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Abstract

Recent work on semi-structured data has revitalized the
interest in path queries, i.e., queries that ask for all
pairs of objects in the database that are connected by
a path conforming to a certain specification, in partic-
ular to a regular expression. Also, in semi-structured
data, as well as in data integration, data warehousing,
and query optimization, the problem of query rewriting
using views is receiving much attention: Given a query
and a collection of views, generate a new query which
uses the views and provides the answer to the original
one.

In this paper we address the problem of query rewrit-
ing using views in the context of semi-structured data.
We present a method for computing the rewriting of a
regular expression E in terms of other regular expres-
sions. The method computes the exact rewriting (the
one that defines the same regular language as E) if it
exists, or the rewriting that defines the maximal lan-
guage contained in the one defined by E, otherwise. We
present a complexity analysis of both the problem and
the method, showing that the latter is essentially opti-
mal. Finally, we illustrate how to exploit the method
to rewrite regular path queries using views in semi-
structured data. The complexity results established for
the rewriting of regular expressions apply also to the
case of regular path queries.

1 Introduction

Database research has often shown strong interest in
path queries, i.e., queries that ask for all pairs of ob-
jects in the database that are connected by a speci-
fied path (see for example [CMW87, CM90]). Recent
work on semi-structured data has revitalized such in-

terest. Semi-structured data are data whose structure
is irregular, partially known, or subject to frequent
changes [Abi97]. They are usually formalized in terms
of labeled graphs, and capture data as found in many
application areas, such as web information systems, dig-
ital libraries, and data integration [BDFS97, CACS94,
MMM97, QRS+95].

The basic querying mechanism over such graphs is
the one that retrieves all pairs of nodes connected by a
path conforming to a given pattern. Since a user may
ignore the precise structure of the graph, the mech-
anism for specifying path patterns should be flexible
enough to allow for expressing regular path queries,
i.e., queries that provide the specification of the re-
quested paths through a regular language [AQM+97,
BDHS96, FFK+98]. For example, the regular path
query ( ∗ · (rome + jerusalem) · ∗ · restaurant) speci-
fies all the paths having at some point an edge labeled
rome or jerusalem, followed by any number of other
edges and by an edge labeled with a restaurant.

Methods for reasoning about regular path queries
have been recently proposed in the literature. In par-
ticular, [AV97, BFW98] investigate the decidability of
the implication problem for path constraints, which are
integrity constraints that are exploited in the optimiza-
tion of regular path queries. Also, containment of con-
junctions of regular path queries has been addressed
and proved decidable in [CDGL98, FLS98].

In semi-structured data, as well as in data integra-
tion, data warehousing, and query optimization, the
problem of query rewriting using views is receiving
much attention [Ull97, AD98]: Given a query Q and k

queries Q1, . . . , Qk associated to the symbols q1, . . . , qk,
respectively, generate a new query Q′ over the alphabet
q1, . . . , qk such that, first interpreting each qi as the re-
sult of Qi, and then evaluating Q′ on the basis of such
interpretation, provides the answer to Q.

Several papers investigate this problem for the
case of conjunctive queries (with or without arith-
metic comparisons) [LMSS95, RSU95], queries with ag-
gregates [SDJL96, CNS99], recursive queries [DG97],



and queries expressed in Description Logics [BLR97].
Rewriting techniques for query optimization are de-
scribed, for example, in [CKPS95, ACPS96, TSI96], and
in [FS98, MS99] for the case of path queries in semi-
structured data.

None of the above papers provides a method for
rewriting regular path queries. Observe that such a
method requires a technique for the rewriting of regular
expressions, i.e., the problem that, given a regular ex-
pression E0, and other k regular expressions E1, . . . , Ek,
checks whether we can re-express E0 by a suitable com-
bination of E1, . . . , Ek. As noted in [MS99], such a
problem is still open.

In this paper we present the following contributions:

• We describe a method for computing the rewriting
of a regular expression E0 in terms of other regu-
lar expressions. The method computes the exact
rewriting (the one that defines the same regular
language as E0) if it exists, or the rewriting that
defines the maximal language contained in the one
defined by E0, otherwise.

• We provide a complexity analysis of the prob-
lem of rewriting regular expressions. We show
that our method computes the rewriting in 2EXP-
TIME, and is able to check whether the computed
rewriting is exact in 2EXPSPACE. We also show
that the problem of checking whether there is a
nonempty rewriting is EXPSPACE-complete, and
demonstrate that our method for computing the
rewriting is essentially optimal. Finally, we show
that the problem of verifying the existence of an
exact rewriting is 2EXPSPACE-complete.

• We illustrate how to exploit the above men-
tioned method in order to devise an algorithm
for the rewriting of regular path queries for semi-
structured databases. The complexity results es-
tablished for the rewriting of regular expressions
apply to the new algorithm as well. Also, we show
how to adapt the method in order to compute
rewritings with specific properties. In particular,
we consider partial rewritings (which are rewrit-
ings that, besides E1, . . . , Ek, may use also sym-
bols in E0), in the case where an exact one does
not exist.

We point out that the results established in this
work provide the first decidability results for rewrit-
ing recursive queries using recursive views. Indeed, in
our context, both the query and the views may con-
tain a form of recursion due to the presence of tran-
sitive closure. Observe that the case where the query
contains unrestricted recursion has been shown unde-
cidable, even when the views are not recursive [DG97].
More precisely, the authors in [DG97] present a method

that computes the maximally contained rewriting of a
datalog query in terms of a set of conjunctive queries,
and show that it is undecidable to check whether the
rewriting is equivalent to the original query.

The paper is organized as follows. Section 2 presents
the method for rewriting regular expressions. Section 3
describes the complexity analysis of both the method
and the problem. Section 4 illustrates the use of the
technique to rewrite path queries for semi-structured
databases. Finally, Section 5 describes possible devel-
opments of our research.

2 Rewriting of regular expressions

In this section, we present a technique for the follow-
ing problem: Given a regular expression E0 and a (fi-
nite) set E = {E1, . . . , Ek} of regular expressions over
an alphabet Σ, re-express, if possible, E0 by a suitable
combination of E1, . . . , Ek.

We assume that associated to E we always have an
alphabet ΣE containing exactly one symbol for each reg-
ular expression in E , and we denote the regular expres-
sion associated to the symbol e ∈ ΣE with re(e). Given
any language ℓ over ΣE , we denote by expΣ(ℓ) the lan-
guage over Σ defined as follows

expΣ(ℓ) =
⋃

e1···en∈ℓ

{w1 · · ·wn | wi ∈ L(re(ei))}

where L(e) is the language defined by the regular ex-
pression e.

Definition 1 Let R be any formalism for defining a
language L(R) over ΣE . We say that R is a rewriting
of E0 wrt E if expΣ(L(R)) ⊆ L(E0).

We are interested in maximal rewritings, i.e., rewrit-
ings that capture in the best possible way the language
defined by the original regular expression E0.

Definition 2 A rewriting R of E0 wrt E is Σ-maximal
if for each rewriting R′ of E0 wrt E we have that
expΣ(L(R′)) ⊆ expΣ(L(R)). A rewriting R of E0 wrt E
is ΣE -maximal if for each rewriting R′ of E0 wrt E we
have that L(R′) ⊆ L(R).

Intuitively, when considering Σ-maximal rewritings
we look at the languages obtained after substituting
each symbol in the rewriting by the corresponding reg-
ular expression over Σ, whereas when considering ΣE -
maximal rewritings we look at the languages over ΣE .
Observe that by definition all Σ-maximal rewritings
define the same language (similarly for ΣE -maximal
rewritings), and that not all Σ-maximal rewritings are
ΣE -maximal, as shown by the following example.



Example 1 Let E0 = a∗, E = {a∗}, and ΣE = {e},
where re(e) = a∗. Then both R1 = e∗ and R2 = e

are Σ-maximal rewritings of E0 wrt E , but R1 is also
ΣE -maximal while R2 is not.

However, it turns out that ΣE -maximality is a suffi-
cient condition for Σ-maximality.

Theorem 1 Let R be a rewriting of E0 wrt E. If R is
ΣE -maximal then it is also Σ-maximal.

Proof. Assume by contradiction that R is a ΣE -
maximal rewriting of E0 wrt E that is not Σ-maximal.
Then there is a rewriting R′ of E0 wrt E , a ΣE -word u′ ∈
L(R′), and a Σ-word w ∈ L(expΣ({u′})) such that for
no ΣE -word u ∈ L(R), it holds that w ∈ L(expΣ({u})).
Hence u′ 6∈ L(R) and L(R′) 6⊆ L(R). Contradiction. 2

Given E0 and E , we are interested in deriving a Σ-
maximal rewriting of E0 wrt E . We show that such
maximal rewriting always exists. In fact, we provide a
method that, given E0 and E , constructs a ΣE -maximal
rewriting of E0 wrt E . By Theorem 1 the constructed
rewriting is also Σ-maximal.

The construction takes E0 and E as input, and re-
turns an automaton RE,E0

built as follows:

1. Construct a deterministic automaton Ad =
(Σ, S, s0, ρ, F ) such that L(Ad) = L(E0).

2. Define the automaton A′ = (ΣE , S, s0, ρ
′, S − F ),

where sj ∈ ρ′(si, e) if and only if ∃w ∈ L(re(e))
such that sj ∈ ρ∗(si, w).

3. RE,E0
= A′, i.e., the complement of A′.

Observe that, if A′ accepts a ΣE -word e1 · · · en, then
there exist n Σ-words w1, . . . , wn such that wi ∈
L(re(ei)) for i = 1, . . . , n and such that the Σ-word
w1 · · ·wn is rejected by Ad. On the other hand if there
exists n Σ-words w1, . . . , wn such that wi ∈ L(re(ei)),
for i = 1, . . . , n, and w1 · · ·wn is rejected by Ad, then
the ΣE -word e1 · · · en is accepted by A′. That is A′

accepts a ΣE -word e1 · · · en if and only if there is a Σ-
word in expΣ({e1 · · · en}) that is rejected by Ad. Hence,
RE,E0

, being the complement of A′, accepts a ΣE -word
e1 · · · en if and only if all Σ-words w = w1 · · ·wn such
that wi ∈ L(re(ei)) for i = 1, . . . , n, are accepted by
Ad. Hence we can state the following theorem.

Theorem 2 The automaton RE,E0
is a ΣE -maximal

rewriting of E0 wrt E.

Proof. It is easy to see that by construction RE,E0
= A′

is a rewriting of E0 wrt E . We prove by contradiction
that it is ΣE -maximal. Let R be a rewriting of E0 wrt
E such that L(R) 6⊆ L(A′). Let e1 · · · en be a ΣE -word
such that e1 · · · en ∈ L(R) but e1 · · · en 6∈ L(A′). By
definition of rewriting, all Σ-words w1 · · ·wn such that

wi ∈ L(re(ei)) for i = 1, . . . , n, are in L(E0) = L(Ad).
On the other hand, since e1 · · · en 6∈ L(A′), the ΣE -
word e1 · · · en is accepted by A′. Thus there is a Σ-word
w1 · · ·wn, such that wi ∈ L(re(ei)) for i = 1, . . . , n, that
is rejected by Ad. Contradiction. 2

Notably, although Definition 1 does not constrain in
any way the form of the rewritings, which, a priori, need
not even be recursive, Theorem 2 shows that the lan-
guage over ΣE (and therefore also the language over Σ)
defined by the ΣE -maximal rewritings is in fact regular
(indeed, A′ is a finite automaton).

We illustrate the algorithm that computes a ΣE -
maximal rewriting by means of the following example.

Example 2 Let E0 = a·(b·a+c)∗, and let E and ΣE be
such that re(e1) = a, re(e2) = a·c∗·b, and re(e3) = c.
The deterministic automaton Ad shown in Figure 1 ac-
cepts L(E0), while A′ is the corresponding automaton
constructed in Step 2 of the rewriting algorithm. Since
A′ is deterministic, by simply exchanging final and non-
final states we obtain its complement A′, which is the
rewriting RE,E0

.

Next we address the problem of verifying whether
the rewriting RE,E0

captures exactly the language de-
fined by E0.

Definition 3 A rewriting R of E0 wrt E is exact if
expΣ(L(R)) = L(E0).

To verify whether RE,E0
is an exact rewriting of E0

wrt E we proceed as follows:

1. We construct an automaton B =
(Σ, SB , sB0, ρB , FB) that accepts expΣ(L(RE,E0

)),
by replacing each edge labeled by ei in RE,E0

by
an automaton Ai such that L(Ai) = L(re(ei)) for
i = 1, . . . , k. (Each edge labeled by ei is replaced
by a fresh copy of Ai. We assume, without
loss of generality, that Ai has unique start state
and accepting state, which are identified with
the source and target of the edge, respectively.)
Observe that, since RE,E0

is a rewriting of E0,
L(B) ⊆ L(Ad).

2. We check whether L(Ad) ⊆ L(B), that is, we check
whether L(Ad ∩ B) = ∅.

Theorem 3 The automaton RE,E0
is an exact rewrit-

ing of E0 wrt E if and only if L(Ad ∩ B) = ∅.

Proof. By Theorem 2 the automaton RE,E0
is a rewrit-

ing of E0 wrt E . Suppose L(Ad ∩ B) = ∅. Then
any Σ-word w ∈ L(E0) = L(Ad) is also accepted by
B. Hence by construction of B there is a ΣE -word
e1 · · · en ∈ L(A′) such that w = w1 · · ·wn and wi ∈
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Figure 1: Construction of the rewriting of a·(b·a + c)∗ wrt {a, a·c∗·b, c}

L(re(ei)) for i = 1, . . . , n. Suppose that L(Ad ∩B) 6= ∅.
Then there exists a Σ-word w ∈ L(E0) = L(Ad) that is
rejected by B. Hence by construction of B there is no
ΣE -word e1 · · · en ∈ L(A′) such that w = w1 · · ·wn and
wi ∈ L(re(ei)) for i = 1, . . . , n. 2

Corollary 4 An exact rewriting of E0 wrt E exists if
and only if L(Ad ∩ B) = ∅.

Example 2 (cont.) One can easily verify that
RE,E0

= e∗2·e1·e
∗
3 is exact. Observe that, if E did not

include c, the rewriting algorithm would give us e∗2·e1

as the ΣE -maximal rewriting of E0 wrt {a, a·c∗·b},
which however is not exact.

3 Complexity analysis

In this section we analyze the computational complexity
of both the problem of rewriting regular expressions,
and the method described in Section 2.

3.1 Upper bounds

Let us analyze the complexity of the algorithms pre-
sented above for computing the maximal rewriting of a
regular expression. By considering the cost of the var-
ious steps in computing RE,E0

, we immediately derive
the following theorem.

Theorem 5 The problem of generating the ΣE -
maximal rewriting of a regular expression E0 wrt a set
E of regular expressions is in 2EXPTIME.

Proof. We refer to the algorithm that computes RE,E0
,

and we observe that: (i) Generating the deterministic
automaton Ad from E0 is exponential. (ii) Building A′

from Ad and the expressions E1, . . . , Ek is polynomial.
(iii) Complementing A′ is again exponential. 2

With regard to the cost of verifying the existence of
an exact rewriting, Corollary 4 ensures us that we can
solve the problem by checking L(Ad ∩B) = ∅. Observe

that, if we construct L(Ad ∩B), we get a cost of 3EXP-
TIME, since B is of triply exponential size with respect
to the size of the input. However, we can avoid the
explicit construction of B, thus getting the following
result.

Theorem 6 The problem of verifying the existence of
an exact rewriting of a regular expression E0 wrt a set
E of regular expressions is in 2EXPSPACE.

Proof (sketch). We refer to the algorithm that veri-
fies whether the automaton RE,E0

is an exact rewrit-
ing of E0 wrt E , and we observe that: (i) By Theo-
rem 5, the automaton RE,E0

is of doubly exponential
size. (ii) Building the automaton B from RE,E0

is poly-
nomial. (iii) Complementing B to get B is exponen-
tial. (iv) Verifying the emptiness of the intersection
of Ad and B can be done in nondeterministic logarith-
mic space [RS59, Jon75]. Combining (i)–(iv), we get a
nondeterministic 2EXPSPACE bound, using Savitch’s
Theorem [Sav70], we get a deterministic 2EXPSPACE
bound.

Some care, however, is needed to getting the claimed
space bound. We cannot simply construct B, since it is
of triply exponential size. Instead, we construct B “on-
the-fly”; whenever the nonemptiness algorithm wants
to move from a state s1 of the intersection of Ad and B

to a state s2, the algorithm guesses s2 and checks that it
is directly connected to s1. Once this has been verified,
the algorithm can discard s1. Thus, at each step the
algorithm needs to keep in memory at most two states
and there is no need to generate all of B at any single
step of the algorithm. 2

3.2 Lower bounds

We show that the bounds established in Section 3.1 are
essentially optimal.

We say that a rewriting R is ΣE -empty if L(R) = ∅.
We say that it is Σ-empty if expΣ(L(R)) = ∅. Clearly
ΣE -emptiness implies Σ-emptiness. The converse also



holds except for the non-interesting case where E con-
tains one or more expressions E such that L(E) = ∅.
Therefore, we will talk about the emptiness of a rewrit-
ing R without distinguishing between the two defini-
tions.

Theorem 7 The problem of verifying the existence of
a nonempty rewriting of a regular expression E0 wrt a
set E of regular expressions is EXPSPACE-complete.

Proof (sketch). By Theorem 5, we generate the ΣE -
maximal rewriting of a regular expression E0 wrt a
set E of regular expressions in 2EXPTIME. Checking
whether a given finite-state automaton in non-empty
can be done in NLOGSPACE. The upper bound fol-
lows (see comments in the proof of Theorem 6).

To prove the lower bound we describe a reduction
from an EXPSPACE Turing machine. That is, given an
EXPSPACE Turing machine T we construct a regular
expression E0 and a set E of regular expressions such
that T accepts an empty tape of length n if and only
if there is a nonempty rewriting of E0 wrt E . We now
sketch the reduction.

Let T have an alphabet Γ and a set Q of states.
Then configurations of T can be represented as words
of length 2m over the configuration alphabet ∆ = Γ ∪
(Γ × Q), where m = cn for some constant c. A compu-
tation of T can be described as a word over ∆, where
every block of 2m symbols describes a configuration of
T . We take ∆ to be ΣE . We will define E0 and re(e)
for each letter e ∈ ∆ such that a word e1 · · · el de-
scribes an accepting computation of T if and only if
expΣ(e1 · · · el) ⊆ L(E0). E0 will be defined as a sum of
regular expressions Ei’s.

The construction of re(e) for e ∈ ∆ is uniform: we
take the alphabet Σ to be ∆∪{0, 1, $} (so ΣE ⊆ Σ), and
define re(e) = $ · (0 + 1)3m+1 · e; that is, the language
associated with e consists of e prefixed with a $ sign
and all binary words of length 3m + 1. Intuitively, the
$ sign is a marker, the first m bits encode the position
of a symbol in a configuration (m bits are needed to
describe the position in a configuration of length 2m),
and the next 2m bits encode bookkeeping information.
The 3m + 1-st bit is a highlight whose function will be-
come clear shortly. Given a word w ∈ L(re(e)), we use
position(w) to denote the first m bits, carry(w) to de-
note the second m bits, next(w) to denote the third
m bits, highlite(w) to denote the 3m + 1-st bit, and
symbol(w) to denote the last symbol, which is e. Con-
sider now a word e1 · · · el over ∆, and let w = w1 · · ·wl

be a word in expΣ(e1 · · · el). We call each wi, which is
a word of length 3m + 3, a block.

We classify such words w into two classes. Our in-
tention is that position(wi) describes an m-bit counter,
that precisely two highlight bits be on, and that these
two highlight bits be located in blocks wi and wj such

that position(wi) = position(wj) and for at most one
k, i < k < j, we have position(wk) = 0m. Requir-
ing positions(w) to be an m-bit counter means that we
expect position(w0) = 0m, and we expect carry(wi)
to be the sequence of m carry bits when position(wi)
is incremented to yield next(wi), which is equal to
position(wi+1). If the intended conditions do not hold,
then w is a bad word. We define E0 in such a way
that all bad words belong to L(E0). Every violated
condition can be “detected” by a regular expression Ei

of size O(m). For example, the last carry bit need al-
ways to be 1. Thus, by taking E1 to be the expression
(Σ3m+3)∗ ·Σ2m · 0 ·Σm+2 · (Σ3m+3)∗ we guarantee that
words that have carry whose last bit is not 1 will be
included in L(E0).

Words that satisfy these conditions are good words,
and will be handled differently. In such words the two
highlight bits are on at two positions that are precisely
2m blocks apart. These blocks correspond to identically
located cells of two adjacent configurations of the ma-
chine T . These cells, and their neighboring cells have to
be related in a way that depends on the transition table
of T . (Generally, cell i in a configuration of a Turing
machine depends only on cells i − 1, i, and i + 1 in the
previous configuration). We can use regular expressions
of size O(m) to force such blocks to be related in the
right way. Thus, all the good words w = w1 · · ·wl in
expΣ(e1 · · · el) are in L(E0) if and only if e1 · · · el de-
scribes an accepting computation of T . If T has no
accepting computation then for every e1 · · · el we can
find a good word w = w1 · · ·wl in expΣ(e1 · · · el) that is
not in L(E0). Thus, E0 has a nonempty rewriting wrt
E if and only if T has an accepting computation. 2

Note that Theorem 7 implies that the upper bound
established in Theorem 5 is essentially optimal. If we
can generate maximal rewritings in, say, EXPTIME,
then we could test emptiness in PSPACE, which is im-
possible by Theorem 7. We can get, however, an even
sharper lower bound on the size of rewritings.

Theorem 8 For each n > 0 there is a regular expres-
sion En

0 and a set En of regular expressions such that
the combined size of En

0 and En is polynomial in n, but
the shortest nonempty rewriting (expressed either as a
regular expression or as an automaton) of En

0 wrt En is
of length 22n

.

Proof (sketch). We use the encoding technique of The-
orem 7. Instead, however, of encoding Turing machine
computations, we encode a 2n-bit counter. We take
En = {en

0 , en
1} and ΣE = {0, 1}. We define En

0 , en
0 , and

en
1 in such a way that en

i0
. . . en

im
is a rewriting of En

0 wrt
En if and only if the bit vector i0 . . . im is of the form
w0 . . . w22n

−1, where wi is the 2n-bit representation of i.
Using pumping arguments it can be shown that any reg-



ular expression or automaton describing such a rewrit-
ing has to be of length at least 22n

. 2

The technique used in Theorem 7 turns out to be an
important building block in the proof that Theorem 6
is also tight.

Theorem 9 The problem of verifying the existence of
an exact rewriting of a regular expression E0 wrt a set
E of regular expressions is 2EXPSPACE-complete.

Proof (sketch). The upper bound proof is given in
Theorem 6.

To prove the lower bound we describe a reduction
from an 2EXPSPACE Turing machine. That is, given
an 2EXPSPACE Turing machine T we construct a regu-
lar expression E0 and a set E of regular expressions such
that T accepts an empty tape of length n if and only if
there is an exact rewriting of E0 wrt E . Computations
of 2EXPSPACE machines are sequences of configura-
tions each of which is doubly exponentially long. Thus,
to “check” such computations one needs to compare
cells that are doubly exponential distance apart, which
requires “yardsticks” of such length. Fortunately, we
have seen in the proof of Theorem 7 how to construct
such yardsticks.

Using a Turing machine T ′ that emulates a 2n-bit
counter (this machine is different than the 2EXPSPACE
machine T ), we use the construction described in The-
orem 7 to construct a regular expression E0 and a
set E of regular expressions such that the following
property hold. For a word w over ΣE we have that
expΣ(w) ⊆ L(E0) precisely when w is in the form

Σ∗
E ·a ·Σ

22n

E ·b ·Σ∗
E , where (a, b) are a special pair of sym-

bols whose only occurrence in w is as described (we will
use a finite set of such pairs). Let ∆ be the configuration
alphabet of the machine T . We add to E0 the expression
∆∗, i.e., E0 expresses also all “candidate” computations
of T . If T does not have an accepting computation, then
every candidate computation will have an error. We fo-
cus here on errors that arise from mismatch of symbols
that are 22n

apart.
We now add ∆ to every regular expression re(e) for

e ∈ ΣE with the exception of the symbols in the special
pairs. (We need to extend E0 is a straightforward man-
ner to ensure that our rewriting is still a rewriting. We
also need to extend E to ensure that our rewriting is
exact wrt the “old” part of E0.) If we added ∆ also to
the regular expressions of symbols in special pairs, than
all words in ∆∗ will be contained in expΣ(w) for some
word w in the rewriting. Instead, for each special pair
(a, b) we add to re(a) and re(b), respectively, a pair of
symbols that correspond to a possible mismatch of sym-
bols in a candidate computation. (The finite number of
such possible errors correspond to the finite number of
special pairs). Thus, the rewriting generates only can-
didate computations with errors. Thus, if all candidate

computations of T have an error, the rewriting is exact.
If, on the other hand, T does have an accepting compu-
tation, such a computation does not have an error and
will not be generated by the rewriting, resulting in a
non-exact rewriting. 2

4 Query rewriting in semi-structured data

In this section we show how to apply the results pre-
sented above to query rewriting in semi-structured data.

All semi-structured data models share the character-
istic that data are organized in a labeled graph [Bun97,
Abi97]. Following this idea two different approaches
have been proposed:

1. The first approach associates data both to the
nodes and to the edges. Specifically, nodes repre-
sent objects, and edges represent relations between
objects [Abi97, QRS+95, FFLS97, FFK+98].

2. The second approach associates data to the edges
only [BDFS97, BDHS96, FS98], but queries are
not expressed directly over the constants labeling
the edges of databases, but over formulae describ-
ing the properties of such edges.

An answer to a regular path query is a set of pairs
of nodes connected in the database through a path con-
forming to the query. In the first approach the rewrit-
ing techniques proposed in Section 2 can be directly
applied to rewrite regular path queries. It is sufficient
to show that R is a rewriting of a query Q if and only
if R (considered as a mechanism to define a language)
is a rewriting of the regular expression Q1. In the sec-
ond approach more care is required. In the rest of the
section we concentrate on this case.

4.1 Semi-structured data models and queries

From a formal point of view we can consider a (semi-
structured) database as a graph DB whose edges are
labeled by elements from a given domain D which we
assume finite. We denote an edge from node x to node
y labeled by a with x

a
→ y. Typically, a database will

be a rooted connected graph, however in this paper we
do not need to make this assumption.

In order to define queries over a semi-structured
database we start from a decidable, complete2 first-
order theory T over the domain D. We assume that the
language of T includes one distinct constant for each
element of D (in the following we do not distinguish
between constants and elements of D). We further as-
sume that among the predicates of T we have one unary
predicate of the form λz.z = a, for each constant a in

1The proof is similar to the one for Theorem 10.
2The theory is complete in the sense that for every closed formula

ϕ, either T entails ϕ, or T entails ¬ϕ [BDFS97].



D. We use simply a as an abbreviation for such pred-
icate. Finally, we follow [BDFS97] and consider both
the size of T , and the time needed to check validity of
any formula in T to be constant.

In this paper we consider regular path queries (which
we call simply queries) i.e., queries that denote all the
paths corresponding to words of a specified regular lan-
guage. The regular language is defined over a (finite)
set F of formulae of T with one free variable. Such
formulae are used to describe properties that the labels
of the edges of the database must satisfy. Regular path
queries are the basic constituents of queries in semi-
structured data, and are typically expressed by means
of regular expressions [BDHS96, Abi97, FS98, MS99].
Another possibility to express regular path queries is to
use finite automata.

When evaluated over a database, a query Q returns
the set of pairs of nodes connected by a path that con-
forms to the regular language L(Q) defined by Q, ac-
cording to the following definitions.

Definition 4 Given an F-word ϕ1 · · ·ϕn, a D-word
a1 · · · an matches ϕ1 · · ·ϕn (wrt T ) if and only if T |=
ϕi(ai), for i = 1, . . . , n.

We denote the set of D-words that match an F-word w

by match(w), and given a language ℓ over F , we denote⋃
w∈ℓ match(w) by match(ℓ).

Definition 5 The answer to a query Q over a database
DB is the set ans(L(Q),DB), where for a language ℓ

over F

ans(ℓ,DB) = {(x, y) | there is a path

x
a1→ · · ·

an→ y in DB s.t. a1 · · · an ∈ match(ℓ)}

4.2 Rewriting regular path queries

In order to apply the results on rewriting of regular
expressions to query rewriting in semi-structured data
we need to take into account that the alphabet over
which queries (the one we want to rewrite and the views
to use in the rewriting) are expressed, is the set F of
formulae of the underlying theory T , and not the set of
constants that appear as edge labels in graph databases.

Let Q0 be a regular path query and Q =
{Q1, . . . , Qk} be a finite set of views, also expressed
as regular path queries, in terms of which we want to
rewrite Q0. Let F be the set of formulae of T appearing
in Q0, Q1, . . . , Qk, and let Q have an associated alpha-
bet ΣQ containing exactly one symbol for each view in
Q. We denote the view associated to the symbol q ∈ ΣQ

with rpq(q).

Given any language ℓ over ΣQ, we denote by expF (ℓ)
the language over F defined as follows

expF (ℓ) =
⋃

q1···qn∈ℓ

{w1 · · ·wn | wi ∈ L(rpq(qi))}

Definition 6 Let R be any formalism for defining a
language L(R) over ΣQ. R is a rewriting of Q0 wrt
Q if for every database DB , ans(expF (L(R)),DB) ⊆
ans(L(Q0),DB), and is said to be

• maximal if for each rewriting R′ of Q0 wrt
Q we have that ans(expF (L(R′)),DB) ⊆
ans(expF (L(R)),DB),

• exact if ans(expF (L(R)),DB) = ans(L(Q0),DB).

Theorem 10 R is a rewriting of Q0 wrt Q if and
only if match(expF (L(R))) ⊆ match(L(Q0)). More-
over, it is maximal if and only if for each rewriting
R′ of Q0 wrt Q we have that match(expF (L(R′))) ⊆
match(expF (L(R))), and it is exact if and only if
match(expF (L(R))) = match(L(Q0)).

Proof. We prove only that R is a rewriting of Q0 wrt
Q iff match(expF (L(R))) ⊆ match(L(Q0)). The other
assertions follow immediately.

“=⇒” By contradiction. Assume there exists a
D-word a1 · · · an ∈ match(expF (L(R))) such that
a1 · · · an 6∈ match(L(Q0)). Then for the database

DB consisting of a single path x
a1→ · · ·

an→ y it
holds that (x, y) ∈ ans(expF (L(R)),DB) but (x, y) 6∈
ans(L(Q0),DB). Contradiction.

“⇐=” Again by contradiction. Assume there ex-
ists a database DB and two nodes x and y in DB
such that (x, y) ∈ ans(expF (L(R)),DB) and (x, y) 6∈

ans(L(Q0),DB). Then there exists a path x
a1→ · · ·

an→
y in DB such that a1 · · · an ∈ match(expF (L(R))).
Hence a1 · · · an ∈ match(L(Q0)) and thus (x, y) ∈
ans(L(Q0),DB). Contradiction. 2

We say that R is ΣQ-maximal if for each rewriting
R′ of Q0 wrt Q we have that L(R′) ⊆ L(R). By arguing
as in Theorem 1, and exploiting Theorem 10, it is easy
to show that a ΣQ-maximal rewriting is also maximal.

Next we show how to compute a ΣQ-maximal rewrit-
ing, by exploiting the construction presented in Sec-
tion 2. Applying the construction literally, considering
F as the base alphabet Σ, we would not take into ac-
count the theory T , and hence the construction would
not give us the maximal rewriting in general. As an
example, suppose that T |= ∀x.A(x) ⊃ B(x), Q0 = B,
and Q = {A}. Then the maximal rewriting of Q0 wrt
Q is A, but the algorithm would give us the empty lan-
guage.



In order to take the theory into account, we can
proceed as follows: For each query Q ∈ {Q0} ∪ Q
we construct an automaton Qg accepting the language
match(L(Q)). This can be done by viewing the query
Q as a (possibly nondeterministic) automaton Q =
(F , S, s0, ρ, F ) and construct Qg as (D, S, s0, ρ

g, F ),
where sj ∈ ρg(si, a) if and only if sj ∈ ρ(si, ϕ) and
T |= ϕ(a). Observe that the set of states of Q and Qg

is the same. We denote {Qg
1, . . . , Q

g
k} with Qg. Then

we proceed as before:

1. Construct a deterministic automaton Ad =
(D, Sd, s0, ρ

g
d, Fd) such that L(Ad) = L(Qg

0).

2. Define the automaton A′ = (ΣQ, Sd, s0, ρ
′, Sd −

Fd), where sj ∈ ρ′(si, q) if and only if ∃w ∈
match(L(rpq(q))) such that sj ∈ ρ

g
d

∗
(si, w).

3. Return RQ,Q0
= RQg,Q

g

0
= A′.

Theorem 11 The automaton RQ,Q0
is a ΣQ-maximal

rewriting of Q0 wrt Q.

Proof. First we show that every rewriting R of
Q

g
0 wrt Qg is also a rewriting of Q0 wrt Q, and

vice-versa. If R is a rewriting of Q
g
0 wrt Qg, then

by definition expD(L(R) ⊆ L(Qg
0), which implies

that match(expF (L(R))) ⊆ match(L(Q0)), i.e., R

is a rewriting of Q0 wrt Q. On the converse, if
R is a rewriting of Q0 wrt Q, then by definition
match(expF (L(R))) ⊆ match(L(Q0)) which implies
that expD(L(R) ⊆ L(Qg

0), i.e., R is a rewriting of Q
g
0

wrt Qg.
Now, by Theorem 2 we know that RQg,Q

g

0
= RQ,Q0

is a ΣQ-maximal rewriting of Q
g
0 wrt Qg. Hence it is a

rewriting of Q0 wrt Q.
As RQg,Q

g

0
is a ΣQ-maximal rewriting of Q

g
0 wrt

Qg, we have that, for each rewriting R of Q
g
0 wrt

Qg, and hence for each rewriting R of Q0 wrt Q,
L(R) ⊆ L(RQg,Q

g

0
) = L(RQ,Q0

), which implies that
RQ,Q0

a ΣQ-maximal rewriting of Q0 wrt Q. 2

To check that RQ,Q0
is an exact rewriting of Q0 wrt

Q we can proceed as in Section 2, by constructing an au-
tomaton B that accepts expD(L(RQg,Q

g

0
)), and check-

ing for the emptiness of L(Ad ∩ B).
Observe that both the size of Q

g
0 and Qg and the

time needed to construct them from Q0 and Q are lin-
early related to the size of Q0 and Q. It follows that the
same upper bounds as established in Section 3.1 hold
for the case of regular path queries.

In fact, the construction of Qg can be avoided in
building RQ,Q0

, since we can verify whether there ex-
ists a D-word w ∈ match(L(rpq(q))) such that sj ∈
ρ

g
d

∗
(si, w) (required in Step 2 of the algorithm above) as

follows. We consider directly the automaton Q = rpq(q)
(which is over the alphabet F) and the automaton

A
i,j
d = (D, Sd, si, ρ

g
d, {sj}) obtained from Ad by suit-

ably changing the initial and final states. Then we
construct from Q and A

i,j
d the product automaton K,

with the proviso that K has a transition from (s1, s2)
to (s′1, s

′
2) (whose label is irrelevant) if and only if (i)

there is a transition from s1 to s′1 labeled a in Qi,j , (ii)
there is a transition from s2 to s′2 labeled ϕ in Q, and
(iii) T |= ϕ(a). Finally, we check whether K accepts a
non-empty language. This allows us to instantiate the
formulae in Q only to those constants that are actually
necessary to generate the transition function of A′.

With regard to Q0, instead of constructing Q
g
0, we

can build an automaton based on the idea of separating
constants into suitable equivalence classes according to
the formulae in the query they satisfy. The resulting
automaton still describes the query Q0, and its alphabet
is generally much smaller than that of Q

g
0.

4.3 Properties of rewritings

In the case where the rewriting RQ,Q0
is not exact, the

only thing we know is that such rewriting is the best one
we can obtain by using only the views in Q. However,
one may want to know how to get an exact rewriting
by adding to Q suitable views.

Example 3 Let Q0 = a · (b+ c), Q = {a, b}, and ΣQ =
{q1, q2}, where rpq(q1) = a, and rpq(q2) = b. Then
RQ,Q0

= q1 · q2, which is not exact. On the other hand,
by adding c to Q and q3 to ΣQ, with rpq(q3) = c, we
obtain q1 · (q2 + q3) as an exact rewriting of Q0.

Here we consider the case where the views added to
Q are atomic, i.e., have the form λz.P (z), where P is a
predicate of T . Notice that atomic views include views
of the form λz.z = a, (abbreviated by a), which we call
elementary. The intuitive idea is to choose a subset P ′

of the set P of predicates of T , and to construct an
exact rewriting of Q0 wrt Q+, where Q+ is obtained
by adding to Q an atomic view for each symbol in P ′.
An exact rewriting R of Q0 wrt Q+ is called a partial
rewriting of Q0 wrt Q, provided that Q+ 6= Q.

The method we have presented can be easily adapted
to compute partial rewritings. Indeed, if we compute
RQ+,Q0

, we obtain a partial rewriting of Q0 wrt Q,
provided that RQ+,Q0

is an exact rewriting of Q0 wrt
Q+. Observe that it is always possible to choose a sub-
set P ′ of P in such a way that RQ+,Q0

is exact (e.g., by
choosing the set of all elementary views).

Typically, one is interested in using as few symbols
of P as possible to form Q+, and this corresponds to
choose the minimal subsets P ′ such that RQ+,Q0

is ex-
act. More generally, one can establish various prefer-
ence criteria for choosing rewritings. For instance, we
may say that a (partial) rewriting R is preferable to a
(partial) rewriting R′ if one of the following holds:



1. match(expF (L(R′))) ⊂ match(expF (L(R))),

2. match(L(R)) = match(L(R′)) and R uses less ad-
ditional elementary views than R′,

3. match(L(R)) = match(L(R′)), R uses the same
number of additional elementary views as R′, and
less additional atomic nonelementary views.

4. match(L(R)) = match(L(R′)), R uses the same
number of additional atomic views as R′, and less
views than R′.

Under this definition an exact rewriting is prefer-
able to a nonexact one. Moreover, the definition reflects
the fact that the cost of materializing additional atomic
views (in particular the elementary ones) is higher than
the cost of using the available ones. Finally, since a
certain cost is associated to the use of each view, when
comparing two rewritings defining the same language
and using (if any) the same number of additional atomic
views, then the one that uses less views is preferable.

The rewriting algorithm presented above can be im-
mediately exploited to compute the most preferable
rewritings according to the above criteria. It easy to
see that the problem of computing the most preferable
rewritings remains in the same complexity class.

5 Conclusions

In this paper we have studied the problem of query
rewriting using views in the case where both the query
and the views are expressed as regular path queries. We
have shown the decidability of the problem of comput-
ing the maximal rewriting and checking whether it is
exact. We have characterized the computational com-
plexity of the problem and have provided algorithms
that are essentially optimal. We envision several direc-
tions for extending the present work.

First, in this paper we focused on the problem of
computing the maximal contained rewriting, i.e., the
best rewriting that is guaranteed to provide only an-
swers contained in those of the original query. Also
of interest is the dual approach, i.e., computing the
minimal containing rewritings (in general not unique),
which guarantee to provide all the answers of the orig-
inal query, and possibly more.

Second, an extension of regular path queries are
generalized path queries, i.e., queries of the form
x1Q1x2 · · ·xn−1Qn−1xn, where each Qi is a regular
path query [FS98]. Such queries ask for all n-tuples
o1, . . . , on of nodes such that, for each i, there is a path
from oi to oi+1 that satisfies Qi. Computing the rewrit-
ing of a generalized path query requires to take into
account that each rewritten subpath appears in a given
context formed by a suitable prefix and a suitable suffix.

A further generalization would be to consider conjunc-
tions of regular path queries, where the context in which
a certain subpath appears is even more complex.

Third, one can investigate possible interesting sub-
cases where the rewriting of regular (and generalized)
path queries can be done more efficiently. Additionally,
cost models for path queries and preference criteria that
take into account such cost models can be defined, lead-
ing to the development of techniques for choosing the
best rewriting with respect to the new criteria.

Finally, it is interesting to investigate the relation-
ships to query answering using views in semi-structured
data, i.e., the problem of answering a regular path query
on the basis of a set of materialized views. One relevant
aspect is to verify whether the technique we have de-
veloped for query rewriting can be exploited for query
answering using views. First results in this direction
are reported in [CDGLV99].
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