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1 Introduction

In this paper we show that it is possible to eliminate
inverse roles and functional restrictions from ALCFI
knowledge bases, while preserving the soundness and
completeness of inference. Specifically, we present two
polynomial encodings, the first from ALCFI knowledge
bases into ALCI ones, and the second from ALCI knowl-
edge bases into ALC ones. These encodings eliminate
functional restrictions and inverse roles respectively, but
add enough information so as not to destroy the meaning
of concepts in the original knowledge base with respect
to the reasoning tasks (in particular we will focus on
logical implication).

The encodings presented here are derived from those
in [De Giacomo and Lenzerini, 1994] and in [De Gia-
como, 1996] (the latter in the context of Propositional
Dynamic Logics) for much more expressive description
logics, in which complex roles formed as regular expres-
sions of atomic ones (including the reflexive-transitive
closure) are allowed. Observe that, if we apply di-
rectly the encodings in [De Giacomo and Lenzerini,
1994; De Giacomo, 1996] to ALCFI knowledge bases,
reflexive-transitive closure would be introduced to inter-
nalize axioms, and hence it would appear in the syntactic
closure as well. As a consequence the resulting formula
would not be expressible as an ALCFI knowledge base.
However it can be shown that the parts not expressible
as ALCFI assertions can be dropped without influenc-
ing the reasoning tasks. The encodings presented here
are devised by making use of this result.

Encoding inverse roles and functional restrictions in
ALC knowledge bases, on the one hand, is of practical
interest, since it allows for basing the “core inference pro-
cedures” for logical implication in ALCFI on the infer-
ence procedures for logical implication in ALC, which are
typically more efficient (e.g. constraint systems [Buch-
heit et al., 1993]) and for which implemented systems
are already available (e.g. FACT [Horrocks, 1997]). On
the other hand, such encodings are a simple illustration
of a general technique for deriving reasoning procedures
for expressive logics based on a (possibly polynomial) en-
coding of such logics into simpler ones. Intuitively, the
technique is based on two main steps. Let the “Source
Logic” be SL and the “Target Logic” be TL:

1. Identify a finite set of assertion schemas in the lan-
guage of TL capturing those characteristics that dis-
tinguish SL from TL.

2. Devise a function that, given an SL knowledge base
K, returns a finite set of SL concepts whose inter-
pretation uniquely determines that of K, and which
will be used to instantiate the assertion schemas
in (1).

If both the cardinality of the sets in (1) and (2) and the
size of their elements are polynomially bounded by the
original concept, then so is the knowledge base we get.
Such a technique has led to establish several decidability
and complexity results, as well as reasoning procedures
in DLs [De Giacomo and Lenzerini, 1994; Calvanese et
al., 1995; De Giacomo and Lenzerini, 1995; 1996].

2 The description logic ALCFI
The description logic ALCFI has the following con-
structs:

C ::= A | ¬C | C1 ⊓ C2 | C1 ⊔ C2 |
∀Q.C | ∃Q.C | (≤ 1Q)

Q ::= R | R−

The semantics of the various constructs is the usual one
(see e.g. [Donini et al., 1996]). An ALCFI knowledge
base K is a finite set of assertions of the form

C1 ⊑ C2

where C1 and C2 are ALCFI concepts (without any re-
striction on cyclicity). The semantics of assertions is as
usual. The reasoning service we are interested in is logi-
cal implication of the form K |= C1 ⊑ C2, that is, verify-
ing if the assertion C1 ⊑ C2 is satisfied in every interpre-
tation that satisfies all assertions in K. It is well-known
that checking logical implication in ALCFI (as in ALCI
and ALC) is an EXPTIME-complete problem [De Gia-
como and Lenzerini, 1994].

Given an ALCFI knowledge base K, we call syntactic
closure of K the set CL(K) formed by all atomic concepts
A, functional restrictions (≤ 1Q), existential restrictions
∃Q.C, and universal restrictions ∀Q.C in K, and their
negations. Both the number and the size of the formulae
in CL(K) are linearly bounded by the size of K.



3 Eliminating functional restrictions

We now exhibit an encoding of ALCFI into ALCI.
Although such an encoding has a simple form, prov-
ing its correctness requires quite sophisticated manip-
ulations on interpretations. In particular, we observe
that ALCFI does not have the finite model property,
while ALCI does have it. Hence filtration arguments,
usual in modal logics, cannot be applied directly. We
assume, without loss of generality, that K is in negation
normal form (i.e. negations are pushed inside as much as
possible).

Definition 1 Let K be an ALCFI knowledge base
whose concepts are in negation normal form. We define
the ALCI-counterpart α(K) of K as the ALCI knowl-
edge base α(K) = α1(K) ∪ α2(K), where:

• α1(K) is obtained from K by replacing each (≤
1Q) with a new atomic concept A(≤1 Q), and each
¬(≤ 1Q) with (∃Q.H(≤1 Q))⊓(∃Q.¬H(≤1 Q)), where
H(≤1 Q) is again a new atomic concept.

• α2(K) is the set of assertions of the form:

A(≤1 Q) ⊓ ∃Q.C ⊑ ∀Q.C

one for every A(≤1 Q) occurring in α1(K) and every
C ∈ CL(α1(K)).

Intuitively, α1(K) introduces the new concepts A(≤1 Q)

and H(≤1 Q) in place of (≤ 1Q), so that positive oc-
currences of (≤ 1Q) are represented by the concept
A(≤1 Q), and negative occurrences are represented by
(∃Q.H(≤1 Q))⊓ (∃Q.¬H(≤1 Q)). Note that every instance
of (∃Q.H(≤1 Q)) ⊓ (∃Q.¬H(≤1 Q)) has at least two Q-
successors. To understand the purpose of α2(K) consider
that the schema A(≤1 Q) ⊓ ∃Q.C ⊑ ∀Q.C (where C is
to be replaced by every concept) characterizes exactly
the functional restrictions. The set of assertions α2(K)
can be thought of as a finite instantiation of the schema
above, with one instance for each concept in CL(α1(K)).
Imposing the validity of such finite instantiation is suffi-
cient to guarantee that if α(K) has a model then it has
a model which is a model of K as well, and vice-versa.

Theorem 2 An ALCFI knowledge base K logically im-
plies A ⊑ B, where A and B are atomic concepts oc-
curring in K, if and only if its ALCI-counterpart α(K)
logically implies A ⊑ B.

We assume A and B atomic for convenience. This is
not a limitation since they both can be put equivalent
to complex concepts in K.

4 Eliminating inverse roles

We now define the polynomial encoding β from ALCI
knowledge bases into ALC knowledge bases.

Definition 3 Let K be an ALCI knowledge base. We
define the ALC-counterpart β(K) of K as the set of as-
sertions β(K) = β1(K) ∪ β2(K), where:

• β1(K) is obtained from K by replacing each occur-
rence of R− with a new atomic role Rc, for every
atomic role R occurring in K.

• β2(K) is a set of assertions of the form:

C ⊑ (∀R.∃Rc
.C) ⊓ (∀Rc

.∃R.C)

one for every C ∈ CL(β1(K)) and atomic role R
occurring in K.

Intuitively, β1(K) replaces the inverse of atomic roles
in K with new atomic roles. Each new role Rc is in-
tended to represent R− in β1(K). To understand the
purpose of β2(K), consider that the assertion schema
C ⊑ (∀R.∃Rc

.C)⊓ (∀Rc
.∃R.C) (where C is to be replaced

by every concept), characterizes Rc as the inverse of the
role R. The set of assertions β2(K) can be thought of
as a finite instantiation of the schema above, with one
instance for each concept in CL(β1(K)). Imposing the
validity of such finite instantiation is sufficient to guaran-
tee that if β(K) has a model then it has a model which
is a model of the original knowledge base as well, and
vice-versa.

Theorem 4 An ALCI knowledge base K logically im-
plies A ⊑ B, where A and B are atomic concepts oc-
curring in K, if and only if its ALC-counterpart β(K)
logically implies A ⊑ B.

5 Discussion

ALCFI knowledge bases are of special importance in
database applications of DLs, such as capturing con-
ceptual data models (e.g. the entity-relationship model),
or representing interschema assertions in source integra-
tion [Calvanese et al., 1998]. ALCFI is the simplest
logic in which n-ary relations can be correctly repre-
sented (as reified concepts). In particular the logic DLR
(a DL with built-in n-ary relations) on which the integra-
tion methodology in [Calvanese et al., 1998] is based, is
rephrasable in ALCFI, if we omit number restrictions
and hence renounce to express cardinality constraints.
Implemented systems for such a logic currently do not
exist. The presented encodings allow us to immediately
extend available systems to deal with such a logic, thus
giving us the possibility to start building prototypes for
this class of applications.
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