
ar
X

iv
:1

41
1.

45
16

v1
 [

cs
.A

I]
 1

7
N

ov
 2

01
4

Verification of Relational Multiagent Systems with Data Types
(Extended Version)

Diego Calvanese Marco Montali
Free University of Bozen-Bolzano

Piazza Domenicani 3, 39100 Bolzano, Italy
{calvanese,montali}@inf.unibz.it

Giorgio Delzanno
University of Genova

Via Dodecaneso 35, 16146 Genova, Italy
giorgio.delzanno@unige.it

Abstract

We study the extension of relational multiagent systems
(RMASs), where agents manipulate full-fledged relational
databases, with data types and facets equipped with domain-
specific, rigid relations (such as total orders). Specifically, we
focus on design-time verification of RMASs against rich first-
order temporal properties expressed in a variant of first-order
µ-calculus with quantification across states. We build on pre-
vious decidability results under the “state-bounded” assump-
tion, i.e., in each single state only a bounded number of data
objects is stored in the agent databases, while unboundedly
many can be encountered over time. We recast this condition,
showing decidability in presence of dense, linear orders, and
facets defined on top of them. Our approach is based on the
construction of a finite-state, sound and complete abstraction
of the original system, in which dense linear orders are refor-
mulated as non-rigid relations working on the active domain
of the system only. We also show undecidability when includ-
ing a data type equipped with the successor relation.

1 Introduction
We study relational multiagent systems(RMASs),
taking inspiration from the recently defined frame-
work of data-aware commitment-based multia-
gent systems (DACMASs) (Chopra and Singh 2013;
Montali, Calvanese, and De Giacomo 2014). Broadly
speaking, an RMAS is constituted by agents that maintain
data in an internal full-fledged relational database, and
apply proactive and reactive rules to update their own data,
and exchange messages with other agents. Messages have
an associated payload, which is used to move data from
one agent to another. Notably, when updating their internal
database, agents may also inject fresh data into the system,
by invoking external services. This abstraction serves as
a metaphor for any kind of interaction with the external
world, such as invocation of web services, or interaction
with humans.

From the data perspective, previous research has mainly
focused on a single, countably infinite data domain, whose
elements can only be compared for equality and inequality.
This assumption is highly restrictive, since data types used
in applications are typically equipped with domain-specific,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

rigid relations (such as total orders), and might be special-
ized through the use offacets(ISO/IEC 11404:2007 2007;
Savkovic and Calvanese 2012).

The focus of this work is on design-time verification
of RMASs against rich first-order temporal properties,
allowing for quantification across states. By considering
only a countably infinite domain with equality, it has
been shown in (Belardinelli, Lomuscio, and Patrizi 2012;
Bagheri Hariri et al. 2013; Montali, Calvanese, and De Giacomo 2014)
that decidability of verification holds for variants of first-
order temporal logics under the assumption that the system
is “state-bounded”, i.e., unboundedly many data objects
can be encountered over time, provided that in each single
state only a bounded number of them is stored in the agent
databases (Bagheri Hariri et al. 2014). We recast this con-
dition by considering different options for the data types.
Specifically, by exploiting an encoding of two-counter
machines, we show that decidability of verification even
of propositional reachability properties is lost when one of
the data types is equipped with the successor relation. Our
main technical result is showing decidability for a variant
of first-orderµ-calculus in presence of dense, linear orders,
and facets defined on top of them. In this case, we provide
an explicit technique to construct a finite-state, sound
and complete abstraction of the original system, in which
dense linear orders are reformulated as non-rigid relations
working on the active domain of the system only. Notably,
this allows us to model and verify state-bounded RMASs
that include coordination mechanisms such as ticket-based
mutual exclusion protocols.

2 Relational Multiagent Systems
RMASs are data-aware multiagent systems constituted by
agents that exchange and update data. Beside generic agents,
an RMAS is equipped with a so-calledinstitutional agent,
which exists from the initial system state, and can be con-
tacted by the other agents as a sort of “white-page” agent,
i.e., to: (i) get information about the system as a whole;
(ii) obtain names of other agents so as to establish an in-
teraction with them; and(iii) create and remove agents.

At a surface level, RMASs and DACMASs share many as-
pects. There are however two key differences in the way they
model data. On the one hand, while DACMASs consider
only a single, abstract data domain equipped with equality

http://arxiv.org/abs/1411.4516v1
{calvanese,montali}@inf.unibz.it
giorgio.delzanno@unige.it

only, in RMASs data are typed and enriched with domain-
specific relations. This deeply impacts the modeling power
of the system (see Section 3). On the other hand, while
agents in DACMASs operate with incomplete knowledge
about the data, and use a description logic ontology as a
semantic interface for queries, RMASs employ standard re-
lational technology for storage and querying services. This
is done to simplify the treatment and isolate the core issues
that arise when incorporating data types and facets, but we
believe our results can be transferred to DACMASs as well.

An RMASX is a tuple〈T ,F ,∆0,F ,S,M,G, I〉, where:
(1)T is a finite set ofdata types; (2)F is a finite set offacets
overT ; (3) ∆0,F is the initial data domain ofX ; (4) S is a
finite set ofF -typed service calls; (5) M is a finite set of
F -typed relationsdenoting messages with payload; (6)G is
a finite set ofF -typed agent specifications; and (7)I is the
F -typed specification of theinstitutional agent.

2.1 Data Types and Their Facets

Data types and facets provide the backbone for modeling
real-world objects manipulated by the RMAS agents. Adata
typeT is a pair〈∆T ,RT 〉, where∆T is an infinite set1,
andRT is a set of relation schemas. Each relation schema
R/n ∈ RT with nameR and arityn is associated with an
n-ary predicateRT ⊆ ∆n

T . Given a setT of data types,
we denote byRT all domain-specific relations mentioned
in T . Similarly, ∆T groups all the (pairwise disjoint) data
domains of the data types inT . The interaction between data
types is orthogonal to our work and is left for the future.

Example 2.1. We consider the following, well-known data
domains, whose relations retain the usual meaning:
• Dense total orders such as〈Q, {<,=}〉 and〈R, {<,=}〉.
• Total orders with successor, like:〈Z, {<,=, succ}〉.

We assume that every RMAS has two special
datatypes: (i) 〈A, {=}〉 for agent namesthat, as in
mobile calculi, behave as pure names (Needham 1989;
Montanari and Pistore 2005) and can only be tested for
(in)equality.(ii) 〈B, {=}〉 for agent specification names(see
Section 2.4).

Facets are introduced to restrict data types. AfacetF is
a pair〈T, ϕ(x)〉 whereT = 〈∆T ,RT 〉 is a data type, and
ϕ(x) is a monadicfacet formulabuilt as:

ϕ(x) := true | P (~v) | ¬ϕ(x) | ϕ1(x) ∨ ϕ2(x)

whereP (~v) is a relation whose schema belongs toRT , and
whose terms~v are either variablex or data objects in∆T .
We use the standard abbreviationsfalse andϕ1(x) ∧ ϕ2(x).
Given a setF of facets, we useRF and∆F as a shortcut for
RT and∆T respectively, whereT is the set of data types
on which facets inF are defined.

Given a facetF = 〈T, ϕ(x)〉 with T = 〈∆T ,RT 〉, a
data objectd belongs toF if: (i) d ∈ ∆T ; (ii) ϕ(x) holds
in F under substitution[x/d], writtenF, [x/d] |= ϕ(x). In

1Being infinite does not lead to a loss of generality, thanks to
the notion of facet defined below.

turn, given substitutionσ = [x/d], relationF, σ |= ϕ(x) is
inductively defined as follows:
F, σ |= true

F, σ |= R(~v)σ if R(~v)σ is true inT
F, σ |= ¬ϕ(x) if F, σ 6|= ϕ(x)
F, σ |= ϕ1(x) ∧ ϕ2(x) if F, σ |= ϕ1(x) andF, σ |= ϕ2(x)

Notice that abase facetthat simply ranges over all data
objects of a data type can be encoded withtrue as its facet
formula. In particular, we useAF = 〈〈A, {=}〉, true〉 and
BF = 〈〈B, {=}〉, true〉 to refer to two base facets for agent
and specification names respectively.
Example 2.2. An Enumerations1, . . . , sn over string val-
ues can be modeled as facet〈〈S, {=}〉,

∨
i∈{1,...,n} x = si〉.

This also accounts for the type of boolean, which can be
captured byBool = 〈〈S, {=}〉, x = “t” ∨ x = “f”〉.
Example 2.3. 〈〈R, {>,=}〉, (x > 0 ∧ 18 > x) ∨ x > 65〉
denotes ages of junior or senior people.

Facets are used as relation types. Given a setF of facets,
anF -typed relation schemaR is a pair〈R/n,FR〉, where
R/n is a relation schema with nameR and arityn, andFR

is ann-tuple〈F1, . . . , Fn〉 of facets inF .
An F -typed database schemaD is a finite set ofF -typed

relation schemas, such that no two typed relations inD share
the same name.

In the following, we denote thei-th component ofR as
R[i], and writeTYPED(R[i]) to indicate the type associated
byD toR[i]. We also denote the tuple of types associated by
D to all components ofR asTYPED(R). To simplify read-
ability, we also seldomly use notationR(F1, . . . , Fn) as a
shortcut forR = 〈R/n, 〈F1, . . . , Fn〉〉.

Obviously, since relations are typed, it is important
to define when their tuples agree with their facets. Let
R = 〈R/n,FR〉 be a relation schema. We say that a fact
R(o1, . . . , on) conforms toR if for every i ∈ {1, . . . , n},
we have thatoi belongs toFi. LetF be a set of facets, and
D be anF -typed database schema. A database instanceI
conforms toD if every tupleR(o1, . . . , on) ∈ I conforms to
its corresponding relation schemaR ∈ D.

2.2 Initial Data Domain
Giving a data typeT = 〈∆T ,RT 〉, we isolate afinite sub-
set∆0,T ⊂ ∆T of initial data objectsfor T . This subset
explicitly enumerates those data objects that can be used in
the initial states of the agent specifications (cf. Section 2.4),
plus specific “control data objects” that are explicitly men-
tioned in the agent specifications themselves, and conse-
quently contribute to determine the possible executions.

We extend this notion to cover also those objects used in
the definition of facets. Giving a facetF = 〈T, ϕ(x)〉 with
T = 〈∆T ,RT 〉, the set ofinitial data objectsfor F is a
finite subset of∆T that contains all data objects explicitly
mentioned inϕ(x). The initial data domainof an RMAS
with setF of facets, written∆0,F , is then defined as the
(disjoint) union of initial data objects for each facet inF .

2.3 Typed Service Calls
Typed service calls provide an abstract mechanism for
agents to incorporate new data objects when updating their

own databases. As argued in (Bagheri Hariri et al. 2013;
Montali, Calvanese, and De Giacomo 2014;
Bagheri Hariri et al. 2014), this is crucial to make the
system “open” to the external world, and accounts for
a variety of interaction modes, such as interaction with
services or humans. We exploit this mechanism to model in
particular the agent ability to inject new data according to
internal decisions taken by the agent itself, but still external
to its specification.

Given a setF of facets, anF -typed servicef is a triple
〈f/n,F in, F out〉, where(i) f/n is a function schema with
namef and arityn; (ii) F in is ann-tuple 〈F1, . . . , Fn〉 of
facets inF representing theinput typesof the service call;
(iii) F out is a facet inF representing theoutput facetof the
service call. As for typed relations, inS there are no two
typed services that share the same name. Intuitively, when
invoked with a tuple of ground data objects belonging to
their input facets, the service non-deterministically returns
a data object that belongs to the output facet.

Example 2.4. Service getPrice =
〈getPrice/0, {SF}, PF 〉 gets a string inSF = 〈〈S, {=
}〉, true〉 referring to a product, and returns a rational price
PF = 〈〈Q, {<,=}〉, x > 0〉 .

Example 2.5. Given facetAF = 〈〈A, {=}〉, true〉, service
getN = 〈getN/0, ∅, AF 〉 returns agent names.

2.4 Agent Specifications

In RMASs, agent specifications consist of three main com-
ponents. The first is the data component, whose intensional
part is a typed database schema with constraints; every agent
adopting the same specification starts with the same initial
extensional data, but during the execution it autonomously
evoles by interacting with other agents and services. The
second is a proactive behavior, constituted by a set of
condition-action communicative rules that determine which
messages can be emitted by the agent, together with their
actual payload and target agent. The third is a reactive be-
havior, constituted by ECA-like update rules that determine
how the agent updates its own data when a certain message
with payload is received from or sent to another agent.

Given a setF of facets with initial data domain∆0,F , an
F -typed agent specificationis a tuple〈n,D,Γ, D0, C,A,U〉,
where:
1. n ∈ B∩∆0,F is thespecification name, which is assumed

to be also part of the initial data domain.
2. D is anF -typed database schema. We assume that the

schema is always equipped with a special unary relation
MyName, whose unique component is typed withAF ,
and that is used to keep track of the global name associ-
ated to the agent in the system.

3. Γ is a finite set of database constraints overD, i.e., of
domain-independent first-order formulae overD andRF ,
using only constants from∆0,F .

4. D0 is theinitial agent state, i.e., a database instance that
conforms toD, satisfies all constraints inΓ, and uses only
constants fromD0.

5. C is a set ofcommunicative rules, defined below.

6. A andU are sets ofupdate actionsandupdate rules, de-
fined below.
When clear from the context, we use the name of a com-

ponent with superscript the name of the specification to ex-
tract that component from the specification tuple. For exam-
ple,Dn denotes the database schema above.

Communicative rules. These rules are used to determine
which messages with payload are enabled to be sent by the
agent to other agents, depending on the current configuration
of the agent database. When multiple ground messages with
payload are enabled, the agent nondeterministically chooses
one of them, according to an internal, black-box policy.

A communicative ruleis a rule of the form

Q(t, ~x) enablesM(~x) to t

where:(i) Q is a domain-independent FO query overD and
RF , whose terms are variablest and~x, as well as data ob-
jects in∆0,F ; (ii) M(~x) is a message, i.e., a typed relation
whose schema belongs toM.

Let F be a set facets,D aF -typed database schema,D a
database instance that conforms toD, andQ(x1, . . . , xn) a
FO query overD andRF that uses only constants in∆0,F .
Theanswerans (Q,D) toQ overD is the set of assignments
θ from the free variables~x ofQ to data objects in∆0,F , such
thatD |= Qθ. We treatQθ as a boolean query, and we say
ans (Qθ,D) ≡ true if and only ifD |= Qθ.

In the following, we use the special queryLIVET (x) as a
shortcut for the query that returns all data objects in the cur-
rent active domain that belong to data typeT . Given schema
D, such a query can be easily expressed as the union of con-
junctive queries checking whetherx belongs to a component
of some relation inD, such that the component has typeT .
In this respect, notice that any query can be relativized to the
active domain throughLIVE atoms.

We also make use to the anonymous variable “” to signify
an existentially quantified variable not used elsewhere.

Update actions. These are parametric actions used to update
the agent current database instance, possibly injecting new
data objects by interacting with typed services.

An update actionis a pair〈α, αspec〉, where:(i) α is the
action schema, i.e., a typed relation accounting for the action
name and for the number of action parameters, together with
their types;(ii) αspec is the action specification and has the
form α(~p) : {e1, . . . , en}, where{e1, . . . , en} are update
effects. Each update effects has the form

Q(~p, ~x) addA, delD

where(i) Q is a domain-independent FO query overD and
RF , whose terms are parameters~p, variables~x, and data
objects in∆0,F ; (ii) A is a set of “add” facts overD that
include as terms: free variables~x of Q, parameters~p and
termsf(~x,~p), with f in S; (iii) D is a set of “delete” facts
that include as terms free variables~x and parameters~p.

An update action is applied by grounding its parameters~p
with data objects~o. This results in partially grounding each
of its effects. The effects are then applied in parallel overthe
agent database, as follows. For each partially grounded ef-
fectQ(~o, ~x) addA, delD,Q(~o, ~x) is evaluated over the

current database and for each obtained answerθ, the fully
ground factsAθ (resp.,Dθ) are obtained. All the ground
facts inDθ are deleted from the agent database. Facts inAθ,
instead, could contain (ground) typed service calls. In this
case, every service call is issued, obtaining back a (possibly
fresh) data object belonging to the output facet of the ser-
vice. The instantiated facts inAθ obtained by replacing the
ground service calls with the corresponding results are then
added to the current database, giving priority to additions.

Update rules. These are conditional, ECA-like rules used
by the agent to invoke an update action on its own data when
a message with payload is exchanged with another agent.

An update ruleis a rule of the form
• (on-send)on M(~x) to t if Q(~y1) then α(~y2), with ~y1 ∪
~y2 ⊆ ~x ∪ {t}, or

• (on-receive)onM(~x) from s if Q(~y1) then α(~y2), with
~y1 ∪ ~y2 ⊆ ~x ∪ {s},

where:(i) M(~x) is a message, i.e., a typed relation whose
schema belongs toM; (ii) Q is a FO query overD, whose
terms are variables~y1 and data objects in∆0,F ; (iii) α is an
update action inA, whose parameters are bound to variables
~y2.

Institutional Agent Specification. In an RMAS, an in-
stitutional agent is dedicated to the management of
the system as a whole. Differently from DACMASs
(Montali, Calvanese, and De Giacomo 2014), we do not as-
sume here that the institutional agent has full visibility of
the messages exchanged by all agents acting into the sys-
tem. It is simply an agent that is always active in the system
and whose name,inst in the following, is known by every
other agent. Still, we assume that the institutional agent has
special duties, such as in particular handling the creationof
agents and their removal from the system, and maintainance
of agent-related information, like the set of names for active
agents, together with their specifications.

Technically, the institutional agent specificationI
is a standard agent specification namedispec, par-
tially grounded as follows. To keep track of agents
and their specifications,Di contains three dedicated
typed relations: (i) 〈Agent/1, 〈AF 〉〉, to store agent
names;(ii) 〈Spec/1, 〈BF 〉〉, to store specification names;
(iii) 〈hasSpec/2, 〈AF,BF 〉〉, to store the relationship be-
tween agents and their specifications. Given these spe-
cial relations, inst can also play the role ofagent
registry, supporting agents in finding names of other
agents to communicate with. Additional system-level
relations, such as agent roles, duties, commitments
(Montali, Calvanese, and De Giacomo 2014), can be in-
sterted intoDinst depending on the specific domain un-
der study. To properly enforce thathasSpec/2 relates
agent to specification names, foreign keys can be added to
Γispec. Futhermore, we properly initializeDinst

0 as follows:
(i) Agent(inst) ∈ D

ispec

0 ; (ii) Spec(si) ∈ D
ispec

0 for every
agent specification that is part of the RMAS, i.e., for specifi-
cation nameispec and all specification names mentioned in
G; (iii) hasSpec(inst, instSpec) ∈ Dispec

0 . Obviously,inst
may have other initial data, and specific rules and actions. Of
particular interest is the possibility forinst of dynamically

creating and removing other agents. This can be encoded
by readapting (Montali, Calvanese, and De Giacomo 2014).
Details are given in the online appendix.

Agent creation/removal.Two actions are employed by the
institutional agent to insert or remove an agent into/from the
system. Their respective action schemas areNEWAG(BF)
and REMAG(AF). As for creation,inst employs the ser-
vice call introduced in Example 2.5 to introduce a name
into theAgent relation, attaching to it the specification name
passed as input. However, some additional modeling effort
is needed so as to ensure that the introduced name is indeed
new:

NEWAG(s) :

OldAg(a) del {OldAg(a)}
FreshAg(a) del {FreshAg(a)}

true add

{
FreshAg(getN()),
Agent(getN()),
Spec(getN(), s)

}

Agent(a) add{OldAg(a)}

Intuitively, apart from adding the new agent and attaching
the corresponding specification, the action updates the two
accessory agent relationsOldAd andFreshAg, which are
assumed to be part ofDispec, ensuring that in the next state
OldAd contains the set of agent names that were present in
the immediately preceding state, and thatFreshAg contains
the newly injected name. Freshness can then be guaranteed
by adding a dedicated constraint toΓispec:

∀a.OldAg(a) ∧ FreshAg(a) → false

Removal of an agent is instead simply modelled as:

REMAG(a) :

{
hasSpec(a, s) del

{
Agent(a),
hasSpec(a, s)

}}

Update rules that employ these special actions obviously de-
pend on the domain, by including specific on-send and on-
receive rules inI.

2.5 Well-Formed Specifications
In an RMAS, every piece of information is typed. This im-
mediately calls for a suitable notion ofwell-formednessthat
checks the compatibility of types in all agent specifications.
Intuitively, an RMASX is well-formed if: (1) every query
appearing inX consistently use variables, that is, if a vari-
able appears multiple components, they all have the same
data type; (2) every proactive rule instantiates the message
payload with compatible data objects, and the destination
agent with an agent name; (3) every reactive rule correctly
relates the data types of the message payload with those of
the query and of the update action; (4) each action effect
uses parameters in a compatible way with the action type;
(5) each action effect instantiates the facts in the head in a
compatible way with their types; (6) each service call cor-
rectly binds its inputs and output.

We now formalize this intuition. LetF be a set facets,
andD be aF -typed database schema. LetQ be a FO query
overD andRF that uses only constants in∆0,F . We say
thatQ is D-compatibleif: (i) whenever a data object from
∆0,F appears in componentR[i] insideQ, then it belongs to

TYPED(R[i]); (ii) whenever the same variablex appears in
two componentsR1[i1] andR2[i2], thenTYPED(R1[i1]) =
TYPED(R2[i2]).

By definition of compatibility, each free variable of aD-
compatible query is associated to a single facet/data type.
This allows us to characterize the “output types” of a query,
that is, the types associated to its free variables (and hence
also the types of its answer components). Given anF -typed
database schemaD and a well-formed FO queryQ(~x) over
D andRF that uses only constants in∆0,F , the output-
type ofxi ∈ ~x according toQ, written OUT-TYPEQ(xi),
is the unique data type inF to which xi is associated
by Q, whereT is the set of data types on whichF is
defined. We extend the notion of output-type to a tuple
of variables~x′ = 〈xi, . . . , xk〉 ⊆ ~x with 1 ≤ i ≤
k ≤ n, writing OUT-TYPEQ(~x

′) as a shortcut for the tu-
ple 〈OUT-TYPEQ(xi), . . . , OUT-TYPEQ(xk)〉. We also write
OUT-TYPE(Q), as a shortcut forOUT-TYPEQ(~x). Notice
that, when applied to an atomic query, this notion corre-
sponds exactly to the typing of the corresponding relation,
according to its schema.

Given an RMASX = 〈T ,F ,∆0,F ,S,M,G, I〉 and an
agent specificationN = 〈n,D,Γ, D0, C,A,U〉 in G ∪ {I},
we say that:

• C is well-formed if each of its communicative
rules Q(t, ~x) enables M(~x) to t is such that
(i) OUT-TYPEQ(t) = A (i.e., Q binds t to an agent
name), and(ii) OUT-TYPE(Q) = TYPEM(M) (i.e., the
payload is instantiated byQ in a compatible way with the
types of messageM).

• A is well-formedif each of its actions is well-formed. We
say in turn that action〈α, αspec〉 is well-formedif every
effectQ(~p, ~x) addA, delD in αspec is such that:
– Q is D-compatible.
– Whenever a parameterp is mentioned inQ, the type

to whichp is assigned byOUT-TYPE(Q) is the same to
whichp is assigned byα.

– For everyn-ary typed relationR ∈ D, every factF of
R appearing inD, and for eachi ∈ {1, . . . , n}: (i) if the
i-th position ofF contains a data object, then such data
object belongs to the domain ofTYPED(R[i]); (ii) if
the i-th position ofF contains a variabley ∈ ~x, then
OUT-TYPEQ(y) = TYPED(R[i]).

– For everyn-ary typed relationR ∈ D, every factF of
R appearing inA, and for eachi ∈ {1, . . . , n}: (i) if the
i-th position ofF contains a data object, then such data
object belongs to the domain ofTYPED(R[i]); (ii) if
the i-th position ofF contains a variabley ∈ ~x, then
OUT-TYPEQ(y) = TYPED(R[i]); (iii) if the i-th posi-
tion ofF contains ak-ary service callf(~y) with ~y ⊆ ~x
and 〈f/k,F in, F out〉 ∈ S, then OUT-TYPEQ(~y) =
F in andF out = TYPED(R[i]).

• U is well-formed if all its update rules are well-
formed. We discuss the case of on-send rules -
the definition of well-formedness is identical for on-
receive rules. An on-send rule inU of the form
onM(~x) to t if Q(~y1) thenα(~y2), with ~y1∪~y2 ⊆ ~x∪{t},
is well-formed if the following conditions hold:(i) if

t ∈ ~y1, then OUT-TYPEQ(t) = A; (ii) if t appears in
the i-th component ofα, thenα assigns typeA to its
i-th parameter;(iii) for each variablex ∈ ~x ∩ ~y1, such
thatx appears in thei-th component ofM , we have that
TYPEM(M [i]) = OUT-TYPEQ(x); (iv) for each variable
x ∈ ~x ∩ ~y2, such thatx appears in thei-th component of
M and in thej-th component ofα, we have thatα assigns
typeTYPEM(M [i]) to its j-th parameter.

• N itself iswell-formedif C, A andU are all well-formed.
Finally, we say that the entire RMASX is well-formedif all
agents specifications inG ∪ {I} are well-formed.

It is easy to see that checking whether an RMAS is well-
formed requires linear time in the size of the specification.

From now on, we always assume that RMASs are well-
formed. It is important to notice that well-formedness does
not guarantee that the restrictions imposed by facets are al-
ways satisfied, but only that the agent specification consis-
tently use data types. Consistency with facets is managed at
runtime, by dynamically handling facet violations (cf. Sec-
tion 4).

3 Modeling with RMAS
We briefly show how RMASs can be easily accommo-
date complex data-aware interaction protocols, leverag-
ing on data types. We take inspiration from ticket-based
mutual exclusion protocols (Bultan, Gerber, and Pugh 1999;
Baier and Katoen 2008). This can be used, in our setting, to
guarantee the possibility for an agent to engage in a com-
plex, critical interaction with the institutional agent.

Another interesting example, namely how to model
a form of contract net protocol in RMASs, is pro-
vided in Section 3.2. The interested reader can also
refer to (Montali, Calvanese, and De Giacomo 2014) for
commitment-based interactions.

From now on, we assume that interaction in RMAS is
synchronous. This assumption is without loss of generality,
since message queues for asynchronous communication can
be modelled as special typed relations in the agent databases:

Theorem 3.1. Asynchronous RMASs based on message
queues can be simulated by synchronous RMASs.

Proof. We consider a form of reliable, asynchronous com-
munication based on message buffers. In particular, the
model works as follows:
• Messages sent by an agent to itself are processed immedi-

ately (in fact, there is no effective communication in this
case).

• Whenever a sender agent emits a message with payload
targeting another agent, the message is atomically in-
serted into a message buffer attached to the target agent.

• The target agent asynchronously reacts to the message
by extracting it from the buffer (this could happen much
later).

• We consider two variations of this general model: one in
which the buffer is ordered (i.e., it is a queue), and one
in which the buffer is just a set of messages. Both models
are interesting, because they reflect different assumptions
on the asynchronous communication model. In fact, the

first guarantees that the order in which messages are pro-
cessed by the target follows the order in which messages
where emitted (possibly by different agents). We call this
communication modelasynchronous, ordered(AO for
short), and use acronym AO-RMAS for an RMAS adopt-
ing the AO communication model. Contrariwise, the sec-
ond model accommodates the situation in which the order
in which messages are received (i.e., processed) by a tar-
get agent does not necessarily reflect the order in which
such messages were emitted. We call this communication
modelasynchronous, disordered(AD for short), and use
acronym AD-RMAS for an RMAS adopting the AD com-
munication model.

We prove that these asynchronous communication models
can be both accommodated by a synchronous RMAS that
employs accessory data structures in the agent schemas,
specifically tailored to buffer messages and decouple the
emission of a message from its processing by the target
agent.

Given an AD-RMAS/AO-RMAS X =
〈T ,F ,∆0,F ,S,M,G, I〉, we convert it into a standard,
synchronous RMASXs = 〈T ,F ,∆0,F ,Ss,Ms,Gs, Is〉,
whereMs and Ss just extendM and S with an addi-
tional message/service as illustrated below, and where
each agent specificationN = 〈n,D,Γ, D0, C,A,U〉 in
G ∪ {I} becomes a corresponding agent specification
Ns = 〈n,Ds,Γs, D0, Cs,As,Us〉 in Gs ∪ {Is}, according
to the translation mechanism illustrated in the following
(notice that we are interested here in the correctness of the
encoding, not in its efficient implementation; effective ways
of realizing the translation can be provided by using this
encoding as a basis).

Let us first focus on the database schema of the agent
specification. We setDs = D∪{MBuffer ,NewM ,OldM },
whereMBuffer is a global buffer tracking incoming mes-
sages that have been received by the agent but still needs
to be (asynchronously) processed, whileNewM andOldM
are unary accessory relations used to manage the generation
of new identifiers for messages to be enqueued. The man-
agement of such identifiers closely resembles name manage-
ment as discussed for the institutional agent.

Specifically,MBuffer contains a numeric primary key,
and internalizes the payload schemas of all message rela-
tions inM, plus an additional component to track the sender
agent, and a boolean component indicating whether the pay-
load has a valid content. A tuple inMBuffer contains a mes-
sage identifier and sets exactly one of such boolean compo-
nents totrue, leaving the othersfalse. This indicates what is
the type of the buffered message, and that the correspond-
ing payload/sender components contain the actual message
payload and sender agents, whereas all other payload/sender
components contain meaningless values. For this latter as-
pect, we assume, without loss of generality, that all data
types are equipped with anundefined data object.

Technically, we fix an ordering overM, that is, a bijection
msg : {1, . . . , |M|} −→ M

and fix the functionindex = msg−1. We set the ar-
ity of MBuffer to 1 +

∑|M|
i=1 (2 + ai), where ai is

the arity of relationmsg(i). We make use of the fol-
lowing three specific types:(i) the Bool facet (cf. Ex-
ample 2.2), (ii) the RF facet, defined as〈〈R, {=, <
}〉, true〉, and (iii) the facetAF for agent names. Specif-
ically, we type componentMBuffer [1] (the relation pri-
mary key) with RF . For eachi ∈ {1, . . . , |M|}, we

type componentMBuffer
[
2 +

∑i−1
j=1(2 + aj)

]
with Bool,

and componentMBuffer
[
3 +

∑i−1
j=1(2 + aj)

]
with AF ,

where ai is the arity ofmsg(i). Furthermore, for each
i ∈ {1, . . . , |M|} and for everyk ∈ {1, . . . , ai} (ai be-
ing the arity ofmsg(i)), we set the type of component

MBuffer
[
3 +

∑i−1
j=1(2 + aj) + k

]
to be the same as the

type of componentmsg(i)[k].
Unary relationsNewM andOldM are respectively used

to store newly created or already existing message identi-
fiers. Their unique component is consequently typed with
RF .

Let us now consider the database constraints. We set
Γs = Γ∪ {ΦmsgId}, whereΦmsgId is a constraint ensuring
that new message identifiers do not clash with already exist-
ing identifiers, and whose specific shape depend on whether
the original RMAS is asynchronous ordered or unordered.
In particular:
• if X is an AD-RMAS, thenΦnewMsg is

∀idn, ido.NewM (idn) ∧OldM (ido) → ido 6= idn

(whereido 6= idn is an abbreviation for¬(ido = idn)).
• if X is an AO-RMAS, thenΦnewMsg is

∀idn, ido.NewM (idn) ∧OldM (ido) → ido < idn

In fact, for an ordered RMAS, a newly created message
must be enqueued after all pending messages that were
enqueued before.
We now focus on the behavior ofNs, that is, on how the

rules ofN are translated into corresponding rules inNs so
as to simulate the asynchronous communication model on
top of a synchronous communication model. Since asyn-
chronous communication requires to decouple the emission
of a message from the reaction of the target agent,Us only
maintains the on-send rules ofU , replacing the on-receive
rules with other on-receive rules. This new on-receive rules
are organized in two groups. The first group of rules is just
used to insert message received from other agents into the
buffer. In particular, for eachi ∈ {1, . . . , |M|}, Us contains
a rule of the form

onMi(~x) from s if ¬MyName(s) then BUFFERMi
(~x, s)

whereMi is the name of relationmsg(i), and BUFFMi
is

a specific update action inAs, dedicated to insert the pay-
load and sender agent of a messageMi into the buffer. In
particular,BUFFMi

(~x, s) is defined as:

OldM (m) del{OldM (m)}
NewM (m) del{NewM (m)}

true add

NewM (getRN()),
MBuffer (getRN(), . . . , “t”︸︷︷︸

i-th component

, p,~x, . . .)

MBuffer (m, , . . . ,) add{OldM (m)}

where getRN is a service that returns aRF
data object, and in the addition of the tuple
MBuffer(getRN(), . . . , “t”, p,~x, . . .), attributes“t”, p,~x
are inserted in those positions corresponding to the boolean
component, sender agent component, and payload com-
ponents dedicated tomsg(i), while all the other boolean
components are set to“f”, and all remaining components
are set toundef.

The processing of a buffered message is triggered by a
special communicative rule that is contained inCs together
with all the original rules inC. The purpose of the commu-
nicative rule is to extract a message from the buffer, trig-
gering the agent to process it whenever the original specifi-
cation contained on-receive rules dedicated to this. This is
done by self-sending a messagenextM Specifically:
• If X is an AD-RMAS, the message extraction rule is:

MyName(a)
∧ MBuffer (m, , . . . ,) enablesnextM(m) to a

Indeed, for a disordered RMAS, the order in which mes-
sages are received is non-deterministic. This rule mimics
such a nondeterminism, since the agent nondeterministi-
cally picks one of the buffered messages.

• If X is an AO-RMAS, the message extraction rule is:

MyName(a) ∧MBuffer(m, , . . . ,)
∧¬(∃m2.MBuffer (m2, , . . . ,) ∧m2 < m)
enablesnextM(m) to a

Indeed, for an ordered RMAS, messages are determinis-
tically received according to the order in which they have
been sent. This rule mimics such a determinism by follow-
ing a FIFO policy, picking the first message in the queue.
Recall that, for AO-RMAS, whenever a new message is
inserted into the queue, its primary key is greater than the
primary keys of already enqueued messages.

The last dimension to be covered is the agent reaction to a
message to be processed. This is done by suitably reformu-
lating the original on-receive rules present inU . Specifically,
for each on-receive rule

onM(~x) from s if Q(~y1) thenα(~y2)

in U , with ~y1 ∪ ~y2 ⊆ ~x ∪ {s}, Us contains a corresponding
on-receive rule (which, by construction ofXs, is triggered
only by the agent itself)

on nextM (m) from a
if MyName(a) ∧ ΦM (m,~y1, ~y2) ∧Q(~y1) thenα(m,~y2)

whereΦM (m, s, ~x) is a query that:(i) checks whether the
identifierm points to a tuple in the buffer that actually refers
to a message of typeM (this can be done by checking
whether the boolean component in positionindex (M) is set
to “t”); (ii) if so, extracts the sender of messagem, and its
payload~x. Technically, the query is simply formulated as:

ΦM (m, s, ~x) = MBuffer (m, , . . . , “t”︸︷︷︸
index(M)-th component

, s, ~x, . . .)

A final, additional update rule that always triggers when a
nextM message is received is needed to properly update the
buffer, by removing the processed message:

on nextM (m) from a if MyName(a) then REMOVEM(m)

where:

REMOVEM(m) : {MBuffer(m, ~x) del{MBuffer(m, ~x)}}

By putting everything together, if we project away the ac-
cessory relationsMBuffer , OldM andNewM , we obtain
that the asynchronous execution semantics ofX under both
the ordered and disordered assumption exactly corresponds
to that ofXs under the standard synchronous semantics, as
precisely defined in Figure 1.

The proof of Theorem 3.1 already gives a glimpse about
the modelling power of RMASs equipped with ordered
types. We next discuss how these features can be exploited
to easily capture mutual exclusion protocols based on tick-
ets.

3.1 Ticket-Based Mutual Exclusion Protocols
The idea behind ticket-based mutual exclusion protocols is
that, when a process wants to access a critical section, it must
get a ticket, and wait until its turn arrives. We model tickets
using the base facetRF = 〈〈R, {<,=}〉, true〉 for real num-
bers, and exploit the domain-specific relation< to compare
agent tickets. In our formulation, the critical section consists
of a (possibly complex) interaction with theinst, excluding
the possibility for other agents to concurrently engage in the
same kind of interaction withinst.

We focus on the realization ofinst, in such a way that mu-
tual exclusion is guaranteed no matter how the other agents
behave. First of all,inst gives top priority to handle ticket
requests by the agents. A ticket request is issued by another
agent using a 0-ary messageASKTICKET. Agent inst re-
acts by invoking a ticket generation action, provided that
the sender agent is not already owner of a ticket, and the
Assigned relation is empty (see below):

on ASKTICKET() from a
if ¬HasTicket(a,) ∧ ¬Assigned(,) then GENTICKET(a)

Action GENTICKET takes as input an agent name, and uses a
typed servicegetTicket = 〈getTicket/0, ∅, RF 〉 to get
a numerical ticket. The result is stored in the temporary rela-
tion Assigned , tracing that the ticket has been assigned but
the corresponding agent still needs to be informed.

GENTICKET(a) : {true add{Assigned(a,getTicket())}}

To guarantee that every agent will have the possibility of en-
gaging the critical interaction withinst, every time a ticket
is assigned to an agent,inst must ensure that such agent will
be servedafter those already possessing a ticket. This is
enforced through the following database constraint, which
leverages on the domain-specific relation> for tickets:

∀tnew, t.Assigned(, tnew) ∧ HasTicket(, t) → tnew > t

An assigned ticket must be sent to the requestor agent:

Assigned(t, a) enablesGIVETICKET(t) to a

to whichinst itself reacts by moving the tuple from the tem-
porary relationAssigned to hasTicket :

on GIVETICKET(t) to a if true then BINDTICKET(a, t)

BINDTICKET(a, t) :

{
true del {Assigned(a, t)}
true add{hasTicket(a, t)}

}

Now, let CMSG be a critical message. To engage in the crit-
ical interaction withinst triggered by messageCMSG, the
agent provides the payload and the ticket. Agentinst posi-
tively react to the request provided that the ticket indeed cor-
responds to the agent, and that the ticket is now to be served
(i.e., it is smaller than any other ticket):

on CMSG(~p, t) from a
if hasTicket(a, t) ∧ ¬(∃a′, t′.hasTicket(a′, t′) ∧ t > t′)
then CACT(a, ~p)

This pattern can be replicated for any other critical interac-
tion. Additional, state relations can be added to discipline
the orderings among critical message exchanges.

3.2 Contract Net
We show how the classical contract net protocol
(Smith 1980) can be easily accommodated in our
framework. This can be considered as an example of a
“price-based” protocol, and therefore indirectly shows how
different kinds of auctions could be modelled as well, as,
e.g., done in (Belardinelli 2014).

An RMAS that incorporates the contract net protocol con-
tains two agent specifications (that can be obviously en-
riched and extended on a per-domain basis): the specifica-
tion of an initiator agent, and the specification of apartici-
pant agent. The first specification is embodied by an agent
that is interested in delegating the execution of a task to an-
other agent, so as to achieve a desired goal. The second spec-
ification is embodied by agents that have the capabilities and
the interest in executing the task, provided that they get back
a reward.

The system employs the following FIPA-like messages:
• cfp(SF) (from the initiator to participants) – a call-for-

proposal related to the execution of the provided task (for
simplicity, we use strings to represent tasks, and we as-
sume that the task name is used also as aconversation
identifier);

• propose(SF, PF) (from a participant to the initiator),
with PF as in Example 2.4 – a proposal to execute the
task indicated in the first parameter, for the price indicated
in the second parameter;

• reject(SF) (from the initiator to a participant) – rejection
of all proposals for the specified task;

• accept(SF, PF) (from the initiator to a participant) – ac-
ceptance of a proposal;

• inform(SF) (from a participant to the initiator) – notifi-
cation that the task has been executed.

• failure(SF) (from a participant to the initiator) – notifi-
cation that the task execution failed.
Let us focus on the realization of the protocol from the

point of view of inst, which acts as the initiator. We first
introduce the relations used byinst to run the protocol:
• Agent(AF) lists the (names of) agents known to the ini-

tiator agent; if the initiator agent isinst, then it already
holds all agents present in the system, otherwise the ini-
tiator agent can engage in a preliminary interaction with
inst and/or other agents to collect such names.

• Task (SF, StateF) lists the task names that the initiator
agent is interested to assign, i.e., those that can become

the subject of an instance of the contract net protocol.
StateF = 〈〈S, {=}〉, x = “todo” ∨ x = “assigned” ∨
x = “done”〉 is an enumerative facet used to track the
state of each task – the three states are self-explanatory.

• Contacted(AF, SF) lists those agents that have been al-
ready contacted for a given task.

• PropPrice(AF, SF, PF) lists those agents that answered
to a proposal with a certain price.

• AssignedTo(AF, SF, PF) lists those tasks that have
been assigned to an agent for a given price.
We have now all the ingredients to model the behavioral

rules of the initiator agent. First of all, the initiator agent can
issue a call-for-proposal for any task in the“todo” state,
directed towards an eligible agent. This is captured by the
communicative rule:

Task(t, “todo”) ∧Agent(a)
∧ Φsui(a, t) ∧ ¬Contacted(a, t) enablescfp(t) to a

whereΦsui(a, t) is a boolean query that checks whethera is
a suitable agent for executingt, and that does so by possi-
bly involving additional relations maintained by the initiator
agent for this specific purpose. An agent is considered eligi-
ble if it is suitable and has not been already contacted for the
selected task.

The initiator agent reacts to this message by indicating
that agenta has been contacted for taskt:

on cfp(t) to a if true then MARK CONTACTED(a, t)

where

MARK CONTACTED(a, t) :
{
true add{Contacted(a, t)}

}

When a proposer agent sends back a proposal, the initiator
agent stores it into thePropPrice relation:

on propose(t, p) from s if true then SETPROPOSAL(s, t, p)

where

SETPROPOSAL(s, t, p) :
{
true add{PropPrice(s, t, p)}

}

Notice that this formalization seamlessly enables the same
agent to make different proposals for the same task, but can
be easily modified so as to account for the situation where
only one proposal per agent can be accepted.

The presence of at least one registered proposal enables
the initiator to assign the task to some agent, provided that
such an agent made the best proposal, i.e., that with the low-
est price. Notice that the initiator is free to choosewhento
accept, and can decide to contact further agents before actu-
ally selecting the best proposal.

PropPrice(a, t, p) ∧ ¬(∃p2.PropPrice(, t, p2) ∧ p2 < p)
enablesaccept(t, p) to a

When the initiator decides to actually accept the best offer,
it reacts by tracking to which agent the task has been as-
signed (and with wich price), taking also care of properly
updating the task state, as well as to clean thePropPrice
relation. This is done through two different rules. The task
assignment is handled by rule

on accept(t, p) to a if true then MARK ASSIGNED(a, t, p)

whereMARK ASSIGNED(a, t, p) :
{
true add {AssignedTo(a, t, p)}
PropPrice(a, t, pa) del {PropPrice(a, t, pa)}

}

The task state update is instead managed by rule

on accept(t, p) to a if true then SETSTATE(t, “assigned”)

whereSETSTATE(t, state) is a generic state-update action
formalized as follows:{

Task(t, oldstate) del {Task(t, oldstate)}
add {Task(t, state)}

}

The acceptance of an offer enables the initiator to send a
rejection to all the agents that made an offer but were not
selected:

PropPrice(a, t,) ∧ ¬(AssignedTo(a, t,))
enablesreject(t) to a

To track that a rejection has been sent, the initiator reactsto
the rejection message by removing all proposals registered
for the corresponding agent and task:

on reject(t) to a if true then REMPROPS(a, t)

whereREMPROPS(a, t) :
{
PropPrice(a, t, p) del{PropPrice(a, t, p)}

}

Finally, an assigned task is marked as“done” whenever the
corresponding agent informs the initiator that the task has
been executed, or brought back to the“todo” state if the
agent signals a failure. These two cases are respectively han-
dled by the two on-receive rules

on inform(t) from a
if AssignedTo(a, t,) then SETSTATE(t, “done”)

and

on inform(t) from a
if AssignedTo(a, t,) then SETSTATE(t, “todo”)

which reuse the actionSETSTATE as defined above. The case
of a failure allows the initiator agent to restart a contractnet
protocol for the non-executed task.

4 Verification
We now focus on the verification of RMASs against rich
first-order temporal properties. The execution semantics of
RMAS X = 〈T ,F ,∆0,F ,S,M,G, I〉 is captured by are-
lational transition systemΥX = 〈∆T ,DX ,Σ, s0, db,→〉,
where:(i) DX is the union of typed schemas in the specifi-
cations ofG andI; (ii) Σ is a possibly infinite sets ofstates;
(iii) s0 ∈ Σ is the initial state; (iv) db is a function that,
given a states ∈ Σ and the namen of an agent active ins,
returns the database ofn in states, written s.db(n), which
must beDspecn -conformant, wherespecn is the name of
nspecification adopted byn. (v) → ⊆ Σ × Σ is a transition
relation between states.

The full ΥX construction starting from the initial state is
given in Figure 1. We report the main steps in the following.
The initial states0 is constructed by assignings0.db(inst)

to the initial database instanceDispec

0 of I, and the initial
database of each agent mentioned inDispec

0 taking from its
specification. The construction then proceeds by mutual in-
duction overΣ and→, repeating the following steps for-
ever: (1) A states is picked fromΣ. (2) An active agent
a is nondeterministically picked selecting its name from
s.db(inst). (3) The communicative rules ofa are evaluated,
extracting all enabled messages with their ground payloads
and destination agents. (4) An enabled messages is nonde-
terministically picked. (5) The on-send/on-receive rulesof
the two involved agents are triggered, fetching all actions
to be applied. (6) The actions are applied over the respec-
tive databases. If there are service calls involved, they are
nondeterminstically substituted with resulting data objects,
consistently with the service output facets. (7) Each agent
updates its own database provided that the database result-
ing from the parallel application of the actions is compatible
with the schema and satisfies all constraints. Otherwise the
old database is maintained, so as to model a sort of “trans-
action rollback”. (8) If one of the involved agents isinst and
the update leads to the introduction of a new agent into the
system, it database is initialized in accordance to its spec-
ification. (9) The global state so obtained is declared to be
successor of the state picked at step 1.

Interestingly,ΥX is in generalinfinite-branching, because
of the substitution of service calls with their results, andinfi-
nite runs, because of the storage of such data objects in time.

The µŁ@
p Verification Logic. To specify sophisti-

cated properties over RMASs we employ theµŁ@
p

logic. This logic combines the salient features of
those introduced in (Bagheri Hariri et al. 2013) and
(Montali, Calvanese, and De Giacomo 2014).µŁ@

p sup-
ports the full µ-calculus to predicate over the system
dynamics. Recall that theµ-calculus is virtually the
most expressive temporal logics: it subsumes LTL and
CTL∗. To query possibly different agent databases,µŁ@

p

adopts FO queries extended with location arguments
(Montali, Calvanese, and De Giacomo 2014), which are
dynamically bound to agents. Furthermore, to track the
temporal evolution of data objects,µŁ@

p adopts a controlled
form of FO quantification across time: quantification is
limited to those objects thatpersistin the system:

Φ ::= Qℓ | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVET (x) ∧ Φ | Z | µZ.Φ |∧
i∈{1,...,n} LIVETi

(~xi) ∧ 〈−〉Φ |
∧

i∈{1,...,n} LIVETi
(~xi) ∧ [−]Φ

whereQℓ is a (possibly open) FO query with location ar-
guments, in which the only constants that may appear are
those in∆0,F , andZ is a second order predicate variable
(of arity 0). Furthermore, the following assumption holds:
in the〈−〉 and[−] cases, the variablesx1, . . . , xn are exactly
the free variables ofΦ, once we substitute to each bounded
predicate variableZ in Φ its bounding formulaµZ.Φ′. We
adopt the usual abbreviations, includingνZ.Φ for greatest
fixpoints. Notice that the usage ofLIVE can be safely substi-
tuted by an atomic positive query.

The semantics ofµŁ@
p is defined over a relational

transition system similarly to the semantics ofµŁp in
(Bagheri Hariri et al. 2013). The most peculiar aspect is

1: procedure BUILD -TS(X)
2: input: RMASX = 〈T ,F ,∆0,F ,S ,M,G, I〉, output: Transition systemΥX = 〈∆T ,Σ, s0,→〉
3: AS0 := {〈n, spec

n
〉 | hasSpec(n, spec

n
) ∈ Dinst

0 } ⊲ Initial agents with their specifications
4: for all 〈n, spec

n
〉 ∈ AS0 do s0.db(n) := D

specn
0 ⊲ Specify the initial state by extracting the initial DBs fromthe agent specs

5: Σ := {s0}, → := ∅
6: while truedo
7: pick s ∈ Σ ⊲ Nondepickterministically pick a state
8: CurAS := {〈n, spec

n
〉 | hasSpec(a, spec

n
) ∈ s.db(inst)} ⊲ Get currently active agents with their specifications

9: pick 〈a, spec
a
〉 ∈ CurAS ⊲ Nondeterministically pick an active agenta, elected as “sender”

10: EMsg := GET-MSGS(Cspeca , s.db(a),CurAS) ⊲ Get the enabled messages with target agents
11: if EMsg 6= ∅ then
12: pick 〈M(~o), b〉 ∈ EMsg , with 〈b, spec

b
〉 ∈ CurAS ⊲ Pick a message+target agent and trigger message exchange and reactions

13: ACT a := ∅, ACT b := ∅ ⊲ Get the actions with actual parameters to be applied bya andb
14: for all matching on-send rules“on M(~x) to t if Q(t, ~x) thenα(t, ~x)” in Uspeca do
15: if ans (Q(b,~o), s.db(a)) andα(b,~o) conforms toα ∈ Aa thenACT a := ACT a ∪ α(b,~o)

16: for all matching on-receive rules“on M(~x) from s if Q(s, ~x) thenα(s, ~x)” in Uspecb do
17: if ans (Q(a,~o), s.db(b)) andα(a,~o) conforms toα ∈ Ab thenACT b := ACT b ∪ α(a,~o)

18: 〈ToDel a,ToAdda
s〉 := GET-FACTS(X , s.db(a),ACT a), 〈ToDel b,ToAddb

s〉 := GET-FACTS(X , s.db(b),ACT b)
19: DB a

s := (s.db(a) \ ToDel a) ∪ ToAdd a
s ⊲ Calculate newa’s DB, still with service calls to be issued

20: DB b
s := (s.db(b) \ ToDel b) ∪ ToAdd b

s ⊲ Calculate newb’s DB, still with service calls to be issued
21: if for eachf(~o) ∈ CALLS(DBa

s ∪DBb
s) with f = 〈f/n,F in, F out〉 ∈ S ,~o conforms toF in then ⊲ Check service input types

22: pick σ ∈
{
θ | (i) θ is a total function,(ii) θ : SCalls → ∆T , (iii) for eachf(~o), f(~o)θ conforms toF out

}

23: DB a
cand := DB a

sσ,DBb
cand := DBb

sσ ⊲ Obtain new candidate DBs by substituting service calls withresults
24: if DB a

cand conforms toDa) ∧ (DBa
cand satisfiesΓa) thenDB a := DB a

cand ⊲ Updatea’s DB
25: elseDBa := s.db(a) ⊲ Rollbacka’s DB
26: if DB b

cand conforms toDb) ∧ (DBb
cand satisfiesΓb) thenDB b := DB b

cand ⊲ Updateb’s DB
27: elseDBb := s.db(b) ⊲ Rollbackb’s DB
28: pick fresh states′ ⊲ Create new state
29: NewAS := ∅ ⊲ Determine the (possibly changed) set of active agents and their specs
30: if a = inst thenNewAS := {〈n, specn〉 | hasSpec(n, specn) ∈ DB a}
31: else ifb = inst thenNewAS := {〈n, specn〉 | hasSpec(n, specn) ∈ DBb}
32: elseNewAS := CurAS ⊲ No change ifinst is not involved in the interaction or must reject the update
33: for all 〈n, spec

n
〉 ∈ NewAS do ⊲ Do the update for each active agent

34: if n = a then s′.db(n) := DB a ⊲ Case of sender agent
35: else ifn = b then s′.db(n) := DB b ⊲ Case of target agent
36: else ifn 6∈ CurAS then ⊲ Case of newly created agent
37: s′.db(n) := D

specn
0 ∪ {MyName(n)} ⊲ n’s initial DB gets the initial data fixed by its specification,plus its name

38: elses′.db(n) := s.db(n) ⊲ Default case: persisting agent not affected by the interaction
39: if ∃s′′ ∈ Σ s.t.s′′.db(inst) = s′.db(inst) and for each〈n, 〉 ∈ CurAS , s′′.db(n) = s′.db(n) then
40: → := →∪ 〈s, s′′〉 ⊲ State already exists: connects to that state
41: elseΣ := Σ ∪ {s′}, → := →∪ 〈s, s′〉 ⊲ Add and connect new state
42: function GET-MSGS(C,DB,CurAS) ⊲ Evaluate communicative rulesC on DBDB , and return the enabled messages with targets
43: EMsg := ∅
44: for all communicative rules“Q(t, ~x) enablesM(~x) to t” in C do
45: for all θ ∈ ans (Q,DB) do ⊲ θ provides an actual payload and target agent
46: if tθ ∈ {n | 〈n, 〉 ∈ CurAS} andM(~x)θ conforms toM ∈ M then ⊲ θ is well-typed and has an active agent as target
47: EMsg := EMsg ∪ 〈M(~x, t)θ, tθ〉 ⊲ Add the ground event and target agent to the set of enabled events
48: return EMsg

49: function GET-FACTS(X ,DB , ACT) ⊲ Applies actionsACT on DBDB , and returns facts to be added and deleted
50: ToAdds := ∅; ToDel := ∅ ⊲ ToAdd s: facts with embedded service calls, to be added;ToDel : facts to be deleted
51: for all instantiated actionsα(~v) ∈ ACT do
52: for all effects“Q(~p, ~x) addA, delD” in the definition ofα do
53: for all θ ∈ ans (Q(~v, ~x), D) do ⊲ Get an answer from the left-hand side
54: ToAdds := ToAdd s ∪Aθ[~p/~v] ⊲ Get facts to add (with embedded service calls)
55: ToDel := ToDel ∪Dθ[~p/~v] ⊲ Get facts to delete
56: return 〈ToDel ,ToAdd s〉 ⊲ Recall: facts to be added still contain service calls - to be substituted with actual results

Figure 1: Procedure for constructing a transition system describing the execution semantics of an RMAS; given a setF of facts,
CALLS(F) returns the ground service calls contained inF

constituted byQℓ, which allows one to dynamically inspect
the databases maintained by active agents. In particular,Qℓ

is a standard (typed) FO query, whose atoms have the form
R(~x)@a, whereR is a (typed) relation, anda denotes an
agent name. The evaluation of the atomic queryR(~x)@a
over a relational transition systemΥ with substitutionθ re-
turns those statess of Υ such that:
• aθ is an active agent ins, that is,Agent(aθ) ∈ s.db(inst);
• the atomic queryR(~x)θ evaluates to true in the

database instance that agentaθ has in states, i.e.,
ans (R(~x)θ, s.db(aθ)) ≡ true.

Example 4.1. Consider the protocol in Section 3, assuming
that inst uses a unary typed relationinCritical to store the
agent that is currently in the critical interaction. Given:

First(a) = ∃t.hasTicket@inst(a, t)∧
¬∃a′, t′.hasTicket@inst(a′, t′) ∧ a′ 6= a ∧ t′ < t,

νZ.(∀a.Agent@inst(a) ∧ First(a) →
µY.(inCritical@inst(a) ∨ (Agent@inst(a) ∧ 〈−〉Y)) ∧ [−]Z

models that when an agent is “first”, there will be a run in
which it persists into the system until it enters the critical
interaction.

5 Decidability of Verification
We now study different aspects of the followingverifica-
tion problem: given a closedµŁ@

p propertyΦ and an RMAS
X , check whetherΦ holds over the relational transition sys-
temΥX , writtenΥX |= Φ. Unsurprisingly, this problem in
general is undecidable. In a recent series of works, verifica-
tion of data-aware dynamic systems has been studied under
the notion ofstate-boundedness(Bagheri Hariri et al. 2014),
which, in the context of RMASs, can be phrased as follows.
An RMASX isstate-boundedif, for every states ofΥX , the
number of data objects stored in each agent database does
not exceed a pre-defined bound.

As shown in previous work, state-boundedness still
allows one to model systems that encounter infinitely
many different data objects (and, possibly, even agents)
along their runs, provided that they do not accumulate
in the same state. In our setting, this means that in-
finitely many different agents can interact, provided that
at each time point only a bounded number of them is
active (Montali, Calvanese, and De Giacomo 2014). Simi-
larly, from Theorem 3.1 we obtain that when an RMAS is
state-bounded, asynchronous communication can be mod-
elled only by putting a threshold on the size of each message
queue.

(Montali, Calvanese, and De Giacomo 2014) have shown
that verification of state-bounded DACMASs is decidable.
We study now how data types impact on this.
Compilation of Facets. Facets can be eliminated, getting a
shallow-typedRMAS, i.e., one using base facets only.

Theorem 5.1. For every RMASX , there exists a corre-
sponding shallow-typed RMAŜX such that, for everyµŁ@

p

propertyΦ, we haveΥX |= Φ if and only ifΥX̂ |= Φ.

Proof. Let X = 〈T ,F ,∆0,F ,S,M,G, I〉. We construct
X̂ = 〈T , T̂ ,∆0,F , Ŝ,M̂, Ĝ, Î〉 as follows:

• T̂ is the set of base facets constructed starting from the
types inT .

• Ŝ andM̂, are obtained fromS andM by substituting
the facet attached to each component with the correspond-
ing base facet: whenever a component is originally typed
with facet〈T, ϕ(x)〉 ∈ F , the corresponding component
is typed with the base facet〈T, true〉 ∈ T̂ .

• Ŝ andM̂, are obtained fromS andM by substituting
the facet attached to each component with the correspond-
ing base facet: whenever a component is originally typed
with facet〈T, ϕ(x)〉 ∈ F , the corresponding component
is typed with the base facet〈T, true〉 ∈ T̂ .

• Each agent specificationN = 〈n,D,Γ, D0, C,A,U〉 in
G∪{I} becomes a corresponding agent specificationN̂ =

〈n, D̂, Γ̂, D0, Ĉ, Â, Û〉 in Ĝ ∪{Î}. The database schemâD
transformsD similarly to howŜ andM̂ transformS and
M: for everyn-ary typed relationR ∈ D, a correspond-
ingn-ary relationR is included inD̂, such that, for every
i ∈ {1, . . . , n}, TYPED̂(R

′[i]) = 〈T, true〉 if and only
if TYPED(R[i]) = 〈T, ϕ(x)〉. In addition, for every typed
service callf(〈T1, ϕ1(x)〉, . . . , 〈Tn, ϕn(x)〉) in S, D̂ con-
tains a relationInputf (〈T1, ϕ1(x)〉, . . . , 〈Tn, ϕn(x)〉),
whose use is explained below.
The other elements of̂N ensure that the type checks ofN
are properly recreated in the form of special queries and
constraints. In particular:
– For every communicative rule “Q(t, ~x) enablesM(~x)

to t” in C, with |~x| = n, Ĉ contains the corresponding
rule

Q(t, ~x) ∧
∧

i∈{1,...,n},〈Ti,ϕi(x)〉=TYPEM(M [i])

ϕ(xi) enablesM(~x)

This guarantees that the filter criterion applied on lines
45-47 of Figure 1 is properly reconstructed, so thatX

andX̂ produce the same sets of enabled messages.
– A similar approach is applied to the update rules inU ,

incorporating into each condition the facet expressions
of the facets attached to the corresponding action com-
ponents, in such a way that the filter criterion applied
on lines 15 and 17 of Figure 1 is properly reconstructed.
This ensures thatX andX̂ produce the same sets of in-
stantiated actions.

– ActionsA need to be translated by ensuring that the
types of relations inD and those of the service call in-
put/outputs inS are properly checked. The typing of
relation components is guaranteed by augmenting the
setΓ of constraints. Specifically, beside all the original
constraints inΓ, for eachn-ary typed relationR in D

and everyi ∈ {1, . . . , n}, we insert intôΓ a dedicated
constraint

∀xi.R(, . . . , xi, . . . ,) → ϕi(xi)

whereϕi is the facet formula ofTYPED(R[i]). This
technique guarantees thatX andX̂ equivalently eval-
uate the conditions on lines 24 and 26 of Figure 1 (X̂

always satisfies the conformance test, and lifts the orig-
inal conformance test ofX as a test on the satisfaction
of database constraints, expressed in the second con-
junct of lines 24 and 26). Finally, the tests expressed on
lines 21 and 22 of Figure 1, which respectively check
whether the service calls involved in an action appli-
cation have inputs and outpus conforming to their re-
spective facets, is reformulated using the technique il-
lustrated in the following. For every actionα ∈ A,
Â contains an actionα′, constructed by properly ma-
nipulating the set of facts in theadd-set. Specifically,
for each effect “Q(~p, ~x) add A, del D” in the
specification ofα, α′ contains a corresponding effect
“Q(~p, ~x) addA′, delD”, where:

A′ = A∪{Inputf (~x)|F ∈ A andf(~x) appears inF}
{Outputf (f(~x))|F ∈ A andf(~x) appears inF}

Intuitively, A′ adds a fact for relationInputf/n and
a fact for relationOutputf/1 for everyn-ary service
call f appearing inA, in such a way that the contect
of these two facts respectively correspond to the input
and output off . Since it is not important that such facts
are persisted in the agent database, but it is only im-
portant that they are present after the action is applied,
the specification of each action in̂A also contains the
following effects:

{
Inputfi(~x) del{Inputfi(~x)}

∣∣ fi ∈ S
}

The conformance with the service input facets can then
be reformulated similarly to the case of relations in
D, that is, by further augmenting the setΓ̂ of con-
straints. Specifically, for eachn-ary service callf =
〈f/n,F in, F out〉 in S, we insert two dedicated con-
straints inΓ̂:
1. by denoting withϕi the facet formula of thei-th
component ofF in,

∀x1, . . . , xn.Inputf (x1, . . . , xn) →
∧

i∈{1,...,n}

ϕi(xi)

2. by denotwing withψ the facet formula ofF out,

∀x.Outputf (x) → ψ(x)

This mechanism lifts the checks applied forX on lines
21 and 22 of Figure 1 (which is trivially true for̂X) as
additional constraint checks on lines 24 and 26, where
the satisfaction of database constraints is tested.

The translation mechanism ensures that the execution se-
mantics ofX̂ suitably reconstructs that ofX , i.e., if we
project away the accessory relations used for the service call
inputs, we have thatΥX̂ is equivalent toΥX .

As a consequence of Theorem 5.1, we have that, for
shallow-typed RMASs, the transition system construction
can be simplified as shown in theBUILD -TS-SHALLOW pro-
cedure of Figure 2.

5.1 RMASs with the Successor Relation
We now show that including at least one data type with the
successor relation compromises decidability:

Theorem 5.2. Verification of a propositional reachability
property over state-bounded, shallow-typed RMASs that use
a single data type equipped with the successor relation is
undecidable, even when the RMAS contains a single agent
that uses unary relations only.

Proof. The proof is by reduction from the halting problem
of two-counter machines. Acounter is a memory register
that stores a (non-negative) integer. Notice that the proof
works in the same way even if we substituteZ with Q or
R, provided that they are equipped with the successor rela-
tion.

Given two positive integersn,m ∈ N+, anm-counter
machineC with countersc1, . . . , cm is a program constituted
by a (numbered) sequence ofn instructions:

1 : CMD1; 2 : CMD2; . . . n : HALT;

where then-th instruction indicates thatC halts, while for
everyk ∈ {1, . . . , n− 1}, instructionk : CMDk has one of
the two following forms:
• (increment commandfor counteri) CMDk = INC(i, k′),

with i ∈ {1, . . . ,m} and k′ ∈ {1, . . . , n}, which in-
creases the counterci of one unit, and then jumps to in-
struction numberk′:

k : ci := ci + 1; GOTO k′;

• (conditional decrement commandfor counteri)CMDk =
CDEC(i, k′, k′′), with i ∈ {1, . . . ,m} and k′, k′′ ∈
{1, . . . , n}, which tests whether the value of counteri
is zero. If so, it jumps to instructionk′; otherwise, it de-
creases counteri of one unit, and then jumps to instruction
k′′:

k : if ci == 0 thenGOTO k′;
else{ci := ci − 1; GOTO k′′; }

An input for anm-counter machine is anm-tuple of values
〈d1, . . . , dm〉 (such thatdi ∈ N), used to initialize its coun-
ters. Given anm-counter machineC and an inputI of size
m, we say thatC halts on inputI if the execution ofC with
counter initial values set byI eventually reaches the last,
HALT command.

It is well-known that checking whether a 2-counter ma-
chine halts on a given input is undecidable (Minsky 1967),
and that undecidability still holds when checking whether
the 2-counter machine halts on input〈0, 0〉.

We show how to encode a 2-counter machine into
a state-bounded, shallow-typed RMAS containing a
single agent specification that work over unary re-
lations only. Specifically, given a 2-counter machine
C with n instructions, we construct RMASXC =
〈{AT,ZT }, {AF,ZF}, {0, . . . , k}, {input}, {go}, ∅, IC〉,
wherek = max{2, n}, and:
• AT = 〈A, {=}〉 is the agent type (just used to keep track

of the inst name),ZT = 〈Z, {<,=, succ}〉 is the integer
type (but, as specified above,Z can be seamlessly substi-
tuted byQ orR).

1: procedure BUILD -TS-SHALLOW(X̂)
2: input: Shallow-typed RMASX̂ = 〈T , T̂ ,∆0,F , Ŝ,M̂〉, output: Transition systemΥX = 〈∆T ,Σ, s0,→〉
3: AS0 := {〈n, spec

n
〉 | hasSpec(n, spec

n
) ∈ Dinst

0 } ⊲ Initial agents with their specifications
4: for all 〈n, specn〉 ∈ AS0 do s0.db(n) := D

specn
0 ⊲ Specify the initial state by extracting the initial DBs fromthe agent specs

5: Σ := {s0}, → := ∅
6: while truedo
7: pick s ∈ Σ ⊲ Nondeterministically pick a state
8: CurAS := {〈n, spec

n
〉 | hasSpec(a, spec

n
) ∈ s.db(inst)} ⊲ Get currently active agents with their specifications

9: pick 〈a, spec
a
〉 ∈ CurAS ⊲ Nondeterministically pick an active agenta, elected as “sender”

10: EMsg := GET-MSGS(Ĉspeca , s.db(a),CurAS) ⊲ Get the enabled messages with target agents
11: if EMsg 6= ∅ then
12: pick 〈M(~o), b〉 ∈ EMsg , with 〈b, spec

b
〉 ∈ CurAS ⊲ Pick a message+target agent and trigger message exchange and reactions

13: ACT a := ∅, ACT b := ∅ ⊲ Get the actions with actual parameters to be applied bya andb
14: for all matching on-send rules“on M(~x) to t if Q(t, ~x) thenα(t, ~x)” in Ûspeca do
15: if ans (Q(b,~o), s.db(a)) thenACT a := ACT a ∪ α(b,~o)

16: for all matching on-receive rules“on M(~x) from s if Q(s, ~x) thenα(s, ~x)” in Ûspecb do
17: if ans (Q(a,~o), s.db(b)) thenACT b := ACT b ∪ α(a,~o)

18: 〈ToDel a,ToAdda
s〉 := GET-FACTS(X̂ , s.db(a),ACT a), 〈ToDel b,ToAddb

s〉 := GET-FACTS(X̂ , s.db(b),ACT b)
19: DB a

s := (s.db(a) \ ToDel a) ∪ ToAdd a
s ⊲ Calculate newa’s DB, still with service calls to be issued

20: DB b
s := (s.db(b) \ ToDel b) ∪ ToAdd b

s ⊲ Calculate newb’s DB, still with service calls to be issued
21: pick σ ∈

{
θ | (i) θ is a total function,(ii) θ : SCalls → ∆T , (iii) for eachf(~o), f(~o)θ conforms toF out

}

22: DB a
cand := DBa

sσ,DBb
cand := DB b

sσ ⊲ Obtain new candidate DBs by substituting service calls withresults
23: if DBa

cand satisfieŝΓa thenDB a := DB a
cand ⊲ Updatea’s DB

24: elseDB a := s.db(a) ⊲ Rollbacka’s DB
25: if DBb

cand satisfieŝΓb thenDB b := DB b
cand ⊲ Updateb’s DB

26: elseDB b := s.db(b) ⊲ Rollbackb’s DB
27: pick fresh states′ ⊲ Create new state
28: NewAS := ∅ ⊲ Determine the (possibly changed) set of active agents and their specs
29: if a = inst thenNewAS := {〈n, spec

n
〉 | hasSpec(n, spec

n
) ∈ DB a}

30: else ifb = inst thenNewAS := {〈n, spec
n
〉 | hasSpec(n, spec

n
) ∈ DB b}

31: elseNewAS := CurAS ⊲ No change ifinst is not involved in the interaction or must reject the update
32: for all 〈n, spec

n
〉 ∈ NewAS do ⊲ Do the update for each active agent

33: if n = a then s′.db(n) := DBa ⊲ Case of sender agent
34: else ifn = b then s′.db(n) := DB b ⊲ Case of target agent
35: else ifn 6∈ CurAS then ⊲ Case of newly created agent
36: s′.db(n) := D

specn
0 ∪ {MyName(n)} ⊲ n’s initial DB gets the initial data fixed by its specification,plus its name

37: elses′.db(n) := s.db(n) ⊲ Default case: persisting agent not affected by the interaction
38: if ∃s′′ ∈ Σ s.t.s′′.db(inst) = s′.db(inst) and for each〈n, 〉 ∈ CurAS , s′′.db(n) = s′.db(n) then
39: → := →∪ 〈s, s′′〉 ⊲ State already exists: connects to that state
40: elseΣ := Σ ∪ {s′}, → := →∪ 〈s, s′〉 ⊲ Add and connect new state

Figure 2: Simplification ofBUILD -TS dealing with shallow-typed RMASs

• AF andZF are the base facets defined starting fromAT
andZT respectively.

• input = 〈input/0, 〈〉, ZF 〉 is a 0-ary service that re-
turns integer values.

• go is a message sent byinst to itself so as to trigger the
processing of the next instruction.

• IC is a specification for the institutional agent that mimics
the program ofC.
Specifically,IC = 〈instspec,DC,ΓC, D

inst

0 , CC,AC,UC〉,
where:

• DC =

C1(ZF), C

p
1 (ZF), C2(ZF), C

p
2 (ZF),

PC (ZF),Op(ZF),Target(ZF),Halted()
Agent(AF),MyName(AF)

where:
– C1 andC2 store the current values of the two counters,
– Cp

1 andCp
2 store their previous values,

– PC stores the program counter (i.e., the number of the
instruction to be processed),

– Op indicates the nature of the operator to be applied (0

means increment, while1 means decrement),
– Target indicates the target counter, that is, the counter

to which the operation must be applied (1 means the
first counter,2 the second),

– Halted is a proposition indicating that the agent fin-
ished the execution (i.e., reached the last instruction of
C).

• ΓC contains constraints that encode the semantics of op-
erations. In particular:
– In the case of increment, the target counter must have a

current value that is successor of the previous value:

Op(0) ∧ Target(1)
→ (∀xp, x.C1(x) ∧ C

p
1 (xp) → succ(x, xp))

Op(0) ∧ Target(2)
→ (∀xp, x.C2(x) ∧ C

p
2 (xp) → succ(x, xp))

– In the case of decrement, the opposite holds, i.e., the
target counter must have a current value that is pre-
cedessor of the previous value:

Op(1) ∧ Target(1)
→ (∀xp, x.C1(x) ∧ C

p
1 (xp) → succ(xp, x))

Op(1) ∧ Target(2)
→ (∀xp, x.C2(x) ∧ C

p
2 (xp) → succ(xp, x))

• The initial database ofinst initializes the two counters to
0, and the program counter to the first instruction:

Dinst

0 = {Agent(inst),MyName(inst), C1(0), C2(0), PC(1)}

• CC contains just a single rule, which enablesinst to send
a go message to itself if it is not halted:

MyName(a) ∧ ¬Halted enablesgo() to a

• AC contains the following actions:
– SET-PC(ZF) updates the program counter to the value

passed as parameter:

SET-PC(next) :

{
PC (x) del {PC (x)},

true add{PC (next)}

}

– SET-OP(ZF,ZF) sets the operation, i.e., the operation
type and the target counter, to the passed parameters:

SET-OP(o, t) :

Op(x) del {Op(x)},
Target(x) del {Target(x)},

true add{Op(o)}
true add{Target(t)}

– U-C(ZF) updates the value of the counter whose index
is passed as parameter, and at the same time remembers
the current value moving it to the “previous” counter
relation:

U-C(c) :

c = 1 ∧Cp
1 (x) del {Cp

1 (x)}
c = 1 ∧C1(x) del {C1(x)}, add{Cp

1 (x)}
c = 1 add{C1(input())}
c = 2 ∧Cp

2 (x) del {Cp
2 (x)}

c = 2 ∧C2(x) del {C2(x)}, add{Cp
2 (x)}

c = 2 add{C2(input())}

It is worth noting that the action nondeterministically
updates the content of the first or second counter, de-
pending on the value of the parameter. However, by
considering the constraints modelled inΓC, only the
successor state that has picked exactly the successor or
precedessor value of the current one will be selected,
depending on what the current operation is.

– STOP() is an action without parameters that just sets the
Halted flag to true:

STOP() : {true add{Halted}}

• UC constains a set of rules that mirror the instructions of
C, according from the following translation schema:
– For instructionk : INC(i, k′) (with i ∈ {1, 2}), we get:

on go if PC (k) then SET-PC(k′)
on go if PC (k) then SET-OP(0, i)
on go if PC (k) then U-C(i)

The first rule handles the update of the program
counter. The second rule indicates that counteri must
be subject to operation with code0. The third rule indi-
cates that the instruction require to update the content
of counteri.

– For instructionk : CDEC(i, k′, k′′) (with i ∈ {1, 2}),
we get:

on go if PC (k) ∧ Ci(0) then SET-PC(k′)
on go if PC (k) ∧ ¬Ci(0) then SET-PC(k′′)
on go if PC (k) ∧ ¬Ci(0) then SET-OP(1, i)
on go if PC (k) ∧ ¬Ci(0) then U-C(i)

The formalization is specular to the case of increment,
with the proviso that the manipuation of the counter is
triggered only if the counter is not0.

– For instructionn : HALT, we simply get:

on go if PC (n) then HALT()

It is now apparent thatC halts on input〈0, 0〉 if and only if
ΥXC

|= µZ.(Halted) ∨ 〈−〉Z

5.2 Densely-Ordered RMASs
Given the previous undecidability result, we focus on dense
orders. Adensely-orderedRMAS only relies on data types
equipped with domain-specific equality= and, possibly, to-
tal dense orders, as well as corresponding facets. For this
class of RMASs, we have:

Theorem 5.3. Verification of closedµŁ@
p properties over

state-bounded, densely-ordered RMASs is decidable, and re-
ducible to conventional, finite-state model checking.

Let X = 〈T ,F ,∆0,F ,S,M,G, I〉 be an RMAS, andΦ
be a closedµŁ@

p property. Notice that, by hypothesis,T is
constituted by a setTu of data types equipped with domain-
specific equality only, and a setTo of data types equipped
also with a dense total order:T = Tu ⊎ To.

The proof is quite involved, so we separate it into several
steps and intermediate lemmas.

The first step consists in reformulating the input RMAS
X into the equivalent, shallow-typed version̂X =

〈T , T̂ ,∆0,F , Ŝ,M̂〉, as defined in the proof of Theorem 5.1.
By Theorem 5.1, we have thatΥX |= Φ if and only if
ΥX̂ |= Φ.

As a second step, we consider the infinite-state transi-
tion systemΥX̂ , and seek a faithful (sound and complete)
finite-state abstraction of it, suitably extending the technique
in (Bagheri Hariri et al. 2013) so as to consider types, and
dense orders in particular. SinceX is state-bounded, two
sources of infinity are possibly present inΥX andΥX̂ :

1: procedure BUILD -FB-TS-SHALLOW(X̂)
2: input: Shallow-typed RMASX̂ = 〈T , T̂ ,∆0,F , Ŝ,M̂〉, withT = {T 1

u , . . . , T
n
u }∪{T 1

o , . . . , T
m
o }, output: TSΥX = 〈∆T ,Σ, s0,→〉

3: AS0 := {〈n, spec
n
〉 | hasSpec(n, spec

n
) ∈ Dinst

0 } ⊲ Initial agents with their specifications
4: for all 〈n, specn〉 ∈ AS0 do s0.db(n) := D

specn
0 ⊲ Specify the initial state by extracting the initial DBs fromthe agent specs

5: Σ := {s0}, → := ∅
6: while truedo
7: pick s ∈ Σ ⊲ Nondeterministically pick a state
8: CurAS := {〈n, spec

n
〉 | hasSpec(a, spec

n
) ∈ s.db(inst)} ⊲ Get currently active agents with their specifications

9: pick 〈a, spec
a
〉 ∈ CurAS ⊲ Nondeterministically pick an active agenta, elected as “sender”

10: EMsg := GET-MSGS(Ĉspeca , s.db(a),CurAS) ⊲ Get the enabled messages with target agents
11: if EMsg 6= ∅ then
12: pick 〈M(~o), b〉 ∈ EMsg , with 〈b, spec

b
〉 ∈ CurAS ⊲ Pick a message+target agent and trigger message exchange and reactions

13: ACT a := ∅, ACT b := ∅ ⊲ Get the actions with actual parameters to be applied bya andb
14: for all matching on-send rules“on M(~x) to t if Q(t, ~x) thenα(t, ~x)” in Ûspeca do
15: if ans (Q(b,~o), s.db(a)) thenACT a := ACT a ∪ α(b,~o)

16: for all matching on-receive rules“on M(~x) from s if Q(s, ~x) thenα(s, ~x)” in Ûspecb do
17: if ans (Q(a,~o), s.db(b)) thenACT b := ACT b ∪ α(a,~o)

18: 〈ToDel a,ToAdda
s〉 := GET-FACTS(X̂ , s.db(a),ACT a), 〈ToDel b,ToAddb

s〉 := GET-FACTS(X̂ , s.db(b),ACT b)
19: DB a

s := (s.db(a) \ ToDel a) ∪ ToAdd a
s ⊲ Calculate newa’s DB, still with service calls to be issued

20: DB b
s := (s.db(b) \ ToDel b) ∪ ToAdd b

s ⊲ Calculate newb’s DB, still with service calls to be issued
21: for all data typeT ∈ T do ⊲ Fetch the active domain and service calls for each type

22: ADoms(T) :=
{d | d ∈ ∆T ∩∆0,F}

∪{d | d ∈ ∆T ∩ ADOM(s)}

∪{f(~o) | f(~o) ∈ CALLS(DBa
s ∪DBb

s) andf = 〈f/n,F in, F out〉 ∈ Ŝ with F out = 〈T, true〉}

23: pick H ∈

{
〈P1, . . . ,Pn,H1, . . . ,Hm〉

∣∣∣∣
Pi is aT i

u-equality commitment onADoms(T
i
u) for i ∈ {1, . . . , n},

Hj is aT j
o -densely ordered commitment onADoms(T

j
o) for j ∈ {1, . . . ,m}

}

24: σ :=
{
f(~o) 7→ d | f(~o) ∈ SCalls andASSIGN-RES

∆T

H
(s, f(~o)) = d

}

25: DB a
cand := DBa

sσ,DBb
cand := DB b

sσ ⊲ Obtain new candidate DBs by substituting service calls withresults
26: if DBa

cand satisfieŝΓa thenDB a := DB a
cand ⊲ Updatea’s DB

27: elseDB a := s.db(a) ⊲ Rollbacka’s DB
28: if DBb

cand satisfieŝΓb thenDB b := DB b
cand ⊲ Updateb’s DB

29: elseDB b := s.db(b) ⊲ Rollbackb’s DB
30: pick fresh states′ ⊲ Create new state
31: NewAS := ∅ ⊲ Determine the (possibly changed) set of active agents and their specs
32: if a = inst thenNewAS := {〈n, spec

n
〉 | hasSpec(n, spec

n
) ∈ DB a}

33: else ifb = inst thenNewAS := {〈n, spec
n
〉 | hasSpec(n, spec

n
) ∈ DB b}

34: elseNewAS := CurAS ⊲ No change ifinst is not involved in the interaction or must reject the update
35: for all 〈n, specn〉 ∈ NewAS do ⊲ Do the update for each active agent
36: if n = a then s′.db(n) := DBa ⊲ Case of sender agent
37: else ifn = b then s′.db(n) := DB b ⊲ Case of target agent
38: else ifn 6∈ CurAS then ⊲ Case of newly created agent
39: s′.db(n) := D

specn
0 ∪ {MyName(n)} ⊲ n’s initial DB gets the initial data fixed by its specification,plus its name

40: elses′.db(n) := s.db(n) ⊲ Default case: persisting agent not affected by the interaction
41: if ∃s′′ ∈ Σ s.t.s′′.db(inst) = s′.db(inst) and for each〈n, 〉 ∈ CurAS , s′′.db(n) = s′.db(n) then
42: → := →∪ 〈s, s′′〉 ⊲ State already exists: connects to that state
43: elseΣ := Σ ∪ {s′}, → := →∪ 〈s, s′〉 ⊲ Add and connect new state

Figure 3: Procedure for constructing a transition system that is a finite-branching, faithful abstraction of the transition system
constructed byBUILD -TS-SHALLOW

1. infinite branching, that is, presence of a state with in-
finitely many successors due to the injection of data
through service calls;

2. infinite runs, that is, runs that visit infinitely many differ-
ent agent databases.
We can get rid of the infinite-branching inΥX̂ by suitably

pruning it:

Lemma 5.4. For every shallow-typed RMAŜX , there exists
a transition systemΛX̂ that obeys the following properties:

(i) ΛX̂ is finite-branching;
(ii) for every closedµŁ@

p propertyΦ, ΥX̂ |= Φ if and only
if ΛX̂ |= Φ.

To produce ΛX̂ , we extend the notion ofequal-
ity commitmentexploited in (Bagheri Hariri et al. 2012;
Bagheri Hariri et al. 2013). Equality commitments are used
to abstractly describe how the result of a service call re-
lates through (in)equality to the values present in the active

domain of the system, and to those returned by other ser-
vice calls issued in the same moment, without considering
their actual, specific results. Technically, we adapt the defini-
tion of equality commitment in (Bagheri Hariri et al. 2012)
to the case of RMASs, taking into account that:(i) differ-
ently from DCDSs, data objects are typed, and(ii) some data
objects could be compared not only with equality, but also
with a domain-specific total, dense relation.

Consider a data typeTu ∈ Tu, and a setS made up of data
objects in∆Tu

and of ground service calls built by applying
a service callf ∈ S to input data objects, such that the return
type off is compatible withTu. A Tu-equality commitment
P onS is a partition ofS, that is, a set of disjoint subsets of
S, calledcells, such that the union of the cells inP is exactly
S. Each cell contains at most one data object (but arbitrarily
many ground service calls). For anye ∈ P , [e]P denotes the
cell to whiche belongs.

The intention ofH is to abstractly characterize how the
elements inS are related to each other via the domain-
specific relation=Tu

of Tu. In particular,P is used to cap-
ture equality and non-equality commitments on the members
of S in the following sense: for everye1, e2 ∈ S, we have
e1 =Tu

e2 if and only if [e1]H =Tu
[e2]H.

Consider now a data typeTo ∈ To, and a setS as before.
A To-densely ordered commitmentH onS is a pair〈P , pos〉,
where:

• P is aTo-equality commitment overS;
• pos is an ordering overP that is compatible withS, i.e.,
pos is a bijection{1, . . . , |P|} −→ P that obeys to the
following property: for everyP1, P2 ∈ P , wheneverP1

contains a data objectd1 ∈ T andP2 contains a data ob-
jectd2 in ∆T , we havepos(P1) <N pos(P2) if and only
if d1 <To

d2, where<N denotes the total order relation
on natural numbers.

The intention ofH is to abstractly characterize how the el-
ements inS are related to each other via the domain-specific
relations=To

and<To
of T . Specifically,P covers equality,

while pos accounts for<, and orders the members ofS in
the following sense: for everye1, e2 ∈ S, we havee1 <To

e2
if and only if pos([e1]P) <N pos([e2]P).

We now exploit commitments to change theBUILD -TS
algorithm, shown in Figure 1 and used to constructΥX̂ .
In particular, we start from theTS-BUILD -SHALLOW pro-
cedure, and modify the function that nondeterministically
selects the results returned by service calls. First of all,we
assume the existence of a pre-defined functionASSIGN-RES,
parameterized by a tuple of commitments, which substitutes
a service call with a corresponding result that is in accor-
dance with the cell to which the service call belongs. In par-
ticular, let Tu = {T 1

u , . . . , T
n
u } andTo = {T 1

o , . . . , T
m
o }.

Let 〈S1
u, . . . , S

n
u , S

1
o , . . . , S

m
o 〉 be a tuple of sets, each con-

taining data objects from the corresponding type, and pos-
sibly also service calls whose return type matches with that
type. LetH = 〈P1, . . . ,Pn,H1, . . . ,Hm〉 be a tuple of com-
mitments, where eachPi is aT i

u-equality commitment built
overSi

u, and where eachHj is aT j
o -densely ordered com-

mitment built overSj
o.

Specifically, given a data domain∆, we define

ASSIGN-RES∆H : Σ× CALLS(
⋃

i∈{1,...,n}

Si
u ∪

⋃

j∈{1,...,m}

Sj
o) −→ ∆

where, by fixing a states ∈ Σ, ASSIGN-RES∆H obeys to the
following properties:
• For i ∈ {1, . . . , n}, for every service callf(~o) ∈ Si

u and for
every data objectd ∈ Si

u: ASSIGN-RES∆H (s, f(~o)) =T i
u

d iff
[f(~o)]Pi

=T i
u
[d]Pi

.
• For i ∈ {1, . . . , n} and for every two service calls

f1(~o1), f2(~o2) ∈ Si
u: ASSIGN-RES∆H (s, f1(~o1)) =T i

u

ASSIGN-RES∆H (s, f2(~o2)) iff [f1(~o1)]Pi
=T i

u
[f2(~o2)]Pi

.
• For j ∈ {1, . . . ,m} with Hj = 〈P ′

j , posj〉, for every ser-
vice call f(~o) ∈ Sj

o and for every data objectd ∈ Sj
o:

ASSIGN-RES∆H (s, f(~o)) =T i
u
d iff [f(~o)]P′

j
∆ =T i

u
[d]P′

j
.

• ForHj = 〈P ′
j , posj〉 (j ∈ {1, . . . ,m}), and for every two ser-

vice callsf1(~o1), f2(~o2) ∈ Sj
o: ASSIGN-RES∆H (s, f1(~o1)) =

T
j
o

ASSIGN-RES∆H (s, f2(~o2)) iff [f1(~o1)]P′
j
=

T
j
o
[f2(~o2)]P′

j
.

• For Hj = 〈P ′
j , posj〉 (j ∈ {1, . . . ,m}), and for every two

service callsf1(~o1), f2(~o2) ∈ Sj
o :

– ASSIGN-RES∆H (s, f1(~o1)) =
T

j
o

ASSIGN-RES∆H (s, f2(~o2)) iff
[f1(~o1)]P′

j
=

T
j
o
[f2(~o2)]P′

j
;

– ASSIGN-RES∆H (s, f1(~o1)) <
T

j
o

ASSIGN-RES∆H (s, f2(~o2)) iff
pos([f1(~o1)]P′

j
) <N pos([f2(~o2)]P′

j
).

Intuitively, this function is used to select asingle, representa-
tive combination of service call results that obey to the con-
straints imposed by a given commitment.

Figure 3 shows the revised version of the algorithm in
Figure 2. Instead of picking any combination of service
call results, theBUILD -FB-TS-SHALLOW algorithm picks an
equality/densely-ordered commitment for each type of the
input RMAS, constructed over the current active domain for
that type, where the current active domain for typeT is ob-
tained by considering:
• the initial data objects forT ;
• the current data objects forT ;
• the service calls that must be issued now, and whose re-

turn facet is defined over typeT .
The combination of service call results for each type is then
obtained by applying the pre-definedASSIGN-RES function.

Let ΛX̂ be the transition system obtained by the appli-
cation of theBUILD -FB-TS-SHALLOW procedure over the
shallow-typed RMASX̂ . We first argue thatΛX̂ is finite-
branching, differently fromΥX̂ , for which the function
GET-CALL -RESmay return infinitely many combinations of
service call results. In fact, given the current active domain
ADoms(T) of a typeT , there are only finitely many com-
mitments that can be constructed over that set. More specifi-
cally, whenT is an unordered type their number is bounded
by the Bell number of|ADoms(T)|, wherease whenT is an
ordered type their number is bounded by the Bell number
of |ADoms(T)|, multiplied by the factorial of|ADoms(T)|
(so as to account for the permutation of data objects). Since
the ASSIGN-RES function assigns a single combination of
results for each commitment, there are only finitely many
combination of service call results, and consequently only

finitely many successor states of a given state can be present
in ΛX̂ .

To show thatΥX̂ and ΛX̂ satisfy the same set of
µŁ@

p formulae, one needs to follow step-by-step the proof
of (Bagheri Hariri et al. 2012; Bagheri Hariri et al. 2013),
noticing that the notion of densely-ordered commitment
covers the case of formulae of the formx < y, which is the
only one not already tackled by (Bagheri Hariri et al. 2012;
Bagheri Hariri et al. 2013). This concludes the proof of
Lemma 5.4.

We now observe thatΛX̂ may still contain runs visit-
ing infinitely many different states. The third phase of our
proof consequently consists of showing that it is possible
to produce a “folded” folded transition systemΘX̂ that is
finite-state, and such that for every closedµŁ@

p propertyΦ,
ΛX̂ |= Φ if and only if ΘX̂ |= Φ.

Before showing how this can be done, we define a vari-
ant of BUILD -FB-TS-SHALLOW that, instead of employing
the domain-specific (rigid) ordering relations, relies on ad-
ditional “comparison tables” that are suitably manipulated
state by state. The algorithm is shown in Figure 4. The con-
struction algorithm exploits a specific database (indexed in
the state by symbol<) to store the projection of the or-
dering relations of types inTo, where only actively per-
sisting data objects are considered. Such database employs
a relationlessThanTo

for each densely-ordered data type
To ∈ To. In order to make the input RMAS insisting on
such relations instead of the domain-specific ones, we intro-
duce theFLATTEN operator, which takes an RMAS or one of
its components, and substitutes every occurrence of a query
of the formx <To

y with the corresponding atomic query
lessThanTo

(x, y).
Such a database is initialized by computing, for each data

type T i
o ∈ To, the transitive closure of the<T i

o
relation

on the initial data domain forT i
o, and by inserting all ex-

tracted pairs into the dedicatedlessThanT i
o

binary relation.
It is then used whenever a query is issued over an agent
database, so as to complement it with the explicit listing of
all lessThan relations. Finally, it is updated state-by-state:
• on the one hand by considering the issued service calls,

in accordance with thepos relation of the established
densely-ordered commitments (cf. line 36 in Figure 4);

• on the other hand by filtering away those tuples that in-
volve a data object that is not persisting when performing
a transition from the current to the next state (cf. line 53
in Figure 4).
Let Λflat

X̂
be the transition system produced by

BUILD -FB-TS-SHALLOW-FLAT(X̂). We have that:

Lemma 5.5. For every shallow-typed RMAŜX and every
closedµŁ@

p propertyΦ:

ΛX̂ |= Φ if and only ifΛflat

X̂
|= FLATTEN(Φ)

The lemma can be proven by induction on the construc-
tion of the two transition systems, recalling that:
• Every execution step of an RMAS is triggered by issuing

domain-independent queries over the current database of

one of its agents, and therefore comparisons can only be
applied to data objects actively present in that databse.

• µŁ@
p queries can only compare data objects that are

present in the current active domain of the system, or that
were present in the immediately previous state. This is
suitably handled, forFLATTEN(Φ), in line 53 of Figure 4,
where all comparisons between data objects present in the
previous or current states are explicitly maintained.

It is also important to observe thatΛflat

X̂
does not alter the

state-boundedness ofΛX̂ , because it only adds relations on
data objects that are present in the current or previous active
domains, while comparisons between old data objects are
filtered away.

However, the crucial property of the construction of
Λflat

X̂
, is that apart from data objects present in the ini-

tial data domain,the comparison database is not based on
the domain-specific ordering relations, but is constructed
starting from the picked densely-ordered commitments, as
shown in line 36 of Figure 4. We combine this cru-
cial property with the inability ofµŁ@

p , due to its per-
sistent nature, of comparing currently active data objects
with objects that were encountered in the past, but are
not active anymore. In particular, we can directly apply
the data recycling technique in (Bagheri Hariri et al. 2012;
Bagheri Hariri et al. 2013), reusing old, forgotten data ob-
jects in place of fresh ones.

Figure 5 shows the construction algorithm with recy-
cling of data objects. LetΘX̂ be the transition system
produced by such an algorithm. Due to the fact, argued
before, that during the system construction comparisons
are stored by analyzing densely-ordered commitments, and
not domain-specific ordering relations, correctness is ob-
tained by adapting the proof in (Bagheri Hariri et al. 2012;
Bagheri Hariri et al. 2013). In particular, we obtain that,
when the original RMAS is state-bounded, then only a
bounded number of new data objects must be inserted be-
fore recycling makes it not necessary anymore to consider
fresh values, that is, before the setPassive is guaranteed to
contain sufficiently many used but non-active data objects.
This implies that the construction algorithm of Figure 5 ter-
minates, and in turn thatΘX̂ is finite-state, and represents
at the same time a sound and complete abstraction of the
original system.

By putting everything together, we obtain in fact that, for
every state-bounded, densely-ordered RMASX , and for ev-
eryµŁ@

p propertyΦ:
1. ΘX̂ can be effectively constructed using the procedure

BUILD -TS-ABSTRACT of Figure 5;
2. ΘX̂ has a finite number of states;
3. ΥX |= Φ if and only if ΘX̂ |= FLATTEN(Φ).
This concludes the proof.

6 Conclusion
RMASs constitute a very rich modeling framework for data-
aware multiagent systems. The presence of concrete data
types and their facets greatly empowers its modeling ca-
pabilities, making it, e.g., apt to capture mutual exclusion

protocols, asynchronous interactions with bounded queues,
and price-based protocols. Our key result, namely that
densely-order, state-bounded RMASs are verifiable with
standard model checking techniques, paves the way towards
concrete verification algorithms for this class of systems
(Lomuscio, Qu, and Raimondi 2009; Cavada et al. 2014). In
this respect, a major obstacle is the exponentiality in the
data slots that can be changed over time, a source of com-
plexity that is inherent in all data-aware dynamic systems
(Deutsch, Sui, and Vianu 2007). We intend to attack this by
proposing data modularization techniques to decompose the
system into smaller components.

From a foundational perspective, our work presents con-
nections to (Belardinelli 2014), which extends the frame-
work in (Belardinelli, Lomuscio, and Patrizi 2012) with
types so as to model and verify auctions. The two settings
are incomparable w.r.t. both the framework and the verifica-
tion logic, and it would be interesting to study cross-transfer
of results between the two settings.

References
[Bagheri Hariri et al. 2012] Bagheri Hariri, B.; Calvanese,
D.; De Giacomo, G.; Deutsch, A.; and Montali, M. 2012.
Verification of relational data-centric dynamic systems with
external services. CoRR Technical Report arXiv:1203.0024,
arXiv.org e-Print archive.

[Bagheri Hariri et al. 2013] Bagheri Hariri, B.; Calvanese,
D.; De Giacomo, G.; Deutsch, A.; and Montali, M. 2013.
Verification of relational data-centric dynamic systems with
external services. InProc. of the 32nd ACM SIGACT
SIGMOD SIGAI Symp. on Principles of Database Systems
(PODS), 163–174.

[Bagheri Hariri et al. 2014] Bagheri Hariri, B.; Calvanese,
D.; Deutsch, A.; and Montali, M. 2014. State-boundedness
in data-aware dynamic systems. InProc. of the 14th Int.
Conf. on the Principles of Knowledge Representation and
Reasoning (KR). AAAI Press.

[Baier and Katoen 2008] Baier, C., and Katoen, J.-P. 2008.
Principles of Model Checking. The MIT Press.

[Belardinelli, Lomuscio, and Patrizi 2012] Belardinelli,
F.; Lomuscio, A.; and Patrizi, F. 2012. An abstraction
technique for the verification of artifact-centric systems. In
Proc. of the 13th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR), 319–328.

[Belardinelli 2014] Belardinelli, F. 2014. Model checking
auctions as artifact systems: Decidability via finite abstrac-
tion. In Proc. of the 21st Eur. Conf. on Artificial Intelligence
(ECAI), 81–86.

[Bultan, Gerber, and Pugh 1999] Bultan, T.; Gerber, R.; and
Pugh, W. 1999. Model-checking concurrent systems with
unbounded integer variables: Symbolic representations, ap-
proximations, and experimental results.ACM Transactions
on Programming Languages and Systems21(4):747–789.

[Cavada et al. 2014] Cavada, R.; Cimatti, A.; Dorigatti, M.;
Griggio, A.; Mariotti, A.; Micheli, A.; Mover, S.; Roveri,
M.; and Tonetta, S. 2014. The nuXmv symbolic model
checker. InProc. of the 26th Int. Conf. on Computer Aided

Verification (CAV), volume 8559 ofLecture Notes in Com-
puter Science, 334–342. Springer.

[Chopra and Singh 2013] Chopra, A. K., and Singh, M. P.
2013. Multiagent Systems: A Modern Approach to Dis-
tributed Artificial Intelligence. The MIT Press. chapter
Agent Communication, 101–141.

[Deutsch, Sui, and Vianu 2007] Deutsch, A.; Sui, L.; and
Vianu, V. 2007. Specification and verification of data-
driven web applications.J. of Computer and System Sci-
ences73(3):442–474.

[ISO/IEC 11404:2007 2007] ISO/IEC 11404:2007. 2007.
Information technology: General-Purpose Datatypes (GPD).
Technical report, ISO/IEC, CH-1211 Geneva 20, Switzer-
land.

[Lomuscio, Qu, and Raimondi 2009] Lomuscio, A.; Qu, H.;
and Raimondi, F. 2009. MCMAS: A model checker for the
verification of multi-agent systems. InProc. of the 21st Int.
Conf. on Computer Aided Verification (CAV), volume 5643
of Lecture Notes in Computer Science, 682–688. Springer.

[Minsky 1967] Minsky, M. L. 1967. Computation: Finite
and Infinite Machines. Prentice-Hall, Inc.

[Montali, Calvanese, and De Giacomo 2014] Montali, M.;
Calvanese, D.; and De Giacomo, G. 2014. Verification of
data-aware commitment-based multiagent systems. InProc.
of the 13th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS), 157–164.

[Montanari and Pistore 2005] Montanari, U., and Pistore, M.
2005. History-dependent automata: An introduction. In
Proc. of the 5th Int. School on Formal Methods for the De-
sign of Computer, Communication, and Software Systems
(SFM-Moby), volume 3465 ofLecture Notes in Computer
Science, 1–28. Springer.

[Needham 1989] Needham, R. 1989.Distributed Systems.
Addison Wesley Publ. Co. chapter Names, 89–101.

[Savkovic and Calvanese 2012] Savkovic, O., and Cal-
vanese, D. 2012. Introducing datatypes inDL-Lite. In Proc.
of the 20th Eur. Conf. on Artificial Intelligence (ECAI).

[Smith 1980] Smith, R. G. 1980. The contract net protocol:
High-level communication and control in a distributed prob-
lem solver.IEEE Transactions on Computers29(12):1104–
1113.

1: procedure BUILD -FB-TS-SHALLOW-FLAT(X̂)
2: input: Shallow-typed, RMASX̂ = 〈T , T̂ ,∆0,F , Ŝ,M̂〉, with T = {T 1

u , . . . , T
n
u } ∪ {T 1

o , . . . , T
m
o }

3: output: transition systemΥX = 〈∆T ,Σ, s0,→〉
4: D<

0 := ∅ ⊲ Initial DB incorporating the domain-specific< relations for data objects in∆0,F

5: for all i ∈ {1, . . . ,m} do
6: for all d1, d2 ∈ ∆0,F ∩∆Tm

o
do

7: if d1 <Tm
o

d2 thenD<
0 := D<

0 ∪ {lessThanTm
o
(d1, d2)}

8: AS0 := {〈n, specn〉 | hasSpec(n, specn) ∈ Dinst

0 } ⊲ Initial agents with their specifications
9: for all 〈n, spec

n
〉 ∈ AS0 do s0.db(n) := D

specn
0 ⊲ Specify the initial state by extracting the initial DBs fromthe agent specs

10: s0.db(<) := D<
0 ⊲ Insert the special less-than DB

11: Σ := {s0}, → := ∅
12: while truedo
13: pick s ∈ Σ ⊲ Nondeterministically pick a state
14: CurAS := {〈n, spec

n
〉 | hasSpec(a, spec

n
) ∈ s.db(inst)} ⊲ Get currently active agents with their specifications

15: pick 〈a, spec
a
〉 ∈ CurAS ⊲ Nondeterministically pick an active agenta, elected as “sender”

16: EMsg := GET-MSGS(FLATTEN(Ĉspeca), s.db(a) ∪ s.db(<),CurAS) ⊲ Get the enabled messages with target agents
17: if EMsg 6= ∅ then
18: pick 〈M(~o), b〉 ∈ EMsg , with 〈b, spec

b
〉 ∈ CurAS ⊲ Pick a message+target agent and trigger message exchange and reactions

19: ACT a := ∅, ACT b := ∅ ⊲ Get the actions with actual parameters to be applied bya andb
20: for all matching on-send rules“on M(~x) to t if Q(t, ~x) thenα(t, ~x)” in FLATTEN(Ûspeca) do
21: if ans (Q(b,~o), s.db(a) ∪ s.db(<)) thenACT a := ACT a ∪ α(b,~o)

22: for all matching on-receive rules“on M(~x) from s if Q(s, ~x) thenα(s, ~x)” in FLATTEN(Ûspecb) do
23: if ans (Q(a,~o), s.db(b) ∪ s.db(<)) thenACT b := ACT b ∪ α(a,~o)

24: 〈ToDel a,ToAdda
s〉 := GET-FACTS(FLATTEN(X̂), s.db(a) ∪ s.db(<),ACT a)

25: 〈ToDel b,ToAddb
s〉 := GET-FACTS(FLATTEN(X̂), s.db(b) ∪ s.db(<),ACT b)

26: DB a
s := (s.db(a) \ ToDel a) ∪ ToAdd a

s ⊲ Calculate newa’s DB, still with service calls to be issued
27: DB b

s := (s.db(b) \ ToDel b) ∪ ToAdd b
s ⊲ Calculate newb’s DB, still with service calls to be issued

28: for all data typeT ∈ T do ⊲ Fetch the active domain and service calls for each type

29: ADoms(T) :=
{d | d ∈ ∆T ∩∆0,F}

∪{d | d ∈ ∆T ∩ ADOM(s)}

∪{f(~o) | f(~o) ∈ CALLS(DBa
s ∪DBb

s) andf = 〈f/n,F in, F out〉 ∈ Ŝ with F out = 〈T, true〉}

30: pick H ∈

{
〈P1, . . . ,Pn,H1, . . . ,Hm〉

∣∣∣∣
Pi is aT i

u-equality commitment onADoms(T
i
u) for i ∈ {1, . . . , n},

Hj is aT j
o -densely ordered commitment onADoms(T

j
o) for j ∈ {1, . . . ,m}

}

31: σ :=
{
f(~o) 7→ d | f(~o) ∈ SCalls andASSIGN-RES

∆T

H
(s, f(~o)) = d

}

32: D< := ∅ ⊲ Recalculate thelessThan relations by considering the current active domains and thepicked commitments
33: for all i ∈ {1, . . . ,m}, with Hi = 〈P ′

i, posi〉 do
34: for all d1, d2 ∈ P ′

iσ do
35: if pos i([d1]P′

i
σ) <N pos i([d2]P′

i
σ) then

36: D< := D< ∪ {lessThanT i
o
(d1, d2)}

37: DB a
cand := DBa

sσ,DBb
cand := DB b

sσ ⊲ Obtain new candidate DBs by substituting service calls withresults
38: if DBa

cand satisfiesFLATTEN(Γ̂a) thenDB a := DBa
cand ⊲ Updatea’s DB

39: elseDB a := s.db(a) ⊲ Rollbacka’s DB
40: if DBb

cand satisfiesFLATTEN(Γ̂b) thenDB b := DBb
cand ⊲ Updateb’s DB

41: elseDB b := s.db(b) ⊲ Rollbackb’s DB
42: pick fresh states′ ⊲ Create new state
43: NewAS := ∅ ⊲ Determine the (possibly changed) set of active agents and their specs
44: if a = inst thenNewAS := {〈n, spec

n
〉 | hasSpec(n, spec

n
) ∈ DB a}

45: else ifb = inst thenNewAS := {〈n, spec
n
〉 | hasSpec(n, spec

n
) ∈ DB b}

46: elseNewAS := CurAS ⊲ No change ifinst is not involved in the interaction or must reject the update
47: for all 〈n, specn〉 ∈ NewAS do ⊲ Do the update for each active agent
48: if n = a then s′.db(n) := DBa ⊲ Case of sender agent
49: else ifn = b then s′.db(n) := DB b ⊲ Case of target agent
50: else ifn 6∈ CurAS then ⊲ Case of newly created agent
51: s′.db(n) := D

specn
0 ∪ {MyName(n)} ⊲ n’s initial DB gets the initial data fixed by its specification,plus its name

52: elses′.db(n) := s.db(n) ⊲ Default case: persisting agent not affected by the interaction
53: D<

+ := {lessThanTo(d1, d2) | lessThanTo(d1, d2) ∈ D< andd1, d2 ∈ ADOM(s) ∪ ADOM(s′)} ⊲ Filter lessThan
54: s′.db(<) := D<

+ ⊲ Keep the explicitlessThan relation only for persisting objects
55: if ∃s′′ ∈ Σ s.t.s′′.db(inst) = s′.db(inst) and for each〈n, 〉 ∈ CurAS , s′′.db(n) = s′.db(n) then
56: → := →∪ 〈s, s′′〉 ⊲ State already exists: connects to that state
57: elseΣ := Σ ∪ {s′}, → := →∪ 〈s, s′〉 ⊲ Add and connect new state

Figure 4: Procedure for constructing a transition system that is equivalent to that ofBUILD -FB-TS-SHALLOW, but incorporates
the ordering relations as special database facts

1: procedure BUILD -ABSTRACT-TS(X̂)
2: input: Shallow-typed, RMASX̂ = 〈T , T̂ ,∆0,F , Ŝ,M̂〉, with T = {T 1

u , . . . , T
n
u } ∪ {T 1

o , . . . , T
m
o }

3: output: transition systemΥX = 〈∆T ,Σ, s0,→〉
4: D<

0 := ∅ ⊲ Initial DB incorporating the domain-specific< relations for data objects in∆0,F

5: for all i ∈ {1, . . . ,m} do
6: for all d1, d2 ∈ ∆0,F ∩∆Tm

o
do

7: if d1 <Tm
o

d2 thenD<
0 := D<

0 ∪ {lessThanTm
o
(d1, d2)}

8: AS0 := {〈n, specn〉 | hasSpec(n, specn) ∈ Dinst

0 } ⊲ Initial agents with their specifications
9: for all 〈n, spec

n
〉 ∈ AS0 do s0.db(n) := D

specn
0 ⊲ Specify the initial state by extracting the initial DBs fromthe agent specs

10: s0.db(<) := D<
0 ⊲ Insert the special less-than DB

11: Σ := {s0}, → := ∅
12: UsedObj := ∆0,F ⊲ Initialization of the container of used data objects
13: while truedo
14: pick s ∈ Σ ⊲ Nondeterministically pick a state
15: CurAS := {〈n, spec

n
〉 | hasSpec(a, spec

n
) ∈ s.db(inst)} ⊲ Get currently active agents with their specifications

16: pick 〈a, spec
a
〉 ∈ CurAS ⊲ Nondeterministically pick an active agenta, elected as “sender”

17: EMsg := GET-MSGS(FLATTEN(Ĉspeca), s.db(a) ∪ s.db(<),CurAS) ⊲ Get the enabled messages with target agents
18: if EMsg 6= ∅ then
19: pick 〈M(~o), b〉 ∈ EMsg , with 〈b, spec

b
〉 ∈ CurAS ⊲ Pick a message+target agent and trigger message exchange and reactions

20: ACT a := ∅, ACT b := ∅ ⊲ Get the actions with actual parameters to be applied bya andb
21: for all matching on-send rules“on M(~x) to t if Q(t, ~x) thenα(t, ~x)” in FLATTEN(Ûspeca) do
22: if ans (Q(b,~o), s.db(a) ∪ s.db(<)) thenACT a := ACT a ∪ α(b,~o)

23: for all matching on-receive rules“on M(~x) from s if Q(s, ~x) thenα(s, ~x)” in FLATTEN(Ûspecb) do
24: if ans (Q(a,~o), s.db(b) ∪ s.db(<)) thenACT b := ACT b ∪ α(a,~o)

25: 〈ToDel a,ToAdda
s〉 := GET-FACTS(FLATTEN(X̂), s.db(a) ∪ s.db(<),ACT a)

26: 〈ToDel b,ToAddb
s〉 := GET-FACTS(FLATTEN(X̂), s.db(b) ∪ s.db(<),ACT b)

27: DB a
s := (s.db(a) \ ToDel a) ∪ ToAdd a

s ⊲ Calculate newa’s DB, still with service calls to be issued
28: DB b

s := (s.db(b) \ ToDel b) ∪ ToAdd b
s ⊲ Calculate newb’s DB, still with service calls to be issued

29: for all data typeT ∈ T do ⊲ Fetch the active domain and service calls for each type

30: ADoms(T) :=
{d | d ∈ ∆T ∩∆0,F}

∪{d | d ∈ ∆T ∩ ADOM(s)}

∪{f(~o) | f(~o) ∈ CALLS(DBa
s ∪DBb

s) andf = 〈f/n,F in, F out〉 ∈ Ŝ with F out = 〈T, true〉}

31: PassiveObj := UsedObj \ ADOM(s) ⊲ Calculate passive objects, i.e., data objects used in the past but not active now

32: pick H ∈

{
〈P1, . . . ,Pn,H1, . . . ,Hm〉

∣∣∣∣
Pi is aT i

u-equality commitment onADoms(T
i
u) for i ∈ {1, . . . , n},

Hj is aT j
o -densely ordered commitment onADoms(T

j
o) for j ∈ {1, . . . ,m}

}

33: ∆ := ∆T ⊲ By default, service calls are substitued with data objects arbitrarily taken from∆T

34: if
∣∣∣
⋃

P∈{P1,...,Pn,P′
1
,...,P′

m}{ec ∈ P | there is nod ∈ ec}
∣∣∣ ≤ |PassiveObj | then ⊲ Sufficiently many passive objects

35: ∆ := PassiveObj ⊲ Pick the fresh results by recycling objects inPassiveObj

36: σ :=
{
f(~o) 7→ d | f(~o) ∈ SCalls andASSIGN-RES∆H (s, f(~o)) = d

}
⊲ Get fresh or recycled values

37: D< := ∅ ⊲ Recalculate thelessThan relations by considering the current active domains and thepicked commitments
38: for all i ∈ {1, . . . ,m}, with Hi = 〈P ′

i, posi〉 do
39: for all d1, d2 ∈ P ′

iσ do
40: if pos i([d1]P′

i
σ) <N pos i([d2]P′

i
σ) then

41: D< := D< ∪ {lessThanT i
o
(d1, d2)}

42: DB a
cand := DBa

sσ,DBb
cand := DB b

sσ ⊲ Obtain new candidate DBs by substituting service calls withresults
43: if DBa

cand satisfiesFLATTEN(Γ̂a) thenDB a := DBa
cand ⊲ Updatea’s DB

44: elseDB a := s.db(a) ⊲ Rollbacka’s DB
45: if DBb

cand satisfiesFLATTEN(Γ̂b) thenDB b := DBb
cand ⊲ Updateb’s DB

46: elseDB b := s.db(b) ⊲ Rollbackb’s DB
47: pick fresh states′ ⊲ Create new state
48: NewAS := ∅ ⊲ Determine the (possibly changed) set of active agents and their specs
49: if a = inst thenNewAS := {〈n, spec

n
〉 | hasSpec(n, spec

n
) ∈ DB a}

50: else ifb = inst thenNewAS := {〈n, spec
n
〉 | hasSpec(n, spec

n
) ∈ DB b}

51: elseNewAS := CurAS ⊲ No change ifinst is not involved in the interaction or must reject the update
52: for all 〈n, spec

n
〉 ∈ NewAS do ⊲ Do the update for each active agent

53: if n = a then s′.db(n) := DBa ⊲ Case of sender agent
54: else ifn = b then s′.db(n) := DB b ⊲ Case of target agent
55: else ifn 6∈ CurAS then ⊲ Case of newly created agent
56: s′.db(n) := D

specn
0 ∪ {MyName(n)} ⊲ n’s initial DB gets the initial data fixed by its specification,plus its name

57: elses′.db(n) := s.db(n) ⊲ Default case: persisting agent not affected by the interaction
58: D<

+ := {lessThanTo(d1, d2) | lessThanTo(d1, d2) ∈ D< andd1, d2 ∈ ADOM(s) ∪ ADOM(s′)} ⊲ Filter lessThan
59: s′.db(<) := D<

+ ⊲ Keep the explicitlessThan relation only for persisting objects
60: if ∃s′′ ∈ Σ s.t.s′′.db(inst) = s′.db(inst) and for each〈n, 〉 ∈ CurAS , s′′.db(n) = s′.db(n) then
61: → := →∪ 〈s, s′′〉 ⊲ State already exists: connects to that state
62: elseΣ := Σ ∪ {s′}, → := →∪ 〈s, s′〉 ⊲ Add and connect new state

Figure 5: Procedure for constructing a sound and complete abstraction of the transition system constructed with theBUILD -FB-
TS-SHALLOW-FLAT procedure, by recycling non-persisting data objects

	1 Introduction
	2 Relational Multiagent Systems
	2.1 Data Types and Their Facets
	2.2 Initial Data Domain
	2.3 Typed Service Calls
	2.4 Agent Specifications
	2.5 Well-Formed Specifications

	3 Modeling with RMAS
	3.1 Ticket-Based Mutual Exclusion Protocols
	3.2 Contract Net

	4 Verification
	5 Decidability of Verification
	5.1 RMASs with the Successor Relation
	5.2 Densely-Ordered RMASs

	6 Conclusion

