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We consider μL, μLa , and μLp , three variants of the first-order μ-calculus studied in 
verification of data-aware processes, that differ in the form of quantification on objects 
across states. Each of these three logics has a distinct notion of bisimulation. We show 
that the three notions collapse for generic dynamic systems, which include all state-based 
systems specified using a logical formalism, e.g., the situation calculus. Hence, for such 
systems, μL, μLa , and μLp have the same expressive power. We also show that, when 
the dynamic system stores only a bounded number of objects in each state (e.g., for bounded 
situation calculus action theories), a finite abstraction can be constructed that is faithful for 
μL (the most general variant), yielding decidability of verification. This contrasts with 
the undecidability for first-order ltl, and notably implies that first-order ltl cannot be 
captured by μL.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study first-order μ-calculus as a verification language for transition systems whose states are first-
order (relational) models over a fixed infinite object domain. In particular, we consider generic transition systems, i.e., roughly 
speaking, transition systems whose successor states depend only on the logical properties of the current one [1,28]. Es-
sentially, all dynamic systems in literature specified through some sort of logical formalism give rise to generic transition 
systems, including data-aware processes studied in Databases [10,26,3], and action theories studied in Artificial Intelligence, 
e.g., expressed in the situation calculus [31,36].

Recently, many important results have been devised regarding sound, complete, and terminating verification for dynamic 
systems with a first-order relational state description [17,8,20,3,4,40,9,21,22]. These results are concerned with verification 
logics that are variants of those studied in the area of model checking of finite-state transition systems, like ltl, ctl, or 
modal μ-calculus, which subsumes the previous one in the propositional setting [16,6]. Obviously, to be used in the context 
of formalisms with a first-order state description, such logics need to be extended with the ability of querying the state in 
first-order logic. However, in most proposals, e.g., [20,23], such ability is limited to the use of first-order sentences (closed 
formulas), without the possibility of quantifying over object across different states. Quantification across (states) refers to 
the possibility of using variables quantified in the current state also in future states. Without quantification across, these 
first-order temporal logics remain quite similar to their propositional counterpart (though with infinitely many propositions 
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corresponding to first-order sentences, instead of the usual finite ones). In particular, notions like bisimulation and bisim-
ulation invariance essentially correspond to those known for the propositional case. Only very few papers have studied 
verification logics with quantification across [8,3,9,21].

In this paper, we study in depth first-order μ-calculus with quantification across. In particular, we consider three basic 
μ-calculus variants proposed in literature, namely μL, μLa and μLp , which are characterized by different restrictions 
on how quantification across is controlled. The logic μL poses no restriction on object quantification. This logic has been 
used in several contexts [24,34,3] and is the most natural extension of modal μ-calculus to express properties of transition 
systems with first-order states. The logic μLa is a restriction of μL where quantification is required to range over objects 
in the active domain of the current state only, i.e., objects present in the extension of some predicate in the current state. 
In the context of artifact-centric dynamic systems [18], the logic μLa was studied in [3], while its ctl fragment has been 
investigated in [8,9]. The logic μLp is a restriction of μLa which further requires that the objects assigned to the quantified 
variables persist across the states traversed while checking the formula. The logic μLp was also studied in [3], and then in 
the context of situation calculus action theories [20,21].

As shown in [3], these three logics can be characterized by three distinct notions of bisimulation over transition systems: 
standard bisimulation (though extended to deal with first-order states); history preserving bisimulation (or a-bisimulation) 
for μLa; and persistence preserving bisimulation (or p-bisimulation) for μLp . Specifically, μL is invariant with respect to 
bisimulation, μLa is invariant with respect to a-bisimulation, and μLp is invariant with respect to p-bisimulation, where 
bisimulation invariance means that two bisimilar states satisfy the exactly same formulas.

Decidability results for verification have also been devised. A crucial notion to obtain decidability is that of state-
boundedness [8,20,3,5]. In particular, [20] shows that verification of first-order μ-calculus without quantification across 
over bounded action theories in the situation calculus is decidable. Such theories have an infinite object domain, but the 
number of object tuples that belong to fluents in each situation remains bounded. Nonetheless, an agent may deal with 
an infinite number of objects over the course of an infinite execution. In [21], these results are extended to deal with 
quantification across, showing that models of bounded situation calculus action theories can be faithfully abstracted into 
p-bisimilar finite-state transition systems. This yields decidability of verification for μLp . Remarkably, such an abstraction 
is independent from the formula to verify.

Instead, [21] and [3] show, respectively for the situation calculus and for artifact-centric dynamic systems, that in the 
μLa case (and hence also in μL) no faithful finite abstraction can exist that is independent from the formula to check. 
Interestingly, [8,9] prove that, for state-bounded transition systems, a faithful abstraction depending on the number of vari-
ables in the formula exists for the ctl fragment of μLa . Only recently it has been shown that this decidability result extends 
to μLa [13], while it remained open, until now, whether it extends to μL as well.

Here we investigate thoroughly μL, μLa and μLp and the bisimulation notions associated to them. We establish quite 
surprising results with respect to the expressive power of the three logics, and we establish decidability of verification for 
μL against state-bounded transition systems in general, and in particular against bounded situation calculus action theories.

Specifically, we present the following results:

• For generic transition systems, such as those generated by situation calculus theories, the notions of p-bisimilarity, 
a-bisimilarity and bisimilarity collapse.

• For generic transition systems with the additional condition that the active domain of each state is finite, though not 
necessarily bounded, μL, μLa and μLp have exactly the same expressive power, in the sense that if a μL formula 
distinguishes two states, then there exists a μLp formula, and thus a μLa formula, that does so as well (and obviously 
vice-versa).

• As a consequence of the equivalence between p-bisimilarity and bisimilarity, we have that if two generic transition 
systems (with infinite object domains) are p-bisimilar, they satisfy the same μL formulas. We strengthen this result by 
showing that, if one of the transition systems has a finite object domain that is large enough, then it preserves all μL
formulas that use at most a predefined number of variables.

• We further show that, for state-bounded generic transition systems, and for a given set of variables, it is always possible 
to define a faithful finite-state abstraction that preserves all μL formulas with variables belonging to that set. This in 
particular applies to models of bounded situation calculus action theories.

• Finally, we show that given a bounded situation calculus action theory (including those with incomplete information), 
and a set of variables, we can effectively construct a new situation calculus action theory with finite domain that 
preserves μL formulas whose variables belong to that set. In this way, we obtain decidability of verification of μL
formulas over bounded situation calculus action theories.

These results have a strong impact also for the following reason. In [3] it is shown that verification of first-order ltl

with quantification across ranging over the active domain is undecidable even for state-bounded generic transition systems. 
Then, using the folk assumption that μ-calculus captures ltl also in the first-order case, e.g., [34], it is concluded that 
μLa verification is undecidable for state-bounded transition systems. Here, we show that this is not true, and that μL
verification is indeed decidable over state-bounded transition systems while first-order ltl verification is not. This has the 
notable consequence that first-order μ-calculus cannot capture first-order ltl, in general. In other words, once we allow for 
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quantification across, the ability of ltl of talking about single traces cannot be mimicked anymore by μ-calculus. To the 
best of our knowledge this is the first formal proof of this important fact.

2. Generic transition systems

We consider transition systems with first-order (relational)1 states, i.e., such that each state is associated with a full 
first-order interpretation over a fixed alphabet of predicates, including equality interpreted as identity, and a fixed object 
domain. Let F be a finite set of predicates, also called fluents, C a finite set of constants, and � an infinite object domain. 
We denote by IntF ,C

� the set of all possible interpretations of predicates in F and constants in C over the object domain �. 
A transition system (TS) (over predicates F , constants C , and object domain �) is a tuple T = 〈�, Q , q0, →, I〉, where:

• Q is the set of states;
• q0 ∈ Q is the initial state;
• →⊆ Q × Q is the transition relation; and
• I : Q �→ IntF ,C

� is the labeling function associating to each state q an interpretation I(q) = 〈�, ·I(q)〉 such that the 
constants in C are interpreted in the same way in all the states over which I is defined.

We denote by adom(I(q)) the active domain of I(q), i.e., the set of objects occurring in the extension of some predicate in 
I(q) or interpreting some constant in C . Also we denote by Ĩ(q) the restriction of I(q) to its active domain, i.e., Ĩ(q) =
〈adom(I(q)), ·I(q)〉.

Among the various TSs we are interested in those that are generic. Genericity is a standard notion in Databases [1]
formalizing the fact that answers to queries depend only on the mutual relationships of the objects in the database (which 
can be seen as a first-order interpretation). Such notion has been adapted to capture when the states of a dynamic system 
are generated through a first-order specification, such as in [9] (there called uniformity), or in [3], or in [20,21].

To introduce genericity formally, we first recall the standard notions of isomorphism and isomorphic interpretations [28]. 
Two first-order interpretations I1 = 〈�1, ·I1 〉 and I2 = 〈�2, ·I2 〉, over the same predicates F and constants C , are said to 
be isomorphic, written I1 ∼ I2, if there exists a bijection (called isomorphism) h :�1 �→�2 such that: (i) for every F ∈ F , 

x ∈ FI1 if and only if h(
x) ∈ FI2 ; (ii) for every c ∈ C , cI2 = h(cI1 ). Intuitively, for two interpretations to be isomorphic, it 
is required that one can be obtained from the other by renaming the individuals in the interpretation domain. Notice that, 
necessarily, the interpretation domains of isomorphic interpretations have the same cardinality. When needed, to make it 
explicit that h is an isomorphism between I1 and I2, we write I1 ∼h I2.

Definition 1 (Generic Transition System). A TS T = 〈�, Q , q0, →, I〉 is said to be generic if: for every q1, q′1, q2 ∈ Q and every 
bijection h :� �→�, if I(q1) ∼h I(q2) and q1 → q′1, then there exists q′2 ∈ Q such that q2 → q′2 and I(q′1) ∼h I(q′2).

Intuitively, genericity requires that if two states are isomorphic they induce the “same” transitions (modulo isomor-
phism). This property is always true if the next states are built by a logical specification involving only the current state 
and the next one, as long as we do not use predefined domains and relations (such as order) with special properties that 
are specified extra-logically (e.g., we allow for natural numbers without formalizing them in the logic itself). In particular it 
holds for situation calculus specifications (and indeed virtually all first-order based formalism for reasoning about actions 
used in AI) [36].

Next we introduce state-bounded TSs. These are TSs whose states can contain only boundedly many objects in the active 
domain. This restriction, together with genericity, is at the base of a series of decidability results for verification of various 
temporal logics against TSs with first-order states [9,3,20,21].

Definition 2 (State-Bounded Transition System). A TS T = 〈�, Q , q0, →, I〉 is said to be (state-)bounded by b if we have that 
|adom(I(q))| ≤ b for every q ∈ Q . Moreover, T is state bounded if it is state-bounded by b for some b.

That is, we say that T is state-bounded if there is a bound on the number of objects that can be accumulated in the 
same state. Notice that this does not disallow the possibility of accumulating infinitely many objects along an infinite run 
(or the entire TS for the matter).

3. First-order variants of μ-calculus

To specify temporal properties, we adopt modal μ-calculus [27,37,11], one of the most powerful temporal logics for 
which model checking has been investigated. It is well-known that in the propositional setting μ-calculus is able to capture 
both linear time logics, such as ltl, and branching time logics such as ctl and ctl

∗ [16,6]. The main feature of modal 

1 In this paper, we focus on the relational view of first-order logic without considering function symbols.
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(ϕ)T
(v,V )

= {q | q ∈ Q and I(q), v |= ϕ}
(¬�)T

(v,V )
= Q \ (�)T

(v,V )

(�1 ∧�2)T
(v,V )

= (�1)T
(v,V )

∩ (�2)T
(v,V )

(∃x.�)T
(v,V ) = {q | ∃d ∈�.q ∈ (�)T

(v,V )[x/d]}
(〈−〉�)T

(v,V ) = {q | ∃q′.q→ q′ and q′ ∈ (�)T
(v,V )}

(Z)T
(v,V )

= V (v, Z)

(μZ .�)T
(v,V )

= ⋂{E ⊆ Q | (�)T
(v,V )[Z/E] ⊆ E}

(v, V )[x/d] stands for (v ′, V ) where v ′ is as v except that v ′(x) = d. Similarly (v, V )[Z/E] stands for (v, V ′) where V ′ is as V except that V ′(v, Z) = E .

Fig. 1. Semantics of μL.

μ-calculus is the ability of expressing directly least and greatest fixpoints of (predicate-transformer) operators formed using 
formulae relating the current state to the next one. By using such fixpoint constructs one can easily express sophisticated 
temporal properties defined by induction or co-induction. In the following we consider three first-order variants of modal 
μ-calculus that have been considered in literature.

3.1. The logic μL

The first logic we consider is characterized by unrestricted quantification over objects, and was studied, e.g., in [24,3]. 
The syntax of μL is

� ::= ϕ | ¬� | �1 ∧�2 | ∃x.� | 〈−〉� | Z | μZ .�,

where: ϕ is a first-order formula expressed using predicates in F and constants in C ; the modal operator 〈−〉� denotes the 
existence of a transition from the current state to a next state where � holds; and μZ .� denotes the least fixpoint of the 
formula � seen as a predicate transformer with respect to Z . We use the standard abbreviations for ⊃ and ∀. We also use 
ν Z .� as an abbreviation for ¬μZ .¬�[Z/¬Z ],2 to denote the greatest fixpoint of �. Note that in μL quantification across 
ranges over arbitrary objects in the object domain. As usual in μ-calculus, formulas of the form μZ .� (and ν Z .�) must 
obey to the syntactic monotonicity of � with respect to Z , which states that every occurrence of the variable Z in � must 
be within the scope of an even number of negation symbols. This ensures that the semantics of μZ .� and ν Z .� is well 
defined.

Example 1. The μL formula

∀x.Student(x)⊃μY .((∃y.Graduates(x, y))∨ 〈−〉Y )

states that for each student x in the current state, there exists an evolution that eventually leads to the graduation of x
(with some final mark y).

To interpret μL formulas over a TS T = 〈�, Q , q0, →, I〉, we use valuations (v, V ) formed by an individual variable 
valuation v and a predicate variable valuation V parametrized by v , i.e., which maps each predicate variable Z to a subset 
V (v, Z) of Q . We define the extension function (·)T

(v,V ) , which maps μL formulas to subsets of Q , as shown in Fig. 1.

Given a μL formula �, we say that a TS T satisfies � at state q under v and V , written T , q, (v, V ) |=�, if q ∈ (�)T
(v,V ) . 

When � is closed on predicate variables, we omit V , as irrelevant, and write T , q, v |=�. If � is closed on both individual 
and predicate variables we simply write T , q |=�. For closed formulas, we say that T satisfies �, written T |=�, if T , q0 |=�.

We can naturally extend the classical notion of bisimulation [32] to deal with TSs with first-order states. Let T1 =
〈�1, Q 1, q10, →1, I1〉 and T2 = 〈�2, Q 2, q20, →2, I2〉 be two TSs over predicates in F and constants in C . A relation 
R ⊆ Q 1 × Q 2 is a bisimulation between T1 and T2, if there exists a bijection b : �1 �→ �2 such that 〈q1, q2〉 ∈ R implies 
that:

1. I1(q1) ∼b I2(q2);
2. for each q′1 ∈ Q 1, if q1 →1 q′1 then there exists q′2 ∈ Q 2 such that q2 →2 q′2 and 〈q′1, q′2〉 ∈ R;
3. for each q′2 ∈ Q 2, if q2 →2 q′2 then there exists q′1 ∈ Q 1 such that q1 →1 q′1 and 〈q′1, q′2〉 ∈ R .

We say that a state q1 ∈ Q 1 is bisimilar to q2 ∈ Q 2, written q1 ≈ q2, if there exists a bisimulation R between T1 and T2
such that 〈q1, b, q2〉 ∈ R . When needed, we also write q1 ≈b q2, to explicitly name b. Finally, T1 is said to be bisimilar to T2, 
written T1 ≈ T2, if q10 ≈ q20. It is immediate to see that bisimilarity between states and TSs, i.e., the (overloaded) relation 
≈, is an equivalence relation.

Using the notion of bisimilarity, one can prove a suitable version of the classical bisimulation invariance result for the 
μ-calculus [11], which states that bisimilar TSs satisfy exactly the same μ-calculus formulas.

2 �[Z/¬Z ] denotes the result of syntactically substituting Z with ¬Z in �.
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Theorem 3. Consider two TSs T1 = 〈�1, Q 1, q10, →1, I1〉 and T2 = 〈�2, Q 2, q20, →2, I2〉with �1 and �2 infinite. If T1 ≈ T2 , then 
for every μL closed formula �, T1 |=� if and only if T2 |=�.

Proof. Straightforward extension of the proof for modal μ-calculus in the propositional setting [11]. �
The converse of this theorem does not hold in general, but we show later that it holds under some general conditions.

3.2. The logic μLa

The logic μLa is characterized by the assumption that quantification over objects is restricted to those objects that are 
present in the current active domain, and was studied in [3] and in [9].3 The syntax of μLa is

� ::= ϕ | ¬� | �1 ∧�2 | ∃x.live(x)∧� | 〈−〉� | Z | μZ .�.

Note that in μLa quantification across is forced to range over objects in the current active domain, through the special 
predicate live(·), which denotes membership to the active domain, and can be seen as an abbreviation for the disjunction ∨

P (. . . , x, . . .) over all predicates P and all positions of x in P . That is, individuals over which quantification ranges must 
belong to the active domain of the current state of the TS.

Example 2. The μL formula

∀x.Student(x)⊃μY .((∃y.Graduates(x, y))∨ 〈−〉Y )

is in fact a μLa formula since ∀x.Student(x) ⊃ μY .((∃y.Graduates(x, y)) ∨ 〈−〉Y ) is equivalent to ∀x.live(x) ∧ Student(x) ⊃
μY .((∃y.live(y) ∧ Graduates(x, y)) ∨ 〈−〉Y ).

Next, we introduce the notion of history-preserving bisimulation, which captures μLa . Given a bijection h : Q �→ Q ′ , we 
denote with dom(h) the domain of h, i.e., the set of elements in Q for which h is defined, and with img(h) the image of 
h, i.e., the set of elements q′ in Q ′ such that q′ = h(q) for some q ∈ Q . A bijection h′ extends h if dom(h) ⊆ dom(h′) and 
h′(x) = h(x) for all x ∈ dom(h) (or equivalently img(h) ⊆ img(h′) and h′ −1(y) = h−1(y) for all y ∈ img(h)).

A history-preserving bisimulation relation can be defined as follows. Let T1 = 〈�1, Q 1, q10, →1, I1〉 and T2 =
〈�2, Q 2, q20, →2, I2〉 be two TSs (over the predicates in F and constants in C ), and let H be the set of all possible 
bijections h : D1 �→ D2, for D1 ⊆ �1 and D2 ⊆ �2. A relation R ⊆ Q 1 × H × Q 2 is a history-preserving bisimulation (or 
a-bisimulation) between T1 and T2, if 〈q1, h, q2〉 ∈ R implies that:

1. Ĩ1(q1) ∼h Ĩ2(q2), i.e., h is an isomorphism between the restrictions of I1(q1) and I2(q2) to their active domains;
2. for each q′1 ∈ Q 1, if q1 →1 q′1 then there exists q′2 ∈ Q 2 such that:

(a) q2 →2 q′2, and
(b) there exists a bijection h′ : dom(h) ∪ adom(I1(q′1)) �→ img(h) ∪ adom(I2(q′2)) that is an extension of h and such that 

〈q′1, h′, q′2〉 ∈ R;
3. for each q′2 ∈ Q 2, if q2 →2 q′2 then there exists q′1 ∈ Q 1 such that:

(a) q1 →1 q′1, and
(b) there exists a bijection h′ : dom(h) ∪ adom(I1(q′1)) �→ img(h) ∪ adom(I2(q′2)) that is an extension of h and such that 

〈q′1, h′, q′2〉 ∈ R .

In other words, we say that two states (possibly of two different TSs) are history-preserving bisimilar if there is an isomor-
phism between them that can be extended in successor states, while preserving bisimulation. This means that, starting from 
the initial states of the two TSs, the identity of the objects seen along each history is preserved when moving to successor 
states.

We say that a state q1 ∈ Q 1 is history-preserving bisimilar (or a-bisimilar) to q2 ∈ Q 2, written q1 ≈a q2, if there exists an 
a-bisimulation R between T1 and T2 such that 〈q1, h, q2〉 ∈ R , for some h; when needed, we also write q1 ≈a

h q2, to explicitly 
name h. Finally, T1 is said to be a-bisimilar to T2, written T1 ≈a T2, if q10 ≈a q20. It is immediate to see that bisimilarity 
between states and TSs, i.e., the (overloaded) relation ≈a , is an equivalence relation.

Using the notion of a-bisimilarity, one can prove a suitable version of the classical bisimulation invariance result, see e.g., 
[11].

Theorem 4 ([3]). Consider two TSs T1 = 〈�1, Q 1, q10, →1, I1〉 and T2 = 〈�2, Q 2, q20, →2, I2〉 with �1 and �2 infinite. If T1 ≈a

T2 , then for every μLa closed formula �, T1 |=� if and only if T2 |=�.

3 Actually, [9] considers the ctl fragment of μLa .



D. Calvanese et al. / Information and Computation 259 (2018) 328–347 333
The converse of this theorem does not hold in general, but, as before, we show later that it holds under some general 
conditions.

3.3. The logic μLp

Next, we consider a restriction of μLa , called μLp , studied in [3,21]. The syntax of μLp is

� ::= ϕ | ¬� | �1 ∧�2 | ∃x.live(x)∧� | live(
x)∧ 〈−〉� | live(
x)∧ [−]� | Z | μZ .�.

Note that in μLp quantification across ranges over objects in the current active domain that persist in the extension of some 
fluents across situations. This is obtained by forcing through live(
x) ∧ 〈−〉� and live(
x) ∧ [−]� that the variables occurring 
free in �4 are assigned to objects that are in the active domain of the current state.

Example 3. The following μLp formula:

∀x.Student(x)⊃μY .((∃y.Graduates(x, y))∨ live(x)∧ 〈−〉Y )

states that for each student x in the current state, there exists an evolution, where x remains in the active domain, which 
eventually leads to the graduation of x (with some final mark y).

The bisimulation relation that captures μLp is defined as follows. Let T1 = 〈�1, Q 1, q10, →1, I1〉 and T2 = 〈�2, Q 2, q20,

→2, I2〉 be two TSs (over the predicates in F and constants in C ) and let H be the set of all possible bijections h : D1 �→ D2, 
for D1 ⊆�1 and D2 ⊆�2. A relation R ⊆ Q 1 × H × Q 2 is a persistence-preserving bisimulation (or p-bisimulation) between 
T1 and T2, if 〈q1, h, q2〉 ∈ R implies that:

1. Ĩ1(q1) ∼h Ĩ2(q2);
2. for each q′1 ∈ Q 1, if q1 →1 q′1 then there exists q′2 ∈ Q 2 such that:

(a) q2 →2 q′2, and
(b) there exists a bijection h′ : adom(I1(q1)) ∪ adom(I1(q′1)) �→ adom(I2(q2)) ∪ adom(I2(q′2)) such that its restriction 

h′|adom(I1(q1)) coincides with h|adom(I1(q1)) and 〈q′1, h′|adom(I1(q′1)), q′2〉 ∈ R;
3. for each q′2 ∈ Q 2, if q2 →2 q′2 then there exists q′1 ∈ Q 1 such that:

(a) q1 →1 q′1, and
(b) there exists a bijection h′ : adom(I1(q1)) ∪ adom(I1(q′1)) �→ adom(I2(q2)) ∪ adom(I2(q′2)) such that its restriction 

h′|adom(I1(q1)) coincides with h|adom(I1(q1)) and 〈q′1, h′|adom(I1(q′1)), q′2〉 ∈ R .

In other words, we say that two states (possibly of two different TSs) are persistence-preserving bisimilar if there is an 
isomorphism between them that can be maintained in the successor state for all objects that are in the intersection of the 
active domains of the current and the successor state itself. This means that the identity of objects is preserved only as long 
as they persist in the active domain.

We say that a state q1 ∈ Q 1 is persistence-preserving bisimilar (or p-bisimilar) to q2 ∈ Q 2, written q1 ≈p q2, if there exists 
a p-bisimulation R between T1 and T2 such that 〈q1, h, q2〉 ∈ R , for some h; when needed, we also write q1 ≈p

h q2, to 
explicitly name h. Finally, a TS T1 is said to be p-bisimilar to T2, written T1 ≈p T2, if q10 ≈p q20. Again, it is immediate to 
see that p-bisimilarity is an equivalence relation.

Theorem 5 ([3]). Consider two TSs T1 = 〈�1, Q 1, q10, →1, I1〉 and T2 = 〈�2, Q 2, q20, →2, I2〉 with �1 and �2 infinite. If T1 ≈p

T2 , then for every closed μLp formula �, T1 |=� if and only if T2 |=�.

Again, the converse of this theorem does not hold in general, but, we show later that it holds under some general 
conditions.

For a state-bounded generic TS we can construct a finite faithful abstraction with respect to closed μLp formulas.

Theorem 6 ([3,20,21]). Given a state-bounded generic TS T , there exists a finite state TS T f that is p-bisimilar to T .

By the two theorems above, we have that for every state-bounded generic TS T there exists a finite TS T f which is 
a faithful abstraction, i.e., for every closed μLp formula �, T |=� if and only if T f |=�. Hence we can use T f to model 
check properties of interest over T .

Unfortunately, it is easy to see that in the case of μL or μLa , there exists no finite-state faithful abstraction of T that 
is independent from the formula to verify. Indeed, assume that we have a TS where every transition replaces an object in the 

4 With the proviso that second order variables are substituted by their corresponding fixpoint formula.
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Fig. 2. Relationships among the states q1, q′1, q2, q′2, q′′2 , q′′′2 involved in the proof of Theorem 7.

active domain with a fresh object. Then, for every bound n on the number of objects in a candidate finite abstraction, we 
can write a (fixpoint-free) formula saying that there exists a finite run with more than n distinct objects:

∃x1.live(x1)∧ 〈−〉(∃x2.live(x2)∧ x2 �=x1 ∧
〈−〉(∃x3.live(x3)∧ x3 �=x1 ∧ x3 �=x2 ∧

· · ·
〈−〉(∃xn+1.live(xn+1)∧ xn+1 �=x1 ∧ · · · ∧ xn+1 �=xn) · · · ))

This formula is obviously true in the original TS, but it is false in any finite abstraction using at most n objects [3,20,21].

4. Expressiveness over generic transition systems

We start by proving the key result of this section: on generic TSs, p-bisimilarity implies bisimilarity.5

Theorem 7. Consider two generic TSs, T1 = 〈�1, Q 1, q10, →1, I1〉 and T2 = 〈�2, Q 2, q20, →2, I2〉, with |�1| = |�2| infinite. If 
there exists a p-bisimulation P between T1 and T2 , then there exists a bisimulation B between T1 and T2 .

Proof. For an n-ary relation R ⊆ D1 × · · · × Dn , define the projection of R on the i-th component as: πi .R .= {di ∈ Di |
∃〈d1, . . . , di, . . . , dn〉 ∈ R}.

Since T1 ≈p T2, we have that q10 ≈p
h0

q20, for some suitable isomorphism h0. Let � :�1 �→�2 be a bijection extending 
h0 to the whole �1. Such an � exists because h0 is a bijection and |�1| = |�2|. We define the relation B ⊆ Q 1 × Q 2 such 
that 〈q1, q2〉 ∈ B iff: q1 ∈ π1.P , q2 ∈ π3.P , I(q1) ∼� I(q2). We show that B is a bisimulation between T1 and T2. To this 
end, consider the definition of (plain) bisimulation (p. 331) and let 〈q1, q2〉 ∈ B . Requirement 1 is obviously satisfied.

As to requirement 2, assume that, for some q′1, q1 →1 q′1. Because, by the definition of B , q1 ∈ π1.P , we have that, for 
some h and q′′2, 〈q1, h, q′′2〉 ∈ P . Then, by definition of p-bisimulation, since q1 →1 q′1, there exists an extension h′ of h to 
adom(I1(q′1)) and a state q′′′2 ∈ Q 2 such that q′′2 →2 q′′′2 and 〈q′1, h′, q′′′2 〉 ∈ P . Notice this implies q′1 ∈ π1.P . Let g :�1 �→�2
be a bijection extending h′ to the whole �1. It is immediate to see that g exists. Because of the way h′ extends h and g
extends h′ , we have that I1(q1) ∼g I2(q′′2). Then, since I1(q1) ∼� I2(q2) and I1(q1) ∼g I2(q′′2), by symmetry and transitivity 
of ∼, and closedness of isomorphism under composition, it follows that I2(q2) ∼�−1◦g I2(q′′2).

Now, observe that q2, q′′2, q′′′2 ∈ π3.P ⊆ Q 2 (in particular for q2, this is a consequence of B ’s definition) and q′′2 →2 q′′′2 . 
Thus, since T2 is generic, for every bijection f : �2 �→ �2 such that I2(q′′2) ∼ f I2(q2), there exists a state q′2 ∈ Q 2 such 
that q2 →2 q′2 and I2(q′′′2 ) ∼ f I2(q′2). Consider, in particular, the bijection f = g−1 ◦ �. Because I2(q2) ∼�−1◦g I2(q′′2), we 
obviously have that I2(q′′2) ∼ f I2(q2). Then, by genericity, there exists q′2 ∈ Q 2 such that q2 →2 q′2 and I2(q′′′2 ) ∼ f I2(q′2). 
For convenience, the relationships among states q1, q′1, q2, q′2, q′′2, q′′′2 are depicted in Fig. 2.

We now show that 〈q′1, q′2〉 ∈ B . To this end, recall first that q′1 ∈ π1.P . As to q′2, we need to show that q′2 ∈ π3.P . This 
is an immediate consequence of the fact that, by B ’s definition, q2 ∈ π3.P , and that q2 →2 q′2. Indeed, because q2 ∈ π3.P , 
there exists a tuple 〈q′′1, h′′, q2〉 ∈ P ; moreover, because q2 →2 q′2, and P being a p-bisimulation, there must exist q′′′1 ∈ Q 1
and h′′′ , such that q′′1 →1 q′′′1 and 〈q′′′1 , h′′′, q′2〉 ∈ P . Thus, q′2 ∈ π3.P . Finally, we prove that I1(q′1) ∼� I2(q′2). To this end, 
observe that I2(q′′′2 ) ∼ f I2(q′2) and I1(q′1) ∼g I2(q′′′2 ) (the latter is a consequence of the fact that g is a bijection extending 
h′). Then, again, by transitivity and symmetry of ∼, and by closedness of isomorphisms under composition, we have that 
I1(q′1) ∼g◦ f I2(q′2). Thus, since g ◦ f = g ◦ g−1 ◦ � = �, it follows that I1(q′1) ∼� I2(q′2). Requirement 3 can be proven in 
essentially the same way, using �−1 instead of �. �

As an immediate consequence, we have that if two TSs are p-bisimilar, then, being also bisimilar, by invariance with 
respect to bisimilarity (Theorem 3) they satisfy the same closed μL formulas.

5 Notice that in [13] an analogous, though weaker, result is proved: on generic TSs, p-bisimilarity implies a-bisimilarity.
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Theorem 8. Consider two generic TSs T1 = 〈�1, Q 1, q10, →1, I1〉 and T2 = 〈�2, Q 2, q20, →2, I2〉 with |�1| = |�2| infinite. If 
T1 ≈p T2 then for every closed μL formula �, we have that T1 |=� if and only if T2 |=�.

Next, we study the converse of Theorems 3, 4 and 5. In other words, we are interested in understanding for which TSs we 
have that if two states satisfy exactly the same μL, μLa or μL formulas then they are, respectively, bisimilar, a-bisimilar 
or p-bisimilar. In particular, we show that such results hold for generic finite-active-domain TSs, which are generic TSs with 
the additional condition that the active domain of every state is finite (though not necessarily bounded by some given b). 
Such class of TSs includes generic state-bounded TSs, as well as more general TSs obtained by starting from a database and 
updating it at each step with a finite number of tuples, as typical of, e.g., artifact-centric dynamic systems [3].

We first prove a key property of generic TSs, i.e., the fact that if the interpretations associated with two states of the 
same TS are isomorphic with respect to the active domain then they are p-bisimilar.

Lemma 9. If T = 〈�, Q , q0, →, I〉 is a generic TS, then for every two states q1, q2 ∈ Q and every bijection h : D �→ D with 
adom(I1(q1)) ∪ adom(I2(q2)) ⊆ D ⊆� such that Ĩ1(q1) ∼h Ĩ2(q2) we have q1 ≈p

h q2 .

Proof. By co-induction, we can show that the relation R = {〈q1, h, q2〉 | Ĩ1(q1) ∼h Ĩ2(q2)} is a p-bisimulation, by exploiting 
the very definition of generic TS. �

Notice that Lemma 9 leverages on the fact that the two states belong to the same generic TS. If this were not the case, 
i.e., if the states were taken from different TSs, we could not exploit genericity (which relates states of the same TS) and 
the claim would not hold. Observe also that the converse of Lemma 9 trivially holds, as a consequence of the definition of 
p-bisimilarity.

Now, we can show the following result for μLp .

Theorem 10. Consider two generic finite-active-domain TSs T1 = 〈�1, Q 1, q10, →1, I1〉 and T2 = 〈�2, Q 2, q20, →2, I2〉 with �1
and �2 infinite. If for every closed μLp formula �, T1 |=� if and only if T2 |=�, then T1 ≈p T2 .

Proof. We show by co-induction that the relation R = {〈q1, h, q2〉 | for all � ∈μLp . T1, q1 |=� iff T2, q2 |=� and Ĩ1(q1) ∼h

Ĩ2(q2)} is a p-bisimulation. R satisfies the first condition of p-bisimulation by definition. Suppose towards contradiction 
that it does not satisfy the second condition, i.e., there exist a tuple 〈q1, h, q2〉 and a state q′1 such that q1 →1 q′1 but there 
is no extension h′ of h and no q′2 such that: q2 →1 q′2 and h′|adom(I1(q1)) coincides with h|adom(I1(q1)); Ĩ1(q′1) ∼h′ Ĩ2(q′2); and 
q′1 and q′2 satisfy the same closed μLp formulas.

Consider the isomorphism type of I1(q′1), i.e., the set of interpretations that are isomorphic to I1(q′1). Since adom(I1(q′1))
is finite, there exists a closed first-order formula � , which we call characteristic formula, with one existentially quantified 
variable for each object in the active domain, that characterizes the isomorphism type [21]. From � we can construct an 
open first-order formula �(
x), by leaving open the variables 
x corresponding to objects already in adom(I1(q1)). In this 
way, �(
x) parameterizes the characteristic formula on 
x, forcing the objects coming from adom(I1(q1)) to persist.

Now, suppose that for each q′2 there is a closed μLp formula that is true in q′1 but false in q′2. Notice that all q′2 belonging 
to the isomorphism type captured by �(
x) are p-bisimilar by genericity (Lemma 9), hence, by p-bisimulation invariance 
(Theorem 5), they satisfy the same μLp formulas. Thus, if such a formula exists it is the same for all states q′2. Let denote 
this formula by �. Then T1, q1 |= ∃
x.live(
x) ∧ 〈−〉(�(
x) ∧�) and T2, q2 |= ∀
x.live(
x) ⊃ [−](�(
x) ⊃¬�). Thus q1 and q2 do 
not satisfy the same μLp formulas, and we obtain a contradiction. The third condition can be proven analogously. �

By considering that μLp is a subset of μL, as an immediate consequence of Theorems 10 and 7, we obtain an analogous 
result for μL.

Theorem 11. Consider two generic finite-active-domain TSs T1 = 〈�1, Q 1, q10, →1, I1〉 and T2 = 〈�2, Q 2, q20, →2, I2〉 with 
|�1| = |�2| infinite. If for every closed μL formula �, we have that T1 |=� if and only if T2 |=�, then T1 ≈ T2 .

Proof. The proof exploits the fact that μL extends μLp , and that equivalence with respect to μLp formulas guarantees 
p-bisimilarity, which in turn implies bisimilarity for generic finite-active-domain TSs. �

Considering that μLa is a subset of μL, a similar result holds for μLa as well. Observe that Theorem 3 and Theorem 11, 
together, can be seen as the lifting to μL of the classical μ-calculus characterization of bisimulation in the propositional 
setting [11]. Analogously, Theorem 5 and Theorem 10 can be seen as the lifting to μLp , and Theorem 4 and Theorem 11 to 
μLa .

To summarize, considering that μLp is a subset of μLa , which is a subset of μL, given two TSs T1 = 〈�1, Q 1, q10,

→1, I1〉 and T2 = 〈�2, Q 2, q20, →2, I2〉 with |�1| = |�2| infinite, a state q1 of T1, and a state q2 of T2, we have that:
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• always:

q1 ≈ q2 implies q1 ≈a q2 implies q1 ≈p q2
q1 ≈p q2 implies q1 ≡μLp q2
q1 ≈a q2 implies q1 ≡μLa q2
q1 ≈ q2 implies q1 ≡μL q2
q1 ≡μL q2 implies q1 ≡μLa q2 implies q1 ≡μLp q2

• when T1 and T2 are generic:

q1 ≈p q2 equivalent q1 ≈a q2 equivalent q1 ≈ q2

• when T1 and T2 are generic finite-active-domain:

q1 ≡μLp q2 equivalent q1 ≈p q2
q1 ≡μLa q2 equivalent q1 ≈a q2
q1 ≡μL q2 equivalent q1 ≈ q2
q1 ≡μLp q2 equivalent q1 ≡μLa q2 equivalent q1 ≡μL q2

where q1 ≡μLp q2 denotes that q1 and q2 satisfy the same μLp formulas, analogously for μLa and μL.

5. Finite-state faithful abstractions

In this section, we study verification of μL formulas over state-bounded generic TSs. In particular, as in [20,21,3,9], we 
aim at obtaining decidability of verification by abstracting infinite TSs into finite-state ones. The general idea is to take 
advantage of what has been shown in the previous section, namely that μL is invariant with respect to p-bisimulation 
(Theorem 8). Based on this result it might appear that one could search for a finite-state generic TS that is p-bisimilar to 
the original infinite-state one, and then perform verification on this, as, e.g., in [21]. However, such a finite-state generic 
TS cannot exist. Indeed, for applying Theorem 8, the finite-state generic TS needs to have an infinite object domain. Un-
fortunately, by the very definition of genericity, every generic TS with an infinite object domain must be infinite-state: if 
there exists a transition, then all, infinitely many, isomorphic transitions must exist, each producing a different successor 
state. To overcome this we need a stronger version of the invariance of μL with respect to p-bisimulation, which also takes 
into account that we cannot have a finite abstraction that preserves μL and is independent from the formula to check, as 
discussed at the end of Section 3. The next result establishes such a stronger version of invariance.

Theorem 12. Consider a finite set Vars of variables and two generic TSs, T1 = 〈�1, Q 1, q10, →1, I1〉, bounded by b and with infinite 
�1 , and T2 = 〈�2, Q 2, q20, →2, I2〉, with |�2| ≥ 2b +|Vars|, such that T1 ≈p T2 . Then, for every closed μL formula � with variables 
renamed apart6 and belonging to Vars, we have that T1 |=� if and only if T2 |=�.

To prove Theorem 12, we first establish the claim for the simpler logic L, which is μL without fixpoint constructs. We 
then generalize it to the infinitary version of L, which captures μL, by using a well-known line of reasoning in μ-calculus, 
see [39,11] or [21, Lemma 2].

We start by showing a generalization of a classical result in Databases, see, e.g., [30, Theorem 5.6.3]. We denote 
by vars(�) the set of first-order variables of a formula �, and by free(�) the set of its free variables. Note that, for 
closed formulas, free(�) is empty. For convenience, given an interpretation I = 〈�, ·I〉 and a set D ⊆ �, we define 
ĨD = 〈adom(I) ∪ D, ·I〉. That is, ĨD is the restriction of I to its active domain, with the interpretation domain augmented 
with the elements of D .

Lemma 13. Every first-order formula ϕ can effectively be rewritten as a formula ϕ′, called the domain-independent version of 
ϕ , with vars(ϕ′) = vars(ϕ), free(ϕ′) = free(ϕ), and quantified variables ranging only over the active domain, such that, for every 
interpretation I = 〈�, ·I〉 with |�| ≥ |adom(I)| + |vars(ϕ)| and for every valuation v, we have that I, v |= ϕ iff ĨD , v |= ϕ′ , where 
D = img(v|free(ϕ)).

Proof. By induction on the structure of ϕ . We assume, without loss of generality, that all variables of ϕ are renamed apart.
If ϕ = (t1 = t2) or ϕ = F (t1, . . . , tn), with ti (i = 1, . . . , n) arbitrary terms (i.e., variables or constants), we let ϕ′ = ϕ . In 

these cases the thesis follows immediately. Boolean connectives, similarly, propagate unchanged from ϕ to ϕ′ . If ϕ = ∃x.φ, 
let

6 This means that no two quantifiers in the formula range over the same variable.
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ϕ′ .= (∃x.live(x)∧ φ′)∨ (
∨

y∈free(ϕ)

(x= y)∧ φ′)∨ψ,

where

• φ′ is the domain-independent version of φ;
• ψ is obtained from φ′ by replacing the atomic formulas x = x, x = y, x = c, and F (. . . , x, . . .), where y is a variable 

distinct from x, c is a constant symbol, and F is a predicate symbol, respectively with �, ⊥, ⊥, and ⊥.

We have that I, v |= ∃x.φ iff there exists d ∈ � such that I, v[x/d] |= φ. By induction hypothesis, this holds iff 
ĨDd , v[x/d] |= φ′ , with Dd

.= img(v[x/d]|free(φ)). Notice that img(v[x/d]|free(φ)) = img(v|free(ϕ)) ∪ {d}, as free(φ) = free(ϕ) ∪ {x}. 
We distinguish three cases: (i) d ∈ adom(I); (ii) d ∈ img(v|free(ϕ)); (iii) d /∈ adom(I) ∪ img(v|free(ϕ)). Notice that case (iii) is 
possible, in general, only if |�| ≥ |adom(I)| + |vars(ϕ)|.

In case (i), we have that ĨDd
.= adom(I) ∪ img(v[x/d]|free(φ)) = adom(I) ∪ img(v|free(ϕ)) ∪ {d} = adom(I) ∪ img(v|free(ϕ)) 

.=
ĨD . Consequently, ĨDd , v[x/d] |= φ′ iff ĨD , v[x/d] |= φ′ . Thus, it can be checked that there exists d ∈ adom(I) such that 
I, v[x/d] |= φ iff ĨD , v |= ∃x.live(x) ∧ φ′ . Also in case (ii), by the same argument as above, ĨDd = ĨD . Thus, we have that 
there exists d ∈ img(v|free(ϕ)) such that ĨDd , v[x/d] |= φ′ iff ĨD , v |=∨

y∈free(ϕ)(x = y) ∧ φ′ .
For case (iii), we first show that: ĨDd , v[x/d] |= φ′ iff ĨDd , v[x/d] |= ψ . To this end, observe the following. First, by 

replacing (x = x) with � in φ′ , we obtain a formula equivalent to φ′ . Second, notice that y can occur either free or quantified 
in φ′ (these two cases are mutually exclusive, as we assume variables are renamed apart). If y occurs free, let d′ be 
the object assigned to y by v[x/d] (and v). Notice that y occurs free also in ϕ , thus d′ ∈ img(v|free(ϕ)). Then, since d /∈
adom(I) ∪ img(v|free(ϕ)), it follows that v[x/d](x) = d �= d′ = v[x/d](y). Thus, ĨDd , v[x/d] �|= (x = y). The same occurs if y is 
quantified as, in this case, y ranges over the active domain of ĨDd , which is the same as that of I , i.e., adom(I). Therefore, 
since adom(I) does not include d, by replacing every occurrence of (x = y) in φ′ with ⊥, we obtain a formula that is 
equivalent to φ′ with respect to ĨDd and v[x/d]. Thirdly, since the interpretation of c is in adom(I), while d /∈ adom(I), 
then we can replace all occurrences of (x = c) in φ′ with ⊥, and obtain, again, a formula equivalent to φ′ with respect 
to ĨDd and v[x/d]. Finally, as d /∈ adom(I), we can replace also all occurrences of F (. . . , x, . . .) in φ′ with ⊥, and obtain a 
formula equivalent to φ′ with respect to ĨDd and v[x/d].

Since the replacements above are those that transform φ′ into ψ , we have that ĨDd , v[x/d] |= φ′ iff ĨDd , v[x/d] |= ψ . 
However, ψ does not contain any occurrence of x, so we have that ĨDd , v[x/d] |=ψ iff ĨDd , v |=ψ . Moreover, observe that, 
by induction hypothesis, the quantified variables of ψ range only over the active domain, and that ĨDd and ĨD differ only 
for the fact that the domain of the former contains d, outside the active domain. Thus, it can be checked that ĨDd and 
ĨD are indistinguishable through ψ , and hence ĨDd , v[x/d] |=ψ iff ĨD , v |= ψ . We can therefore conclude that there exists 
d ∈� \ (adom(I) ∪ img(v|free(ϕ))) such that I, v[x/d] |= φ iff ĨD , v |= ψ . Since (i), (ii), and (iii) cover all possible cases for 
d ∈�, the claim easily follows. �

The next result establishes invariance of L under p-bisimulation even between a TS with infinite object domain and a 
TS with finite object domain (provided the latter TS contains in its object domain a number of objects that is large enough).

Lemma 14. Let

• Vars be a finite set of variables;
• T1 = 〈�1, Q 1, q10, →1, I1〉 a generic TS bounded by b and with infinite �1;
• T2 = 〈�2, Q 2, q20, →2, I2〉 a generic TS with |�2| ≥ 2b + |Vars|;
• q1 ∈ Q 1 and q2 ∈ Q 2 two states such that, for some h, q1 ≈p

h q2;
• v1 , v2 two individual variable valuations, mapping variables in Vars to �1 and �2 , respectively;
• � an open L formula with variables renamed apart and belonging to Vars.

If there exists a bijection ĥ between adom(I1(q1)) ∪ img(v1|free(�)) and adom(I2(q2)) ∪ img(v2|free(�)), whose restriction 
ĥ|adom(I1(q1)) coincides with h and such that, for every individual variable x ∈ free(�), ĥ(v1(x)) = v2(x), then T1, q1, v1 |=
� if and only if T2, q2, v2 |=�.

Proof. By induction on the structure of �. For � = ϕ , by Lemma 13, we have that I1(q1), v1 |= ϕ iff ĨD1
1 (q1), v1 |= ϕ′ , 

with D1 = img(v1|free(ϕ)). Moreover, by the existence of ĥ, it follows that, up to object renaming, ĨD1
1 (q1) and v1 match, 

respectively, ĨD2
2 (q2) and v2, with D2 = img(v2|free(ϕ)). Thus, we have that ĨD1

1 (q1), v1 |= ϕ′ iff ĨD2
2 (q2), v2 |= ϕ′ . But 

then, observing that |�2| ≥ |adom(I2)| + |Vars|, (because by boundedness, |adom(I2)| ≤ b), by Lemma 13 it follows that 
ĨD2

2 (q2), v2 |= ϕ′ iff I2(q2), v2 |= ϕ .
Boolean connectives are straightforward.
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Fig. 3. Relationships among sets and functions used in the proof of Lemma 14.

For � = ∃y.�′ , suppose that T1, q1, v1 |= � (the other direction is proven in an analogous way). This implies that 
there exists an object d1 ∈�1 such that T1, q1, v1[y/d1] |=�′ . The following cases are possible: either d1 ∈ adom(I1(q1)) ∪
img(v1|free(�)) or d1 /∈ adom(I1(q1)) ∪ img(v1|free(�)). In the former case, using the bijection ĥ, it can be easily proven by 
induction that, for d2 = ĥ(d1), we have T2, q2, v2[y/d2] |=�′ , that is, T2, q2, v2 |= ∃y.�′ .

For the latter case, consider a bijection ĥ′ : (adom(I1(q1)) ∪ img(v1|free(�))) � {d1} �→ (adom(I2(q2)) ∪ img(v2|free(�))) �
{d2} (with � denoting the disjoint union operator), obtained by extending ĥ to d1 in such a way that ĥ(d1) = d2, with 
d2 ∈ �2 \ (adom(I2(q2)) ∪ img(v2|free(�))). It can be seen, by a cardinality argument, that such a bijection exists. Indeed, 
since free(�) ⊆ vars(�), y /∈ free(�), and |free(�)| ≥ |img(v1|free(�))|, we have that |vars(�)| ≥ |img(v1|free(�))| + 1. Thus, 
since |�2| ≥ |adom(I2)| + |Vars| and vars(�) ⊆ Vars, we also have that |�2| ≥ |adom(I2)| + |img(v1|free(�))| + 1. This is 
enough to ensure that d2 as above exists, which in turn guarantees the existence of ĥ′ . Now, consider the assignments 
v1[y/d1] and v2[y/d2]. Because y ∈ free(�′), we have that ĥ′ defines a bijection from adom(I1(q1)) ∪ img(v1[y/d1]|free(�′))

to adom(I2(q2)) ∪ img(v2[y/d2]|free(�′)). Also, it is immediate to see that ĥ′ satisfies, by construction, the lemma hypothesis, 
with respect to v1[y/d1] and v2[y/d2]. Thus, by induction hypothesis, we can conclude that T2, q2, v2[y/d2] |=�′ , that is, 
T2, q2, v2 |= ∃y.�′ .

For � = 〈−〉�′ , suppose that T1, q1, v1 |= 〈−〉�′ . Then, there exists a transition q1 →1 q′1 such that T1, q′1, v1 |= �′ . 
Since q1 ≈p

h q2, there exist: (i) a transition q2 →2 q′2, and (ii) a bijection h′ : adom(I1(q1)) ∪ adom(I1(q′1)) �→ adom(I2(q2)) ∪
adom(I2(q′2)) such that h′|adom(I1(q1)) coincides with h, and q′1 ≈p

h′|adom(I1(q′1))
q′2. We would like to inductively apply the 

lemma using �′, q′1, q′2, h′|adom(I1(q′1)), v1, v2, and a suitable bijection ĥ′ that extends h′|adom(I1(q′1)) and satisfies the lemma 
hypothesis. Unfortunately, for q′1 and q′2, such a ĥ′ may not exist, in general. However, we can show that there exist another 
state q′′2 ∈ Q bisimilar to q′1 and such that q2 →2 q′′2, and a bijection ĥ′ such that the lemma applies to �′, q′1, q′′2, ̂h′, v1, v2. 
This, by induction hypothesis, implies that T2, q′′2, v2 |= �′ , thus that T2, q2, v2 |= �. The rest of the proof is devoted to 
derive q′′2 and ĥ′ .

Let g : adom(I1(q1)) ∪ adom(I1(q′1)) ∪ img(v1|free(�′)) �→ adom(I2(q2)) ∪ adom(I2(q′2)) ∪ img(v2|free(�′)), be a bijection ex-

tending ĥ. This exists because: |adom(I1(q1))| = |adom(I2(q2))| (by the existence of h); |img(v1|free(�′))| = |img(v2|free(�′))|; 
and |adom(I1(q′1))| = |adom(I2(q′2))| (by the existence of h and h′). Consider the composition f = g|adom(I1(q1))∪adom(I1(q′1)) ◦
h′ −1. Being a composition of bijections, f is a bijection too, namely from adom(I2(q2)) ∪ adom(I2(q′2)) into itself, as g ex-

tends ĥ. Moreover, since both g and h′ extend h, we have that f is the identity on adom(I2(q2)). Consequently, f |adom(I2(q′2))

is a bijection from adom(I2(q′2)) to adom(I2(q′2)). Also, f can obviously be extended to a bijection f ′ from �2 to �2. For 
convenience, Fig. 3 depicts the functions defined above and the relationships among their domain and images. A directed 
arc from set A to set B , labeled with function names, expresses that set A is mapped into set B through (any of) the 
labeling functions. The symbol ≤ is used to express that the lefthand function extends the righthand one on the origin set 
of the arc. Notice that any function mentioned in an arc label (including those that are extended) maps the origin to the 
destination set.

Now, consider q2 and q′2. Because T2 is generic, f ′ is a bijection from �2 to �2 such that I2(q2) ∼ f ′ I2(q2), then, by Defi-

nition 1, there exists a state q′′2 ∈ Q 2 such that q2 →2 q′′2 and I2(q′2) ∼ f ′ I2(q′′2). This, in turn, implies that Ĩ2(q′2) ∼ f ′|adomI2(q′2)

Ĩ2(q′′2), or, equivalently, Ĩ2(q′2) ∼ f |adomI2(q′2)
Ĩ2(q′′2). Then, by Lemma 9, we have that q′2 ≈p

f |adom(I2(q′2)))
q′′2. Now, consider the 

bijection j = f |adom(I2(q′2))) ◦ h′|adom(I1(q′1)) . Because q′1 ≈p
h′| ′ q′2 and q′2 ≈p

f | ′ q′′2, by transitivity of bisimu-

adom(I1(q1)) adom(I2(q2)))
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Fig. 4. Relationships among the states q1,q′1,q2,q′2 involved in the proof of Lemma 14.

lation, we have that q′1 ≈p
j q′′2. However, since by the definition of f , f |adom(I2(q′2))) = g ◦ h′ −1|adom(I2(q′2)) , it follows that 

j = g ◦h′ −1|adom(I2(q′2)) ◦h′|adom(I1(q′1)) , it follows that j = g|adom(I1(q′1)) . Finally, let ĥ′ = g|adom(I1(q′1))∪img(v1|free(�′)) . Obviously, 

since g is a bijection, so is ĥ′ . Further, because g matches ĥ on img(v1|free(�′)), also ĥ′ matches ĥ on img(v1|free(�′)), there-

fore, for x ∈ free(�′), we have that ĥ′(v1(x)) = v2(x). The relationships among q1, q′1, q2, q′2 are depicted for convenience 
in Fig. 4). To conclude the proof, it is enough to observe that ĥ′ is a bijection between adom(I1(q′1)) ∪ img(v1|free(�′)) and 
adom(I2(q′′2)) ∪ img(v2|free(�′)), and that ĥ′ matches j on adom(I1(q′1)), as j = g|adom(I1(q′1)) . The other direction is proven 
in a similar way. �

We now generalize the above result to μL formulas.

Lemma 15. Lemma 14 holds also for μL formulas � closed on predicate variables.

Proof. By inspection of its proof, it is immediate to see that Lemma 14 holds also for � belonging to the infinitary version
of L [39]. This is an extension of L that supports arbitrary infinite disjunction and conjunction of formulas sharing the 
same free variables. Let � be a possibly infinite set of open L formulas. Given a transition system T , a variable valuation 
v , and a state q of T , we have that T , q, v |=∨

� if and only if T , q, v |= ψ for some ψ ∈ � . Analogously, we have that 
T , q, v |= ∧

� if and only if T , q, v |= ψ for all ψ ∈ � . Now, we can express approximates of μL fixpoint formulas in 
infinitary L in a standard way [11,39]. Let us denote the approximate of index α by μα Z .�, for least fixpoint formulas 
μZ .�, and να Z .�, for greatest fixpoint formulas ν Z .�. Then, such approximates are as follows:

μ0 Z .� = false ν0 Z .� = true
μβ+1 Z .� = �[Z/μβ Z .�] νβ+1 Z .� = �[Z/νβ Z .�]

μλ Z .� = ∨
β<λ μβ Z .� νλ Z .� = ∧

β<λ νβ Z .�

where λ is a limit ordinal, and the notation �[Z/μβ Z .�] (resp. �[Z/νβ Z .�]) denotes the formula obtained from � by 
replacing each occurrence of Z by μβ Z .� (resp. νβ Z .�). By the Tarski–Knaster Theorem [38], given a transition system T
and a state q of T , the fixpoints and their approximates are connected by the following properties:

• q ∈ (μZ .�)T
(v,V ) if and only if there exists an ordinal α such that q ∈ (μα Z .�)T

(v,V ) and, for every β < α, it holds that 
q /∈ (μβ Z .�)T

(v,V );

• q /∈ (ν Z .�)T
(v,V ) if and only if there exists an ordinal α such that q /∈ (να Z .�)T

(v,V ) and, for every β < α, it holds that 
q ∈ (νβ Z .�)T

(v,V )
.

Hence every μL formula, closed on predicate variables, can be written as an infinitary L formula, thus implying the the-
sis. �

The proof of Theorem 12 is a direct consequence of Lemma 14. To see this, observe that Theorem 12 is, in fact, a 
specialization of Lemma 14, to the case where μL formulas are closed on first-order predicates, and q1 = q10 and q2 = q20.

We can also show constructively that every state-bounded and generic TS can be abstracted into a p-bisimilar finite-state 
generic TS with a (finite) object domain of a suitable size.

Theorem 16. Consider a transition system T1 = 〈�1, Q 1, q10, →1, I1〉 that is generic, bounded by b, and with infinite �1. Then, for 
every k ≥ 0, there exists a finite-state generic TS T2 = 〈�2, Q 2, q20, →2, I2〉, with |�2| = 2b + k such that T1 ≈p T2 .

Proof. T2 is defined as follows. The object domain �2 is a subset of �1 such that |�2| = 2b + k and adom(I1(q10)) ⊆�2

(notice that |adom(I1(q10))| ≤ b). The set of states is Q 2 = IntF ,C , which is the (finite) set of interpretations of F and C
�2
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〈τ , i, v〉 |=ltl ϕ if 〈I(τ (i)), v〉 |= ϕ
〈τ , i, v〉 |=ltl ¬� if it is not the case that 〈τ , i, v〉 |=ltl �

〈τ , i, v〉 |=ltl �1 ∧�2 if 〈τ , i, v〉 |=ltl �1 and 〈τ , i, v〉 |=ltl �2
〈τ , i, v〉 |=ltl ∃x.live(x)∧� if there exists d ∈ adom(I(τ (i))

such that 〈τ , i, v[x/d]〉 |=ltl �

〈τ , i, v〉 |=ltl X� if 〈τ , i + 1, v〉 |=ltl �

〈τ , i, v〉 |=ltl �1 U�2 if there exists k≥ i such that 〈τ ,k, v〉 |=ltl �2
and for every j, if i ≤ j < k then 〈τ , j, v〉 |=ltl �1

Fig. 5. Semantics of ltl-foa .

over �2. The initial state q20 is the interpretation such that q̃20 = Ĩ1(q10). The transition relation →2 is such that q2 →2 q′2
iff there exist two states q1, q′1 ∈ Q 1 such that q1 →1 q′1, Ĩ1(q1) ∼h Ĩ2(q2), and Ĩ1(q′1) ∼h Ĩ2(q′2), for some isomorphism h
(notice that here genericity comes into play).7 Finally, I2 is the identity function. Obviously, T2 is finite. Moreover, it can be 
shown that T2 is generic and that for each state q1 ∈ Q 1 and every state q2 such that Ĩ1(q1) ∼ Ĩ2(q2), including the initial 
states q10 and q20, we have that q1 ≈p q2. �

As a direct consequence of Theorems 12 and 16, we obtain:

Theorem 17. Given a finite set Vars of variables and a generic TS T1 = 〈�1, Q 1, q10, →1, I1〉, bounded by b and with infinite �1 , 
there exists a TS T2 = 〈�2, Q 2, q20, →2, I2〉, with |�2| ≥ 2b + |Vars|, such that T1 ≈p T2 and, hence, such that for every closed μL
formula � with variables renamed apart and belonging to Vars, we have that T1 |=� if and only if T2 |=�.

Obviously, the case of interest is when �2, and hence the TS T2, is finite. In this case, the finite T2 is effectively 
computable (as in the proof of Theorem 16) when the interpretation adom(I1(q10)) of the initial state of T1 restricted to 
the active domain is known, and one can effectively check whether there exist two states q1 and q′1 such that q1 →1 q′1, 
Ĩ1(q1) = Ĩ2(q2), and Ĩ1(q′1) = Ĩ2(q′2). If T2 can be effectively computed, Theorem 17 shows decidability of verification of 
μL formulas. This is the case, e.g., for TSs induced by models of situation calculus bounded action theories (see Section 7).

6. Undecidability of linear-time verification

We now consider linear-time verification of generic transition systems against properties expressed in a first-order vari-
ant of ltl with active domain quantification, called ltl-foa . This logic can be seen as the ltl version of μLa . We show that, 
differently from the case of μLa and μL, in the linear-time setting boundedness is not sufficient to obtain decidability of 
verification. This implicitly yields that, surprisingly, lifting such temporal logics to a first-order setting does not retain the 
well-known property that μ-calculus captures ltl.

The logic ltl-foa extends propositional ltl with the possibility of querying the system states using first-order formulas 
with (active domain) quantification across. The syntax of ltl-foa is:

� ::= ϕ | ¬� |�1 ∧�2 | ∃x.live(x)∧� | X � |�1 U�2,

where ϕ is a first-order formula expressed using predicates in F and constants in C . We make use of the following standard 
abbreviations: (i) �1 ∨ �2 = ¬(¬�1 ∧ ¬�2), (ii) ∀x.live(x) ⊃ � = ¬∃x.(live(x) ∧ ¬�), (iii) F� = trueU�, (iv) G � =
¬ F¬�.

Formulas of ltl-foa are interpreted over (infinite runs of) transition systems with first-order states (cf. Section 2), with 
the additional requirement that they must be serial, i.e., every state has at least one successor state. An (infinite) run τ
over a (serial) TS T = 〈�, Q , q0, →, I〉 is an infinite sequence q0q1 · · · of states in Q , where the first state of the sequence 
corresponds to the initial state of T , and for every i ∈N, it is true that qi → qi+1. Given j ∈ N, by τ ( j) we denote the j-th 
state q j of τ .

In details, an ltl-foa formula is interpreted over a run τ of T relatively to a position i ∈ N. Since ltl-foa formulas may 
have free variables, we also use an individual variable valuation v . We then inductively define when τ satisfies an ltl-foa

formula � at position i under v , written 〈τ , i, v〉 |=ltl �, as shown in Fig. 5. If � is closed, we omit v and simply write 
〈τ , i〉 |=ltl �. For closed formulas, we say that T satisfies �, written, with a slight abuse of notation, T |=ltl �, if for every 
run τ of T , we have that 〈τ , 0〉 |=ltl �. Given a TS T and a closed ltl-foa property �, the linear-time verification problem
amounts to checking whether T |=ltl �.

By appealing to [25], we show that linear-time verification of ltl-foa properties is undecidable over bounded, generic 
TSs. This is in contrast with the decidability result for μLa , and μL, and the folklore assumption that the ability of the 
μ-calculus to capture ltl in a propositional setting, lifts also to a first-order setting. This result, together with Theorem 17, 

7 Actually, Q 2 can be restricted to the set of states in IntF,C
� reachable through →2.
2
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shows that μL cannot capture ltl-foa , thus neither ltl-fo, and hence that μL does not have the ability to “isolate” runs 
of a TS.

We call a TS T = 〈�, Q , q0, →, I〉 simple-infinite if it is generic and serial, � is infinite, and for each pair of states 
q1, q2 ∈� it is effectively decidable whether q1 → q2 and whether I(q1) ∼ I(q2). Such transition systems have an infinite 
domain, and can be considered simple because they are generic, serial, and it is possible to effectively decide, given a state, 
which are its successor states, and whether two states are isomorphic.

Theorem 18. There exists a simple-infinite TS bounded by 1, over which linear-time verification of ltl-foa formulas is undecidable.

Proof. The proof is by reduction from the validity of (a fragment of) ltl with freeze quantifiers over infinite data words, 
shown to be undecidable in [25, Theorem 5.2]. Given a finite alphabet � of labels, an infinite data word w over � and �
is an infinite sequence of key-value pairs over � ×�, i.e., w has the form 〈p0, d0〉〈p1, d1〉 · · · , where for every i, we have 
that pi ∈� and di ∈�. The logic considered in [25, Theorem 5.2] is ltl

↓
1 (X, U), which has the following syntax:

φ ::= p | true | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | ↓1φ | ↑1,

where p ∈ �. From now one, we implicitly assume that φ is closed, i.e., that every subformula of the form ↑1 is in the
scope of a ↓1φ formula. Intuitively, ltl

↓
1 (X, U) extends ltl with the ability to store the currently processed value into a 

single register (via ↓1), and to check whether the currently processed value is equal to the one stored in that register (via 
↑1). Atomic formulae are used to predicate on the key propositions of the data word. More specifically, consider a data 
word w = 〈p0, d0〉〈p1, d1〉 · · · , and a position i over w . The satisfaction relation for ltl

↓
1 (X, U) is defined w.r.t. a valuation v

that assigns a value from � to the (single) register, and is defined as for standard ltl, except for the following three cases:

• The atomic formula p holds at position i of w with valuation v , if pi = p;
• A “store value” formula ↓1φ holds at position i of w with valuation v , if φ holds at position i of w by considering a 

new valuation v ′ that assigns the register to the current value di ;
• A “check value” formula ↑1 holds at position i of w with valuation v , if the current value di is equal to the one assigned 

to the register by v .

For a detailed description of this logic, see [25].
We encode validity of ltl

↓
1 (X, U) over infinite data words as a linear-time verification problem of ltl-foa over a simple-

infinite TS T = 〈�, Q , q0, →, I〉, bounded by 1. More specifically:

1. We define T in such a way that its runs exactly correspond to all infinite data words over � and �.
2. We define a translation function FreezeToFO that, given an ltl

↓
1 (X, U) formula φ, produces a corresponding ltl-foa

formula � = FreezeToFO(φ).
3. We recast validity of φ as a linear-time verification problem that employs T and �.

We consider the two predicates in F : (i) Keyp/0 for p ∈�, used to mirror the finitely many key propositions in �; (ii)
Val/1, containing a single tuple that stores the current value of the data word.

The TS T is defined as follows. Q is the least set of states satisfying the following conditions: q0 ∈ Q , and for every 
p ∈�, and for every d ∈�, there exists a state qd

p such that qd
p ∈ Q , and I(qd

p) is defined as follows:

• Key
I(qd

p)

p = {〈〉} (i.e., Keyp holds in I(qd
p));

• ValI(qd
p) = {d} (i.e., the extension of Val in I(qd

p)) is d.

The transition relation →, in turn, is defined as the least set of transitions satisfying the following conditions:

• For each state qd
p ∈ Q such that qd

p �= q0, we have that q0 → qd
p (the initial state is connected to any other state).

• For each pair of states qd
p, qd′

p′ ∈ Q such that qd
p �= q0 and qd′

p′ �= q0, we have that qd
p → qd′

p′ (each non-initial state is 
connected to itself and to any other non-initial state).

It is immediate to see that T is simple-infinite and 1-bounded. It is also immediate to see that there exists a bijection 
between the set of infinite data words over � and � and the runs of T , where a data word 〈p0, d0〉〈p1, d1〉 · · · is mirrored 
into a run of T of the form q0qd0

p0 qd1
p1 · · · .

Next we define the translation function FreezeToFO. Formulas of ltl
↓
1 (X, U) are translated into ltl-foa by replacing each 

“store value” formula with an existential first-order quantification over Val, and each “check value” formula by checking 
whether the quantified variable is in Val. In other words, the single register of ltl

↓
1 (X, U) is simulated by a first-order 

variable. More specifically, given an ltl
↓
(X, U) formula φ, FreezeToFO(φ) replaces: (i) each atomic formula p of φ with 
1



342 D. Calvanese et al. / Information and Computation 259 (2018) 328–347
Keyp , (ii) each subformula ↓1ψ of φ with ∃x.Val(x) ∧ FreezeToFO(ψ), and (iii) each atomic formula ↑1 of φ with Val(x).8

For example, the formula φex = ↓1 X G(a ⊃ ¬↑1), stating that the data values assigned to the key proposition a at posi-
tions greater than one are all different from the value present in the initial position of the data word, is translated into 
FreezeToFO(φex) = ∃x.Val(x) ∧ X G(Keya ⊃¬Val(x)).

Finally to recast validity as verification, we start by noticing that, from the semantics of the two logics ltl
↓
1 (X, U) and 

ltl-foa , one can directly show that for every ltl
↓
1 (X, U) formula φ, φ holds over an infinite data word if and only if 

FreezeToFO(φ) holds over an infinite run of T , provided that the initial state q0 is skipped. Consequently, we obtain that φ
is valid if and only if T |=ltl X FreezeToFO(φ). �
7. Bounded situation calculus action theories

In this section, we show how the results obtained in the previous sections find application in the context of bounded 
situation calculus action theories. The situation calculus [31,36] is a logical language for representing and reasoning about dy-
namic worlds. The language has terms of three sorts, namely objects, actions, and situations: objects represent entities in the 
domain of interest, other than actions and situations; actions model events that trigger changes in the world; and situations 
represent world histories, i.e., sequences of actions applied in the situation resulting from previous applications. Situations 
are built through the function symbol do, with do(a, s) denoting the successor situation resulting from the execution of 
action a in situation s. The constant S0 denotes the initial situation where no action has been performed. We assume to 
have countably infinitely many object constants, on which the unique name assumption (UNA) is enforced. However, we do 
not assume domain closure for objects.

Predicates and functions whose value depends on the situation are called fluents. These are denoted by symbols that take 
a situation term as last argument (e.g., Holding(x, s), meaning that the robot is holding object x in situation s). Without loss 
of generality, we assume that there are no functions other than constants and no non-fluent predicates. We denote fluents 
by F and the finite set of primitive fluents by F . The arguments of fluents, apart from the last one which is of sort situation, 
are of sort object. Also, we consider a finite number of action types, each of which takes a tuple of objects as arguments.

Using the situation calculus, one can formulate action theories describing how the world changes as a result of actions. 
A well studied class of such theories are basic action theories [36]. A basic action theory D is the union of the following 
disjoint sets of first-order (FO) and second-order (SO) axioms:

• D0: (FO) initial situation description axioms describing the initial configuration of the world (such a description may be 
complete or incomplete);

• Dposs: (FO) precondition axioms of the form

Poss(A(
x), s)≡ φA(
x, s),

one per action type, stating the conditions φA(
x, s) under which an action A(
x) can be legally performed in situation 
s; these axioms use the special predicate Poss(a, s), expressing that action a is executable in situation s; φA(
x, s) is a 
formula of the situation calculus that is uniform in situation s, that is, a formula mentioning neither any situation term 
but s, nor Poss (see [36] for a formal definition);

• Dssa: (FO) successor state axioms of the form

F (
x,do(a, s))≡ φF (
x,a, s),

one per fluent F , describing how fluent F changes when action a is executed in situation s; the right-hand side (RHS) 
of the axiom, i.e., φF (
x, a, s) is, again, a situation calculus formula uniform in s;

• Dca: (FO) unique name axioms for actions and (FO) domain closure on action types;
• Duno: (FO) unique name axioms for object constants;
• �: (SO) foundational, domain independent, axioms of the situation calculus [36].

We say that a situation s is executable, if every action performed in reaching s is executable in the situation in which it is 
performed. We denote by C the set of constants explicitly mentioned in the initial situation description or in precondition or 
successor state axioms. For simplicity, and without loss of generality, we assume that all constants in C appear in the initial 
situation description. Notice that these are the constants we actually predicate on (while on the others we only predicate 
existence and unique name assumption).

Bounded action theories A situation calculus (basic) action theory D is bounded if, for a given natural number n, at every 
executable situation, the number of distinct object tuples occurring in the extension of each fluent of D is at most n. Thus, 
the interpretation of a fluent at every situation does not use more than n distinct tuples, though these can change from 
situation to situation and collectively be infinitely many [20,21]. For convenience, with a little abuse of notation, we say 

8 Notice that the formula produced by FreezeToFO is indeed an ltl-foa formula, since ∃x.Val(x) ∧� implies ∃x.live(x) ∧� .
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that an action theory is bounded by b when in each situation the number of objects occurring in the extension of all fluents 
is at most b. Notice that, when D is bounded by b, we have that a value for the bound n is given by |F | · bk , where k is the 
maximal arity of fluents.

Example 4 (Avid Reader). A prototypical example of boundedness is provided by a bookshelf. An agent is an avid reader and 
has a bookshelf of a given size. He acquires books, puts them in the bookshelf, reads them, and then puts them back in 
the bookshelf or gives them away. The available space in the bookshelf is given in units and each book consumes a certain 
number of units (e.g., one for simplicity). The reader cannot acquire a book if there is not enough space in the bookshelf.

The possible actions are the following:

• acquire(book). Pre: book not already in the bookshelf, space available in the bookshelf. Post: book in the bookshelf and 
one less unit available in the bookshelf.

• read(book). Pre: book in the bookshelf. Post: book in the hand of the avid reader, book not in the bookshelf.
• store(book). Pre: book in the hand of the avid reader, space available in the bookshelf. Post: book in the bookshelf and 

one less unit available in the bookshelf.
• discard(book). Pre: book in the hand of the avid reader. Post: book not in the hand of the avid reader and not in the 

bookshelf.

It is easy to write explicitly precondition and successor state axioms, which we omit for sake of brevity. It is also easy to 
see that the resulting action theory is indeed bounded.

Transition systems induced by situation calculus models When focusing on verification of temporal properties we do not need 
to deal directly with full action theory models, since both actions and situations (both of which do not appear explicitly in 
the formulas to verify) can essentially be disregarded [20,21]. Among the various TSs, we are interested in those induced by 
models of the situation calculus action theory D. Consider a model M of D with object domain �9 and situation domain 
S . Given a situation s, we can associate to s a first-order interpretation IM(s) .= 〈�, ·I〉, where: (i) for every c ∈ C , cI = cM

and (ii) for every (situation-suppressed) fluent F of D, FI = {
d | 〈
d, s〉 ∈ F M}. Then, we can define the TS induced by M as 
the labeled TS T M = 〈�, Q , q0, I, →〉 such that:

• Q = S is the set of possible states, each corresponding to a distinct executable situation in S;
• q0 = S M

0 ∈ Q is the initial state, with S M
0 the initial situation of D;

• → ⊆ Q × Q is the transition relation such that q → q′ iff there exists some action a such that 〈a, q〉 ∈ PossM and 
q′ = doM(a, q).

• I : Q �→ IntF ,C
� is the labeling function associating to each state (situation) q the interpretation I(q) = IM(q).

The TS induced by a model M is essentially the tree of executable situations, with each situation labeled by an interpretation 
of fluents (and constants), corresponding to the interpretation that M associates to that situation. Notice that transitions do 
not carry any information about the corresponding triggering action. As expected, we have that situation calculus action 
theories give rise to generic TSs.

Theorem 19. For every model M of a situation calculus action theory D, the generated TS T M is generic.

Proof. By construction of T M . �
Moreover, we have that bounded situation calculus action theories give rise to TSs that are also state-bounded.

Theorem 20. For every model M of a situation calculus action theory D bounded by b, the generated TS T M is state-bounded, with 
each state bounded by b.

Proof. Follows directly from the definition of action theory bounded by b. �
Verification of bounded action theories We show that given a bounded situation calculus action theory with infinite object 
domain, there exists a new action theory with finite object domain, that preserves p-bisimilarity between the TSs of the 
respective models of the theories.

9 Note that � is infinite for the theories we are considering, since we have assumed that they include infinitely many constants with UNA.
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Theorem 21. Let D be a situation calculus action theory bounded by b, Duno the part of D stating the existence, with unique name 
assumption, of infinitely many constants, and n the maximum among the number of variables occurring in the precondition and 
successor state axioms of D. Let C ′ be a finite set of constants such that C ⊆ C ′ and |C ′| ≥ b + n. Define the theory D′ = (D \Duno) ∪
D′uno ∪D′dc , where:

D′uno = {
∧

c,c′∈C ′,c,c′ distinct c �= c′}, D′dc = {∀x.
∨

c∈C ′ x= c}.
Then, for every model M of D, there is a model M ′ of D′ , such that T M ≈p T M′ . Similarly, for every model M ′ of D′ there is a model M
of D, such that T M ≈p T M′ .

Proof. Let M be a model of D with (infinite) domain �. The model M ′ can be obtained by fixing a (finite) domain �′ ⊂�, 
with cardinality |C ′|, that includes the interpretation of the constants in C , and taking the interpretation of the initial situ-
ation so that ĨM(S0) = ĨM′ (S0). Observe that once the interpretation of the initial situation is fixed, M ′ is fully determined 
by D′ . Then, consider T M and T M′ and build the relation R = {〈q, h, q′〉 | Ĩ(q) ∼h Ĩ ′(q′)}. The proof consists in showing that 
R is a p-bisimulation such that 〈q0, h0, q′0〉 ∈ R , for h0 the identity on adom(I(q0)). To this end, let 〈q, h, r〉 ∈ R and consider 
the definition of p-bisimulation.

Obviously, requirement 1 of the definition is trivially satisfied, by the definition of R . As to requirements 2 and 3, we 
will use the following known results:

1. Any possibly open situation calculus first-order formula φ(
x, s) with variables 
x and s of object and situation sort, 
respectively, can be rewritten as a formula φ′ where action terms do not occur, such that φ and φ′ are equivalent with 
respect to Dca [21, Theorem 5].

2. Evaluating a possibly open situation calculus formula φ uniform in s against a model M and a situation s is equivalent 
to evaluating the situation-suppressed version of φ against IM(s), under the same assignment to free variables [21, 
Theorem 7].

3. Given a model M of a bounded action theory, an executable situation s, and a ground action a = AM(
o) (of type A(
y)), 
for every fluent F , there exists a situation-suppressed action-term-free formula φ = φ(
x, 
y), such that 〈
p, doM(a, s)〉 ∈
F M iff IM(s), v |= φ(
x, 
y), with v(
x) = 
p and v(
x) = 
o. In words, the interpretation of a fluent F in M , after the 
execution of action a at situation s, can be obtained as the answer to a suitable query φ(
x, 
y) over IM(s), with 
y
assigned to 
o.

Let q′ ∈ Q be such that q → q′ . By the definition of induced TS, it follows that there exists a (ground) action a, say a =
AM(
o), such that 〈a, q〉 ∈ PossM and q′ = doM(a, q). To prove requirement 2a of the definition of bisimulation, we next show 
that there exists also an action a′ such that 〈a′, r〉 ∈ PossM′

. This, by definition of induced TS, implies that there exists a state 
r′ ∈ Q ′ , namely the situation r′ = doM′

(a′, r), such that r →′ r′ .
Recall that precondition axioms have the form Poss(A(
x), s) ≡ φA(
x, s), where we can assume, by result 1 above, φA

not containing action terms (if not, φA can be rewritten). Because 〈a, q〉 ∈ PossM , we have that M, v |= φA(
x, s), for v such 
that v(s) = q and v(
x) = 
o. Consequently, by result 2, IM(q), v |= φA(
x), for φA(
x) the situation-suppressed version of 
φA(
x, s). Then, since |�| ≥ |adom(IM(q))| + |vars(φ)| (as � is infinite and D bounded by b), by Lemma 13, we have that 
ĨD v

M (q), v |= φ′A , for D v = img(v|free(φA)) and φ′A the domain-independent version of φA . Now, observe that the definition of 
R implies that, for some h, Ĩ(q) ∼h Ĩ ′(r), thus, since I(q) = IM(q), it follows that ĨM(q) ∼h Ĩ ′(r). Consider the valuation 
v ′ = ĥ ◦ v , for ĥ any bijection extending h to 
o (notice that only the values assigned to 
x are relevant, thus v ′ can be 
undefined on the other variables). Such an ĥ exists by the boundedness of D and the cardinality constraint on �′ . Also, 
it can be easily seen that ĨD v

M (q) ∼ĥ Ĩ ′ D v′ (r), for D v ′ = img(v ′|free(φA)). Thus, by the invariance of first-order logic under 
isomorphic interpretations, we have that Ĩ ′ D v′ (r), v ′ |= φ′A .

Now, since by definition of induced TS we have I ′(r) = IM′ (r), which implies Ĩ ′(r) = ĨM′ (r), it follows that ĨD v′
M′ (r), v ′ |=

φ′A . Finally, observe that, by D′uno and D′dc , |�′| = |C ′| ≥ b + n, and, because Ĩ ′(r) ∼ Ĩ(q) and D is bounded by b, 
|adom(IM′ (r))| ≤ b. Thus, by Lemma 13, ĨD v′

M′ (r), v ′ |= φ′A implies that IM′ (r), v ′ |= φ′A which, by result 2, implies that 
M ′, w |= φA(
x, s), for w the extension of v ′ to s such that w(s) = r. Therefore, a′ = AM′

(
p), with 
p .= w(
x), is an action such 
that 〈a′, r〉 ∈ PossM′

.
For requirement 2b, recall that successor-state axioms have the form F (
y, do(act, s)) ≡ φF (
y, act, s), with φF uniform 

in s. Thus, for act assigned to a = AM(
o) as above, we have that φF (
y, act, s) is equivalent to φF (
y, A(
x), s). This, by re-
sult 1, can be rewritten as an action-term-free formula φF A(
y, 
x, s), hence the successor-state axioms can be rewritten as 
F (
y, do(A(
x), s)) ≡ φF A(
y, 
x, s). Hence, by result 2, the interpretation IM(q′) can be obtained by evaluating, for every fluent 
F , the situation-suppressed version of φF A(
y, 
x, s), i.e., φF A(
y, 
x), against the (FO) interpretation IM(q), with 
x assigned to 
o. 
Then, because I(q) = IM(q) and I(q′) = IM(q′), we can obtain I(q′) by evaluating each φF A(
y, 
x) against I(q), with 
x as-
signed to 
o. By an analogous argument, for a′ = AM′

(
p) assigned to act , I ′(r′) can be obtained by evaluating each φF A(
y, 
x), 
against I ′(r), with 
x assigned to 
p.

Let φ′F A(
y, 
x) be the domain-independent version of φF A(
y, 
x). By Lemma 13, for every assignment u, we have that 
I(q), u |= φF A(
y, 
x) iff ĨDu (q), u |= φ′ (
y, 
x), for Du = img(u|free(φ )). Now, observe that, since D is bounded, so is 
F A F A
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adom(I(q′)). This, together with the fact that � is infinite, can be shown to imply that adom(I(q′)) contains only 
objects from adom(I(q)) ∪ 
o (otherwise adom(I(q′)) would be infinite, see [21, Theorem 10]). The same holds for 
adom(I ′(r′)), which contains only objects from adom(I ′(r)) ∪ 
p. Therefore, by fixing a bijection ĥ between adom(I(q)) ∪ 
o
and adom(I(r)) ∪ 
p (this exists by the boundedness of D and the cardinality constraint on �′), since Ĩ(q) ∼h Ĩ ′(r) and by 
the invariance of first-order with respect to isomorphism, we have that, for every assignment u, ĨDu (q), u |= φ′F A(
y, 
x) iff 
Ĩ ′Du′

(r), u′ |= φ′F A(
y, 
x), for u′ = ĥ ◦ u and Du′ = img(u′|free(φF A)). But then, we have that Ĩ(q′) ∼ĥ|adom(I(q′))
Ĩ ′(r′), therefore 

〈q′, ̂h|adom(I(q′)), r′〉 ∈ R . The proof for requirement 3 follows a similar argument.
Finally, given a model M ′ of D′ , the corresponding M can be obtained in the same way as above. Also the fact that 

T M ≈p T M′ can be shown in the same way. �
As expected, TSs induced by models of finite-state action theories can be made finite.

Theorem 22. Let D′ be a (bounded) situation calculus action theory defined as in Theorem 21, for some finite C ′. Then, for every model 
M ′ of D′ with (finite) object domain �′ , the corresponding induced TS T M′ is p-bisimilar to a TS T F that is generic, finite-state, and 
effectively computable from D′ , ĨM′ (S0), and �′ .

Proof. We prove the result by providing an algorithm to compute T F = 〈�F , Q F , qF 0, →F , IF 〉. We set �F =�′ , and IF as 
the identity function, and we initialize qF0 = IM′ (S0), Q F = {qF 0}, and →F= ∅. Then, starting with q = qF 0, we consider all 
actions a that, in M ′ , are executable in those situations s such that IM′ (s) = q. This requires evaluating only the (situation-
suppressed) precondition axiom of a against I(q). Notice that since �F is finite, there are only finitely many actions. For 
every a, we then compute the interpretation of situation s′ = doM′

(a, s), for s as above. To this end, it is enough to evaluate 
the (situation-suppressed) right-hand side of each successor-state axiom against q (i.e., IM′ (s), for s as above), with the ac-
tion assigned to a, thus producing a new interpretation q′ = IM′ (s′). Observe that the finiteness of �F guarantees that both 
precondition and successor-state axioms can be effectively evaluated. Then, if not already present, we add the obtained q′ to 
Q F , and let q →F q′ . Finally, we iterate these steps on the newly added states, until no new states are added. Termination 
is an obvious consequence of �F ’s finiteness, which implies that only finitely many states can be a added to Q F . Genericity 
is a consequence of the fact that the interpretation of states is obtained by answering first-order queries, which are unable 
to distinguish objects outside the active domain. �

With these results in place we can prove that if we are given a model M of D, then checking whether T M |= � is 
decidable. That is, we have decidability in case of complete information on the initial situation. In fact, we can extend this 
result to deal with verification in presence of incomplete information. We write D |=� if T M |=�, for every model M of D.

Theorem 23. Let D be a situation calculus bounded action theory (with infinite object domain) and � a closed μL formula with all 
variables renamed apart and belonging to a finite set Vars. Then, it is decidable to check whether D |=�.

Proof. Given D, let D′ be an action theory as in Theorem 21, with |C ′| = 2b +m, for m the maximum between |Vars| and 
the maximum number of variables occurring in the action precondition and successor-state axioms of D (n of Theorem 21). 
By Theorem 21, every model M of D with infinite object domain �, has a corresponding p-bisimilar model M ′ of D′
with finite object domain �′ of size |C ′|, and vice-versa. Thus, by Theorem 12, for corresponding M and M ′ , we have that 
T M |= � iff T M′ |= �. Hence, since by Theorem 21, the models of D′ “cover” those of D and vice-versa, it follows that 
D |=� iff D′ |= �. Finally, decidability is easily obtained by observing that the models M ′ of D′ are finitely many, up to 
object renaming, and that by Theorem 22, it follows that checking whether T M′ |=� is decidable. �

We can strengthen this result to get an ExpTime-complete characterization of the problem of checking whether D |=�, 
as in the special case of μLp [21]. Analogously to [21], we assume that the maximum number of distinct objects present in 
the state of each situation dominates the input size of the action theory D, and that there exists a bound on the maximum 
arity of fluents.

Since the problem is ExpTime-hard already for μLp [21], we need to focus on ExpTime membership only. To this end, 
consider the procedure used in the proof of Theorem 23, together with the following observations. First, the theory D′ is 
essentially propositional (the object domain is finite), thus admits only an exponential number of distinct models, i.e., the 
number of possible initial situations, which are exponentially many with respect to b (as arities are bounded). Second, each 
model has a number of states that is at most exponential with respect to b (for the same reason as above). Finally, the 
complexity of μ-calculus model checking is polynomial with respect to the size of the input TS and exponential in the 
maximal number of nested fixpoints in the formula. Note that when we propositionalize the formula, although it may grow 
exponentially in the number of nested quantifiers, the maximal number of nested fixpoints does not change. Hence we can 
check each model in exponential time and we need to check only exponentially many models. We thus obtain the following 
result.
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Theorem 24. Given a situation-calculus bounded action theory D and a μL formula �, checking whether D |= � is an ExpTime-
complete problem.

Finally, by exploiting the undecidability result on first-order ltl (Theorem 18), we show that verification for ltl-foa

over bounded situation calculus action theories is also undecidable. Following the notation above, given a situation calculus 
action theory D and an ltl-foa formula �, we define D |=ltl � if T M |=ltl � for every model M of D. Given D and �, the 
linear-time verification problem amounts to check whether D |=ltl �.

Theorem 25. There exists a situation calculus bounded action theory (with infinite object domain) D for which the linear-time verifi-
cation problem against ltl-foa formulas is undecidable.

Proof. We construct a situation calculus bounded action theory (with infinite object domain �) D using as fluents the 
predicates introduced in the proof of Theorem 18. In particular, given a finite set � of key propositions, we employ the 
following situation-suppressed fluents: Keyp/0 for p ∈ �, and Val/1. In particular, D contains |�| 1-parameter actions 
GuessValpi , one per key proposition in �. Each such actions is always executable, makes its corresponding key proposition 
true, and guesses the next value. Technically, for every i ∈ {1, . . . , |�|}, the (extremely simple) successor state axioms are:

• Keypi
(do(a, s)) ≡ (a = GuessValpi (x)) – for the fluents Keypi

,
• Val(x, do(a, s)) ≡ (a = GuessValpi (x)) – for the fluent Val.

It is easy to see that the runs produced by D closely match with those present in the TS T used in the proof of Theorem 18. 
In particular, there exists a model M ′ for D for which T M′ = T . For such choice, from Theorem 18 we obtain immediately 
that linear-time verification is undecidable over T M′ . Since D |=ltl � if T M |=ltl � for every possible model M (including 
M ′), also checking whether D |=ltl � is undecidable in general. �
8. Conclusions

In this paper we have studied first-order μ-calculus with quantification across states, in the three main variants pro-
posed in literature. We have seen that the three corresponding notions of bisimulation collapse for the class of generic 
transition systems, which includes all transition systems generated by formalisms for reasoning about actions based on 
first-order representation of states, and logical mechanisms to generate the successor state from the current, in particular 
the situation calculus. From this, we have derived decidability of verification for μL over state-bounded transition systems 
and over bounded situation calculus action theories. These results contrast with verification for first-order ltl, which is 
instead undecidable.

This work opens several research avenues. An important extension consists in considering object domains with embedded 
predefined types, such as naturals or rationals with controlled operators and predicates [29]. In these cases, the difficulty 
arises from the fact that predicates can be infinite but must be considered part of the state, which yields unbounded 
states and calls for some form of quantifier elimination on objects of the embedded types. Related work dealing with 
such predicates include [35], in the context of situation calculus action theories, and [12,19], in the context of data-centric 
services.

Also, we observe that our decidability result for μL verification on bounded transition systems relies on a notion of 
abstraction [15,7]. In particular, our abstraction is faithful for all formulas with a given number of object variables. For 
future work, it is also of interest to consider forms of abstraction that are weaker, i.e., that are faithful with respect to 
specific formulas only, or even abstraction that are only sound or only complete, in order to decrease the size of the 
abstract transition system.

Finally, we mention that we are relying on the techniques presented in this work as the foundational basis for the 
development of actual model checking tools for data-aware processes. In particular, we are exploiting relational technology 
to compute faithful, finite abstractions for generic, state-bounded data-aware processes. Preliminary results are discussed in 
[14]. Interestingly, such abstraction techniques do not only apply to bounded situation calculus action theories, but also to 
a number of other formal models for data-aware processes, such as [3,2,9,33].
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