
Dynamic Systems Based on Description Logics:
Formalization, Verification, and Synthesis?

Diego Calvanese1, Giuseppe De Giacomo2, Marco Montali1, and Fabio Patrizi2

1 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
lastname@inf.unibz.it

2 Sapienza Università di Roma, Via Ariosto, 25, 00185 Rome, Italy
lastname@dis.uniroma1.it

Abstract. We devise a general framework for formalizing Dynamic Systems
centered around a Description Logic knowledge base. Our framework is parametric
w.r.t. both the description logic and the progression mechanism. For such kinds of
systems, we provide general decidability results for verification and adversarial
synthesis of first-order µ-calculus properties under a natural assumption which we
call “state-boundedness”. We then apply such results to the case of DL-Lite and
ALCQIknowledge bases and a progression mechanism grounded in epistemic
first-order queries.

1 Introduction

Integrating semantic mechanisms like Description Logics (DLs), to describe static
knowledge, and full-fledged mechanisms like transition systems, to describe dynamics
is of great interest, especially in the context of a semantic view of data-aware and
artifact-based processes [28,10,19]. The tight combination of these two aspects into a
single logical formalism is notoriously difficult [33,35]. In particular, due to the nature
of DL assertions we get one of the most difficult kinds of static constraints for reasoning
about actions [32,27]. Technically this combination gives rise to a semantics based
on two-dimensional structures (DL domain + dynamics/time), which easily leads to
undecidability [35,21]. To regain decidability, one has to restrict the combination only to
concepts (vs. roles) [3,23,24]. This limitation is unsatisfactory in all those applications
where we want to progress a full-fledged knowledge base (KB) representing a shared
conceptualization of a doman of interest, such as an ontology, (a formalization of) a
UML Class Diagram [9], or an Ontology Based Data Access System [12].

Recently, to overcome such difficulties, a looser coupling of the static and dynamic
representation mechanisms has been proposed, giving rise to a rich body of research
[4,16,13,6]. Virtually all such work is implicitly or explicitly based on Levesque’s
functional approach [25], where a KB is seen as a system that provides the ability
of (i) querying its knowledge in terms of logical implication/certain answers (“ask”
operation), and (ii) progressing it through forms of updates (“tell” operation). Hence, the
knowledge description formalism becomes decoupled from the formalism describing the
? This work has been partially supported by the EU projects ACSI (FP7-ICT-257593) and Optique

(FP7-IP-318338).

2 Diego Calvanese et al.

progression: we can define the dynamics through a transition system, whose states are
DL KBs, and transitions are labeled by the action (with object parameters) that causes
the transition. The key issue in this context is that such transition systems are infinite
in general, and hence some form of faithful abstraction is needed. Note that, if for any
reason the number of states in this transition system is finite, then verifying dynamic
properties over such systems amounts to a form a finite-state model checking [7].

In this paper, we follow this approach and devise a general framework for DL Based
Dynamic Systems, which is parametric w.r.t. the DL used for the knowledge base and
the mechanism used for progressing the state of the system. Using this framework, we
study verification and (adversarial) synthesis for specifications expressed in a variant of
first-order µ-calculus, with a controlled form of quantification across successive states.
We recall that µ-calculus subsumes virtually all logics used in verification, including
LTL, CTL and CTL∗. Adversarial synthesis for µ-calculus captures a wide variety of syn-
thesis problems, including conditional planning with full-observability [22], behaviour
composition [18], and several other sophisticated forms of synthesis and planning [17].

We provide key decidability results for verification under a “bounded-state” assump-
tion. Such assumption states that while progressing, the system can change arbitrarily
the stored individuals but their total number at each time point cannot exceed a certain
bound. Notice that along an infinite run (and hence in the overall transition system),
the total numer of individuals can still be infinite. We then turn to adversarial synthesis,
where we consider the system engaged in a sort of game with an adversarial environment.
The two agents (the system and the environment) move in alternation, and the problem is
to synthesize a strategy for the system to force the evolution of the game so as to satisfy
a given synthesis specification. Such a specification is expressed in the above first-order
µ-calculus, using the temporal operators to express that the system is able to force a
formula Φ in the next state regardless of the environment moves, as in the strategy logic
ATL [2]. We show again decidability under the “bounded-state” assumption (this time
for the game structure).

The rest of the paper is organized as follows. In Section 2 we introduce the general
framework of DL Based Dynamic Systems, and in Section 3, the verification formalism,
based on first-order µ-calculus with a controlled form of quantification across states.
In Section 4, we show the general decidability result of model checking such a variant
of µ-calculus against DL Based Dynamic Systems. In Section 5, we show decidability
of adversarial synthesis in our setting. In Section 6, we study the instantiation of the
framework in which the DL knowledge base is expressed in DL-Lite or ALCQI, and
the progression mechanism is that of [6]. In Section 7, we draw final conclusions.

2 Framework

In this paper we follow Leveque’s functional approach [25]. We introduce Description
Logic Based Dynamic Systems (DLDSs), which are systems constituted by a DL knowl-
edge base, consisting of a fixed TBox and an ABox that changes as the system evolves,
and a set of actions that step-wise progress the knowledge base by changing the ABox.
We formalize such systems in a general form, referring neither to any specific DL nor to
any specific action representation formalism, and making only minimal assumptions on
the various components. In Section 6, we show concrete instantiations of the framework.

Dynamic Systems Based on DLs: Formalization, Verification, and Synthesis 3

Object universe. We fix a countably infinite (object) universe ∆ of individuals. These
constants, which act as standard names [26], allow us to refer to individuals across
distinct timepoints.
DL knowledge bases. A (DL) knowledge base (KB) (T,A) is constituted by a TBox T
representing the intensional knowledge about the domain of interest in terms of concepts
and roles, and an ABox A representing extensional knowledge about individuals. The
TBox T is a finite set of universal assertions (we don’t allow nominals, to avoid confusion
between intensional and extensional levels). The ABox A is a finite set of assertions
consisting of facts, i.e., atomic formulas of the form N(d) and P (d, d′), where N is a
concept name, P is a role name (we use binary roles, but all our results can be extended
to n-ary relations), and d, d′ are individual constants in ∆. We use ADOM(A) to denote
the set of constants actually appearing in A. We adopt the standard DL semantics based
on first-order interpretations and on the notion of (first-order) model. Naturally, the only
TBoxes of interest for us are those that are satisfiable, i.e., admit at least one model.
We say that an ABox A is consistent w.r.t. a TBox T if (T,A) is satisfiable, and that
(T,A) logically implies an ABox assertion α, denoted (T,A) |= α, if every model of
(T,A) is also a model of α. As usual in DLs, we assume that reasoning, i.e., checking
KB satisfiability and logical implication are decidable tasks.
Description Logic based Dynamic Systems. A Description Logic based Dynamic
System (DLDS) is a tuple S = (T,A0, Γ), where (T,A0) is a KB and Γ is a finite
set of actions. The set ADOM(A0) of constants in A0 are called distinguished and we
denoted them by C, i.e., C = ADOM(A0). Such constants play a special role because
they are the only ones that can be used in verification formulas (see Section 4). Actions
are parametrized, and when an action is executed formal parameters are substituted with
individual constants from ∆. Formal parameters are taken from a countably infinite
set P of parameter names. Interestingly, we do not assume that the number of formal
parameters of an action is fixed a priory, but we allow it to depend on the KB (actually,
the ABox, since the TBox is fixed) on which the action is executed.

Notice that this mechanism is more general than what typically found in proce-
dures/functions of programming languages, where the number of parameters is fixed
by the signature of the procedure/function. Our mechanism is directly inspired by web
systems, in which input forms are dynamically constructed and customized depending
on data already acquired. For example, when inserting author data in a conference sub-
mission system, the input fields that are presented to the user depend on the (previously
specified) number of authors.

Once formal parameters are substituted by actual ones, executing the action has the
effect of generating a new ABox. We use AT to denote the set of all ABoxes that can be
constructed using concept and role names in T , and individuals in ∆. Formally, each
action in Γ has the form (π, τ), where

– π : AT → 2P is a parameter selection function that, given an ABox A, returns the
finite set π(A) ⊆ P of parameters of interest for τ w.r.t. A (see below);

– τ : AT × ∆P 7→ AT , is a (partial) effect function that, given an ABox A and a
parameter assignment m : π(A)→ ∆, returns (if defined) the ABoxA′ = τ(A,m),
which (i) is consistent wrt T , and (ii) contains only constants in ADOM(A)∪ IM(m).3

3 By IM(·) we denote the image of a function.

4 Diego Calvanese et al.

Observe that since π(A) is finite, so is IM(m), thus only finitely many new individuals,
w.r.t. A, can be added to A′.

In fact, we focus our attention on DLDS’s that are generic, which intuitively means
that the two functions constituting an action are invariant w.r.t. renaming of individuals4.
Genericity is a natural assumption that essentially says that the properties of individuals
are only those that can be inferred from the KB.

To capture genericity, we first introduce the notion of equivalence of ABoxes modulo
renaming. Specifically, given two ABoxes A1, A2, sets S1 ⊇ ADOM(A1) ∪ C and
S2 ⊇ ADOM(A2) ∪ C, and a bijection h : S1 → S2 that is the identity on C, we say
that A1 and A2 are logically equivalent modulo renaming h w.r.t. a TBox T , written
A1
∼=h
T A2, if:

1. for each assertion α1 in A1, (T,A2) |= h(α1);
2. for each assertion α2 in A2, (T,A1) |= h−1(α2);

where h(α1) (resp. h−1(α2)) is a new assertion obtained from α1 (resp., α2), by re-
placing each occurrence of an individual d ∈ ∆ with h(d) (resp., h−1(d)). We say that
A1 and A2 are logically equivalent modulo renaming w.r.t. T , written A1

∼=T A2, if
A1
∼=h
T A2 for some h. We omit T when clear from the context.

A DLDS S = (T,A0, Γ) is generic, if for every (π, τ) ∈ Γ and every A1, A2 ∈ AT
s.t. A1

∼=T A2, we have that (i) π(A1) = π(A2), and (ii) for every two parameter
assignments m1 : π(A1) → ∆ and m2 : π(A2) → ∆, if there exists a bijection
h : ADOM(A1) ∪ C ∪ IM(m1) → ADOM(A2) ∪ C ∪ IM(m2) s.t. A1

∼=h
T A2, then,

whenever A′1 = τ(A1,m1) is defined then also A′2 = τ(A2,m2) is defined and vice-
versa, and moreover A′1 ∼=h

T A
′
2.

DLDS Transition System. The dynamics of a DLDS S is characterized by the transition
system ΥS it generates. The kind of transition systems we consider here have the general
form Υ = (U, T,Σ, s0, abox ,⇒), where: (i) U is the universe of individual constants,
which includes the distinguished constants C; (ii) T is a TBox; (iii) Σ is a set of states;
(iv) s0 ∈ Σ is the initial state; (v) abox is a function that, given a state s ∈ Σ, returns an
ABox associated with s, which has terms of ∆ as individuals, and which conforms to T ;
(vi)⇒ ⊆ Σ × L×Σ is a labeled transition relation between states, where L is the set
of labels.

With a little abuse of notation we also introduce an unlabeled transition relation⇒ ⊆
Σ ×Σ obtained from the labeled transition relation by projecting out the labels (we use
this notion when dealing with verification properties). Given a DLDS S = (T,A0, Γ),
its (generated) transition system ΥS = (U, T,Σ, s0, abox ,⇒) is defined as: (i) U = ∆;
(ii) abox is the identity function (thus Σ ⊆ AT); (iii) s0 = A0; (iv)⇒⊆ Σ × L×Σ is
a labeled transition relation where L = Γ ×M, withM the domain of action parameter
assignments, is a set of labels containing one pair (a,m) for every action a ∈ Γ and
corresponding parameter assignment m ∈ M; (v) Σ and ⇒ are defined by mutual
induction as the smallest sets satisfying the following property: if A ∈ Σ then for every
(π, τ) ∈ Γ , m : π(A) → ∆, and A′ ∈ AT , s.t. A′ = τ(A,m), we have A′ ∈ Σ and
A

`⇒ A′, s.t. ` = ((π, τ),m).

4 This name is due to the notion of genericity in databases [1], also called uniformity in [8].

Dynamic Systems Based on DLs: Formalization, Verification, and Synthesis 5

3 Specification Logic µDLp

To specify dynamic properties over DLDSs, we use a first-order variant of µ-calculus
[34,30]. µ-calculus is virtually the most powerful temporal logic used for model checking
of finite-state transition systems, and is able to express both linear time logics such as
LTL and PSL, and branching time logics such as CTL and CTL* [15]. The main
characteristic of µ-calculus is its ability of expressing directly least and greatest fixpoints
of (predicate-transformer) operators formed using formulae relating the current state
to the next one. By using such fixpoint constructs one can easily express sophisticated
properties defined by induction or co-induction. This is the reason why virtually all
logics used in verification can be considered as fragments of µ-calculus. Technically,
µ-calculus separates local properties, asserted on the current state or on states that are
immediate successors of the current one, from properties talking about states that are
arbitrarily far away from the current one [34]. The latter are expressed through fixpoints.

In our variant of µ-calculus, we allow local properties to be expressed as queries in
any language for which query entailment for DL KBs is decidable [11,14]. Specifically,
given a KB (T,A), a query Q, and an assignment v for the free variables of Q, we say
that Qv is entailed by (T,A), if (T,A) |= Qv, i.e., (T,A) logically implies the formula
Qv obtained from Q by substituting its free variables according to v. Notice that the set
of v such that (T,A) |= Qv are the so-called certain answers.

At the same time we allow for a controlled form of first-order quantification across
states, inspired by [5], where the quantification ranges over individual objects across
time only as long as such object persist in the active domain. Formally, we define the
logic µDLp as:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVE(x) ∧ Φ |
LIVE(x) ∧ 〈−〉Φ | LIVE(x) ∧ [−]Φ | Z | µZ.Φ

where Q is a (possibly open) query as described above, in which the only constants that
may appear are those in C, Z is a second order predicate variable (of arity 0), and, with a
slight abuse of notation, we write LIVE(x1, . . . , xn) =

∧
i∈{1,...,n} LIVE(xi). For µDLp,

the following assumption holds: in LIVE(x) ∧ 〈−〉Φ and LIVE(x) ∧ [−]Φ, the variables
x are exactly the free variables of Φ, once we substitute to each bounded predicate
variable Z in Φ its bounding formula µZ.Φ′. We use the usual abbreviations, including:
LIVE(x)→ 〈−〉Φ = ¬(LIVE(x)∧ [−]¬Φ) and LIVE(x)→ [−]Φ = ¬(LIVE(x)∧〈−〉¬Φ).
Intuitively, the use of LIVE(·) in µDLp ensures that individuals are only considered if
they persist along the system evolution, while the evaluation of a formula with individuals
that are not present in the current database trivially leads to false or true.

The formula µZ.Φ denotes the least fixpoint of the formula Φ (seen as the predicate
transformer λZ.Φ). As usual in µ-calculus, formulae of the form µZ.Φ must obey to the
syntactic monotonicity of Φ w.r.t. Z, which states that every occurrence of the variable
Z in Φ must be within the scope of an even number of negation symbols. This ensures
that the least fixpoint µZ.Φ always exists.

The semantics of µDLp formulae is defined over possibly infinite transition systems
of the form (U, T,Σ, s0, abox ,⇒) seen above. Since µDLp also contains formulae with
both individual and predicate free variables, given a transition system Υ, we introduce

6 Diego Calvanese et al.

(Q)Υv,V = {s ∈ Σ | (T, abox (s)) |= Qv}
(¬Φ)Υv,V = Σ \ (Φ)Υv,V

(Φ1 ∧ Φ2)
Υ
v,V = (Φ1)

Υ
v,V ∩ (Φ2)

Υ
v,V

(∃x.LIVE(x) ∧ Φ)Υv,V = {s ∈ Σ | ∃d ∈ ADOM(abox (s)).s ∈ (Φ)Υv[x/d],V }
(LIVE(x) ∧ 〈−〉Φ)Υv,V = {s ∈ Σ | x/d ∈ v implies d ⊆ ADOM(abox (s))

and ∃s′.s⇒ s′ and s′ ∈ (Φ)Υv,V }
(LIVE(x) ∧ [−]Φ)Υv,V = {s ∈ Σ | x/d ∈ v implies d ⊆ ADOM(abox (s))

and ∀s′.s⇒ s′ implies s′ ∈ (Φ)Υv,V }
(Z)Υv,V = V (Z)

(µZ.Φ)Υv,V =
⋂
{E ⊆ Σ | (Φ)Υv,V [Z/E] ⊆ E}

Fig. 1. Semantics of µDLp.

an individual variable valuation v, i.e., a mapping from individual variables x to U ,
and a predicate variable valuation V , i.e., a mapping from the predicate variables Z
to subsets of Σ. With these three notions in place, we assign meaning to formulae by
associating to Υ , v, and V an extension function (·)Υv,V , which maps formulae to subsets
of Σ. Formally, the extension function (·)Υv,V is defined inductively as shown in Figure 1.
Intuitively, (·)Υv,V assigns to such constructs the following meaning. (i) The boolean
connectives have the expected meaning. (ii) The quantification of individuals is done over
the individuals of the “current” ABox, using the special LIVE(·) predicate (active domain
quantification). Notice that such individuals can be referred in a later state, provided that
they persist in between (see below). (iii) The extension of 〈−〉Φ consists of the states s
s.t.: for some successor state s′ of s, Φ holds in s′ under v. (iv) The extension of µZ.Φ is
the smallest subset Eµ of Σ s.t., assigning to Z the extension Eµ, the resulting extension
of Φ (under v) is contained in Eµ. That is, the extension of µZ.Φ is the least fixpoint of
the operator (Φ)Υv,V [Z/E], where V [Z/E] denotes the predicate valuation obtained from

V by forcing the valuation of Z to be E . When Φ is a closed formula, (Φ)Υv,V does not
depend on v or V , and we denote the extension of Φ simply by (Φ)Υ . A closed formula
Φ holds in a state s ∈ Σ if s ∈ (Φ)Υ . In this case, we write Υ, s |= Φ. A closed formula
Φ holds in Υ, denoted by Υ |= Φ, if Υ, s0 |= Φ. Given a DLDS S, we say that S |= Φ if
ΥS |= Φ. We call model checking the problem of verifying whether Υ |= Φ holds.

The bisimulation relation that captures µDLp is as follows. Let Υ1 =
(U1, T,Σ1, s01, abox 1,⇒1) and Υ2 = (U2, T,Σ2, s02, abox 2,⇒2) be transition sys-
tems, s.t. C ⊆ U1 ∩ U2, and H the set of partial bijections between U1 and U2, which
are the identity over C. A persistence preserving bisimulation between Υ1 and Υ2 is a
relation B ⊆ Σ1 ×H ×Σ2 such that (s1, h, s2) ∈ B implies that:
1. abox 1(s1) ∼=h

T abox 2(s2);
2. for each s′1, if s1 ⇒1 s

′
1 then there exists an s′2 with s2 ⇒2 s

′
2 and a bijection

h′ that extends h restricted on ADOM(abox 1(s1)) ∩ ADOM(abox 1(s′1)), such that
(s′1, h

′, s′2) ∈ B;
3. for each s′2, if s2 ⇒2 s

′
2 then there exists an s′1 with s1 ⇒1 s

′
1 and a bijection

h′ that extends h restricted on ADOM(abox 1(s1)) ∩ ADOM(abox 1(s′1)), such that
(s′1, h

′, s′2) ∈ B.
We say that a state s1 ∈ Σ1 is persistence preserving bisimilar to s2 ∈ Σ2 wrt a partial
bijection h, written s1 ∼h s2, if there exists a persistence preserving bisimulation B

Dynamic Systems Based on DLs: Formalization, Verification, and Synthesis 7

between Υ1 and Υ2 such that (s1, h, s2) ∈ B. A transition system Υ1 is persistence
preserving bisimilar to Υ2, written Υ1 ∼ Υ2, if there exists a partial bijection h0 and
a persistence preserving bisimulation B between Υ1 and Υ2 s.t. (s01, h0, s02) ∈ B. A
suitable bisimulation-invariance theorem hold:

Theorem 1. Consider two transition systems Υ1 and Υ2 s.t. Υ1 ∼ Υ2. Then for every
µDLp closed formula Φ, we have that Υ1 |= Φ if and only if Υ2 |= Φ.

The proof follows the line of an analogous one in [5]. The key difference is that the local
condition for bisimulation is replaced by logical equivalence modulo renaming. This
condition guarantees the preservation of certain answers, which is a sufficient condition
for preservation of µDLp formulae, as their evaluation depends only on certain answers.

4 Verification

Next we focus on checking a µDLp formula against a DLDS. It is easy to show, by
reduction from the halting problem, that this is in general undecidable, even under the
assumption of genericity (see, e.g., [6]). On the other hand, it can be shown that for finite
∆, the problem is decidable. Indeed, in such a case, only finitely many ABoxes exist,
thus, by quantifier elimination, one can can reduce the problem to model checking of
propositional µ-calculus.

Undecidability calls for the identification of decidable classes of the problem. To this
end, we focus our attention on a particular class of DLDS, which we call state-bounded.
Under the assumption of genericity, we are able to prove decidability of verification for
state-bounded DLDS. A state-bounded DLDS K is one for which there exists a finite
bound b s.t., for each state s of ΥK, |ADOM(abox (s))| < b. When this is the case, we
say that K is b-bounded. Observe that state-bounded DLDS contain in general infinitely
many states, and that a DLDS K can be state-unbounded even if, for every state s of
ΥK, |ADOM(abox (s))| is finite (but not bounded). W.l.o.g., for state-bounded DLDS, we
assume that the maximum number n of parameters that actions may request is known.5

We prove now that model checking of µDLp over state-bounded, generic DLDS
is decidable, by showing how it can be reduced to model checking of propositional
µ-calculus over finite-state transition systems. The crux of the proof, outlined below, is
the construction of a finite-state transition system ΥDK s.t. ΥDK ∼ ΥK, where ΥK is the
transition system generated by K. This is done through an abstraction technique inspired
by that of [5]. Differently from that setting, we deal with DL knowledge bases, instead
of relational databases.

Observe that the infiniteness of ΥK comes from that of ∆, which yields a potential
infinite number of ABoxes and assignments to action parameters, thus infinite branching.
As a first step, we show that ΥK can be “pruned”, so as to obtain a persistence-bisimilar
finite-branching transition system ΘK, and that any transition system obtained in this
way is persistence-bisimilar to ΥK.

5 This number can be obtained in PSPACE by constructing all the ABoxes of size ≤ b, up to
logical equivalence modulo renaming, and by applying all actions to them, so as to obtain the
corresponding parameters.

8 Diego Calvanese et al.

To define such prunings we introduce the notion of equality commitment, i.e., a set
of equality constraints involving parameter assignments and distinguished individuals.
An equality commitment over a finite set S ⊂ ∆ ∪ P of individuals and parameters, is
a partition H = {H1, . . . ,Hn} of S, s.t. every Hi contains at most one d ∈ ∆. Given
(π, τ) ∈ Γ , an ABox A, and an equality commitment H over ADOM(A) ∪ π(A) ∪ C,
a parameter assignment m : π(A) → ∆ respects H if, for every two parameters
p1, p2 ∈ π(A), m(p1) = m(p2) iff p1 and p2 belong to the same Hi ∈ H , and
m(p1) = m(p2) = d, iff d ∈ Hi. Observe that, being S finite, the number of possible
equality commitments over S, is finite, too.

A pruning of ΥK is a transition system ΘK = (∆,T,Σ, s0, abox ,⇒), s.t.: (i) abox
is the identity; (ii) s0 = A0 ∈ Σ; (iii) Σ and⇒ are defined as smallest sets constructed
by mutual induction from s0 as follows: if A ∈ Σ, then for every (π, τ) ∈ Γ and
every equality commitment H over ADOM(A)∪ π(A)∪C, nondeterministically choose
finitely many parameter assignments mi : π(A)→ ∆ respecting H , and add transitions
A

`⇒ A′ where A′ = τ(A,mi) and ` = ((π, τ),mi).
Intuitively, a pruning is obtained from ΥK, by executing, at each reachable state A,

an arbitrary, though finite, set of instantiated actions. This set is required to cover Γ
and all the possible equality commitments over the parameters that the selected action
requires. It can be seen that, since Γ is finite and, for fixed A, only finitely many H exist,
prunings have always finite branching, even if ΥK does not. The following lemma says
that, despite their structural differences, if K is generic, then ΥK is preservation-bisimilar

Lemma 1. Given a generic DLDS K and its transition system ΥK, for every pruning
ΘK of ΥK, we have ΘK ∼ ΥK.

Proof (sketch). By genericity, for an ABox A and an action (π, τ), if two parame-
ter assignments m1,m2 : π(A) → ∆ respect the same equality commitment H on
ADOM(A) ∪ π(A) ∪ C, the applications of (π, τ) with m1 and m2, result in logically
equivalent (modulo renaming) ABoxes, i.e., A1 = τ1(A,m1) ∼=h

T A2 = τ2(A,m2). Fur-
ther, still by genericity, we have that ADOM(A)∩ADOM(A1) = ADOM(A)∩ADOM(A2),
that is, A1 and A2 preserve the same values w.r.t. A. This can be taken as the basic
step for constructing a persistence-preserving bisimulation between ΥK and ΘK, starting
from the observation that A0

∼=T A0.
Prunings are in general infinite-state. An important question is whether there exists

some that are finite-state and effectively computable. This, by Lemma 1, Th. 1, and
the fact that verification is decidable for finite-state transition systems, would yield
decidability of verification for K. While this is not the case in general (we already stated
undecidability), we can prove that this holds on state-bounded, generic DLDS.

Given a b-bounded, generic DLDS, consider a finite set D of individual constants
s.t. D ⊂ ∆ and C ⊆ D. Let ΥDK be the fragment of transition system of K built using
only individuals from D in action parameter assignments. Such a ΥDK is finite and
effectively computable. We have the following result.

Lemma 2. If |D| ≥ b+n+|C|, then ΥDK is a pruning of ΥK.

Proof (sketch). The construction of ΥDK essentially follows the inductive structure of
the definition of pruning. In particular, since D is finite, only finitely many parameter

Dynamic Systems Based on DLs: Formalization, Verification, and Synthesis 9

assignments are considered at each step. It can be seen that, because D ≥ n, for every
action application and corresponding equality commitment H , we can find a parameter
assignment that respects H . Further, since D ≥ b + n we have enough individuals to
construct, at each step, the successor state, containing at most b individuals, that results
from the action application. Finally, genericity ensures that the particular choice of D,
as long as containing C, does not affect, except for individual renaming, the behavior of
the effect function τ .

Together, Lemma 1 and 2 imply the following decidability result:

Theorem 2. Model checking of µDLp over a state-bounded, generic DLDS K is decid-
able, and can be reduced to model checking of propositional µ-calculus over a finite-state
transition system, whose number of state is at most exponential in the size of K.

Proof (sketch). By Lemma 1, we know that ΥDK is bisimilar to ΥK. By Lemma 2,
we know that ΥDK contains at most an exponential number of states in the size of the
specification K, which includes the initial ABox, thus the (finite) set of distinguished
constants C. Hence, by Theorem 1, we can check formulae over the finite transition
system ΥDK instead of ΥK. Since the number of objects present in ΥDK is finite, µDLp
formulae can be propositionalized and checked through standard algorithms [20].

5 Adversarial Synthesis

We turn now to the problem of adversarial synthesis, i.e., we consider a setting in
which two agents act in turn as adversaries. The first agent, called environment, acts
autonomously, whereas we control the second agent, called system. The joint behavior of
the two agents gives rise to a so-called two-player game structure (2GS) [17,31,29], seen
as the arena of a game. On top of the 2GS we can formulate, using variants of µ-calculus,
what the system should obtain in spite of the adversarial moves of the environment.
This specification can be considered the goal of the game for the system. The synthesis
problem amounts to synthesizing a strategy, i.e., a suitable refined behavior for the system
that guarantees to the system the fulfillment of the specification. Many synthesis problems
can be rephrased using 2GS. An example is conditional planning in nondeterministic
fully observable domains, where the system is the action executor, and the environment
is the domain that nondeterministically chooses the (fully observable) effect of the
action among those possible [22]. Another example is behavior composition, which aims
at synthesizing an orchestrator that realizes a given target behavior by delegating the
execution of actions to available behaviors. Here the system is the orchestrator, and the
environment is formed by the target and the available behaviors. The goal of the system
is to maintain over time the ability of delegating requested actions [18]. Several other
sophisticated forms of synthesis and planning can be captured through 2GS, cf. [17].

We can deal with adversarial synthesis in our framework by building a 2GS in which
we encode explicitly in the DL KB the alternation of the moves of the two players.
Specifically, we introduce a fresh concept name Turn and two fresh distinguished
constants te and ts, whose (mutual exclusive) presence in Turn indicates which of the
two players will move next. We denote with AeT the set of ABoxes in AT that contain
Turn(e) (and not Turn(s)). Similarly, for AsT .

10 Diego Calvanese et al.

A DL based 2GS (DL2GS) is a DLDSK = (T,A0, Γ), where Turn(e) ∈ A0 and the
set of actions Γ is partitioned into a set Γe of environment actions and a set Γs of system
actions. The effect function of each environment action is defined only for ABoxes in
Γe and brings about an ABox in Γs. Symmetrically, the effect function of each system
action is defined only for ABoxes in Γs and brings about an ABox in Γe. In this way
we achieve the desired alternation of environment and system moves: starting from the
initial state, the environment moves arbitrarily and the system suitably responds to the
environment move, and this is repeated (possibly forever).

Logics of interest for 2GSs are temporal logics in the style of ATL [2], in which
“next Φ” has the meaning of “system can force Φ” to hold in the next state, by suitably
responding to every move done by the environment. Here, we introduce a specialization
of the logic µDLp, called µADLp, defined as follows:

Φ ::= Q | ¬Q | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | Z | µZ.Φ | νZ.Φ |
∃x.LIVE(x) ∧ Φ | ∀x.LIVE(x)→ Φ |
LIVE(x) ∧ [〈−〉]sΦ | LIVE(x)→ [〈−〉]sΦ |
LIVE(x) ∧ [〈−〉]wΦ | LIVE(x)→ [〈−〉]wΦ

where [〈−〉]sΦ stands for [−](LIVE(x) ∧ 〈−〉Φ), and [〈−〉]wΦ stands for [−](LIVE(x) →
〈−〉Φ). Technically, µADLp is a fragment of µDLp, where negation normal form is
enforced, i.e., negation is pushed inwards so that it appears only in front of atoms (in
our case, queries Q). Intuitively, both [〈−〉]sΦ and [〈−〉]wΦ mean that the system can force
Φ to hold, i.e., for every (environment) move there is a (system) move leading to Φ.
The difference between the two is that [〈−〉]sΦ precludes the environment from dropping
objects existing before its move, while [〈−〉]wΦ does not.

As an immediate consequence of Theorem 2 we have:

Theorem 3. Checking µADLp formulas over state-bounded, generic DL2GS’s is decid-
able.

We are not only interested in verifying µADLp formulas, but also in synthesizing
strategies to actually fulfill them. A strategy is a partial function f : (AeT×AsT)∗×AeT 7→
Γs ×M whereM is the domain of action parameter assignments, such that for every
history λ = Ae0, A

s
0 · · ·Aen, Asn, Aen+1, it is the case that Asi = τf(λ[i])(A

e
i ,mf(λ[i]))

where λ[i] is prefix of λ of length i, and mf(λ[i]) : πf(λ[i])(A
e
i)→ ∆, and symmetrically

Aei+1 = τ(Asi ,m) for some m : π(Asi) → ∆. We say that a strategy f is winning
if by resolving the existential choice in evaluating the formulas of the form [〈−〉]sΦ
and [〈−〉]wΦ according to f , the goal formula is satisfied. Notably, model checking
algorithms provide a witness of the checked property [20,31], which, in our case, consists
of a labeling produced during the model checking process of the abstract DL2GS’s.
From labelled game states, one can read how the controller is meant to react to the
environment in order to fulfill the formulas that label the state itself, and from this,
define a strategy to fulfill the goal formula. It remains to lift such abstract strategy on the
finite abstract DL2GS to the actual DL2GS. The abstract strategy f̄ models a family of
concrete strategies. Thus, in principle, in order to obtain an actual strategy, it would be
sufficient concretizing f̄ by replacing the abstract individuals and parameter assignments
with concrete individuals and assignments that satisfy, step-by-step, the same equality

Dynamic Systems Based on DLs: Formalization, Verification, and Synthesis 11

commitments. While theoretically correct, this procedure cannot be realized in practice,
as the resulting family of strategies is in general infinite. However, we adopt a lazy
approach that allows us to generate and follow a concrete strategy, as the game progresses.
Formally we have:

Theorem 4. There exists an algorithm that, given a state-bounded, generic DL2G K
and a µADLp formula Φ, realizes a concrete strategy to force Φ.

Proof (sketch). The algorithm iterates over three steps: (i) matching of the current
concrete history λ with an abstract history λ̄ over which f̄ is defined; (ii) extraction of
the action and corresponding abstract parameter assignment; (iii) concretization of the
obtained parameter assignment. The first step requires building a family of functions,
in fact bijections, that transform each pair of consecutive states of the concrete history,
into a pair of abstract successor states, so as to satisfy the same equality commitments
at the abstract and at the concrete level, and to guarantee that f̄ is defined over the
obtained abstract history λ̄. This can be done as both λ and the abstract DL2GS contain,
by state boundedness, only finitely many distinct elements, thus only finitely many
such functions exist. The existence of λ̄ is guaranteed by the bisimilarity, induced,
in turn, by genericity. By applying f̄ to the abstract history λ̄, we extract the action
(τ, π) and abstract parameter assignment m̄ to execute next, in the abstract game, i.e.,
((τ, π), m̄) = f̄(λ̄). Finally, in order to concretize m̄, it is sufficient to reconstruct the
equality commitment H enforced by m̄ and the bijection over the last pairs of states
of λ and λ̄, and then replacing the abstract values assigned by m with concrete ones,
arbitrarily chosen, so as to satisfy H . By genericity, for any such choice, we obtain an
action executable at the concrete level, after λ, and that is compatible with (at least) one
strategy of the family defined by f̄ . In this way, at every step, the system is presented a
set of choices, namely one per possible concretization of the abstract assignment, that
can thus be resolved based on information available at runtime.

Theorem 4 and its proof give us an effective method for actually synthesizing
strategies to force the desired property. Obviously, optimizations for practical efficiency
(which are out of the scope of this paper) require further study.

6 Instantiations of the Framework

As a concrete instantiation of the abstract framework introduced in Section 2, we consider
a variant of Knowledge and Action Bases (KABs) [6], instantiated on the lightweight DL
DL-Lite and the expressive DL ALCQI. A KAB is a tuple K = (T,A0,Act) where T
and A0 form the knowledge base, and Act is the action base. In practice, K is a stateful
device that stores the information of interest into a KB, formed by a fixed TBox T and
an initial ABox A0, which evolves by executing actions in Act .

An action α ∈ Act modifies the current ABox A by adding or deleting assertions,
thus generating a new ABox A′. α consists of a set {e1, . . . , en} of effects, that take
place simultaneously. An effect ei has the form Qi A′i, where

– Qi is an ECQ, i.e., a domain independent first-order query whose atoms represent
certain answers of unions of conjunctive queries (UCQs) [11].

– A′i is a set of ABox assertions that include as terms: individuals in A0, free variables
of Qi, and Skolem terms f(x) having as arguments such free variables.

12 Diego Calvanese et al.

Given an action α ∈ Act , we can capture its execution by defining an action (πα, τα)
as follows:

– πα(A) returns the ground Skolem terms obtained by executing the queries Qi of
the effects over (T,A), instantiating the facts A′i using the returned answers, and
extracting the (ground) Skolem terms occurring therein.

– τα(A,m) returns the ABox obtained by executing over (T,A) the queries Qi of
the effects, instantiating the facts A′i using the returned answers, and assigning to
the (ground) Skolem terms occurring therein values according to a freely chosen
parameter assignment m, as long as such an ABox is consistent with T . If the ABox
is not consistent with T , then τα(A,m) is undefined.

In this way, we can define Γ from Act , and hence the DLDS S = (T,A0, Γ) corre-
sponding to the KAB K = (T,A0,Act). Notice that, being the parameter assignment
freely chosen, the resulting DLDS is actually generic.

In this context, we use ECQs also as the query language for the local properties in
the verification and synthesis formalism. Now observe that if the TBox is expressed in
a lightweight DL of the DL-Lite family, answering ECQ queries is PSPACE-complete
in combined complexity (and in AC0 in data complexity, i.e., the complexity measured
in the size of the ABox only). The same complexity bounds hold for the construction
of πα(A) and τα(A,m), and hence, under the assumption of state-boundedness, the
abstract transition system generated by S can be constructed in EXPTIME. It follows
that both verification and synthesis can be done in EXPTIME.

Instead, if the TBox is expressed in an expressive DL such as ALCQI , the cost that
dominates the construction of the abstract transition system is the 2EXPTIME cost of
answering over (T,A) the UCQs that are the atoms of the EQL queries in the actions.
Finally, if instead of using as atoms UCQs, we use atomic concepts and roles (i.e., we
do instance checking), the cost of query evaluation drops to EXPTIME, and so does the
cost of building the abstract transition system.

These results can be extended to other DLs as long as they do not include nominals,
given that the presence of nominals blurs the distinction between the extensional and the
intensional knowledge, and hence requires more careful handling.

7 Conclusion

This work complements and generalizes two previous papers focussing on forms of
verification on DL-based dynamics. One is [6] from which we took the formalism for the
instantiations. The crucial difference is that in their framework they use Skolem terms to
denote new values, which as a consequence remain unknown during the construction
of the transition system, while we substitute these Skolem terms with actual values.
Decidability of weakly acyclic systems is shown. The other one is [13], where a sort of
light-weight DL-based dynamic was proposed. There, a semantic layer in DL-Lite is built
on top of a data-aware process. The DL-Lite ontology plus mapping is our knowledge
component, while the dynamic component (the actions) are induced by the process
working directly on the data-layer. Exploiting DL-Lite first-order rewritability properties
of conjunctive queries, the verification can be done directly on the data-aware process.
Decidability of checking properties in µ-calculus without quantification across is shown
for state-bounded data-aware process. In both, synthesis is not considered.

Dynamic Systems Based on DLs: Formalization, Verification, and Synthesis 13

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co.
(1995)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. of the ACM
49(5), 672–713 (2002)

3. Artale, A., Franconi, E.: Temporal description logics. In: Gabbay, D., Fisher, M., Vila, L.
(eds.) Handbook of Temporal Reasoning in Artificial Intelligence. Foundations of Artificial
Intelligence, Elsevier (2005)

4. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans. on Compu-
tational Logic 13(3), 21:1–21:32 (2012)

5. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification
of relational data-centric dynamic systems with external services. CoRR Technical Report
arXiv:1203.0024, arXiv.org e-Print archive (2012), available at http://arxiv.org/
abs/1203.0024

6. Bagheri Hariri, B., Calvanese, D., Montali, M., De Giacomo, G., De Masellis, R., Felli, P.:
Description logic Knowledge and Action Bases. J. of Artificial Intelligence Research 46,
651–686 (2013)

7. Baier, C., Katoen, J.P., Guldstrand Larsen, K.: Principles of Model Checking. The MIT Press
(2008)

8. Belardinelli, F., Lomuscio, A., Patrizi, F.: An abstraction technique for the verification of
artifact-centric systems. In: Proc. of the 13th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2012). pp. 319–328 (2012)

9. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artificial
Intelligence 168(1–2), 70–118 (2005)

10. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-
centric business process models. In: Proc. of the 5th Int. Conference on Business Process
Management (BPM 2007). Lecture Notes in Computer Science, vol. 4714, pp. 288–234.
Springer (2007)

11. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: Effective
first-order query processing in description logics. In: Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2007). pp. 274–279 (2007)

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

13. Calvanese, D., De Giacomo, G., Lembo, D., Montali, M., Santoso, A.: Ontology-based
governance of data-aware processes. In: Proc. of the 6th Int. Conf. on Web Reasoning and
Rule Systems (RR 2012). Lecture Notes in Computer Science, vol. 7497, pp. 25–41. Springer
(2012)

14. Calvanese, D., De Giacomo, G., Lenzerini, M.: Conjunctive query containment and answering
under description logics constraints. ACM Trans. on Computational Logic 9(3), 22.1–22.31
(2008)

15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press, Cambridge, MA,
USA (1999)

16. De Giacomo, G., De Masellis, R., Rosati, R.: Verification of conjunctive artifact-centric
services. Int. J. of Cooperative Information Systems 21(2), 111–139 (2012)

17. De Giacomo, G., Felli, P., Patrizi, F., Sardiña, S.: Two-player game structures for generalized
planning and agent composition. In: Proc. of the 24th AAAI Conf. on Artificial Intelligence
(AAAI 2010). pp. 297–302 (2010)

18. De Giacomo, G., Patrizi, F., Sardiña, S.: Automatic behavior composition synthesis. Artificial
Intelligence 196, 106–142 (2013)

http://arxiv.org/abs/1203.0024
http://arxiv.org/abs/1203.0024

14 Diego Calvanese et al.

19. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proc. of the 12th Int. Conf. on Database Theory (ICDT 2009). pp. 252–267
(2009)

20. Emerson, E.A.: Automated temporal reasoning about reactive systems. In: Moller, F.,
Birtwistle, G. (eds.) Logics for Concurrency: Structure versus Automata, Lecture Notes
in Computer Science, vol. 1043, pp. 41–101. Springer (1996)

21. Gabbay, D., Kurusz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional Modal Logics:
Theory and Applications. Elsevier Science Publishers (2003)

22. Ghallab, M., Nau, D.S., Traverso, P.: Automated planning – Theory and Practice. Elsevier
(2004)

23. Gu, Y., Soutchanski, M.: A description logic based situation calculus. Ann. of Mathematics
and Artificial Intelligence 58(1-2), 3–83 (2010)

24. Jamroga, W.: Concepts, agents, and coalitions in alternating time. In: Proc. of the 20th Eur.
Conf. on Artificial Intelligence (ECAI 2012). pp. 438–443 (2012)

25. Levesque, H.J.: Foundations of a functional approach to knowledge representation. Artificial
Intelligence 23, 155–212 (1984)

26. Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. The MIT Press (2001)
27. Lin, F., Reiter, R.: State constraints revisited. J. of Logic Programming 4(5), 655–678 (1994)
28. Martin, D.L., Burstein, M.H., McDermott, D.V., McIlraith, S.A., Paolucci, M., Sycara, K.P.,

McGuinness, D.L., Sirin, E., Srinivasan, N.: Bringing semantics to web services with OWL-S.
In: Proc. of the 16th Int. World Wide Web Conf. (WWW 2007). pp. 243–277 (2007)

29. Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and
Infinite Games, Lecture Notes in Computer Science, vol. 2500, pp. 23–42. Springer (2002)

30. Park, D.M.R.: Finiteness is Mu-ineffable. Theoretical Computer Science 3(2), 173–181 (1976)
31. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Proc. of the 7th Int.

Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI 2006). Lecture
Notes in Computer Science, vol. 3855, pp. 364–380. Springer (2006)

32. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. The MIT Press (2001)

33. Schild, K.: Combining terminological logics with tense logic. In: Proc. of the 6th Portuguese
Conf. on Artificial Intelligence (EPIA’93). Lecture Notes in Computer Science, vol. 727, pp.
105–120. Springer (1993)

34. Stirling, C.: Modal and Temporal Properties of Processes. Springer (2001)
35. Wolter, F., Zakharyaschev, M.: Temporalizing description logic. In: Gabbay, D., de Rijke, M.

(eds.) Frontiers of Combining Systems, pp. 379–402. Studies Press/Wiley (1999)

	Dynamic Systems Based on Description Logics: Formalization, Verification, and Synthesis

