
View-Based Query Containment

Diego Calvanese
Giuseppe De Giacomo

Maurizio Lenzerini
Dipartimento di Informatica e Sistemistica

Univ. di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

lastname@dis.uniroma1.it

Moshe Y. Vardi
Department of Computer Science

Rice University, P.O. Box 1892
Houston, TX 77251-1892, U.S.A.

vardi@cs.rice.edu

ABSTRACT

Query containment is the problem of checking whether for
all databases the answer to a query is a subset of the an-
swer to a second query. In several data management tasks,
such as data integration, mobile computing, etc., the data
of interest are only accessible through a given set of views.
In this case, containment of queries should be determined
relative to the set of views, as already noted in the litera-
ture. Such a form of containment, which we call view-based
query containment, is the subject of this paper. The prob-
lem comes in various forms, depending on whether each of
the two queries is expressed over the base alphabet or the
alphabet of the view names. We present a thorough analysis
of view-based query containment, by discussing all possible
combinations from a semantic point of view, and by show-
ing their mutual relationships. In particular, for the two
settings of conjunctive queries and two-way regular path
queries, we provide both techniques and complexity bounds
for the different variants of the problem. Finally, we study
the relationship between view-based query containment and
view-based query rewriting.

1. Introduction

Querying is the fundamental mechanism for extracting in-
formation from a database. Besides the basic task of query
answering, i.e., evaluating a query over a database, data
and knowledge representation systems should support other
reasoning services related to querying. One of the most im-
portant is query containment, i.e., verifying whether for all
databases the answer to a query is a subset of the answer to a
second query. Checking containment of queries is crucial in
several contexts, such as query optimization, query reformu-
lation, knowledge-base verification, information integration,
integrity checking, and cooperative answering [22, 28, 16, 5,
9, 33, 27, 11, 18, 20, 32]. Obviously, query containment is
also useful for checking equivalence of queries, i.e., verifying

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2003,June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-670-6/03/06 ...$5.00

whether for all databases the answer to a query is the same
as the answer to another query. The main results on query
containment are summarized in [15].

In several data management tasks, the data of interest are
only accessible through a given set of views. In other words,
we would like to access a database, but we have only in-
formation about the data satisfying the views. For exam-
ple, in data integration [25], data are stored in local sources
modeled as views over a virtual database. It follows that an-
swering a query expressed over the virtual database schema,
amounts to answering the query based on the data satisfy-
ing the views, rather than the data in the database. Simi-
larly, a data warehouse can be seen as a set of materialized
views computed over a collection of data sources. Only these
views, and not the raw data at the sources, are accessible
when answering queries posed to the data warehouse. Also,
in mobile computing, the data stored in the local device are
those satisfying a set of views over a global database, and
it is often desirable to avoid accessing the global database,
in order to save network bandwidth. In all the above men-
tioned settings, query processing comes in a different form
with respect to the traditional framework. Instead of con-
sidering a query over of a given database, one should take
into account that the query is now processed by relying only
on the information about the data satisfying the views. We
call this kind of processing view-based query processing [12].

Again, the basic reasoning services related to view-based
query processing is the one aiming at computing the an-
swer to a query, based on the available views. The problem,
called view-based query answering has been the subject of
an extensive investigation in the last years [23]. Analogously
to the traditional setting, also in the context of view-based
query processing, the need arises of checking containment
between queries. In this context, containment of queries
should be determined relative to the set of views, as already
noted in the literature [31, 30]. Such form of containment,
called view-based query containment, is the subject of this
paper.

To the best of our knowledge, the first paper dealing with
view-based query containment is [31], where the problem,
called “relative containment”, is studied for variants of con-
junctive queries and views. In particular, it is shown that
relative containment is ΠP

2 -complete in the case of conjunc-
tive queries and views. In [30], the results are extended to

the case where views have limited access patterns.

Although previous work on view-based query containment
considered only the case of queries expressed in the alpha-
bet of the database (base alphabet), we show here that the
problem comes in various forms, depending on whether each
of the two queries is expressed over the base alphabet, or the
alphabet of the view names (view alphabet). The first con-
tribution of this paper is a thorough analysis of view-based
query containment. In particular, we discuss several seman-
tics of containment for all the possible forms, and we study
their mutual relationships.

The second contribution is a study of view-based query con-
tainment in two specific contexts: conjunctive queries in
relational databases, and regular path queries in semistruc-
tured databases. The standard model for semistructured
databases are edge-labeled graphs, where nodes represent
objects, and labeled edges between two nodes represent links
between objects [8, 19]. This model captures also data
expressed using XML-like languages [7, 10]. Regular path
queries (RPQ), which ask for all pairs of objects that are
connected by a path conforming to a regular expression, are
the basic querying mechanism in this framework [8, 2, 4].
Regular path queries can express complex navigations in a
graph. In particular, union and transitive closure are crucial
when we do not have a complete knowledge of the structure
of the database. In our regular path queries, we include also
the inverse operator, which enables us to navigate edges
backward [8, 9], for example, from a child to its parent.
We call these queries two-way regular path queries (2RPQs).
For both conjunctive and two-way regular path queries and
views, we provide techniques and complexity bounds for the
different variants of view-based query containment.

In establishing the results for 2RPQs, we make use of and
extend the known connection between view-based query an-
swering and constraint satisfaction [13]. In particular, we
show that such a connection implies a strong relationship
between constraint satisfaction and view-based query con-
tainment, in the cases where at least one of the queries is
expressed in the base alphabet. This relationship comple-
ments the one between constraint satisfaction and conjunc-
tive query containment [24].

A third contribution is a study of the relationship between
view-based query containment and view-based query rewrit-
ing. In particular, we show that view-based query contain-
ment allows one to verify desirable properties of rewritings.

The rest of the paper is organized as follows. Section 2 intro-
duces the technical preliminaries on databases and queries.
Section 3 extends the connection between view-based query
answering and constraint satisfaction of [13] to 2RPQs. Sec-
tions 4, 5, 6, and 7 provide the definitions and the re-
sults for view-based query containment, in the various cases.
Section 8 discusses the connection with view-based query
rewriting. Section 9 concludes the paper.

2. Preliminaries

In this paper, we consider databases and view extensions as
finite relational structures. Let Θ be an alphabet of relation
symbols, each with an associated arity. A finite relational

structure (or simply structure) R over Θ is a pair (∆R, ·R),
where ∆R is a finite domain and ·R is a function that assigns
to each relation symbol in r ∈ Θ a relation rR, also denoted
by r(R), of the appropriate arity over ∆R. Given a query
QΘ over Θ, we denote by QΘ(R) the result of evaluating
QΘ over R. Note that we explicitly annotate queries with
the alphabet over which they are defined. Given two struc-
tures R1 and R2 over Θ, we use R1 ⊆ R2 to denote that
r(R1) ⊆ r(R2), for each r ∈ Θ. A query QΘ is monotone if
QΘ(R1) ⊆ QΘ(R2) whenever R1 ⊆ R2.

Let Σ be a finite alphabet of relation symbols, fixed once
and for all, which we call base alphabet. A database is a
structure over Σ. Consider a database that is accessible
only through a collection V of views, and suppose we want
to answer a query over the database only on the basis of our
knowledge on the views. Specifically, the collection of views
is represented by a finite set V of view symbols, each denoting
a relation. Each view symbol V ∈ V has an associated view
definition V Σ, which is a query over Σ. A V-extension E is
a structure over V.

We consider views to be sound [3, 21], i.e., we model a situ-
ation where the extension of the views provides a subset of
the results of applying the view definitions to the database1.
Formally, given a set of views V and a database B, we use
VΣ(B) to denote the V-extension E such that V (E) = V Σ(B),
for each V ∈ V. We say that a V-extension E is sound wrt
a database B if E ⊆ VΣ(B). In other words, for a view
V ∈ V, all the tuples in V (E) must appear in V Σ(B), but
V Σ(B) may contain tuples not in V (E). A set V of views
is non-constraining if each V-extension is sound wrt some
database, i.e., for each V-extension E there exists a database
B such that E ⊆ VΣ(B). Intuitively, all extensions of non-
constraining views are admissible, since they are sound wrt
some database.

Given a set V of views, a V-extension E , and a query QΣ,
the set of certain answers under sound views to QΣ with
respect to V and E is the set of tuples t of objects such
that t ∈ QΣ(B) for every database B wrt which E is sound,
i.e., E ⊆ VΣ(B). View-based query answering under sound
views consists in deciding whether a given tuple of objects
is a certain answer under sound views to Q with respect
to V and E . Given a set V of views and a query QΣ, we
denote by certQΣ,V the query that, for every V-extension E ,

returns the set of certain answers under sound views to QΣ

with respect to V and E . Since in this paper we consider
sound views only, we simply refer to certain answers and
view-based query answering, thus dropping the qualification
“under sound views”.

We consider the case of conjunctive queries over relational
databases. In particular, we deal with standard conjunc-
tive queries without equalities and without constants. Ob-
serve that such queries are monotone and that every set
of views whose definitions are conjunctive queries is non-
constraining. We also consider (in fact mainly focus on) the
case of regular path queries over semistructured databases.
A semistructured database is a finite graph whose nodes rep-
resent objects and whose edges are labeled by elements from

1This corresponds to adopting the so-called “open world
assumption” for the views.

Σ [8, 1]. An edge (x, r, y) from node x to node y labeled by r
represents the fact that relation r holds between the object
x and the object y. Note that a semistructured database can
be viewed as a structure B over the set Σ of binary relational
symbols.

A regular-path query (RPQ) over an alphabet Θ of binary
relation symbols is expressed as a regular expression or a
finite-state automaton over Θ. When evaluated on a struc-
ture R over Θ, an RPQ computes the set of pairs of ob-
jects connected in R by a path in the regular language de-
fined by the RPQ. We consider two-way regular-path queries
(2RPQs) [12], which extend RPQs with the inverse opera-
tor. Formally, let Θ± = Θ ∪ {r− | r ∈ Θ} be the alphabet
including a new symbol r− for each r in Θ. Intuitively, r−

denotes the inverse of the binary relation r. If q ∈ Θ±, then
we use q− to mean the inverse of q, i.e., if q is r, then q−

is r−, and if q is r−, then q− is r. 2RPQs are expressed by
means of regular expressions or finite-state automata over
Θ±, whose language is different from the language consist-
ing only of the empty word ε. When evaluated on a struc-
ture R over Θ, a 2RPQ QΘ computes the set QΘ(R) of
pairs of objects connected in R by a semipath that con-
forms to the regular language L(QΘ). A semipath in R
from x to y (labeled with q1 · · · qn) is a sequence of the form
(y0, q1, y1, . . . , yn−1, qn, yn), where n ≥ 0, y0 = x, yn = y,
and for each yi−1, qi, yi, we have that qi ∈ Θ±, and, if qi = r
then (yi−1, yi) ∈ r(R), and if qi = r− then (yi, yi−1) ∈ r(R).
We say that a semipath (y0, q1, . . . , qn, yn) conforms to QΘ if
q1 · · · qn ∈ L(QΘ). A semipath is said to be simple if no ob-
ject appears more than once in the corresponding sequence.
Observe that 2RPQs (resp., RPQs) are monotone and that
every set of 2RPQ (resp., RPQ) views is non-constraining.

Given two queries QΘ
1 and QΘ

2 over the same alphabet Θ, we
say that QΘ

1 is contained in QΘ
2 , denoted QΘ

1 ⊆ QΘ
2 , if for

every structure R over Θ, we have that QΘ
1 (R) ⊆ QΘ

2 (R).
In this paper we consider query containment relative to a set
of views. In particular, we study the notion of view-based
query containment of a query QΘ1

1 in a query QΘ2
2 wrt a

set V of views, denoted by QΘ1
1 ⊆V QΘ2

2 , where each Θi is
either Σ or V. The semantics of this notion depends on Θ1

and Θ2, i.e., the alphabets over which the two queries are
expressed, and will be discussed for the various cases in the
next sections. The complexity results we provide refer to two
specific settings: conjunctive queries, where both queries
and views are conjunctive, and 2RPQs, where both queries
and views are 2RPQs.

3. Constraint-satisfaction and Query
Answering

A constraint-satisfaction problem (CSP) is traditionally de-
fined in terms of a set of variables, a set of values, and a set
of constraints, and asks whether there is an assignment of
the variables with the values that satisfies the constraints.
A characterization of CSP can be given in terms of homo-
morphisms between structures [17].

A homomorphism h : A→ B between two structures A and
B over the same alphabet is a mapping h : ∆A → ∆B such
that, if (c1, . . . , cn) ∈ RA, then (h(c1), . . . , h(cn)) ∈ RB , for
every relation symbol R in the alphabet. LetA and B be two

classes of structures. The (uniform) constraint-satisfaction
problem CSP(A,B) is the following decision problem: given
a structure A ∈ A and a structure B ∈ B over the same al-
phabet, is there a homomorphism h : A→ B? When B con-
sists of a single structure B and A is the set of all structures
over the alphabet of B, we get the so-called non-uniform
constraint-satisfaction problem, denoted by CSP(B), where
B is fixed and the input is just a structure A ∈ A. As usual,
we consider CSP(B) as the set of structures A such that
there is a homomorphism from A to B.

Interestingly, containment between two CSPs can be char-
acterized in terms of homomorphism. Indeed, the following
general result holds.

Proposition 1. Let B1 and B2 be two structures over
the same alphabet. Then CSP(B1) is contained in CSP (B2)
iff there exists a homomorphism from B1 to B2.

Proof. “⇐” Suppose there exists a homomorphism h
from B1 to B2. Given an instance A of CSP(B1), by defini-
tion, there is a homomorphism g from A to B1. Then g ◦ h
is an homomorphism from A to B2.

“⇒” B1 is obviously in CSP(B1), since the identity func-
tion is an homomorphism. Since by hypothesis CSP(B1) is
contained in CSP(B2), we have that B1 is in CSP(B2), i.e,
there is an homomorphism from B1 to B2.

We will exploit such a characterization for the results in the
following sections.

A tight relationship between non-uniform CSP and view-
based query answering for RPQs is illustrated in [13], which
provides a polynomial reduction from view-based query an-
swering for RPQs to non-uniform CSP. In this paper we
extend this relationship to 2RPQs and exploit it in different
ways, by making use of the notions of constraint template
and constraints instance (both for query answering and for
view-based query answering), defined as follows.

Given a 2RPQ QΘ over an alphabet Θ, the constraint tem-
plate CTQΘ,Θ of QΘ wrt Θ is the structure C defined as
follows.

• The alphabet of C is Θ± ∪ {Ui, Uf}, where Ui and Uf
denote unary relation symbols.

• Let AQΘ = (Θ±, S, S0, ρ, F) be a (nondeterministic)

automaton for QΘ. The structure C = (∆C , ·C) is
given by:

– ∆C = 2S ;

– σ ∈ UCi iff S0 ⊆ σ;

– σ ∈ UCf iff σ ∩ F = ∅;
– (σ1, σ2) ∈ rC iff ρ(σ1, r) ⊆ σ2 and ρ(σ2, r

−) ⊆ σ1

— we consider here ρ as extended to sets of states
in the usual way.

Given a structureR over Θ and a pair of objects c and d, the
constraint instance Rc,d of CSP(CTQΘ,Θ) is the structure

I = (∆I , ·I) defined as follows:

• ∆I = ∆R ∪ {c, d};

• rI = rR, for each r ∈ Θ;

• UIi = {c}, and UIf = {d}.

Theorem 2. Let QΘ be a 2RPQ over an alphabet Θ, R
a structure over Θ, and c, d a pair of objects. Then, (c, d) 6∈
QΘ(R) if and only if there is a homomorphism from Rc,d to
CTQΘ,Θ.

Proof. “⇐” By contradiction. Let h be a homomor-
phism fromRc,d to CTQΘ,Θ, and assume there is a semipath
p = (x0, q1, x1, . . . , xm−1, qm, xm) from c = x0 to d = xm
in R with q1 · · · qm ∈ L(QΘ). Hence there is a sequence
δ = (s0, . . . , sm) of states of AQΘ such that s0 ∈ S0, sm ∈ F ,
and si+1 ∈ ρ(si, qi+1) for each i ∈ {0, . . . ,m − 1}. Since h
is a homomorphism, we have that s0 ∈ h(c), and hence, by
construction of the relations ri in the constraint template,
we have that si ∈ h(xi) for each i ∈ {0, . . . ,m − 1}. More-
over, since h(d) ∈ Uf , we have that sm 6∈ F . Contradiction.

“⇒” Given a structure R and two objects c, d such that
(c, d) 6∈ QΘ(R), we build a mapping h : ∆R → 2S by putting
each state in S0 in h(c) and repeating the following until h
does not change any more: if (x, y) ∈ r(R) and s ∈ h(x)
then add ρ(s, r) to h(y), and if (x, y) ∈ r(R) and s ∈ h(y)
then add ρ(s, r−) to h(x). Note that, since (c, d) 6∈ QΘ(R),
we have that h(d)∪F = ∅. Hence, h is indeed an homomor-
phism from Rc,d to CTQΘ,Θ.

We note that it follows from Theorem 2 and [17] that the
complement of a 2RPQ can be expressed in monadic NP
(i.e., in monadic existential second-order logic). In contrast,
it follows from [6] that even a simple query such as a∗ cannot
be expressed in monadic NP.

Next we define constraint templates for the certain answers
of 2RPQs wrt a set of 2RPQ views, extending the analogous
notion for RPQs in [13]. Given a 2RPQ QΣ and a set V of
2RPQ views, the constraint template CTQΣ,V of QΣ wrt V
is the structure C defined as follows.

• The alphabet of C is V ∪ {Ui, Uf}.

• Let AQΣ = (Σ±, S, S0, ρ, F) be a (nondeterministic)

automaton for QΣ. The structure C = (∆C , ·C) is
given by:

– ∆C = 2S ;

– σ ∈ UCi iff S0 ⊆ σ;

– σ ∈ UCf iff σ ∩ F = ∅;

– (σ1, σ2) ∈ V C iff there exists a word q1 · · · qk ∈
L(V) and a sequence T0, . . . , Tk of subsets of S
such that the following hold:

1. T0 = σ1 and Tk = σ2,

2. if s ∈ Ti and t ∈ ρ(s, qi) then t ∈ Ti+1, for
0 ≤ i < k, and

3. if s ∈ Ti and t ∈ ρ(s, q−i) then t ∈ Ti−1, for
0 < i ≤ k.

To check the existence of a word q1 · · · qk ∈ L(V) and
of a sequence T0, . . . , Tk of subsets of S such that con-
ditions 1–3 above are satisfied, we check nonemptiness of
the intersection of V with an automaton A defined as fol-
lows [35]. A = (Σ±, SA, IA, δA, FA) with SA = 2S × 2S ,
IA = {(σ1, σ1)}, FA = {(T, σ2) | T ∈ 2S}, and with
(U, V) ∈ δA((T,U), q) if the following holds:

• if s ∈ U and t ∈ ρ(s, q−), then t ∈ T ;

• if s ∈ U and t ∈ ρ(s, q), then t ∈ V .

It is easy to see that the automaton A accepts a word
q1 · · · qk if there exists a sequence T0, . . . , Tk of subsets of
S such that conditions 1–3 above are satisfied. Hence, by
constructing A on the fly while checking for nonemptiness,
one can verify whether (σ1, σ2) ∈ V C in NLOGSPACE in
the size of V and in PSPACE in the size of QΣ.

Given a V-extension E and a pair of objects c and d, the
constraint instance Ec,d of CSP(CTQΣ,V) is the structure

I = (∆I , ·I) over the alphabet V∪{Ui, Uf} defined as follows:

• ∆I = ∆E ∪ {c, d};

• V I = V E , for each V ∈ V;

• UIi = {c}, and UIf = {d}.

Theorem 3. Let QΣ be a 2RPQ, V a set of 2RPQ views,
E a V-extension, and c, d a pair of objects. Then, (c, d) 6∈
certQΣ,V(E) if and only if there is a homomorphism from

Ec,d to CTQΣ,V .

Proof. “⇐” By contradiction. Given a homomorphism
h from Ec,d to CTQΣ,V , we construct a database B such
that E ⊆ V(B) as follows: for every view V and every pair
(a, b) ∈ V (E) we choose a word w = q1 · · · qk ∈ L(V Σ) such
that there is a sequence T0, . . . , Tk of subsets of S satisfying
the condition used to build the constraint template, and
introduce in B a simple semipath (y0, q1, y1, . . . , yk−1, qk, yk)
where y0 = a, yk = b and y1, . . . , yk−1 are new objects.
Suppose that (c, d) ∈ QΣ(B), i.e., there is a semipath p =
(x0, q1, x1, . . . , xm−1, qm, xm) from c = x0 to d = xm in B
with q1 · · · qm ∈ L(QΣ). Hence there is a sequence δ =
(s0, . . . , sm) of states of AQΣ such that s0 ∈ S0, sm ∈ F ,
and si+1 ∈ ρ(si, qi+1) for each i ∈ {0, . . . ,m − 1}. Let xi
and xi + h be two objects in the extension E such that, for
each i < j < i+h, xj is one of the new objects introduced
by the construction of B. By construction of the relations V
in the constraint template, we have that, if si ∈ h(xi), then
si+h ∈ h(xi+h). Now we have that s0 ∈ h(c), and hence, by
induction on the number of objects among x1, . . . , xm that
appear in E , we have that sm ∈ h(d). But since h(d) ∈ Uf ,
we have that sm 6∈ F . Contradiction.

“⇒” Given a database B such that E ⊆ V(B) and two
objects c, d such that (c, d) 6∈ QΣ(B), we build a mapping
h′ : ∆B → 2S by putting each state in S0 in h′(c) and
repeating the following until h does not change any more:
if (x, y) ∈ r(B) and s ∈ h′(x) then add ρ(s, r) to h′(y), and

if (x, y) ∈ r(B) and s ∈ h′(y) then add ρ(s, r−) to h′(x).
Note that, since (c, d) 6∈ QΣ(B), we have that h′(d)∪F = ∅.
Projecting h′ on ∆E we obtain a homomorphism from Ec,d
to CTQΣ,V .

Again, by Theorem 2 and [17], it follows that the comple-
ment of computing certain tuples of a 2RPQ with respect to
a fixed set of 2RPQ views is in monadic NP. The proof via
CSP is much simpler than the proof in [12] that computing
the certain answers is in coNP in data complexity.

4. View-based containment of QΣ
1 in QΣ

2

The first problem we address is view-based containment be-
tween two queries over the base alphabet. This is the prob-
lem originally studied in [31].

Definition 1. QΣ
1 ⊆V QΣ

2 if for every database B,
and for every V-extension E with E ⊆ V(B), we have
certQΣ

1 ,V
(E) ⊆ certQΣ

2 ,V
(E).

A simple example showing the difference between traditional
query containment and view-based query containment is the
following. Let the base alphabet be Σ = {person,worksfor}
and consider the two queries

QΣ
1 = {x | person(x)}

QΣ
2 = {x | person(x),worksfor(x, y)}

Obviously, QΣ
1 is not contained in QΣ

2 . Now, suppose our
database is only accessible through the views V = {V },
where the definition associated to the only view V is V Σ =
{x | person(x),worksfor(x, y)}. It is easy to see that, for
every extension E of V , the certain answers to both QΣ

1 and
QΣ

2 wrt V and E coincide with E. It follows that view-based
containment between QΣ

1 and QΣ
2 holds, i.e., QΣ

1 ⊆V QΣ
2 .

Observe that in Definition 1 we consider only V-extensions
that are sound wrt some database. It turns out that, w.l.o.g.
we can drop this requirement of V-extensions. Intuitively,
this happens because for each extension E that is not con-
tained in V(B) for some database B, both certQΣ

1 ,V
(E) and

certQΣ
2 ,V

(E) become trivial and return all possible tuples of

objects in E . Formally, we have the following result.

Proposition 4. QΣ
1 ⊆V QΣ

2 if and only if for every V-
extension E, we have certQΣ

1 ,V
(E) ⊆ certQΣ

2 ,V
(E).

Proof. “⇐” Obvious. “⇒” By contradiction. Suppose
that for all databases B, and for all V-extensions E with
E ⊆ V(B), we have that certQΣ

1 ,V
(E) ⊆ certQΣ

2 ,V
(E), but

there exists an Ē such that certQΣ
1 ,V

(Ē) 6⊆ certQΣ
2 ,V

(Ē). The

latter implies that there is a tuple t of objects in Ē such
that t ∈ certQΣ

1 ,V
(Ē) and for a database B̄ with Ē ⊆ V(B̄)

we have t 6∈ QΣ
2 (B̄). But this contradicts the hypothesis.

Note that the condition in the proposition above is actually
the definition of relative containment in [31].

One could also compare the two queries only wrt extensions
that correspond exactly to the evaluation of the views over
some database. Formally, this notion corresponds to check-
ing whether, for all databases B, we have certQΣ

1 ,V
(V(B)) ⊆

certQΣ
2 ,V

(V(B)). It turns out that such a notion is equivalent

to view-based query containment as defined in Definition 1.

Proposition 5. certQΣ
1 ,V

(V(B)) ⊆ certQΣ
2 ,V

(V(B)) for

every database B, if and only if QΣ
1 ⊆V QΣ

2 .

Proof. By Proposition 4, it suffices to show that the
conditions:

1. for every V-extension E we have that certQΣ
1 ,V

(E) ⊆
certQΣ

2 ,V
(E)

2. for every database B, we have that certQΣ
1 ,V

(V(B)) ⊆
certQΣ

2 ,V
(V(B))

are equivalent.

(1) implies (2): straightforward, since for each database B,
V(B) is a V-extension. (2) implies (1): we show that not
(1) implies not (2). Assume that there exists a V-extension
Ē and a tuple of objects t such that for all databases B′
such that Ē ⊆ V(B′), we have that t ∈ QΣ

1 (B′), and there
exists a database B̄ such that Ē ⊆ V(B̄) and t 6∈ QΣ

2 (B̄).
Observe that, since Ē ⊆ V(B̄), we have that t ∈ QΣ

1 (B̄).
Moreover, for all databases B′′ such that V(B̄) ⊆ V(B′′),
since Ē ⊆ V(B′′), we have that t ∈ QΣ

1 (B′′). Hence we get
that for the database B̄, we have t ∈ certQΣ

1 ,V
(V(B̄)) but

t 6∈ certQΣ
2 ,V

(V(B̄)).

Techniques for view-based query containment of QΣ
1 in QΣ

2

for conjunctive queries are described in [31]. It is well known
that for conjunctive views V and a conjunctive query QΣ,
the certain answers certQΣ,V can be expressed as a union
of conjunctive queries, called maximally contained rewriting
of Q wrt V [26]. Hence, checking QΣ

1 ⊆V QΣ
2 reduces to

checking (traditional) containment between the maximally
contained rewriting of Q1 wrt V and the maximally con-
tained rewriting of Q2 wrt V. Considering that the size of
the maximally contained rewriting of a conjunctive query Q
wrt V is in general exponential in the size of Q, and that a
union of conjunctive queries ∪iqi is contained in a union of
conjunctive queries ∪jrj , if and only if for every i there is
some j such that qi is contained in rj , one gets the upper
bound given in [31]. In the same paper, also a matching
lower bound is proved, thus getting the following computa-
tional complexity characterization.

Theorem 6 ([31]). Checking QΣ
1 ⊆V QΣ

2 is ΠP
2 -

complete for conjunctive queries.

Next we study the problem for 2RPQs. By Proposition 4,
we can concentrate on checking whether for all V-extensions
E we have that certQΣ

1 ,V
(E) ⊆ certQΣ

2 ,V
(E). By Theorem 3,

we know for a 2RPQ QΣ that (c, d) is not in certQΣ,V(E) if

and only if Ec,d is in CSP(CTQΣ,V). Therefore, QΣ
1 ⊆V QΣ

2

if and only if for all V-extensions E , and for all objects
c, d, we have that Ec,d in CSP(CTQΣ

2 ,V
) implies Ec,d in

CSP(CTQΣ
1 ,V

).

In order to perform such a check we resort to a suitable vari-
ant of containment between CSPs (see, Theorem 1). Given
a constraint template CTQΣ,V , a proper constraint template

CTα,β

QΣ,V is obtained by eliminating from Ui all but one ele-

ment α and from Uf all but one element β. Observe that,
in general, there are many proper constraint templates for
each constraint template CTQΣ,V (more precisely there are

|2S × 2S |, where S is the set of states of the automaton for
QΣ). Observe that a proper constraint template is itself a
constraint instance of the original constraint template.

Theorem 7. For 2RPQs, QΣ
1 ⊆V QΣ

2 if and only if, for
every proper constraint template CTα,β

QΣ
2 ,V

of CTQΣ
2 ,V

, there

is a homomorphism from CTα,β

QΣ
2 ,V

to CTQΣ
1 ,V

.

Proof. By Theorem 3, it suffices to verify that, if for all
V-extensions E and for all objects c, d, we have that Ec,d in
CSP(CTQΣ

2 ,V
) implies Ec,d in CSP(CTQΣ

1 ,V
), then for every

proper constraint template CTα,β

QΣ
2 ,V

of CTQΣ
2 ,V

there exists

a homomorphism from CTα,β

QΣ
2 ,V

to CTQΣ
1 ,V

, and vice-versa.

“⇐” Suppose for every proper constraint template CTα,β

QΣ
2 ,V

of CTQΣ
2 ,V

there exists a homomorphism from CTα,β

QΣ
2 ,V

to

CTQΣ
1 ,V

. Consider an extension Ec,d in CSP(CTQΣ
2 ,V

), i.e,

there is a homomorphism g from Ec,d to CTQΣ
2 ,V

. Consider

the proper constraint template CT
g(c),g(d)

QΣ
2 ,V

. By hypothesis

there is an homomorphism h from CT
g(c),g(d)

QΣ
2 ,V

to CTQΣ
1 ,V

.

Then g ◦ h is an homomorphism from Ec,d to CTQΣ
1 ,V

.

“⇒” Every proper constraint template CTα,β

QΣ
2 ,V

of CTQΣ
2 ,V

is obviously in CSP(CTQΣ
2 ,V

). Since by hypothesis

every constraint instance in CSP(CTQΣ
2 ,V

) is also in

CSP(CTQΣ
1 ,V

), we have that CTα,β

QΣ
2 ,V

is in CSP(CTQΣ
1 ,V

),

i.e, there is an homomorphism from CTα,β

QΣ
2 ,V

to CTQΣ
1 ,V

.

For the following lemma, we exploit the characterization of
QΣ

1 ⊆V QΣ
2 , in Theorem 7.

Lemma 8. Checking QΣ
1 ⊆V QΣ

2 is in NEXPTIME for
2RPQs.

Proof. We have to check whether every proper con-
straint template CTα,β

QΣ
2 ,V

of CTQΣ
2 ,V

is in CSP(CTQΣ
1 ,V

).

Both constructing the constraint template CTQΣ
1 ,V

and con-

structing each proper constraint template CTα,β

QΣ
2 ,V

is expo-

nential in the size of QΣ
1 and QΣ

2 respectively, and polyno-

mial in the size of the definitions of the views in V. Check-
ing the existence of each homomorphism is NP in the size
of the CTQΣ

1 ,V
. Moreover, the number of proper constraint

templates is |2S × 2S |, where S is the set of states of the
automaton for QΣ

2 , and hence it is exponential in the size of
QΣ

2 . These bounds give us the claim.

The next lemma gives us a matching lower-bound.

Lemma 9. Checking QΣ
1 ⊆V QΣ

2 is NEXPTIME-hard for
RPQs.

Proof. In Lemma 20, we will prove NEXPTIME-
hardness of QΣ

1 ⊆V QV2 for RPQs. Consider the RPQ QV2
in that proof, and let QΣ

2 be the RPQ obtained by replac-
ing in QV2 the view symbols by their definitions. It is easy
to see that QV2 (E) = certQΣ

2 ,V
(E). Thus, the reduction in

Lemma 20 also proves NEXPTIME-hardness for the con-
tainment of certQΣ

1 ,V
in certQΣ

2 ,V
.

From Lemmas 8 and 9, we get the following computational
complexity characterization.

Theorem 10. Checking QΣ
1 ⊆V QΣ

2 is NEXPTIME-
complete both for 2RPQs and for RPQs.

5. View-based containment of QV1 in QΣ
2

In this section we study view-based containment of a query
QV1 expressed on the view alphabet in a query QΣ

2 expressed
on the base alphabet. Intuitively, we want to check whether,
for all view extensions E that are sound with respect to some
database, the evaluation of QV1 over E yields a subset of the
certain answers of QΣ

1 with respect to V and E .

Definition 2. QV1 ⊆V QΣ
2 if for every database B, and

for every V-extension E with E ⊆ V(B), we have QV1 (E) ⊆
certQΣ

2 ,V
(E).

Again, the above definition considers only V-extensions that
are sound with respect to some database. However, as for
the case of previous section, it turns out that we can drop
this requirement w.l.o.g.

Proposition 11. QV1 ⊆V QΣ
2 if and only if for every V-

extension E we have QV1 (E) ⊆ certQΣ
2 ,V

(E).

Proof. We show that the following two conditions are
equivalent:

1. for all databases B, for all V-extensions E ⊆ V(B),
QV1 (E) ⊆ certQΣ

2 ,V
(E)

2. for all V-extensions E , QV1 (E) ⊆ certQΣ
2 ,V

(E).

(2) implies (1): obvious.

(1) implies (2): by contradiction. Suppose that for every
database B, and for every V-extension E with E ⊆ V(B), we
have that QV1 (E) ⊆ certQΣ

2 ,V
(E), but there exists an Ē such

that QV1 (Ē) 6⊆ certQΣ
2 ,V

(Ē). The latter implies that there

is a tuple t of objects in Ē such that t ∈ QV1 (Ē) and for a
database B̄ with Ē ⊆ V(B̄) we have t 6∈ QΣ

2 (B̄). But this
contradicts the hypothesis.

As for the case of Section 4, one could also conceive a differ-
ent notion of containment of QV1 in QΣ

2 than the one given
in Definition 2, namely: for every database B, we have that
QV1 (V(B)) is a subset of certQΣ

2 ,V
(V(B)). In general this no-

tion differs from the one given in Definition 2, as shown by
the following example.

Let the base alphabet be Σ = {R} and the views be V =
{V1, V2} with definitions V Σ

1 = V Σ
2 = R. Consider the two

unary queries

QV1 = {x | V1(x),¬V2(x)}
QΣ

2 = ∅

It is easy to see that, for every database B, we have
QV1 (V(B)) = ∅, and hence QV1 (V(B)) ⊆ certQΣ

2 ,V
(V(B))

(in fact, also certQΣ
2 ,V

(V(B)) = ∅). However, consider

the database B̄ with RB̄ = {(a, b)} and the V-extension

Ē with V Ē1 = {(a, b)} and V Ē2 = ∅, which is such that
Ē ⊆ VΣ(B̄). For such a database and view extension we
have QV1 (Ē) = {(a, b)}, and hence QV1 (Ē) 6⊆ certQΣ

2 ,V
(Ē).

However it turns out that, if QV1 is monotone, the two no-
tions are equivalent.

Proposition 12. Let QV1 be monotone. Then, QV1 ⊆V
QΣ

2 if and only if for every database B, we have QV1 (V(B)) ⊆
certQΣ

2 ,V
(V(B)).

Proof. By Proposition 11, it suffices to prove that the
following two conditions are equivalent:

1. for all V-extensions E we have that QV1 (E) ⊆
certQΣ

2 ,V
(E)

2. for all databases B, we have that QV1 (V(B)) ⊆
certQΣ

2 ,V
(V(B))

(1) implies (2): straightforward, since for each database B,
V(B) is a V-extension.

(2) implies (1): we show that not (1) implies not (2). As-
sume that there exists a V-extension Ē and a tuple of objects
t such that t ∈ QV1 (E), and there exists a database B̄′ such
that Ē ⊆ V(B̄′) and t 6∈ QΣ

2 (B̄′). Observe that, by mono-
tonicity of QV1 , we have that t ∈ QV1 (V(B̄′)). Hence the
database B̄′ is such that QV1 (V(B̄′)) 6⊆ certQΣ

2 ,V
(V(B̄′)).

Interestingly, it turns out that, if both queries QV1 and
QΣ

2 are monotone, the condition in the proposition above
is equivalent to a simpler condition, namely: for every
database B we have that QV1 (V(B)) ⊆ QΣ

2 (B). This is stated
in the following proposition.

Proposition 13. Let QV1 and QΣ
2 be monotone. Then,

QV1 ⊆V QΣ
2 if and only if for every database B, we have

QV1 (V(B)) ⊆ QΣ
2 (B).

Proof. Since QV1 is monotone, by Propositions 11
and 12, it suffices to prove that the following two conditions
are equivalent:

1. for all databases B, we have that QV1 (V(B)) ⊆
certQΣ

2 ,V
(V(B))

2. for all databases B, we have that QV1 (V(B)) ⊆ QΣ
2 (B)

(1) implies (2): straightforward, since by definition of certain
answers, for all databases B we have that certQΣ

2 ,V
(V(B)) ⊆

QΣ
2 (B).

(2) implies (1): we show that not (1) implies not (2). As-
sume that there exists a database B̄ and a tuple of objects t
such that t ∈ QV1 (V(B̄)), and there exists a database B̄′ such
that V(B̄) ⊆ V(B̄′) and t 6∈ QΣ

2 (B̄′). Observe that, by mono-
tonicity of QΣ

2 , we have that t 6∈ QΣ
2 (V(B̄)). Hence for the

database B̄ we have that t ∈ QV1 (V(B̄)) and t 6∈ QΣ
2 (V(B̄)),

thus getting the thesis.

Since conjunctive queries are monotone, the above theo-
rem implies that, for conjunctive queries, checking QV1 ⊆V
QΣ

2 simply amounts to checking whether for every B,
QV1 (V(B)) ⊆ QΣ

2 (B). This is equivalent to substituting the
view symbols appearing in QV1 with the corresponding view
definitions, thus getting a new conjunctive query QΣ

1 over
the base alphabet Σ, and then checking QΣ

1 ⊆ QΣ
2 .

Theorem 14. Checking QV1 ⊆V QΣ
2 is NP-complete for

conjunctive queries.

Now we turn to the problem of checking whether QV1 ⊆V QΣ
2

in the setting of 2RPQs. As for the case of conjunctive
queries, since 2RPQs are monotone, checking view-based
containment of QV1 in QΣ

2 reduces to checking whether for
every B, QV1 (V(B)) ⊆ QΣ

2 (B). Again, this is equivalent to
substituting views with their definitions, thus getting a new
2RPQ QΣ

1 , and then checking QΣ
1 ⊆ QΣ

2 .

Theorem 15. Checking QV1 ⊆V QΣ
2 is PSPACE-

complete both for 2RPQs and for RPQs.

Proof. Since 2RPQs are monotone, by Proposition 13,
checking QV1 ⊆V QΣ

2 is equivalent to checking whether
QΣ

1 ⊆ QΣ
2 , where QΣ

1 is the 2RPQ over Σ obtained from
QV1 by substituting each view symbol V with its definition

V Σ. The upper bound follows from the fact that contain-
ment between two 2RPQs can be checked in PSPACE [15].
The lower bound follows from PSPACE-hardness of contain-
ment of regular expressions, considering a set of views that
coincide with the base symbols.

6. View-based containment of QΣ
1 in QV2

We address the problem of view-based containment between
a query over the base alphabet and a query over the view
alphabet.

Definition 3. QΣ
1 ⊆V QV2 if for every database B, and

for every V-extension E ⊆ V(B), we have certQΣ
1 ,V

(E) ⊆
QV2 (E).

Again in this definition we consider only V-extensions that
are sound wrt some database. However, we can drop this
requirement w.l.o.g. for non-constraining views.

Proposition 16. Let V be a set of non-constraining
views. Then, QΣ

1 ⊆V QV2 if and only if for every V-extension
E, we have certQΣ

1 ,V
(E) ⊆ QV2 (E)

Proof. “⇐” Obvious. “⇒” By contradiction. Suppose
that for each database B and for each V-extensions E with
E ⊆ V(B), we have that certQΣ

1 ,V
(E) ⊆ QV2 (E), but suppose

there exists an Ē such that certQΣ
1 ,V

(Ē) 6⊆ QV2 (Ē). Now,

since views are non-constraining, there exists a database B̄
such that Ē ⊆ V(B̄). Hence Ē contradicts the hypothesis.

For conjunctive queries, we know that certQΣ
1 ,V

coincides

with the maximally contained rewriting of QΣ
1 wrt V,

which is a possibly exponential union of conjunctive queries,
each of linear size in QΣ

1 [23]. To check non-containment
certQΣ

1 ,V
6⊆ QV2 , we have to guess a conjunctive query in the

maximal rewriting of QΣ
1 , and verify that it is not contained

in QV2 . Hence we get the following upper bound.

Theorem 17. Checking QΣ
1 ⊆V QV2 is in ΠP

2 for conjunc-
tive queries.

Whether this bound is tight is an open problem.

Now we turn to the problem of checking whetherQΣ
1 ⊆V QV2 ,

in the setting of 2RPQs. Since 2RPQ views are non-
constraining, by Proposition 16, it is sufficient to check
whether certQΣ

2 ,V
is contained in QV1 .

By Theorem 3, we know for a 2RPQ QΣ that (c, d) is not in
certQΣ,V(E) iff Ec,d is in CSP(CTQΣ,V). On the other hand,

by Theorem 2, we know for a query QV that (c, d) is not in
QV(E) iff Ec,d is in CSP(CTQV ,V). Therefore, QΣ

1 ⊆V QV2
if and only if for every V-extension E , and for every pair
objects c and d, we have that Ec,d in CSP(CTQV2 ,V

) implies

Ec,d in CSP(CTQΣ
1 ,V

).

In order to perform such a check we again resort to a suit-
able variant of containment between CSPs (see Theorem 1).
Again, we introduce proper constraint templates. Given a
constraint template CTQV ,V , a proper constraint template

CTα,β

QV ,V is obtained by eliminating from Ui all but one ele-

ment α and from Uf all but one element β.

Theorem 18. For 2RPQs, QΣ
1 ⊆V QV2 if and only if for

every proper constraint template CTα,β

QV2 ,V
of CTQV2 ,V

there

exists a homomorphism from CTα,β

QV2 ,V
to CTQΣ

1 ,V
.

Proof. Analogous to the proof of Theorem 7.

For the following lemma, we exploit the above characteriza-
tion of QΣ

1 ⊆V QV2 .

Lemma 19. Checking QΣ
1 ⊆V QV2 is in NEXPTIME for

2RPQs.

Proof. Analogous to the proof of Theorem 8.

The next lemma gives us a matching lower-bound.

Lemma 20. Checking QΣ
1 ⊆V QV2 is NEXPTIME-hard

for RPQs.

Proof. We show a reduction from a bounded version of
the tiling problem [36]. The problem is defined as follows.
A tile system Ω consists of a finite tile set T , two adjacency
relations V ⊆ T × T and H ⊆ T × T , an initial tile τ0,
and a final tile τf . In a bounded tiling problem we are
given such a tile system Ω and a bound n > 0 (in unary).
We have to decide whether there is a proper tiling of the
2n × 2n-grid such that: (1) t0 is in the bottom left corner
and tf is in the top left corner, (2) every pair of horizontal
neighbors is in H, and (3) every pair of vertical neighbors
is in V . Formally, we have to decide whether there is a
tiling function α : 2n × 2n → T such that (1) α(0, 0) = τ0
and t(0, 2n − 1) = τf , (2) for every 0 ≤ i < 2n − 1, and
0 ≤ j < 2n, we have that (α(i, j), α(i + 1, j)) ∈ H, and
(3) for every 0 ≤ i < 2n, and 0 ≤ j < 2n − 1, we have that
(α(i, j), α(i, j+1)) ∈ V and also α(2n−1, j), α(0, j+1)) ∈ H.
This problem is NEXPTIME-complete [29, 34]. We reduce
it to our containment problem. We construct a set V of RPQ
views and RPQs QΣ

1 and QV2 such that certQΣ
1 ,V

is contained

in QV2 iff the tiling problem is satisfiable.

We encode grids by labeled directed graphs, using the set of
views V = {s, f, h, v, 0, 1, t}. The intuition is that s labels
the starting edge of the grid, f labels the final edge of the
grid, h label horizontal adjacency edges, v labels vertical
adjacency edges, 0 and 1 label numerical edges (representing
bits of the coordinates), and t labels tile edges. We intend
the whole grid to be represented by a path of the form s((0+

1)2nth)4n−1(0 + 1)2ntf , where each block of the form (0 +
1)2nt represents one point in the grid and the sequence of
4n blocks of the form (0 + 1)2n represents a 2n-bit counter.

Note that h-edges connect horizontally adjacent blocks, i.e.,
either i′ = i + 1 and j′ = j or i = 2n − 1, i′ = 0, and
j′ = j + 1. We also intend that if there are v-edges between
nodes on this path they should connect vertically adjacent
blocks, i.e., i′ = i and j′ = j+1. We call a path of this form
a good path.

Good paths cannot be described by succinct regular expres-
sions. We can, however, write a regular expression QV2 of
size polynomial in n that describes bad paths, i.e.:

• paths that do not contain v-edges but are not of the
form s((0 + 1)2nth)∗(0 + 1)2ntf ,

• paths of the form s((0+1)2nth)∗(0+1)2ntf , where the
first block is not 02n or the last block is not 12n,

• paths of the form s((0 + 1)2nth)∗(0 + 1)2ntf , where
an h-edge connects blocks that are not horizontally
adjacent, or

• paths of the form s((0 + 1)2nth)∗(0 + 1)2ntv((0 +
1)2nth)∗(0 + 1)2ntf , where the v-edge connects blocks
that are not vertically adjacent (we call these bad v-
edges).

Let the base alphabet be Σ = {s, f, h, v, 0, 1}∪T . The view
definitions are as follows: (1) s, f , h, v, 0, and 1 are the
identity views, e.g., sΣ = s, (2) tΣ = t, where t = ∪τ∈T τ .
Intuitively, the view t “forgets” the precise tiling. The query
QΣ

1 is an RPQ of polynomial size that accepts paths with
bad tiling:

• paths of the form s((0 + 1)∗th)∗(0 + 1)∗tf , where the
first tile is not τ0 or the last tile is not τf ,

• paths of the form s((0 + 1)∗th)∗(0 + 1)∗tf , where an
h-edge connects pairs of tiled blocks violating H, or

• paths of the form s((0 + 1)∗th)∗(0 + 1)∗tv((0 +
1)∗th)∗(0 + 1)∗tf , where the v-edge connects pairs of
tiled blocks that violate V .

Suppose first that the given tiling problem is not satisfiable.
Consider a V-extension E that contains a good path from a
to b, augmented by all allowable v-edges, i.e., v-edges con-
necting every pair of vertically adjacent blocks. Since the
path is good, (a, b) 6∈ QV2 (E). Let B be a database such that
E = V(B) (observe that, because of the particular form of
the views definitions, such a B always exists). Thus, every
t-edge in E appears in B as a τ -edge for some τ ∈ T . Thus,
the path from a to b represents a candidate tiling. Since
the tiling problem is not satisfiable, we know that this tiling
is not a proper tiling, that is, it either does not start with
τ0, does not end with τf , violates H, or violates V . In all
these cases we have that (a, b) ∈ QΣ

1 (B). It follows that
(a, b) ∈ certQΣ

1 ,V
(E). Thus, certQΣ

1 ,V
(E) is not contained in

QV2 .

Suppose now that the given tiling problem is satisfiable.
Consider a V-extension E and a pair (a, b) 6∈ QV2 (E). If a
and b are not connected, then (a, b) 6∈ certQΣ

1 ,V
(E). If a and

b are connected, then there is a good path from a to b. Let
B be a database such that E = V(B) (again such a database
exists, because of the form of the view definitions). Thus,
every t-edge in E appears in B as a τ -edge for some τ ∈ T .
Thus, the path from a to b represents a candidate tiling.
Since the tiling problem is satisfiable, we know that there
is some B such that this tiling is a proper tiling, that is, it
does start with τ0, end with τf , respects H, and respect V .
It follows that (a, b) 6∈ QΣ

1 (B). Thus, (a, b) 6∈ certQΣ
1 ,V

(E).

Consequently, certQΣ
1 ,V

(E) is contained in QV2 .

Note that QΣ
1 depends only on H and V but not on n.

By starting with a NEXPTIME-complete Turing machine,
we can obtain a fixed tiling system Ω whose satisfiability
problem is NEXPTIME-complete, where in addition to n
we need to specify the first n tiles on the grid. From this we
get that our containment problem is NEXPTIME-complete
even for fixed V and QΣ

1 .

From Lemmas 19 and 20, we get the following computational
complexity characterization.

Theorem 21. Checking QΣ
1 ⊆V QV2 is NEXPTIME-

complete both for 2RPQs and for RPQs.

One could also compare the two queries only wrt exten-
sions that correspond exactly to the evaluation of the views
over some database. Formally, this corresponds to checking
whether, for every database B, we have that certQΣ

1 ,V
(V(B))

is a subset of QV2 (V(B)). Such a notion differs from QΣ
1 ⊆V

QV2 , even for non-constraining views and monotone queries.
Indeed, consider Σ = {R}, V = {V1, V2} with V Σ

1 = V Σ
2 =

R, and queries QΣ
1 = R and QV2 = V2. It is easy to see that,

for every database B we have certQΣ
1 ,V

(V(B)) ⊆ QV2 (V(B)).

However, the V-extension E with V1(E) = {(c, d)} and
V2(E) = ∅ is such that (c, d) ∈ certQΣ

1 ,V
(E) but (c, d) 6∈

QV2 (E), thus showing that QΣ
1 6⊆V QV2 .

Since the two versions of containment differ, the question
arises on whether we are able to check containment of QΣ

1

in QV2 only for those V-extensions that correspond to the
evaluation of the view definitions over some database. To
this purpose we can exploit the following proposition.

Proposition 22. Let QV be monotone, and let QΣ be
the query over Σ obtained by substituting in QV the view
symbols with the corresponding view definitions. Then, for
every database B, we have QV(V(B)) = certQΣ,V(V(B)).

Proof. ⊆. Suppose there exists a database B̄ and a tuple
t such that t ∈ QV but for some database B′ such that
V(B̄) ⊆ V(B′), t 6∈ QΣ(B′). Now QΣ(B′) = QV(V(B′)),
hence since QV is monotone, we get a contradiction.

⊇. Suppose there exists a database B̄ and a tuple t such
that for all databases B′ such that V(B̄) ⊆ V(B′) we have
that t ∈ QΣ(B′), but t 6∈ QV(V(B̄)). Now since QΣ(B′) =
QV(V(B′)), we get a contradiction.

Observe that, in general, it is not true that, for every V-
extension E , we have QV(E)) = certQΣ,V(E). For example,

consider Σ = {R}, the set of views V = {V1, V2} with V Σ
1 =

V Σ
2 = R, and the V-extension E with V1(E) = {(a, b)} and
V2(E) = ∅. Then, for the query QV = V2, we have that
QV(E) = ∅, while certQΣ,V(E) = {(a, b)}.

By Proposition 22, if QV2 is monotone, we can check whether
for every database B we have that certQΣ

1 ,V
(V(B)) ⊆

QV2 (V(B)), by checking whether for every database B we
have that certQΣ

1 ,V
(V(B)) ⊆ certQΣ

2 ,V
(V(B)), where QΣ

2 is

the query obtained from QV2 by expanding view symbols
with their definitions. By Proposition 5, this can be done
by checking whether QΣ

1 ⊆V QΣ
2 (cf. Section 4), and there-

fore the problem is ΠP
2 -complete for conjunctive queries, and

NEXPTIME-complete for 2RPQs and RPQs.

7. View-based containment of QV1 in QV2
The last form of view-based query containment is when the
two queries are over the view alphabet.

Definition 4. QV1 ⊆V QV2 if for every database B, and
for every V-extension E ⊆ V(B), we have QV1 (E) ⊆ QV2 (E).

Analogously to the previous case, for non-constraining
views, we can drop w.l.o.g. the requirement to consider only
V-extensions that are sound wrt some database. Therefore,
if views are non-constraining, checking view-based contain-
ment reduces to checking containment of the two queries
over the view alphabet.

Theorem 23. Checking QV1 ⊆V QV2 is NP-complete for
conjunctive queries, and PSPACE-complete both for 2RPQs
and for RPQs.

It is interesting to observe that, even for non-constraining
views and monotone queries, checking QV1 ⊆V QV2 is not
equivalent to checking whether, for every database B, we
have that QV1 (V(B)) ⊆ QV2 (V(B)). Indeed, consider Σ =
{R}, V = {V1, V2}, with V1

Σ = R and V2
Σ = R, and queries

QV1 = V1 and QV2 = V2. It is easy to see that for every
database B, we have QV1 (V(B)) ⊆ QV2 (V(B)). However, the
V-extension E with V1(E) = {(a, b)} and V2(E) = ∅ shows
that QV1 6⊆V QV2 .

Since the two versions of containment differ, the question
arises on whether we are able to check the condition that
for each database B, QV1 (V(B)) ⊆ QV2 (V(B)). It turns out
that this is equivalent to substituting view symbols with
their definitions in both queries, thus getting new queries
QΣ

1 and QΣ
2 , and then checking QΣ

1 ⊆ QΣ
2 . It follows

that checking whether, for each database B, QV1 (V(B)) ⊆
QV2 (V(B)), is NP-complete for conjunctive queries, and
PSPACE-complete for 2RPQs and RPQs.

8. Relationship with Rewriting

Although in the previous sections we have referred to view-
based query answering, another approach to view-based

query processing has been advocated, namely the one based
on rewriting. In view-based query rewriting, a query QΣ

over the base alphabet is processed by first reformulating
QΣ into an expression of a fixed language (e.g., union of
conjunctive queries) over the view alphabet, and then eval-
uating such an expression over the view extensions. The
relationship between view-based query answering and view-
based query rewriting is investigated in [23, 13, 25].

Note that, in our setting, views are sound, and this prop-
erty must be taken into account in the reformulation step of
the rewriting process. However, most papers on rewriting
queries using views are based, either implicitly or explicitly,
on the exact view assumption, which states that the exten-
sion of the views provides exactly the results of applying
the view definitions to the database. It follows that we need
to provide an adequate definition of rewriting in a setting
where views are sound.

Definition 5. QV1 is a rewriting of QΣ
2 under sound

views V, if for every database B and for every V-extension
E with E ⊆ V(B), we have that QV1 (E) ⊆ QΣ

2 (B).

Two interesting observations easily follow from this defini-
tion. First, it is immediate to verify that certQΣ,V , when
seen as a query over the view alphabet, conforms to the def-
inition, and therefore is a rewriting of QΣ under sound views
V. Second, if QV1 is a rewriting of QΣ

2 under sound views V,
then for each V-extension E with E ⊆ V(B), we have that
QV1 (E) ⊆ certQΣ

2 ,V
(E).

It is clear from the above observations that, if we do not have
any constraint on the language used to express the rewrit-
ing, certQΣ,V is the best rewriting of QΣ one can obtain.
This motivates why, in [13], certQΣ,V has been called the

perfect rewriting of QΣ under sound views V. On the other
hand, when the rewriting is restricted to belong to a certain
query class C, one is typically interested in a so-called max-
imally contained rewriting, i.e., a rewriting that belongs to
C, and is maximal in C. The maximally contained rewriting
is obviously the best possible rewriting in the class C.

Now, given a query QV1 over the view alphabet and a query
QΣ

2 over the base alphabet, three interesting questions re-
lated to view-based query rewriting arise:

1. Is QV1 a rewriting of QΣ
2 under sound views V?

2. Is QV1 the perfect rewriting of QΣ
2 under sound views

V?

3. For a class C of rewritings, is the maximally contained
rewriting of QΣ

2 perfect?

We show in the following that view-based query containment
is the right conceptual tool to provide the answers to the
above questions.

Starting from the 1st question, the following proposition
shows that view-based query containment provides a method
for checking whether QV1 is a rewriting of QΣ

2 under sound

views V. The proposition is an easy consequence of the def-
inition of rewriting under sound views, and Proposition 11.

Proposition 24. QV1 is a rewriting of QΣ
2 under sound

views V if and only if QV1 ⊆ certQΣ
2 ,V

, if and only if QV1 ⊆V
QΣ

2 .

By exploiting this property and the results presented in Sec-
tion 5 on view-based containment of QV1 in QΣ

2 , we derive
the following complexity result.

Theorem 25. Checking whether QV1 is a rewriting of QΣ
2

under sound views V is NP-complete for conjunctive queries,
and PSPACE-complete both for 2RPQs and for RPQs.

To address the 2nd question, we need to check both that
QV1 is a rewriting of QΣ

2 under sound views V (question 1),
and that the perfect rewriting of QΣ

2 under sound views V is
contained in QV1 . The latter amounts to verifying whether
for every database B, and for every V-extension E with
E ⊆ V(B), we have that certQΣ

2 ,V
(E) ⊆ QV1 (E). The next

proposition shows that we can again use view-based query
containment for this purpose.

Proposition 26. The perfect rewriting of QΣ
2 under

sound views V is contained in QV1 if and only if QΣ
2 ⊆V QV1 .

From the results presented in Section 6 on view-based con-
tainment of QΣ

2 in QV1 , the theorem below directly follows.

Theorem 27. Checking whether the perfect rewriting of
QΣ

2 under sound views V is contained in QV1 can be done
in ΠP

2 for conjunctive queries, and is NEXPTIME-complete
both for 2RPQs and for RPQs.

Propositions 24 and 26 show that, both for conjunctive
queries, and for 2RPQs, we have a method for checking
whether a given query QV1 is the perfect rewriting of QΣ

2

under sound views V.

Turning our attention to the 3rd question, observe first that
it may happen that, for a class C, no maximally contained
rewriting of QΣ coincides with the perfect rewriting of QΣ

under sound views V. A method for computing maximally
contained conjunctive rewritings for conjunctive queries and
views is described in [26]. Analogously, a method for com-
puting maximally contained two-way regular rewritings for
2RPQs queries and views is described in [12]. By resorting
to these results, and by referring to Theorem 27, we can
conclude that, for both classes of queries, we have an up-
per bound for checking whether the maximally contained
rewriting of a query QΣ

2 under sound views V is perfect.

Finally, perfectness should not be confused with exactness.
A rewriting of a query is called exact if it is equivalent to the
query itself. Although every exact rewriting is also perfect,
it may happen that the perfect rewriting of a query QΣ

under sound views V is not exact. In [14], a set of views
V is called lossless wrt a query QΣ if the perfect rewriting
of QΣ under sound views V is exact. In the same paper, a
method for checking losslessness is presented for RPQs. It
is easy to see that checking losslessness amounts to checking
containment between QΣ and certQΣ,V , and therefore is not
captured by the notion of view-based query containment
studied in this paper.

9. Conclusions

We have presented a thorough analysis of view-based query
containment, showing that the problem comes in various
forms, depending on whether each of the two queries is ex-
pressed over the base alphabet or the view alphabet. We
have investigated all possible combinations from a semantic
point of view, and studied their mutual relationships. For
both settings of conjunctive queries and of two-way regular
path queries, we have provided techniques and complexity
bounds for the different variants of view-based query con-
tainment. The only problem left open by our analysis is the
exact lower bound of checking QV1 ⊆V QΣ

2 for conjunctive
queries. Finally, we have studied the relationship between
view-based query containment and view-based query rewrit-
ing.

In our investigation, we have considered the case where
views are sound, i.e., their extensions provide a subset of
the results of applying the view definitions to the database.
Although this is the usual assumption in most domains, e.g.,
data integration, there are settings where views should be
considered exact, e.g., query optimization. An interesting
direction for continuing our work is to study view-based
query containment under exact views.

10. Acknowledgments

This work was supported in part by projects Infomix (IST-
2001-33570) and Sewasie (IST-2001-34825) funded by the
European Union, by project D2I (“From Data to Infor-
mation”) funded by MIUR (Italian Ministry of University
and Research), by NSF grants CCR-9988322, CCR-0124077,
IIS-9908435, IIS-9978135, and EIA-0086264, by BSF grant
9800096, and by a grant from the Intel Corporation.

11. REFERENCES

[1] S. Abiteboul. Querying semi-structured data. In Proc.
of ICDT’97, pages 1–18, 1997.

[2] S. Abiteboul, P. Buneman, and D. Suciu. Data on the
Web: from Relations to Semistructured Data and XML.
Morgan Kaufmann, Los Altos, 2000.

[3] S. Abiteboul and O. Duschka. Complexity of answering
queries using materialized views. In Proc. of PODS’98,
pages 254–265, 1998.

[4] S. Abiteboul and V. Vianu. Regular path queries
with constraints. J. of Computer and System Sciences,
58(3):428–452, 1999.

[5] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S.
Subrahmanian. Query caching and optimization in dis-
tributed mediator systems. In Proc. of ACM SIGMOD,
pages 137–148, 1996.

[6] M. Ajtai and R. Fagin. Reachability is harder for di-
rected than for undirected finite graphs. J. of Symbolic
Logic, 55(1):113–150, 1990.

[7] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Ex-
tensible Markup Language (XML) 1.0 — W3C recom-
mendation. Technical report, World Wide Web Consor-
tium, 1998. Available at http://www.w3.org/TR/1998/
REC-xml-19980210.

[8] P. Buneman. Semistructured data. In Proc. of
PODS’97, pages 117–121, 1997.

[9] P. Buneman, S. Davidson, G. Hillebrand, and D. Su-
ciu. A query language and optimization technique for
unstructured data. In Proc. of ACM SIGMOD, pages
505–516, 1996.

[10] D. Calvanese, G. De Giacomo, and M. Lenzerini. Repre-
senting and reasoning on XML documents: A descrip-
tion logic approach. J. of Log. and Comp., 9(3):295–
318, 1999.

[11] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi,
and R. Rosati. Description logic framework for informa-
tion integration. In Proc. of KR’98, pages 2–13, 1998.

[12] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y.
Vardi. Query processing using views for regular path
queries with inverse. In Proc. of PODS 2000, pages 58–
66, 2000.

[13] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y.
Vardi. View-based query processing and constraint sat-
isfaction. In Proc. of LICS 2000, pages 361–371, 2000.

[14] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y.
Vardi. Lossless regular views. In Proc. of PODS 2002,
pages 58–66, 2002.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y.
Vardi. View-based query answering and query con-
tainment over semistructured data. In G. Ghelli and
G. Grahne, editors, Revised Papers of the 8th Interna-
tional Workshop on Database Programming Languages
(DBPL 2001), volume 2397 of LNCS, pages 40–61.
Springer, 2002.

[16] S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, and
K. Shim. Optimizing queries with materialized views.
In Proc. of ICDE’95, Taipei (Taiwan), 1995.

[17] T. Feder and M. Y. Vardi. The computational structure
of monotone monadic SNP and constraint satisfaction.
SIAM J. on Computing, 28:57–104, 1999.

[18] M. F. Fernandez, D. Florescu, A. Levy, and D. Suciu.
Verifying integrity constraints on web-sites. In Proc. of
IJCAI’99, pages 614–619, 1999.

[19] D. Florescu, A. Levy, and A. Mendelzon. Database
techniques for the World-Wide Web: A survey. SIG-
MOD Record, 27(3):59–74, 1998.

[20] M. Friedman, A. Levy, and T. Millstein. Navigational
plans for data integration. In Proc. of AAAI’99, pages
67–73. AAAI Press/The MIT Press, 1999.

[21] G. Grahne and A. O. Mendelzon. Tableau tech-
niques for querying information sources through global
schemas. In Proc. of ICDT’99, volume 1540 of LNCS,
pages 332–347. Springer, 1999.

[22] A. Gupta and J. D. Ullman. Generalizing conjunctive
query containment for view maintenance and integrity
constraint verification (abstract). In Workshop on De-
ductive Databases (In conjunction with JICSLP), page
195, Washington D.C. (USA), 1992.

[23] A. Y. Halevy. Answering queries using views: A survey.
VLDB Journal, 10(4):270–294, 2001.

[24] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query
containment and constraint satisfaction. In Proc. of
PODS’98, pages 205–213, 1998.

[25] M. Lenzerini. Data integration: A theoretical perspec-
tive. In Proc. of PODS 2002, pages 233–246, 2002.

[26] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Sri-
vastava. Answering queries using views. In Proc. of
PODS’95, pages 95–104, 1995.

[27] A. Y. Levy and M.-C. Rousset. Verification of knowl-
edge bases: a unifying logical view. In Proc. of the 4th
European Symposium on the Validation and Verifica-
tion of Knowledge Based Systems, Leuven, Belgium,
1997.

[28] A. Y. Levy and Y. Sagiv. Semantic query optimization
in Datalog programs. In Proc. of PODS’95, pages 163–
173, 1995.

[29] H. R. Lewis. Complexity of solvable cases of the decision
problem for the predicate calculus. In FOCS-78, pages
35–47, 1978.

[30] C. Li and E. Chang. On answering queries in the pres-
ence of limited access patterns. In Proc. of ICDT 2001,
pages 219–233, 2001.

[31] T. D. Millstein, A. Y. Levy, and M. Friedman. Query
containment for data integration systems. In Proc. of
PODS 2000, pages 67–75, 2000.

[32] T. Milo and D. Suciu. Index structures for path ex-
pressions. In Proc. of ICDT’99, volume 1540 of LNCS,
pages 277–295. Springer, 1999.

[33] A. Motro. Panorama: A database system that anno-
tates its answers to queries with their properties. J. of
Intelligent Information Systems, 7(1), 1996.

[34] P. van Emde Boas. The convenience of tilings. In
A. Sorbi, editor, Complexity, Logic, and Recursion The-
ory, volume 187 of Lecture Notes in Pure and Applied
Mathematics, pages 331–363. Marcel Dekker Inc., 1997.

[35] M. Y. Vardi. A note on the reduction of two-way au-
tomata to one-way automata. Information Processing
Letters, 30(5):261–264, 1989.

[36] H. Wang. Dominoes and the ∀∃∀ case of the decision
problem. In Symposium on the Mathematical Theory of
Automata, pages 23–55, 1962.

