
Query Answering Using Views for Data Integration over the Web

In Proc. of 2nd Int. Workshop on the Web and Databases (WebDB’99)

D. Calvanese1, G. De Giacomo1, M. Lenzerini1, M. Y. Vardi2

1 Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy

lastname@dis.uniroma1.it

2 Department of Computer Science

Rice University, P.O. Box 1892

Houston, TX 77251-1892, U.S.A.

vardi@cs.rice.edu

1 Introduction

Query answering using views amounts to computing the answer to a query having information only on
the extension of a set of views. This problem is a central one in data integration: a typical integration
process results in a set of precomputed views, and the query evaluation mechanism can only rely on
such views in order to derive correct answers to queries. Two approaches to data integration have been
investigated, called virtual and materialized. In the virtual approach, the precomputed views represent
the data sources that are integrated, whereas in the materialized approach (generally adopted in data
warehousing), the precomputed views represent the result of the integration activity carried out over the
sources. In both cases, the problem of answering queries using views is crucial.

When integrating data over the web, data are typically modeled by means of semi-structured mecha-
nisms. Semi-structured data do not fit into rigid, predefined schemas, and are best described by graph-
based data models [1]. Methods for extracting information from semi-structured data on the web neces-
sarily incorporate special mechanisms that are not common in traditional database systems. If one looks
at the various proposals for query languages over the web [14] and over structured documents [11], one
realizes that they all have a common core. Namely, the fundamental querying mechanism that retrieves
all pairs of nodes in the graph connected by a path conforming to a regular expression (regular path
queries).

In this paper we address the problem of query answering using views in the context of integrating
data over the web. According to the above observation, we concentrate on the common core of any query
language over the web, and therefore we assume that both the query and the views are expressed in terms
of regular paths. In particular, this means that both may contain a (limited) form of recursion. Our goal
is to study the computational complexity of the problem, under different assumptions, namely, closed
and open domain, and sound, complete, and exact information on view extensions.

Suppose we want to know whether the pair (c, d) is in the answer to the query Q over the database
DB having only information on the extension of the views V1, . . . , Vn. The closed domain assumption
states that the database DB contains exactly the objects stored in the views. In other words, although
we do not know the exact form of DB , we know the set of objects stored in it. On the contrary, the
open domain assumption leaves the possibility open that DB contains other objects besides those stored
in the views.

Consider now view Vi and its extension ext(Vi). We say that Vi is sound if ext(Vi) is a subset of the
objects in DB that satisfy the definition def (Vi) of Vi. In other words, when a view is sound we know
a subset of the pairs of objects in DB that satisfy the view, but we cannot exclude that other pairs of
objects satisfy the view as well. The case of complete view is the dual one: if Vi is complete, then ext(Vi)
is a superset of the pairs of objects in DB that satisfy the definition of Vi. Finally, we say that a view is
exact if it is both sound and complete.

As pointed out in [15], in data integration, a sound view Vi corresponds to a data source which is
known to produce only (not necessarily all) the answers to the associated query def(Vi). On the other
hand, a complete view models a source which is known to produce all answers to the associated query,
and maybe more. Finally, an exact view is known to produce exactly the answers to the associated query.

The framework we consider in the paper allows the specification of which assumption to adopt for the
domain of the database, and of which one to adopt for each of the available views. Within this framework,
we have devised the following results:

• We have characterized the lower bound of the problem, under the different assumptions. In partic-
ular, it turns out that answering regular path queries using views is coNP-hard with respect to data

1



dau

y

1989

dau

y m

Dec

date

m

Mar

son dau

m

date

son son

y
m

date

d

y m

Mar

25

1965

1998 Feb

y

Jun

dau
son

Jan

1945
m

date

dau

2000

y m

son

Mary

John

Ken Tim Lea

Ann Bea Uli Jim Tom

date date date date date date

Bill

y

1967

y

Jan1988 1993

Figure 1: A database

complexity. With respect to expression (and hence combined) complexity, the problem is coNP-hard
under the closed domain assumption, and PSPACE-hard under the open domain assumption.

• We have shown that all cases are decidable and have provided algorithms whose complexity exactly
matches the corresponding lower bound.

Our investigation is similar in spirit to the one presented in [2], where the decidability and the data
complexity of the problem is studied when the views and the queries are expressed in terms of various
languages (conjunctive queries, datalog, first-order queries, etc.). The results in [2] and in other papers [12]
do not report any decidability results when both queries and views contain recursion. So, our results are
the first to exhibit decidability in cases where the language for expressing the query and the views allows
recursion.

2 Query Answering Using Views

We consider a setting in which databases are expressed in terms of edge-labeled graphs, and queries ask
for pairs of nodes connected by a specified path. This setting is typical in semi-structured data, where
all data models share the characteristic that data are organized in a labeled graph, where the nodes
represent objects, and the edges represent links between objects [6, 5, 1, 21].

Formally, we consider a database as a graph DB = 〈D, E〉, where the set D of nodes is called the
domain of DB , and the edges in E are labeled by elements from an alphabet Σ. We denote an edge from
node x to node y labeled by r with x

r
→ y.

Example 1 We show in Figure 1 an example of a database, with information on a set of people, their
sons and daughters, and their date of birth.

In this paper we consider regular path queries (which we call simply queries) i.e., queries that denote
all the paths corresponding to words of a specified regular language over the alphabet Σ. Regular path
queries are the basic constituents of queries in semi-structured data, and are typically expressed by means
of regular expressions [7, 1, 13, 19]. Another possibility to express regular path queries is to use finite
automata.

Definition 2 The answer set to a query Q over a database DB is ans(Q,DB) = {(x, y) | there is a path x
r1→

· · ·
rn→ y in DB s.t. r1 · · · rn ∈ L(Q)}, where L(Q) is the regular language defined by Q.

Example 3 Refer to the database in Figure 1, and consider the query (son + dau)∗·dau·date·m, asking
for the pairs (x, y) such that x is a person and y is the month of birth of a female descendent. It is easy
to see that (John, Jun) is in the answer set to the query.

We now introduce the problem of query answering using views. Consider a database DB = 〈D, E〉,
and suppose you want to answer a query Q only on the basis of your knowledge about the extension of a
set of views V1, . . . , Vn. The query Q is a regular path query over the alphabet Σ, and associated to each
view Vi we have

2



• a definition def (Vi) in terms of a regular path query over the alphabet Σ,

• a set ext(Vi) of pairs of elements of D which provides the information about the extension of Vi,

• a specification as(Vi) of which assumption to adopt for the view Vi, i.e., how to interpret ext(Vi)
with respect to ans(Vi,DB). We describe below the various possibilities that we consider for as(Vi).

As pointed out in several papers [2, 15, 17], the above problem comes in different forms, depending on
various assumptions about how accurate is the knowledge on both the objects of the database, and the
pairs satisfying the views. With respect to the knowledge about the objects, we distinguish between:

• Closed Domain Assumption (CDA): the exact set of objects in the database DB is known, and
coincides with the set of objects that appear in the views. We say that a database 〈D, E〉 is consistent

with ext(V1), . . . , ext(Vn) under CDA if the set of objects appearing in ext(V1) ∪ · · · ∪ ext(Vn) is
equal to D.

• Open Domain Assumption (ODA): only a subset of the objects in the database DB is known. We
say that a database 〈D, E〉 is consistent with ext(V1), . . . , ext(Vn) under ODA if the set of objects
that appear in ext(V1) ∪ · · · ∪ ext(Vn) is a subset of D.

With regard to the knowledge about the views, we consider the following three assumptions:

• Sound View Assumption (SVA): When a view Vi satisfies the SVA, written as(Vi) = SVA, from
the fact that a pair (a, b) is not in ext(Vi) one cannot conclude that (a, b) is not in ans(def (Vi),DB).
More formally, if as(Vi) = SVA, then a database DB is consistent with Vi if ext(Vi) ⊆ ans(def (Vi),DB).

• Complete View Assumption (CVA): When a view Vi satisfies the CVA, written as(Vi) = CVA,
from the fact that a pair is in ext(Vi) one cannot conclude that such a pair is in ans(def (Vi),DB).
On the other hand, from the fact that a pair is not in ext(Vi) one can conclude that such a
pair is not in ans(def (Vi),DB). If as(Vi) = CVA, then a database DB is consistent with Vi if
ext(Vi) ⊇ ans(def (Vi),DB).

• Exact View Assumption (EVA): For each view Vi that satisfies the EVA, written as(Vi) = EVA,
we know that the extension of the view is exactly the pair of objects that satisfy the view. If
as(Vi) = EVA, then a database DB is consistent with Vi if ext(Vi) = ans(def (Vi),DB).

Example 4 A possible set of views for the database of Figure 1 is {V1, V2, V3} where:

def (V1) = son + dau, as(V1) = EVA
def (V2) = (son + dau)∗·dau··m, as(V2) = SVA
def (V3) = dau, as(V3) = CVA

If, for example, ext(V1) is the set of nodes connected by son or dau, ext(V2) = (John, Jun), and ext(V3) =
{(Mary, Ann), (John, Lea), (Tim, Uli), (John, Tim)}, then the database is consistent with the views.

We are now ready to define the problem of answering queries using views.

Definition 5 Let α be CDA or ODA. The problem of answering queries using views under the domain

assumption α is the following: Given

• def (Vi), ext(Vi), and as(Vi), for each Vi (1 ≤ i ≤ n),

• a pair of object c, d ∈ D and a query Q,

decide whether (c, d) ∈ ans(Q), i.e., decide whether (c, d) ∈ ans(Q,DB), for each DB that is consistent
with ext(V1), . . . , ext(Vn) under α and that is consistent with every Vi.

The complexity of the problem can be measured in three different ways [25]:

• Data complexity : as a function of the size of ext(V1) ∪ · · · ∪ ext(Vn).

• Expression complexity : as a function of the size of Q and of the expressions def (V1), . . . , def (Vn).

• Combined complexity : as a function of the size of both ext(V1) ∪ · · · ∪ ext(Vn) and the expressions
Q, def (V1), . . . , def (Vn).

3



Observe that CDA and ODA are inherently different assumptions. In particular, objects that are not
stored in the views may be necessary in proving that a database exists where a pair is not in the answer
set of a query. This is illustrated by the following example.

Example 6 Suppose def (V ) = R1·R2, ext(V ) = {(a, b)}, and we want to check whether (a, b) ∈ R1+R2.
If we adopt the CDA, then a and b are the only objects to consider, and the answer is yes. However,
if we adopt the ODA, and allow for an additional object c, we get the following counterexample to the
query: (a, c) ∈ R1 and (c, b) ∈ R2.

Similarly, the SVA and the EVA are very different assumptions. To see this, it is sufficient to note
that if we adopt the EVA for some of the views, then there is the possibility that there exists no database
at all which is consistent with the views. This cannot happen in the case where all views are sound.

Example 7 Consider views V1 and V2 such that def (V1) = R, def (V2) = R∗, ext(V1) = {(a, c)},
ext(V2) = {(a, b)}, and as(V2) = EVA. Obviously, from the extension of V1 one can conclude that
(a, c) should also appear in V2. Since V2 is assumed to be exact, no database exists which is consistent
with the views.

On the other hand, complete views can be reformulated in terms of exact views. Indeed, by exploiting
union in our query language, given an instance of the problem of query answering using views, we can
always transform it to a new instance with only sound and exact views, and such that the solutions of
the two instances are the same. Suppose we want to check whether (c, d) is a certain answer to the query
Q under the domain assumption α, given the views V1, . . . , Vn, and suppose that as(Vi) = CVA. Replace
Vi by V ′

i such that def (V ′

i ) = def (Vi) + Rnew, ext(V ′

i ) = ext(Vi), and as(V ′

i ) = EVA, where Rnew is a
new symbol that does not appear in Q,V1, . . . , Vn. It is easy to see that the new instance of the problem
has the same solution as the original one. For this reason we can concentrate our attention on sound and
exact views, and ignore the complete view assumption. Note that we cannot apply similar arguments in
order to reduce sound views to exact views, because our query language lacks intersection.

The problem of query answering using views can be interpreted as checking whether (c, d) is a certain

answer to Q [2]. On the other hand, one may be interested in checking whether (c, d) is a possible answer

to Q, i.e., checking whether (c, d) ∈ ans(Q,DB), for some DB which is consistent with ext(V1), . . . , ext(Vn)
under α, and is consistent with every Vi.

From the point of view of logic, finding certain answers is a logical implication problem: check whether
(c, d) ∈ Q logically follows from the information on the views. Similarly, finding possible answers is a
consistency problem: check whether (c, d) ∈ Q is consistent with the information on the views. The
following argument illustrates the relationship between the two problems in our framework.

Suppose we want to check whether (c, d) is a possible answer to the query Q under the domain
assumption α, given the views V1, . . . , Vn. We add to V1, . . . , Vn another view VQ such that def (VQ) = Q,
ext(VQ) = {(c, d)} and as(VQ) = SVA, and we ask whether (c, d) is a certain answer to the query Rnew,
where Rnew does not appear in VQ, V1, . . . , Vn. If the answer is yes, then the only reason is that there
is no DB which is consistent with ext(VQ), ext(V1), . . . , ext(Vn) under α, and is consistent with VQ and
every Vi, and therefore (c, d) is not a possible answer to Q. If the answer is no, then such a DB exists,
and (c, d) is obviously a possible answer to Q.

The above observation shows that the problem of finding possible answers can be reduced to the one
of finding certain answers (provided that we interpret at least one of the views under the SVA). Therefore,
we consider only certain answers.

3 Results

We summarize the results we have obtained on the complexity of answering regular path queries using
views in Table 1 1. Entries with “sound” (resp., “exact”) in the column named “Assumption on views”
refer to the case where all views are assumed to be sound (resp., exact), whereas “arbitrary” means that
for each view V , as(V ) can be arbitrary. Each entry of the table referring to a complexity class C means
that the corresponding problem is complete with respect to C.

None of the cases can be solved in polynomial time (unless P=NP). This can be explained by observing
that, as noted in [4, 2], query answering using views is strictly related to query answering over incomplete
databases. Indeed, when we answer the query on the basis of the views, we know only the extensions of

1The automata-theoretic techniques used to prove the results can be found in [8]

4



Assumption Assumption Complexity

on domain on views data expression combined

sound coNP coNP coNP

closed exact coNP coNP coNP

arbitrary coNP coNP coNP

sound coNP PSPACE PSPACE

open exact coNP PSPACE PSPACE

arbitrary coNP PSPACE PSPACE

Table 1: Summary of complexity results (all bounds are tight)

the views, and this provides us with only partial information on DB . Moreover, since our query language
admits various forms of incomplete information (due to union and transitive closure), there are in general
several possible databases that are coherent with the knowledge about the views. The need of considering
all such possibilities is a source of complexity for query answering.

Obviously, under the CDA, we know at least the set of objects stored in the database, and therefore,
our knowledge is more accurate than in the case of ODA. One important feature of the CDA is that
it is not necessary to conjecture the existence of unknown objects in the database. This provides the
intuition of why under the CDA the problem is “only” coNP-complete in all cases, for data, expression,
and combined complexity.

On the other hand, under the ODA, we cannot exclude the possibility that the database contains more
objects than those known to be in the views. For combined complexity, this means that we are forced
to reason about the definition of the query and the views. Indeed, the problem cannot be less complex
than comparing two regular path queries, and this explains the PSPACE lower bound. Interestingly,
our algorithms show that the problem does not exceed the PSPACE complexity. Moreover, the data
complexity remains in coNP, and therefore, although we are using a query language that is powerful
enough to express a (limited) form of recursion, the problem is no more complex than in the case of
disjunctions of conjunctive queries [2].

4 Related Work

Query answering using views has been extensively investigated in the last years [2, 15, 12, 18, 3]. As we
said in the introduction, none of these works provides decidability results for the case where both the
query and the views contain recursion.

The work in [2] shares the same goal of this paper. The authors present an analysis of the data
complexity of the problem, for the case where the views and the queries are expressed in terms of various
languages (conjunctive queries, datalog, first-order queries, etc.). Note, however, that they do not consider
the case of regular path queries. The results presented in [2] show that, for the query languages considered
in that paper, the EVA complicates the problem. For example, the data complexity of query answering
for the case of conjunctive queries is PTIME under the SVA and coNP-complete under the EVA. This
can be explained by noticing that the EVA introduces a form of negation, and therefore it may force to
reason by cases on the objects stored in the views. On the contrary, in the case of regular path queries,
the EVA does not increase the complexity of the problem. In some sense, the expressive power of the
query language forces to reason by cases already under the SVA, and the EVA does not introduce new
complexity.

The problem of query answering using views has also some connection with the problem of rewriting
queries using views [24]: Given a query Q and views V1, . . . , Vn with associated definitions def (V1), . . . , def (Vn),
generate a new query Q′ over the alphabet V1, . . . , Vn such that for every database DB , first comput-
ing the extension ans(def (Vi),DB) of each Vi, and then evaluating Q′ on the basis of such extensions,
provides the answer to Q over DB . Several papers investigate this problem for the case of conjunctive
queries (with or without arithmetic comparisons) [18, 22], queries with aggregates [23, 10, 16], recursive
queries [12], queries expressed in Description Logics [4], and queries over semistructured data, both with-
out regular expressions [20], and with regular expressions [9]. Although methods for query rewriting can
be adapted to the problem of query answering using views [18], the two problems are different. In query
rewriting we can only use the view definitions in a way that abstracts from the view extension. On the
other hand, in query answering, we not only have the definitions of the views, but also their extensions
for a specific database, and we use such view extensions to answer the query over that database.

Note that computing a rewriting is in general costly [18, 9]. However, since such a computation does

5



not depend on the extension of the views, the data complexity of evaluating the rewriting over the view
extensions is not influenced by its cost.

References

[1] Serge Abiteboul. Querying semi-structured data. In Proc. of ICDT’97, pages 1–18, 1997.

[2] Serge Abiteboul and Oliver Duschka. Complexity of answering queries using materialized views. In Proc. of

PODS’98, pages 254–265, 1998.

[3] Foto N. Afrati, Manolis Gergatsoulis, and Theodoros Kavalieros. Answering queries using materialized views
with disjunction. In Proc. of ICDT’99, volume 1540 of LNCS, pages 435–452. Springer-Verlag, 1999.

[4] Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. Rewriting queries using views in description logics.
In Proc. of PODS’97, pages 99–108, 1997.

[5] Peter Buneman. Semistructured data. In Proc. of PODS’97, pages 117–121, 1997.

[6] Peter Buneman, Susan Davidson, Mary Fernandez, and Dan Suciu. Adding structure to unstructured data.
In Proc. of ICDT’97, pages 336–350, 1997.

[7] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A query language and optimization
technique for unstructured data. In Proc. of ACM SIGMOD, pages 505–516, 1996.

[8] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Vardi. Answering regular path
queries using views. Technical report, Dip. di Inf. e Sist., Univ. di Roma “La Sapienza”, 1999.

[9] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Rewriting of regular
expressions and regular path queries. In Proc. of PODS’99, 1999.

[10] Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting aggregate queries using views. In Proc. of

PODS’99, 1999.

[11] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. XML-QL: A query
language for XML. Submission to the World Wibe Web Consortium, August 1998. Available at
http://www.w3.org/TR/NOTE-xml-ql.

[12] Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using views. In Proc. of PODS’97,
pages 109–116, 1997.

[13] Mary F. Fernandez and Dan Suciu. Optimizing regular path expressions using graph schemas. In Proc. of

ICDE’98, pages 14–23, 1998.

[14] Daniela Florescu, Alon Levy, and Alberto Mendelzon. Database techniques for the World-Wide Web: A
survey. SIGMOD Record, 27(3):59–74, 1998.

[15] Gösta Grahne and Alberto O. Mendelzon. Tableau techniques for querying information sources through
global schemas. In Proc. of ICDT’99, volume 1540 of LNCS, pages 332–347. Springer-Verlag, 1999.

[16] Stéphane Grumbach, Maurizio Rafanelli, and Leonardo Tininini. Querying aggregate data. In Proc. of

PODS’99, 1999.

[17] Alon Y. Levy. Obtaining complete answers from incomplete databases. In Proc. of VLDB’96, pages 402–412,
1996.

[18] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering queries using views.
In Proc. of PODS’95, pages 95–104, 1995.

[19] Tova Milo and Dan Suciu. Index structures for path expressions. In Proc. of ICDT’99, volume 1540 of LNCS,
pages 277–295. Springer-Verlag, 1999.

[20] Yannis Papakonstantinou and Vasilis Vassalos. Query rewriting using semistructured views. In Proc. of ACM

SIGMOD, 1999.

[21] D. Quass, A. Rajaraman, I. Sagiv, J. Ullman, and J. Widom. Querying semistructured heterogeneous
information. In Proc. of DOOD’95, pages 319–344. Springer-Verlag, 1995.

[22] Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries using templates with binding
patterns. In Proc. of PODS’95, 1995.

[23] D. Srivastava, S. Dar, H. V. Jagadish, and A. Levy. Answering queries with aggregation using views. In
Proc. of VLDB’96, pages 318–329, 1996.

[24] Jeffrey D. Ullman. Information integration using logical views. In Proc. of ICDT’97, volume 1186 of LNCS,
pages 19–40. Springer-Verlag, 1997.

[25] Moshe Y. Vardi. The complexity of relational query languages. In Proc. of STOC’82, pages 137–146, 1982.

6


