrete domain is admissible [7,8], and (iii) checking the satisfiability of con-
junctions of predicates of the datatype is decidable in ExpTime. This follows
from a slightly more general result shown in [9, Sect. 2.4.1]. Admissibility requires
that the set of predicate names is closed under negation and that it contains a
predicate name denoting the entire domain. Hence, reasoning in ALC extended
with one of the concrete domains used in DMN (e.g., integers or reals, with
facets based on comparison predicates together with a constraining value), is
ExpTime-complete. The variant of DL with concrete domains that we consider
here, ALC(D), makes only use of unary concrete domain (i.e., datatype) pred-
icates, but allows for multiple datatypes. Hence, the above decidability results
do not directly apply. However, exploiting the absence of non-unary datatype
predicates, and considering that each feature is typed with a specified datatype,
it is easy to see that the various datatypes essentially do not interact with each
other, and that therefore the complexity of reasoning is not affected.
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Theorem 1. Checking satisfiability of an ALC(D) KB is decidable in Exp-
Time (and so are the problems of deciding instance checking and subsumption
w.r.t. a KB).

Rich KBs. We also consider rich KBs where axioms are specified in full FOL(D)
(and the signature is that of a FOL(D) theory). We call such KBs FOL(D) KBs.

3.2 DMN Decision Tables

To capture the business logic of a complex decision, we rely on the DMN standard
and its S-FEEL language [11]. Specifically, we resort to [5] for a formal definition
of the notion of decision as specified in the standard. We do not consider priorities
here. An S-FEEL DMN decision table M (called simply decision table in the
following) is a tuple 〈Name, I, O,AType,AFacet, R,C,H〉, where:

• Name is the table name.
• I and O are disjoint, finite sets of input and output attributes.
• AType : I � O → D is a typing function that associates each input/output

attribute to its corresponding data type.
• AFacet is a facet function that associates each input/output attribute a ∈ I�O

to an S-FEEL condition over AType(a) (see below).
• R is a finite set {r1, . . . , rp} of rules. Each rule rk is a pair 〈Ifk,Thenk〉, where
Ifk is an input entry function that associates each input attribute ain ∈ I to
an S-FEEL condition over AType(ain), and Thenk is an output entry function
that associates each output attribute aout ∈ O to an object in AType(aout).

• C ∈ {c, i} is the completeness indicator - c (resp., i) stands for (in)complete
table.

• H is the (single) hit indicator defining the policy for the rule application. Since
we do not focus on priorities, the interesting policies are: (i) u for unique hit
policy, (ii) a for any hit policy.

In the following, we use a dot notation to single out an element of a decision
table. For example, M.I denotes the set of input attributes for decision M.

An (S-FEEL) condition Q over type D is inductively defined as follows:

• “−” is an S-FEEL condition representing any value (i.e., it evaluates to true
for every object in ΔD);

• given a constant v, expressions “v” and “not(v)” are S-FEEL conditions
respectively denoting that the value shall (not) match with v.

• if D is a numerical datatype, given two numbers v1, v2 ∈ ΔD, the interval
expressions “[v1, v2]”, “[v1, v2)”, “(v1, v2]”, and “(v1, v2)” are S-FEEL condi-
tions (interpeted in the usual, mathematical way);

• given two S-FEEL conditions Q1 and Q2, “Q1,Q2” is an S-FEEL condition
representing their disjunction (i.e., it evaluates to true for a value v ∈ ΔD if
either Q1 or Q2 evaluates to true for v).
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Table 2. Decision table for determining vessel clearance in Dutch ports; symbol today
is a shortcut for the milliseconds representing time 00:00:00 of the current date.

Vessel Clearance
C U Cer. Exp. Length Draft Capacity Cargo Enter

(date) (m) (m) (TEU) (mg/cm2)
≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 Y,N

1 ≤ today − − − − N
2 > today <260 <10 <1000 − Y
3 > today <260 <10 ≥1000 − N
4 > today <260 [10,12] <4000 ≤0.75 Y
5 > today <260 [10,12] <4000 >0.75 N
6 > today [260,320) (10,13] <6000 ≤0.5 Y
7 > today [260,320) (10,13] <6000 >0.5 N
8 > today [320,400) ≥13 >4000 ≤0.25 Y
9 > today [320,400) ≥13 >4000 >0.25 N

Example 3. We use our case study to illustrate how a complex decision can be
captured in DMN. Table 2 depicts the decision table for ship clearance, formal-
izing Sect. 2.1. The first two rows (below the table title) indicate the table meta-
information. In particular, the leftmost cell indicates that the table is meant to
be complete, and that rules are declared to not overlap.5 Blue-colored cells (i.e.,
all other cells but the rightmost one), together with the cells below, respectively
model the input attributes used to determine ship clearance, and the facets over
their corresponding datatypes. In particular, the input attributes are: (i) the
certificate expiration date, (ii) the length, (iii) the size, (iv) the capacity, and
(v) the amount of cargo residuals of a ship. Such attributes are nonnegative real
numbers; this is captured by typing them as reals, adding restriction “≥ 0” as
facet. The rightmost, red cell represents the output attribute, i.e., whether the
ship under scrutiny may enter the port. This is modeled by typing the output
attribute as string, allowing only values Y and N. Every other row models a
rule. The intuitive interpretation of such rules relies on the usual “if . . . then
. . . ” pattern. For example, the first rule states that if the certificate of the ship
is expired, then the ship cannot enter the port (regardless of the other input
attributes). The second rule, instead, states that if the ship has a valid certifi-
cate, a length shorter than 260 m, a draft smaller than 10 m, a capacity smaller
than 1000 TEU, then the ship is allowed to enter the port (regardless of the
cargo residuals it carries). Other rules are interpreted similarly. �

4 Semantic Decision Models

We now combine the two knowledge sources discussed in Sect. 3.1, namely
FOL(D) knowledge bases and DMN decision tables, into an integrated decision
knowledge base (DKB) that empowers DMN with semantics.
5 Recall that such indicators are provided by the user, and may not reflect the actual

table content.
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4.1 Decision Knowledge Bases

The intuition behind our proposal for integration is to consider decision tables as
a sort of enhancement of a KB describing a domain of interest. In this respect, a
decision table M is linked to a specific concept. The idea is that given an object
o of the specified type, M inspects all features of o that correspond to its input
attributes M.I, matching their values against the decision rules. Depending on
which rule(s) match, M then dictates which are the values to which o must
be connected via those features that correspond to the output attributes M.O.
Hence, the KB and the decision table “interact” on (some of) the input attributes
of the decision, while the output attributes exclusively belong to the decision
table, which is in fact used to infer new knowledge about the domain.

Formally, a decision knowledge base over datatypes D (D-DKB, or DKB for
short) is a tuple 〈Σ,T,M, C,A〉, where:

• T is a FOL(D) IKB with signature Σ.
• M is a decision table that satisfies the following two typing conditions:

(output uniqueness) M.O ∩ Σ = ∅;
(input type compatibility) for every binary predicate P ∈ Σ whose name

appears in M.I, their types are compatible, i.e., M.AType(P ) = SigP (2).
• C ∈ ΣC is a bridge concept, that is, a concept from Σ that links T with M.
• A is an ABox over the extended signature Σ ∪ M.I.

When the focus is on the intensional decision knowledge only, we omit the ABox,
and call the tuple 〈Σ,T,M, C〉 intensional DKB (IDKB).

Example 4. The combination of Tables 1 and 2 using “ship” as bridge concept
gives rise to a DKB for the ship clearance domain. On the one hand, Table 1 intro-
duces different types of ships, which can be modeled as subtype concepts of the
generic concept of “ship”, together with a set of axioms constraining the length,
draft, and capacity features depending on the specific subtype (cf. Example 1).
On the other hand, Table 2 extends the signature of Table 1 with three additional
features for ships, namely certificate expiration and cargo, as well as the indication
of whether a ship can enter a port or not. This latter feature is the output of the
decision, and is in fact inferred by applying the ship clearance decision table in the
context of a specific port. �

4.2 Formalizing DKBs

From the formal point of view, the integration between a KB and a decision table
is obtained by encoding the latter into FOL(D), consequently enriching the KB
with additional axioms that capture its intended semantics. The purpose of this
section is to provide such an encoding. To this end, we use the predicate logic-
based formalization of DMN introduced in [5] as a starting point. However, we
cannot simply rely on it, since it does not interpret input and output attributes
as features of a certain type of object, but directly encodes decisions as for-
mulae relating tuples of input values to corresponding tuples of output values.
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This “objectification” is essential in our setting: it is the basis for the integration
between the two sources of knowledge.

Technically, we introduce a translation function τ that transforms a DKB
X = 〈Σ,T,M, C,A〉 into a corresponding FOL(D) KB τ(X ) = 〈Σ′, T ′, A〉 (or
an IDKB X = 〈Σ,T,M, C〉 into a corresponding FOL(D) IKB τ(X )) as follows.
Signature Σ′ = Σ∪Σi

M∪Σo
M is the signature obtained from the original DKB by

incorporating a set Σi
M = {P i/2 | P i ∈ M.I} of binary predicates that account

for the input attributes of the table, and a set Σo
M = {P o,k/2 | P o ∈ M.O, k ∈

{1, . . . , |M.R|}} of predicates that account for the output attributes. Specifically,
each input attribute becomes a binary predicate with the same name, while each
output attribute gives rise to a series of corresponding binary predicates, one
per rule in the table. In this way, an output value retains information about its
provenance, i.e., which rule was applied to produce it. All so-generated predicates
have first component typed with Δ, and second component typed according to
the type assigned by M to their corresponding attribute.

TBox T ′ = T ∪ τC(M) extends the original axioms in T with a set of addi-
tional axioms that encode M into FOL(D), relativizing the encoding to the
bridge concept C.

The encoding τC(M) of decision table M consists of the union of formulae
obtained by encoding: (i) input/output attributes of M; (ii) the facet conditions
attached to such attributes; (iii) rules in M.

In the following, given a predicate P ∈ Σi
M ∪ Σo

M, we denote by attr(P ) the
attribute in M.I ∪ M.O from which P has been obtained. In addition, given
m ∈ {1, . . . , |M.R|}, we denote by Σo

M|m = {P o,k | P o,k ∈ Σo
M, k = m} the

subset of Σo
M containing only the predicates associated to index m.

Encoding of attributes. For each predicate P ∈ Σi
M ∪ Σo

M, function τC

produces two formulae: (i) a typing formula ∀x, y.P (x, y) → C(x), declaring that
the domain of the attribute is the bridge concept; (ii) a functionality formula
∀x, y, z.P (x, y) ∧ P (x, z) → x = z, declaring that every object of the bridge
concept cannot be connected to more than one value through P . If attr(P ) is
an input attribute, functionality guarantees that the application of the decision
table is unambiguous. If attr(P ) is an output attribute, functionality simply
captures that there is a single value present in an output cell of the decision
table. In general, multiple outputs for the same column may in fact be obtained
when applying a decision, but if so, they would be generated by different rules.

Encoding of facet conditions. For each attribute predicate P ∈ Σi
M ∪ Σo

M,
function τC produces the facet formula imposing that the range of the predi-
cate must satisfy the restrictions imposed by the S-FEEL condition attached to
attribute attr(P ):

∀x, y.P (x, y) → τy(M.AFacet(attr(P ))),

where, given an S-FEEL condition Q, function τx(Q) builds a unary FOL(D)
formula that encodes the application of Q to x. This is defined as follows:
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τx(Q) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if Q = “−”

x �= v if Q = “not(v)”

x = v if Q = “v”

x ≈ v if Q = “≈ v” and ≈ ∈ {<, >, ≤, ≥}
x > v1 ∧ x < v2 if Q = “(v1..v2)”

. . . (similarly for the other types of intervals)

τx(Q1) ∨ τx(Q2) if Q = “Q1,Q2”

Example 5. Consider the length attribute in Table 2. Assuming that Ship acts
as bridge concept, its typing and facet FOL(D) formulae are:

∀x, y.length(x, y) → Ship(x). ∀x, y.length(x, y) → y ≥ 0. �

Encoding of rules. Each rule is translated into a formula expressing that
whenever an object belonging to the bridge concept is related, via predicates
accounting for the input attributes, to values that satisfy the S-FEEL conditions
associated by the rule to such attributes, then the same object must be related,
via predicates accounting for the output attributes, to the values associated by
the rule to such attributes. Formally, fix an ordering over the rules M.R. For
every m ∈ {1, . . . , |M.R|}, given the m-rule rm = 〈If,Then〉 ∈ R, function τC

produces:

∀x,y.
∧

P i
j ∈Σi

M

(
P i

j (x, yj) ∧ τyj
(
attr(If(P i

j ))
))→

∧

P
o,m
k

∈Σo
M|m

(
∃zk.P o,m

k ∧ τzk
(
Then(attr(P o,m

k ))
))

Example 6. Rule 2 in Table 2 is encoded in FOL(D) as:

∀x, e, l, d, c. exp(x, e) ∧ e > today ∧ length(x, l) ∧ l < 260 ∧
draft(x, d) ∧ d < 10 ∧ cap(x, c) ∧ c < 1000 → ∃o.enter2(x, o) ∧ o = Y.

where enter2 is obtained from output attribute enter in the context of
Rule 2. �

We close this section by arguing that our encoding can be seen as a sort of
“objectification” of the encoding in [5], where a tuple of values is now reified
into an explicit object, together with corresponding predicates pointing to the
different tuple components.

4.3 Reasoning Tasks

We formally revisit the main reasoning tasks introduced in [5] for DMN, in the
presence of background knowledge. Such reasoning tasks aim at understanding
whether the metadata attached to a DMN decision to indicate completeness
and hit policies, indeed reflect the semantics of the DKB of interest. In the
following, we fix a DKB X = 〈Σ,T,M, C,A〉, and denote by X = 〈Σ,T,M, C〉
its corresponding IDKB.
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I/O relationship. The first and most fundamental reasoning task is to check
whether the DKB induces a certain input/output relationship over a given
object. The I/O relationship problem for DKBs is defined as follows:

Input: (i) DKB X , (ii) object c ∈ Δ of type C, (iii) output attribute P o ∈ M.O,
(iv) value v ∈ M.AType(P o).

Question: Is it the case that X assigns output v for attribute P o to object c?
Formally, this amounts to check whether fact P o,k(c, v) is implied for some
rule k, i.e., whether: τ(X ) |= ∨

P o,k∈Σo
M

P o,k(c, v).

Table completeness. Completeness is declared by setting M.C = c, and indi-
cates that the rules in M cover all possible configurations for the input values.
The table completeness problem is then defined as follows:

Input: IDKB X .
Question: Is it the case that at least one rule of M is guaranteed to trigger?

Formally:

τ(X ) |= ∀x,y.
∨

〈If,Then〉∈M.R

∧

P i
j ∈Σi

M

(
P i

j (x, yj) → τyj (If(attr(P i
j )))

)
?

Correctness of unique hit. Unique hit is declared by setting M.H = u, and
indicates that at most one rule of M may trigger on a given input object. The
correctness of unique hit problem is hence defined as follows:

Input: IDKB X .
Question: Is it the case that rules in M do not overlap? Formally: is it the case

that, for every pair 〈If1,Then1〉 and 〈If2,Then2〉 of rules in M.R,

τ(X ) |= ∀x,y.
∨

P i
j ∈M.I

(
P i

j (x, yj) → ¬( ∧

k∈{1,2}
τyj (Ifk(attr(P i

j )))
))

?

Correctness of any hit. Any hit is declared by setting M.H = a, and states
that whenever multiple rules may simultaneously trigger, they need to agree on
the produced output. In this light, checking whether this policy is correct can
be directly reduced to the case of unique hit, but considering only those pairs of
rules that differ in output.

DMN reasoning tasks. We conclude by pointing out that, in the case where
background knowledge is absent, i.e., T = ∅, the different reasoning tasks reduce
to the case of pure DMN (as defined in [5]). The reduction is direct for table
completeness, and also for checking correctness of unique/any hit. Checking I/O
relationship is obtained instead by fixing A to contain exactly the following facts:
(i) a fact C(c) where c is an arbitrary object from Δ; (ii) a set of facts of the
form {P i

j (c, vj) | P i
j ∈ M.I}, denoting the assignment of input attributes for c

to the corresponding values of interest.
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5 Reasoning on Decision Knowledge Bases

While the translation from DKBs to FOL(D) presented in Sect. 4.2 provides the
logic-based semantics of DKBs, it does not give any insight on how to actually
approach the different reasoning tasks of Sect. 4.3. Obviously, decidability and
complexity of such reasoning tasks depend on the background knowledge and on
the decision component. Since the decision component comes with the fixed S-
FEEL language, we approach this problem as follows. First, we show that DMN
decision tables based on S-FEEL can be encoded in ALC(D). Then, we show
that all reasoning tasks defined in Sect. 4.3 can be reduced to (un)satisfiability
of an ALC(D) concept w.r.t. a KB consisting of the union of the background
knowledge with the ALC(D) formalization of the decision table. We consequently
obtain that such satisfiability checks can be carried out in ExpTime, whenever
the background knowledge is expressed in ALC(D).

5.1 Encoding Decision Tables in ALC(D)

We revisit the translation from DKBs to FOL(D) introduced in Sect. 4.2, show-
ing that the translation of decision tables can be reformulated so as to obtain an
ALC(D) IKB. Given a bridge concept C and a decision table M, we introduce
a translation function ρC that encodes M into the corresponding ALC(D) IKB
ρC(M) = 〈ΣM, TM〉, using C to provide a context for the encoding. Specifically,
the signature of the target IKB is simply obtained from the bridge concept and
the input/output attributes of M, adopting exactly the same strategy followed
for the encoding into FOL(D): input attributes become binary predicates, and
output attributes become binary predicates relativized w.r.t. the different rules
present in M. In formulae, ΣM = C ∪ Σi

M ∪ Σo
M. The encoding of TM recon-

structs that of Sect. 4.2, and in fact deals with: (i) input/output attributes of
M; (ii) the facet conditions attached to such attributes; (iii) rules in M.

Encoding of attributes. For each attribute P ∈ Σi
M ∪ Σo

M, function ρC

produces the typing axiom ∃P � C. Note that functionality is not explicitly
asserted, since ALC(D) features are functional by default.

Encoding of facet conditions. For each attribute P ∈ Σi
M ∪ Σo

M,
function ρC produces a derived datatype declaration of the form: C �
ρP (M.AFacet(attr(P ))), where, given an S-FEEL condition Q, and assuming
that M.AType = type, ρP (Q) builds an ALC(D) concept application of Q to x.
This is defined as follows:

ρP (Q) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if Q = “−”

¬∃P.type[=v] if Q = “not(v)”

∀P.type[=v] if Q = “v”

∀P.type[COPv] if Q = “COP v” and COP ∈ {<, >, ≤, ≥}
∀P.type[>v1 ∧ <v2 ] if Q = “(v1..v2)”

. . . (similarly for the other types of intervals)

ρP (Q1)  ρP (Q2) if Q = “Q1,Q2”
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Example 7. Consider the length attribute in Table 2. Assuming that Ship acts
as bridge concept, its typing and facet FOL(D) formulae are ∃length � Ship
and Ship � ∀length.real[>0]. �

Encoding of rules. Fix an ordering over the rules M.R. For every m ∈
{1, . . . , |M.R|}, given the m-rule rm = 〈If,Then〉 ∈ R, function ρC produces
an inclusion assertion of the form:

�

P i
j ∈Σi

M

(
ρP i

j
(
attr(If(P i

j ))
)) �

�

P o,m
k ∈Σo

M|m

(
∃P o,m

k � ρP o,m
k

(
Then(attr(P o,m

k ))
))

Example 8. Rule 2 in Table 2 is encoded in ALC(D) as:

∀exp.real[>today] � ∀length.real[<260] � ∀draft.real[<10] � ∀cap.real[<1000]
� ∃enter2 � ∀enter2.string[=Y] �

Thanks to the fact that ALC(D) can be seen as a fragment of FOL(D), we
can directly establish that the ALC(D) encoding of decision tables is indeed
correct.

Theorem 2. For every decision table M, and (bridge) concept C, we have that
the FOL(D) IKB τC(M) is logically equivalent to the ALC(D) IKB ρC(M).

Proof. Direct by construction of the translation functions τC and ρC , noting
that, once the standard FOL(D) encoding of ALC(D) is applied to the ALC(D)
IKB ρC(M), it becomes syntactically identical to the FOL(D) IKB τC(M). ��

5.2 Reasoning over ALC(D) Decision Knowledge Bases

In this section, we leverage the possibility of encoding decision tables into
ALC(D) so as to obtain a characterization of the decidability and complexity of
reasoning in the case of ALC(D) DKBs, i.e., DKBs whose background knowledge
is specified in ALC(D). Formally, a DKB X = 〈Σ,T,M, C,A〉 is an ALC(D)
DKB if 〈Σ,T,A〉 is an ALC(D) KB. We extend the translation function of Sect. 5
to handle the entire ALC(D) KB as follows: ρ(X ) = 〈Σ ∪ ΣM, T ∪ TM, A〉,
where 〈ΣM, TM〉 = ρC(M) (similarly for an ALC(D) IKB). With these notions
at hand, we show the following.

Theorem 3. The I/O relationship, table completeness, and correctness of
unique hit problems can all be decided in ExpTime for ALC(D) DKBs.

Proof. The proof is based on a reduction from the three decision problems to
a polynomial number of instance or subsumption checks w.r.t. an ALC(D) KB,
which can be decided in ExpTime (cf. Theorem 1). Let X = 〈Σ,T,M, C,A〉 be
an ALC(D) DKB, and let X = 〈Σ,T,M, C〉 be its corresponding IDKB.

(I/O relationship) Fix an ordering over the rules M.R. Given (i) X ,
(ii) object c ∈ Δ of type C, (iii) output attribute P o ∈ M.O, and (iv) value
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v ∈ M.AType(P o) , we have that X assigns output v for attribute P o to object c
iff there exists k ∈ {1, . . . , |M.R|} such that instance checking for fact P o,k(c, v)
w.r.t. KB ρ(X ) succeeds.
(Table completeness) Decision rules in X are complete iff the following ALC(D)
subsumption holds with respect to KB ρ(X ):

� �
⊔

〈If,Then〉∈M.R

�

P i
j ∈Σi

M

(
ρP i

j (If(attr(P i
j )))

)

(Unique hit) Decision rules in X do not overlap iff for every pair 〈If1,Then1〉 and
〈If2,Then2〉 of rules in M.R, the following subsumption holds w.r.t KB ρ(X ):

� �
⊔

P i
j ∈M.I

¬
�

k∈{1,2}
ρP i

j (Ifk(attr(P i
j )))

��
Example 9. As discussed in Example 2, the ship ontology in Table 1 can be
formalized in ALC(D). Hence, the maritime security DKB of Example 4 is actu-
ally an ALC(D) DKB. Thanks to Theorem 3, standard ALC(D) reasoning tasks
can then be used to check that such a DKB guarantees table completeness and
the correctness of the unique hit indicators, as specified in Table 2. Recall that
completeness holds because the table is interpreted w.r.t. the ship ontology. �

6 Conclusions

In this work, we have provided a threefold contribution to the area of decision
management, recently revived by the introduction of the DMN OMG standard.
First, we have introduced decision knowledge bases (DKBs) as a framework to
integrate DMN decision tables with background knowledge, captured by means
of a DL KB. Second, we have formalized the framework, as well as different
fundamental reasoning tasks, in FOL(D). Third, we have shown that, in the case
where background knowledge is expressed in ALC(D), all such reasoning tasks
are decidable in ExpTime. Before delving into the implementation of such rea-
soning tasks, we are interested in refining the analysis of their complexity, by
varying the DL used to capture the background knowledge. On the one hand,
we argue that DMN decision tables can actually be integrated with more expres-
sive DLs, such as OWL 2, by retaining the complexity of reasoning that comes
with the DL. On the other hand, we note that the DL encoding of DMN deci-
sion tables falls within the lightweight fragment of ALC(D) constituted by the
DL-Lite(HN )

bool (D) logic extended with qualified existentials on the left-hand side
of inclusions. This logic has been very recently introduced in [1, Sect. 4.3], and
although upper bounds for the standard DL reasoning services are not yet estab-
lished for such logic, we conjecture that it is strictly less complex than ALC(D).
This paves the way towards the study of lightweight DKBs.
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