
On the Undecidability of the Situation Calculus Extended with
Description Logic Ontologies

Diego Calvanese
Free University of Bozen-Bolzano

Bolzano, Italy
calvanese@inf.unibz.it

Giuseppe De Giacomo
Sapienza Università di Roma

Roma, Italy
degiacomo@dis.uniroma1.it

Mikhail Soutchanski
Ryerson University

Toronto, Canada
mes@cs.ryerson.ca

Abstract
In this paper we investigate situation calculus ac-
tion theories extended with ontologies, expressed
as description logics TBoxes that act as state con-
straints. We show that this combination, while nat-
ural and desirable, is particularly problematic: it
leads to undecidability of the simplest form of rea-
soning, namely satisfiability, even for the simplest
kinds of description logics and the simplest kind of
situation calculus action theories.

1 Introduction
Combining action formalisms, which describe how systems
evolve over time as consequences of actions, and ontologi-
cal formalisms, which capture knowledge about the domain
structure that is invariant over time, is a strong desiderata in
AI and CS. Initiatives like OWL-S have been putting for-
ward explicitly this need [Martin and others, 2004]. More
recently, the work on data aware processes has come back to
this issue by giving a formal account of processes that manip-
ulate unbounded data and devising techniques for their veri-
fication [Belardinelli et al., 2012; De Giacomo et al., 2012;
Bagheri Hariri et al., 2013a; 2013b].

In this paper we study combining the situation calcu-
lus [Reiter, 1991; 2001], possibly the best known first-order
based formalism for reasoning about actions, with description
logics [Brachman and Levesque, 1984; Baader et al., 2003],
which are currently considered the main formalisms for ex-
pressing ontologies. In particular we extend situation calcu-
lus action theories with description logics TBoxes, acting as a
sophisticated form of state constraints [Lin and Reiter, 1994].
From the technical point of view, we consider the simplest
and most natural combination, namely the union of the two
sets of axioms. In this way, we have the two ingredients com-
bined into a single logical theory, and we have a single logical
language to talk about both static and dynamic aspects of the
system.

In fact, this combination is related to combining descrip-
tion logics and temporal logics, which is a well studied sub-
ject. Even though recently some decidability results for
simple description logics have been obtained [Artale et al.,
2013], it is well known that this combination is problem-
atic in general. Indeed, it gives rise to a notorious two-

dimensional semantics (where one dimension is for time and
the other for the description logic domain), which suffers
from a key computational problem: the possibility of spec-
ifying that roles, i.e., binary predicates, preserve their exten-
sion over time causes undecidability, due to the possibility of
easily encoding bidimensional grids, and hence tilings or Tur-
ing machine computations [Wolter and Zakharyaschev, 1999;
Gabbay et al., 2003]. Notice that if we drop the capability
of preserving the extension of binary predicates over time,
the usefulness of such a combination becomes disputable: for
example we would not be able to represent that a person re-
mains subscribed to some mailing list until s/he unsubscribes.

In light of these results we may already suspect that the
combination of the situation calculus and description logics
in a single logical theory is going to lead to undecidability of
reasoning in general. The aim of this paper is to investigate
how deep this problem really is. To do so, we consider a sim-
plified setting in which we partition fluents into two kinds.
The first kind includes fluents that constitute what we may
call the “frame”, for which effect axioms are directly speci-
fied and inertia is assumed (frame problem solved). The sec-
ond kind includes fluents for which no direct effects are spec-
ified and inertia is not assumed. Hence these fluents evolve
over time only due to ramifications through the state con-
straints of the effects on the fluents in the frame, and inertia is
not assumed. State constraints predicate on the relationship
between fluents of both kinds in a single state. Specifically,
our simplified setting is as follows: (i) we use only unary and
binary fluents (i.e., fluents with one or two object arguments,
apart from the situation one); (ii) we characterize the frame
through a situation calculus basic action theory [Reiter, 1991;
2001]; in particular, we use regular successor state axioms
to specify how actions affects fluents in the frame (including
the solution to the frame problem). (iii) as state constraints,
we use a TBox expressed in a given description logic, i.e., a
finite set of universal inclusion assertions that must hold in
every situation; (iv) the initial situation description consists
of a finite set of positive facts involving fluents.

Here we show that in the above setting the simplest form of
reasoning, namely satisfiability, the minimal requirement for
any logical theory, is undecidable, even when the state con-
straints are expressed in the simplest description logics, such
as DL-Litecore , and the situation calculus action theory is of
the simplest form, namely context free in the sense of [Reiter,

1991] and local effect [Vassos et al., 2008]. This contrasts,
on the one hand, with the fact that, without state constraints,
since the initial situation description consists only of a fi-
nite set of positive facts, satisfiability trivially holds [Reiter,
2001]; and, on the other hand, with the fact that, if one consid-
ers the initial situation description as an ABox, the decidabil-
ity of satisfiability of such ABox with any TBox is guaranteed
in all description logics [Baader et al., 2003]. Naturally, un-
decidability of satisfiability implies that all other typical tasks
in reasoning about action, such as projection, executability of
actions, verification, etc. are also undecidable.

Interestingly, sometimes state constraints can be compiled
into the basic action theory itself [Lin and Reiter, 1994;
Lin, 1995; Lin and Soutchanski, 2011]. In light of the good
computational properties of description logics, one might
hope that the compilation approach could be applied also in
our setting to get computational effectiveness. But the very
result of undecidability of satisfiability implies that this is not
the case. Indeed, the basic action theory resulting from the
compilation, besides the standard (though possibly complex)
successor state axioms, would also contain a new initial sit-
uation description. Satisfiability would depend only on the
latter, so by our undecidability result such initial situation de-
scription could not consist of a description logic knowledge
base, since these are always decidable.

The negative results we obtained, even under extreme sim-
plifying restrictions, indicate the need of alternative forms of
combinations, strengthening some of the proposals in litera-
ture, which, although may look more ad-hoc, guarantee de-
cidability or better computational behavior. We come back to
this point in the conclusion.

The rest of the paper is organized as follows. After some
preliminaries (Sec. 2), we show by a simple reduction from
tiling, that satisfiability of basic action theories extended with
ALC TBoxes is undecidable (Sec. 3). Then we strenghten
the result to the simplest description logic of the AL family
(Sec. 4). Finally, by resorting directly to a reduction from the
halting problem of Turing machines, we show undecidabil-
ity also for the simplest logics in the lightweight description
logics families DL-Lite, and EL, even if the action theory is
local effects and context free (Sec. 5). A short discussion
concludes the paper (Sec. 6).

2 Preliminaries
Situation Calculus. The situation calculus [Reiter, 1991;
2001] is a multi-sorted predicate logic language for axioma-
tizing dynamic systems with sort actions, sort situations and
sort objects. Actions αi(~x) are first-order (FO) terms built
from an action function symbol αi and a possibly empty tu-
ple ~x of object arguments. Situations are first-order terms
denoting states resulting from sequences of actions. The con-
stant S0 denotes the initial situation, namely the empty action
sequence, and function do(a, s) denotes the next situation re-
sulting from executing action a in situation s. Objects are
first-order terms other than actions and situations. Fluents
are relations whose values may vary between situations (we
do not consider functional fluents). A fluent is denoted by a
predicate symbol whose last argument has the sort situation.

A basic action theory (BAT) D is a set of five classes of
axioms to model actions and their effects [Reiter, 2001] de-
scribed below. In axioms, all free variables (they start with
lower roman case letters) including object variables ~x, situa-
tion variable s, and a variable a of sort action are taken to be
∀-quantified at the front.
Foundational axioms for situations. These are domain inde-
pendent second-order axioms that characterize situations [Re-
iter, 2001].
Unique name axioms (UNA). The actions of the domain and
the object constants are pairwise unequal.
Action precondition axioms. For each action α(~x), there is
one axiom of the form Poss(α(~x), s) ≡ Πα(~x, s), where
Poss(α(~x), s) is a special predicate that denotes that the
action α(~x) is executable in situation s, and the condition
Πα(~x, s) is a formula uniform in s, i.e., such that s is the
only situation term, with the other free variables among ~x at
most, and where Poss cannot occur.
Successor state axioms (SSAs). For each fluent F (~x, s) (in
the BAT), there is an axiom of the form

F (~x, do(a, s)) ≡ γ+F (~x, a, s) ∨ (F (~x, s) ∧ ¬γ−F (~x, a, s))

where γ+F (~x, a, s), γ−F (~x, a, s) are formulas uniform in s.
with free variables among ~x, a, and s at most. This SSA de-
fines the value of F in the next situation do(a, s) in terms
of what holds in the current situation s. Each formula
γ+F (~x, a, s) (resp., γ−F (~x, a, s)) is a finite disjunction of

∃~y (a=αi(~t, ~y) ∧ ψi(~x, ~y, s)) (1)

for some action term αi(~t, ~y) and some situation calculus for-
mula ψi(~x, ~y, s) uniform in s, called a context condition, all
of whose free object variables are at most among ~x, ~y. All ob-
ject variables ~t are included in ~x, and ~y are the new variables
not included in ~x, if any. If the context condition is situa-
tion independent, e.g., ψi(~x, ~y, s) is a boolean combination of
equalities between variables from ~x, ~y, then an action αi(~t, ~y)
has an unconditional effect on a fluent F . In the SSA for the
fluent F , if all actions have unconditional effects on F , then
this SSA is called context-free. When all SSA are context-
free, the BAT is said to be context-free. Here, we consider
the original variant of context-free SSAs [Reiter, 1991]:

Poss(a, s)→
(
F (~x, do(a, s)) ≡∨

i ∃~y(a=αi(~t, ~y)) ∨ (F (~x, s) ∧
∧
j¬∃~y(a=αj(~t, ~y)))

)
where the SSA specifies the extension of F in the situation
resulting from executing action a in s, only if a is indeed
executable in s according to its precondition axiom.

When in Formula (1) above, the variables ~t in αi(~t, ~y) in-
clude all of the arguments ~x of the fluent on the left hand side
of a generic SSA, we say that this action αi has a local effect
on the fluent F because αi can change the fluent only at the
single tuple of object constants, which is used to instantiate
arguments of the action, [Vassos et al., 2008]. Notice that, an
action with non-local effects can change a fluent at infinitely
many object elements, in general. When all actions have only
local effect, the BAT is said to be local effect.

Initial situation description. A set of logical formulas uni-
form in S0. It specifies the values of all fluents in the initial
state. In particular in this paper we will consider DS0

to be
constituted by a finite set of positive facts, i.e., ground atomic
formulas (under open-world assumption). Notice that be-
cause of the form of basic action theories, if the axioms con-
stituting the initial situation description (together with UNA)
are satisfiable (and this is always the case, when such a de-
scription amounts to a finite set of positive facts) then the
entire action theory is satisfiable [Reiter, 2001].

Description Logics TBoxes. Description logics (DLs)
[Baader et al., 2003] are formalisms for representing knowl-
edge on a domain of interest that is invariant over time, in
terms of individuals denoting objects, concepts denoting sets
of objects, and roles denoting binary relations between ob-
jects. In DLs, starting from countably infinite, mutually dis-
joint sets of concepts names (denoted by A) and roles names
(denoted by P), we construct complex concept and role ex-
pressions (or simply, concepts C and roles R) by inductively
applying constructors that depend on the DL in question.

A DL TBox is constituted by a finite set of (general) con-
cept inclusions of the form C v C ′, whose form again
depends on the DL. Notice that we allow inclusions to be
cyclic, e.g., ∃parent v Person , ∃parent− v Person , and
Person v ∃parent which type the parent role on both com-
ponents with Person , and express that every person has a
parent. This is required in virtually all ontology-based and
conceptual modeling applications: e.g., it is needed to capture
UML Class Diagrams or ER Schemas [Baader et al., 2003].1

In this paper we focus mainly on the DLs ALC, EL⊥, and
DL-Litecore . In ALC, roles are just names P , and concepts
are formed according to the syntax:

C ::= A | ¬C | C u C | C t C | ∀P .C | ∃P .C.

IN fact C t C ′ is equivalent to ¬(¬C u ¬C ′), and ∀P .C
to ¬∃P .¬C. An ALC TBox consists of concept inclusions
between arbitrary ALC concepts.

In the DL-Lite family [Calvanese et al., 2007; 2013], a role
R is either a role name P or an inverse role P−, while a
concept C is either a concept name A, or the projection of
a role P on its first, ∃P .> written ∃P , or second, ∃P−.>
written ∃P−, component. A DL-Litecore TBox is a set of
concept inclusions of the formC v C ′ orC v ¬C ′, whereC
and C ′ are DL-Lite concepts. Notice that in DL-Lite negation
is used just to express disjointness.

In the EL family [Baader et al., 2008], roles are names, and
concepts obey the syntax C ::= A | C uC | ∃P .C. An EL⊥
TBox consists of concept inclusions of the form C v C ′,
C v ⊥, dom(P) v C, or ran(P) v C, where C, C ′ are EL
concepts, ⊥ denotes the empty concept, dom(P) denotes the
range of role P (i.e., ∃P) , and ran(P) its range (i.e., ∃P−).

We observe that DL-Litecore is a fragment of the variant of
DL-Lite corresponding to the OWL 2 QL profile of OWL 2,

1When a TBox is acyclic, it can be treated as a set of abbrevia-
tions that can be eliminated w.l.o.g. Hence, in our setting, an acyclic
TBox does not need to be treated as a set of state constraints [Gu and
Soutchanski, 2010].

and that EL⊥ is a fragment of EL++, the DL corresponding
to the OWL 2 EL profile [Motik and others, 2012].

The semantics of DLs is based on first-order interpreta-
tions. In fact, one can provide a translation function πx
that translates an atomic DL concept C into an open formula
C(x), and TBox inclusions into first-order axioms. The trans-
lation πx is inductively defined as follows:

πx(C v C ′) = ∀x.πx(C)→ πx(C ′)
πx(⊥) = false
πx(A) = A(x)

πx(¬C) = ¬πx(C)
πx(C u C ′) = πx(C) ∧ πx(C ′)
πx(∃P .C) = ∃y.P (x, y) ∧ πy(C)

πx(∃P−.C) = ∃y.P (y, x) ∧ πy(C).

BATs extended with TBoxes. We use DL TBoxes as state
constraints [Lin and Reiter, 1994]. These are situation cal-
culus sentences having a single situation variable s as the
only situation term, which is universally quantified. To use
a DL TBoxes as state constraints, it suffices to add a situation
argument s to the atomic predicates corresponding to con-
cepts and roles, and quantify over the situation universally in
concept inclusions. In particular, we consider fluents parti-
tioned into two sets. On the first set, which we call the frame,
we have SSAs: so effects of actions are directly specified on
them otherwise inertial holds (solution to the frame problem).
On the second one we don’t and their extension is only con-
strained by the values of the fluents in the first set and the
TBox state constraints only. Inertia it is not assumed. We call
the resulting action theories BATs extended with TBoxes.

3 BATs with ALC TBoxes
We start our analysis by showing undecidability of the satis-
fiability problem for basic action theories extended with an
ALC TBox as state constrains. For now, we pose no restric-
tion on the form of BAT. This is possibly the easiest case to
consider, and the proof can be done quite naturally by relying
on tiling. In the next sections we will gradually strengthen
this result, first still relying on tiling, and then relying on a
more involved encoding of Turing machines.

An instance of tiling [van Emde Boas, 1997] is consti-
tuted by a set D = {D1, . . . , Dm} of tile types with an
initial tile type D1, a horizontal adjacency relation H , and
a vertical adjacency relation V over D. A D-tiling is a to-
tal function T : N × N −→ {D1, . . . , Dm}. Given a in-
stance T = 〈{D1, . . . , Dm}, D1, H, V 〉 of tiling, we call a
D-tiling T correct for T if (T (i, j), T (i + 1, j)) ∈ H and
(T (i, j), T (i, j+1)) ∈ V , where i, j ∈ N, and T (0, 0) = D1.
The (unbounded quadrant) tiling problem consists in deter-
mining, given an instance of tiling, whether a correct tiling
exists. This problem is well known to be undecidable.

Given an instance of the tiling problem, we construct an ex-
tended action theory Γ formed by a BAT and state constraints
in the form of ALC TBox concept inclusions. We use one
atomic concept G to denote the points in the grid (one coor-
dinate being the object and the other coordinate being the sit-
uation), the atomic concepts D1, . . . , Dm denoting tile types,

plus auxiliary ones PD1, . . . ,PDm, and one role Right to
represent one dimension of the grid. There are no SSAs for
the fluents Dk(x, s), k ∈ {1, . . . ,m}, but their values are
implicitly defined via state constraints. For all the other we
have SSA (they form the frame). We use a 0-ary action Up
for the other dimension of the grid. The action Up is possi-
ble in every situation (Poss(Up, s) ≡ true). Thus, we build
the grid by using the structural component for Right , and the
temporal component for Up.

G v ∃Right u ∀Right .G (2)
G(x, do(a, s)) ≡ a=Up ∧G(x, s) (3)

Right(x, y, do(a, s)) ≡ a=Up ∧ Right(x, y, s) (4)

To deal with the tile types:

Dk v ¬Dh for each k, h ∈ {1, . . . ,m}, k 6= h (5)

G v
⊔

k∈{1,...,m}

Dk (6)

To encode the horizontal adjacency relation, we use the DL
concept inclusions:

Dk v
⊔

h:(Dk,Dh)∈H

∀Right .Dh k ∈ {1, . . . ,m} (7)

To encode the vertical adjacency relation, we use a successor
state axiom exploiting the vertical relation V and auxiliary
fluents PDh(x, s) that stand for “Tile Dh is possible at point
(x, s)”, and a TBox concept inclusion stating that if tile Dh

is used then it must be “possible”:

PDh(x, do(a, s)) ≡ a=Up ∧
∨

k:(Dk,Dh)∈V

Dk(x, s) (8)

Dh v PDh h ∈ {1, . . . ,m} (9)

Finally for the initial situation, we have only two facts
G(O0, S0) and D1(O0, S0), where O0 is an object constant.
(The pair (O0, S0) represent the origin of the grid.)
Theorem 1. Satisfiability of BATs extended with an ALC
TBox as state constraints is undecidable.

Proof. We use the above construction to show that existence
of a correct tiling reduces to satisfiability of an extended BAT.
Let T be an instance of the tiling problem and Γ the corre-
sponding extended action theory.

First, we show how to construct from a correct tiling T
for T a model M of Γ. The model M has only one action
that interprets Up, has N as both the object and the situation
domain, and is defined as follows:
• OM0 = 0, SM0 = 0, and do(Up, s)M = 1 + sM;
• RightM = {(x, x+ 1, y) | x, y ∈ N};
• GM = {(x, y) | x, y ∈ N};
• DMk = PDMk = {(x, y) | T (x, y) = Dk}.

By definition, the correct tiling T respects the horizontal and
vertical adjacency relations and the condition on the initial
tile. It is easy to see that all axioms of Γ are satisfied inM.

Next, we show how to construct from a model M of Γ
a correct tiling T for T. Specifically, to define T (x, y), for

x, y ∈ N, let σy = do(Up, · · · do(Up, S0) · · ·)M be ob-
tained by applying the Up action y times to the initial situa-
tion S0, and let o0, o1, . . . , ox be objects such that o0 = OM0
and (oi−1, oi, σy) ∈ RightM, for i ∈ {1, . . . , x}. Then
T (x, y) = Dk, where (ox, σy) ∈ DMk . Notice that (i) The
specific choice of o1, . . . , ox is irrelevant, since we quan-
tify universally over the Right-successor (see axiom (7));
(ii) there is a unique predicate Dk that is true for object ox
in situation σy , due to the disjointness axioms (5). It is easy
to see that tiling T satisfies the horizontal and vertical adja-
cency relations, due to the axioms that encode such relations
in Γ (in particular, axioms (7), (8), and (9)), and the initial tile
condition. Hence, tiling T is correct.

4 BATs with AL TBoxes
We now turn to the simpler DL AL, which is a fragment
of ALC where disjunctions and qualified existential are not
allowed and negation is applied only to atomic concepts.
AL concepts are build according to the following syntax:
C ::= A | ¬A | C u C | ∃R | ∀R.C. Because of syntac-
tic restrictions in AL, in the encoding developed above for
ALC, the DL inclusion axioms (6) and (7) are not in AL.
However, they can be reformulated in AL.

For axiom (6), it is immediate to observe that it is logically
equivalent to the AL axiom:

l

k∈{1,...,m}

¬Dk v ¬G (10)

To encode the horizontal adjacency relation inAL, instead
of concept inclusions (7), we introduce new auxiliary con-
cepts Ak, one for each Dk, and use the following 2m DL
concept inclusions, where k, h∈{1, . . . ,m}:

l

h:(Dk,Dh)∈H

¬Ah v ¬Dk (11)

Ah v ∀Right .Dh ∀Right .Dh v Ah (12)

Theorem 2. Satisfiability of BATs extended with anAL TBox
as state constraints is undecidable.

Proof. The claim follows immediately from Theorem 1, by
observing that the new axioms (10), (11), and (12) are logi-
cally equivalent to the axioms (6), (7) that they replace.

5 Local Effect, Context-Free BATs with
Lightweight DLs TBoxes

Next we consider TBoxes expressed in lightweight DLs. We
show undecidability of satisfiability when state constraints
are formulated in DL-Litecore , the simplest logic of the DL-
Lite family [Calvanese et al., 2007]. The result holds also
for EL⊥. Moreover, while until now we have not considered
restrictions on the form of the BAT itself, we show that unde-
cidability holds even for BATs that are local effect [Vassos et
al., 2008] and context-free [Reiter, 1991].

We exploit a reduction from the halting problem for Tur-
ing machines (TMs), relying on the fact that every TM can
be transformed into the following variant. The machine starts

with a blank tape that is infinite in both directions. Initially,
the machine’s head scans some cell on the tape, and we name
this cell 0. If the given machine ever halts in some new cell,
then it enters the special halting state. The fluents are the
following: (1) Value(c, v, s), stating that the alphabet sym-
bol in tape cell c is v in s. (2) State(q, s), stating that the
machine’s state is q in s. (3) Scan(c, s), stating that the ma-
chine’s head is scanning tape cell c in s. (4) Next(l, r, s)
relating adjacent cells in the tape (hence represents the tape),
and stating that cell l is the one immediately to the left of cell
r in s. (5) VT (x, s), stating that x is a tape cell belonging
to the portion of the tape visited so far, in s. (6) NT (x, s)
(disjoint from V T), stating that x is a (non-visited) tape cell
(immediately) beyond the visited portion of the tape in s.
(7) Halt(x, s), stating that the TM halts at cell x (entering
the halting state, encoded by the constant QH) in s.

For each particular TM, we assume it is specified by a fi-
nite set of situation independent facts TM (q1, v1, q2, v2,m)
encoding the TM transitions. Hence, q1, q2 range over the
(finitely many) TM states, v1, v2 range over the (finitely
many) tape alphabet symbols, and m ranges over {L,R}. 2

There are three actions, all encoding the TM transi-
tions, but taking into account the position of the head
with respect to the visited portion of the tape. Ac-
tion Trans(l, c, r, q1, v1, q2, v2,m) means that the TM scan-
ning symbol v1 in tape cell c when in state q1, en-
ters state q2, writes tape symbol v2 to cell c (possibly
replacing symbol v1 that was there previously) and the
head makes transition m to another cell by moving ei-
ther left or right. Cells l (read as “left of the current
cell”) and r (read as “right of the current cell”) are ad-
jacent to c. Actions TransL(ll, l, c, r, q1, v1, q2, v2) and
TransR(l, c, r, rr, q1, v1, q2, v2) are similar to Trans , but
take into account that the head is positioned on the left (resp.,
right) border of the portion of the tape visited so far and the
move is just outside the current border. Moreover, an addi-
tional adjacent cell ll (resp., rr) is remembered for setting the
new border when TransL (resp., TransR) become possible.
The encoding as an extended action theory is as follows.

Precondition Axioms: Let the TM have a transition
(q1, v1)

m−→(q2, v2), i.e., TM (q1, v1, q2, v2,m) holds, where
m ∈ {L,R}, and let the tuple 〈l, c, r〉 represent a block of
three consecutive cells centered around the cell c under the
machine’s head. The action Trans(l, c, r, q1, v1, q2, v2,m)
is possible in situation s iff the TM is in state q1, the
head is scanning cell c, v1 is the alphabet symbol in
c, the tape cells l, c, and r are next to each other,
and the position to which the head moves has been al-
ready visited. Actions TransL(ll, l, c, r, q1, v1, q2, v2) (resp.,
TransR(l, c, r, rr, q1, v1, q2, v2)) are analogous, with the pro-
viso that the move is to the left (resp., right) and the cell to

2Note that the predicate TM can be trivially transformed into a
fluent, by asserting the TM transitions as facts in S0 that no action
can change.

which the head moves has never been visited before:

Poss(Trans(l, c, r, q1, v1, q2, v2,m), s) ≡
TM (q1, v1, q2, v2,m) ∧ State(q1, s) ∧ Scan(c, s) ∧
Value(c, v1, s) ∧Next(l, c, s) ∧Next(c, r, s) ∧
((m = L ∧VT (l, s)) ∨ (m = R ∧VT (r, s)))

Poss(TransL(ll, l, c, r, q1, v1, q2, v2), s) ≡
TM (q1, v1, q2, v2, L) ∧ State(q1, s) ∧ Scan(c, s) ∧
Value(c, v1, s) ∧Next(ll, l, s) ∧Next(l, c, s) ∧
Next(c, r, s) ∧NT (l, s)

Poss(TransR(l, c, r, rr, q1, v1, q2, v2), s) ≡
TM (q1, v1, q2, v2, R) ∧ State(q1, s) ∧ Scan(c, s) ∧
Value(c, v1, s) ∧Next(l, c, s) ∧Next(c, r, s) ∧
Next(r, rr, s) ∧NT (r, s)

Successor State Axioms (all context-free): The Next fluent
(and hence the tape) is preserved across situations:

Poss(a, s)→
(
Next(l, r, do(a, s)) ≡ Next(l, r, s)

)
Cell x becomes visited only after a TransL or TransR action.
Once a cell has been visited, it cannot become non-visited:

Poss(a, s)→
(
VT (x, do(a, s)) ≡

(∃ll, c, r, q1, q2, v1, v2.(a = TransL(ll, x, c, r, q1, v1, q2, v2))) ∨
(∃l, c, rr, q1, q2, v1, v2.(a = TransR(l, c, x, rr, q1, v1, q2, v2))) ∨
VT (x, s)

)
Cell x becomes NT after a TransL or TransR transition over
the border, and it ceases to be NT if the head visits it:

Poss(a, s)→
(
NT (x, do(a, s)) ≡

(∃l, c, r, q1, q2, v1, v2.(a = TransL(x, l, c, r, q1, v1, q2, v2))) ∨
(∃l, c, r, q1, q2, v1, v2.(a = TransR(l, c, r, x, q1, v1, q2, v2))) ∨

(NT (x, s) ∧ ¬∃ll, l, c, r, rr, q1, q2, v1, v2.(
a = TransL(ll, x, c, r, q1, v1, q2, v2) ∨
a = TransR(l, c, x, rr, q1, v1, q2, v2)))

)
The head can scan only one cell at a time. The head will be
scanning the tape cell x in do(a, s) iff it was scanning c in s
and moves either left or right to the adjacent cell x:

Poss(a, s)→
(
Scan(x, do(a, s)) ≡

∃ll, l, c, r, rr, q1, q2, v1, v2.(
a = Trans(x, c, r, q1, v1, q2, v2, L) ∨
a = Trans(l, c, x, q1, v1, q2, v2, R) ∨
a = TransL(ll, x, c, r, q1, v1, q2, v2) ∨
a = TransR(l, c, x, rr, q1, v1, q2, v2))

)
The SSAs for the fluents State(q, s) consider that the TM
goes into the state q by making a transition into this state, or
it remains in state q if there is no transition out:

Poss(a, s)→
(
State(q, do(a, s)) ≡

∃ll, l, c, r, rr, q1, v1, v2,m.(
a = Trans(l, c, r, q1, v1, q, v2,m) ∨
a = TransL(ll, l, c, r, q1, v1, q, v2) ∨
a = TransR(l, c, r, rr, q1, v1, q, v2)) ∨

(State(q, s) ∧ ¬∃ll, l, c, r, rr, q1, v1, v2,m. (
a = Trans(l, c, r, q, v1, q1, v2,m) ∨
a = TransL(ll, l, c, r, q, v1, q1, v2) ∨
a = TransR(l, c, r, rr, q, v1, q1, v2)))

)
The SSA for Value(v, c, s) is very similar to the one for

State(q, s):

Poss(a, s)→
(
Value(c, v, do(a, s)) ≡

∃ll, l, r, rr, q1, v1, q2,m.(
a = Trans(l, c, r, q1, v1, q, v,m) ∨
a = TransL(ll, l, c, r, q1, v1, q, v) ∨
a = TransR(l, c, r, rr, q1, v1, q, v)) ∨

(Value(c, v, s) ∧ ¬∃ll, l, r, rr, q1, v1, q2,m.(
a = Trans(l, c, r, q1, v1, q, v,m) ∨
a = TransL(ll, l, c, r, q1, v1, q, v) ∨
a = TransR(l, c, r, rr, q1, v1, q, v)))

)
The next axiom states that the TM halts when it enters state
QH .

Poss(a, s)→
(
Halt(x, do(a, s)) ≡ ∃ll, l, c, r, rr, q1, v1, v2.(

a = Trans(x, c, r, q1, v1, QH , v2, L) ∨
a = Trans(l, c, x, q1, v1, QH , v2, R) ∨
a = TransL(ll, x, c, r, q1, v1, QH , v2) ∨
a = TransR(l, c, x, rr, q1, v1, QH , v2))

)
.

TBox (formulated in DL-Litecore):

Scan v VT
VT v ¬NT
Halt v ¬VT

∃Next− v ∃Next
∃Next v ∃Next−

Initial situation description: It includes only the following
positive facts3:

Scan(0, S0), Value(0, B, S0), Next(−1, 0, S0),
Next(0, 1, S0), NT (−1, S0), NT (1, S0), State(Q0, S0)

The extended action theory above guarantees that in every
model, there is a possibly infinite sequence of transitions cor-
responding to the TM transitions. As these transition occur,
they force the existence of an expanding sequence of objects,
correctly corresponding to the tape cells, connected by the
Next relation4. These objects and their properties are pre-
served by the solution to the frame problem provided by the
SSAs. In the case where the TM never halts, we get an un-
bounded tape. On the other hand, if the TM enters the halting
state, we get a contradiction due to the fact that the object
representing the tape cell under the head is forced to become
simultaneously an instance of Halt and VT , which are dis-
joint. Hence, we get that the action theory above is satisfiable
if and only the TM never halts. Note that all fluents are deter-
mined by the SSAs, i.e., are in the frame. This means that it is
undecidable even to determine whether SSAs are consistent
with TBox state constraints.

Theorem 3. Satisfiability of local effect, context free BATs
extended with a DL-Litecore TBox as state constraints is un-
decidable.

The construction can be modified to prove undecidability
also for EL⊥. The main difference is that, due to the lack
of inverse roles, we need to work with a TM whose tape is
infinite in only one direction, requiring more bookkeeping to
deal with the beginning of the tape.

3By UNA, all finitely many constants, including those in the sit-
uation independent facts encoding TM (· · ·), are pairwise disjoint.

4Notice that, besides the part correctly encoding the TM compu-
tation, the model may contain also spurious objects and tuples.

Theorem 4. Satisfiability of local effect, context free BATs
extended with an EL⊥ TBox as state constraints is undecid-
able.

We observe that [Reiter, 2001] separates action executabil-
ity (possible situations) from satisfiability. To do so, it uses
a variant of SSAs that are not conditioned on Poss . In this
case, undecidability of satisfiability cannot be shown along
the lines above. However, an analogous construction can be
used to show that the executability problem, which focuses
only on possible actions, remains undecidable. Obviously,
if the theory is inconsistent checking executability makes no
sense.

6 Conclusion
In this paper, we have shown that the simplest kind of sit-
uation calculus action theories (context free and local effect
BATs) extended with state constraints TBoxes expressed in
the simplest DLs, even for the simplest form of reasoning
(satisfiability) become undecidable. From our constructions
it appears that the source of these undecidability results is the
very solution to the frame problem, as provided by the SSAs
in BATs, combined with the possibility of having in the TBox
cyclic assertions. The latter is a crucial feature in description
logic ontologies, which however may enforce the existence of
infinitely many new objects in the state. It remains to be seen
if limiting TBoxes to even less expressive ontology languages
would preserve decidability. In particular, we observe that in
all our proofs, we use TBoxes with cycles involving asser-
tions of the form A v ∃R. If we disallow these constraints,
e.g., by restricting the TBox language to (the DL fragment
of) RDFS [Franconi et al., 2013], we break the crux of the
above undecidability proofs, and potentially decidability can
be regained.5

In general, the results in this paper call for alternative ap-
proaches in combining actions and ontologies, such as those
in [Liu et al., 2006; Eiter et al., 2008; Yehia and Soutchan-
ski, 2012]. One approach that has been proved quite robust
in combining temporal logics and description logics is the
one based on applying temporal operators only to descrip-
tion logic axioms. This is related to the so-called Levesque’s
functional view of KBs [Levesque, 1984], which sees a KB
(the ontology) as a system that allows for two kinds of oper-
ations: ASK, which returns the (certain) answer to queries,
and TELL, which produces a new KB as the result of the
application of an atomic action (this is also related to up-
date [Winslett, 1988]). In particular approaches like [Baader
et al., 2012; Calvanese et al., 2011] demonstrate that under
this view even verification of sophisticated temporal prop-
erties (e.g., formulated in first-order based variants of the
mu-calculus) over ontologies, ranging from lightweight to
very expressive ones, becomes decidable under interesting

5Cycles involving assertions of the form A v ∃R allow for gen-
erating infinite chains of objects. Notice, however, that all the DLs
we considered here, when taken in isolation, have the finite model
property: that is even if there exists an infinite model formed by
chains, there are other models in which these chains are actually
finite loops. We use inertia embedded in the SSAs to indirectly dis-
allow such finite loops.

general conditions. These ideas may be applied to combin-
ing ontologies and action theories as well, as shown in, e.g.,
[Bagheri Hariri et al., 2013b].

References
[Artale et al., 2013] A. Artale, R. Kontchakov, F. Wolter,

and M. Zakharyaschev. Temporal description logics for
ontology-based data access. In Proc. of IJCAI, 2013.

[Baader et al., 2003] F. Baader, D. Calvanese, D. McGuin-
ness, D. Nardi, and P. F. Patel-Schneider, editors. The De-
scription Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, 2003.

[Baader et al., 2008] F. Baader, S. Brandt, and C. Lutz.
Pushing the EL envelope further. In Proc. of OWLED DC,
2008.

[Baader et al., 2012] F. Baader, S. Ghilardi, and C. Lutz.
LTL over description logic axioms. ACM TOCL, 13(3),
2012.

[Bagheri Hariri et al., 2013a] B. Bagheri Hariri, D. Cal-
vanese, G. De Giacomo, A. Deutsch, and M. Montali. Ver-
ification of relational data-centric dynamic systems with
external services. In Proc. of PODS, 2013.

[Bagheri Hariri et al., 2013b] B. Bagheri Hariri, D. Cal-
vanese, M. Montali, G. De Giacomo, R. De Masellis, and
P. Felli. Description logic Knowledge and Action Bases.
JAIR, 46:651–686, 2013.

[Belardinelli et al., 2012] F. Belardinelli, A. Lomuscio, and
F. Patrizi. An abstraction technique for the verification of
artifact-centric systems. In Proc. of KR, 2012.

[Brachman and Levesque, 1984] R. J. Brachman and H. J.
Levesque. The tractability of subsumption in frame-based
description languages. In Proc. of AAAI, 1984.

[Calvanese et al., 2007] D. Calvanese, G. De Giacomo,
D. Lembo, M. Lenzerini, and R. Rosati. Tractable rea-
soning and efficient query answering in description logics:
The DL-Lite family. JAR, 39(3):385–429, 2007.

[Calvanese et al., 2011] D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Actions and programs over
description logic knowledge bases: A functional approach.
In Knowing, Reasoning, and Acting: Essays in Honour of
Hector Levesque. College Publications, 2011.

[Calvanese et al., 2013] D. Calvanese, G. De Giacomo,
D. Lembo, M. Lenzerini, and R. Rosati. Data complexity
of query answering in description logics. AIJ, 195:335–
360, 2013.

[De Giacomo et al., 2012] G. De Giacomo, Y. Lespérance,
and F. Patrizi. Bounded Situation Calculus action theories
and decidable verification. In Proc. of KR, 2012.

[Eiter et al., 2008] T. Eiter, G. Ianni, T. Lukasiewicz,
R. Schindlauer, and H. Tompits. Combining answer set
programming with description logics for the semantic web.
AIJ, 172(12-13):1495–1539, 2008.

[Franconi et al., 2013] E. Franconi, C. Gutierrez, A. Mosca,
G. Pirrò, and R. Rosati. The logic of extensional RDFS.
In Proc. of ISWC, 2013.

[Gabbay et al., 2003] D. Gabbay, A. Kurucz, F. Wolter, and
M. Zakharyaschev. Many-Dimensional Modal Logics:
Theory and Applications, volume 148 of Studies in Logic.
Elsevier, 2003.

[Gu and Soutchanski, 2010] Y. Gu and M. Soutchanski. A
description logic based Situation Calculus. AMAI, 58(1–
2):3–83, 2010.

[Levesque, 1984] H. J. Levesque. Foundations of a func-
tional approach to knowledge representation. AIJ, 23:155–
212, 1984.

[Lin and Reiter, 1994] F. Lin and R. Reiter. State constraints
revisited. JLC, 4(5):655–678, 1994.

[Lin and Soutchanski, 2011] F. Lin and M. Soutchanski.
Causal theories of actions revisited. In Proc. of AAAI,
2011.

[Lin, 1995] F. Lin. Embracing causality in specifying the in-
direct effects of actions. In Proc. of IJCAI, 1995.

[Liu et al., 2006] H. Liu, C. Lutz, M. Milicic, and F. Wolter.
Reasoning about actions using description logics with gen-
eral TBoxes. In Proc. of JELIA, volume 4160 of LNCS.
Springer, 2006.

[Martin and others, 2004] D. Martin et al. Bringing seman-
tics to web services: The OWL-S approach. In Proc. of
the 1st Int. Workshop on Semantic Web Services and Web
Process Composition (SWSWPC 2004), 2004.

[Motik and others, 2012] B. Motik et al. OWL 2 Web
Ontology Language Profiles. W3C recommendation,
W3C, December 2012. http://www.w3.org/TR/
owl2-profiles/.

[Reiter, 1991] R. Reiter. The frame problem in the Situa-
tion Calculus: A simple solution (sometimes) and a com-
pleteness result for goal regression. In Artificial Intelli-
gence and Mathematical Theory of Computation, pages
359–380. Academic Press, 1991.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical
Foundations for Describing & Implementing Dynamical
Syst. MIT Press, 2001.

[van Emde Boas, 1997] P. van Emde Boas. The convenience
of tilings. In Complexity, Logic, and Recursion Theory,
volume 187 of Lecture Notes in Pure and Applied Mathe-
matics, pages 331–363. Marcel Dekker Inc., 1997.

[Vassos et al., 2008] S. Vassos, G. Lakemeyer, and H. J.
Levesque. First-order strong progression for local-effect
basic action theories. In Proc. of KR, 2008.

[Winslett, 1988] M. Winslett. A model-based approach to
updating databases with incomplete information. ACM
TODS, 13(2):167–196, 1988.

[Wolter and Zakharyaschev, 1999] F. Wolter and M. Za-
kharyaschev. Temporalizing description logic. In Frontiers
of Combining Systems, pages 379–402. Wiley, 1999.

[Yehia and Soutchanski, 2012] W. Yehia and M. Soutchan-
ski. Towards an expressive decidable logical action theory.
In Proc. of DL, volume 846 of CEUR, ceur-ws.org,
2012.

