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ABSTRACT

If the only information we have on a certain database is
through a set of views, the question arises of whether this
is sufficient to answer completely a given query. We say
that the set of views is lossless with respect to the query, if,
no matter what the database is, we can answer the query
by solely relying on the content of the views. The ques-
tion of losslessness has various applications, for example in
query optimization, mobile computing, data warehousing,
and data integration. We study this problem in a context
where the database is semistructured, and both the query
and the views are expressed as regular path queries. The
form of recursion present in this class prevents us from ap-
plying known results to our case.

We first address the problem of checking losslessness in the
case where the views are materialized. The fact that we have
the view extensions available makes this case solvable by ex-
tending known techniques. We then study a more complex
version of the problem, namely the one where we abstract
from the specific view extension. More precisely, we address
the problem of checking whether, for every database, the
answer to the query over such a database can be obtained
by relying only on the view extensions. We show that the
problem is solvable by utilizing, via automata-theoretic tech-
niques, the known connection between view-based query an-
swering and constraint satisfaction. We also investigate the
computational complexity of both versions of the problem.

1. INTRODUCTION

View-based query processing is the problem of computing
the answer to a query based on a set of views [16, 22, 3].
This problem has recently received much attention in sev-
eral application areas, such as mobile computing, query op-
timization, data warehousing, and data integration. A large
number of results have been reported in the last years, and
several methods have been proposed (see [15] for a recent
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survey). Some of the methods are based on the idea of
first computing the rewriting of the query with respect to
the views, and then evaluating the rewriting over the view
extensions (see, for instance, [16]). Other methods, such
as [10], use a more direct approach, trying to compute the
so-called certain answers, i.e., the tuples satisfying the query
in all databases consistent with the views, on the basis of
the view definitions and the view extensions. A comparison
of the two approaches is reported in [8].

We observe that there are at least two notions of certain an-
swers proposed in the literature, depending on the interpre-
tation of a database being coherent with the views (e.g., [3,
13, 6])*.

1. One interpretation assumes that the views are sound
but not complete. A database is consistent with the
views under the sound view assumption if the exten-
sion of each view is a subset of the result of evaluating
the corresponding view expression over that database.
In other words, we assume that views provide only
some of the data that are obtainable by the query ex-
pressions associated to the views.

2. On the contrary, the other interpretation, called exact
view assumption, considers the views to be both sound
and complete. A database is consistent with the views
under the exact view assumption if the extension of
each view coincides with the result of evaluating the
corresponding view expression over that database.

Independently from the strategy and the assumption
adopted, the question arises of whether the information con-
tent of the views is sufficient to answer completely a given
query. We say that a set of views is lossless with respect
to a query, if, no matter what the database is, we can an-
swer the query by solely relying on the content of the views.
This question is relevant for example in mobile computing,
where we may be interested in checking whether a set of
cached data allows us to derive the requested information
without accessing the network. Similarly, in data warehous-
ing, determining if the materialized views are sufficient to
completely answer a query is a relevant question, both posi-
tively for answering the query if no other data are available,

In fact, also a third assumption, called complete view as-
sumption, has been proposed in the literature, but we do
not consider it here.



and negatively, for ensuring that the user does not derive
sensitive information [14]. Also, the question is important
at design time, in particular for the view selection prob-
lem [9], where we have to measure the quality of the choice
of the views to materialize in the data warehouse. Finally, in
data integration, we may be interested in checking whether
the relevant queries can be answered by accessing only a
given set of sources. As pointed out in [17], this may help
in the design of the data integration system, in particular,
by selecting a minimal subset of sources to access without
losing query-answering power.

The definition of losslessness relies on that of certain an-
swers: a set of views is lossless with respect to a query, if for
every database, we can answer the query over that database
by computing the certain answers based on the view exten-
sions. It follows that there are two versions of losslessness,
namely, losslessness under the sound view assumption, and
losslessness under the exact view assumption.

1. The first version is obviuosly weaker than the second
one. If views V are lossless with respect to a query @
under the sound view assumption, then we know that,
from the intensional point of views, V contain enough
information to completely answer (), even though the
possible incompleteness of the view extensions may
prevent us form obtaining all the answers that Q would
get from the database.

2. On the other hand, if V are lossless with respect to
a query @ under the exact view assumption, then we
know that they contain enough information to com-
pletely answer @, both from the intensional and from
the extensional point of view.

Recent papers address, either explicitly or implicitly, the
question of losslessness. Interestingly, all of the results they
present refer to the case of losslessness under the sound view
assumption.

In [14], the authors introduce the notion of “information
content” of materialized views, and exploit this notion to
derive results on losslessness for a restricted class of aggre-
gate queries. In [19], the problem of “relative containment”
is studied for variants of conjunctive queries. A query is
contained in another query relative to a set of views, if, for
each extension of the views, the certain answers to the for-
mer query are a subset of the certain answers to the latter.
It is shown that relative containment is II complete in the
case of conjunctive queries and views. In [18], the results on
relative containment are extended to the case where views
have limited access patterns. In [17], several results are pre-
sented on the notion of “p-containment”. A view set V is
said to be p-contained in another view set W i.e., V has at
most the answering power of W, if W can answer all queries
that can be answered using V. Most results in [19, 17] are
based on the fact that, in the case of conjunctive queries and
views, the set of certain answers to a given query can be ob-
tained by a nonrecursive Datalog program. This implies,
for example, that checking relative containment amounts
to checking containment of two nonrecursive Datalog pro-
grams. By exploiting this fact, we can conclude that check-
ing losslessness of a set of conjunctive views with respect

to a conjunctive query can be done by checking equivalence
between the query and the nonrecursive Datalog program
computing the corresponding certain answers.

Related to the question of losslessness, is the problem of
checking whether the maximally contained rewriting of a
query with respect to a set of views is exact, i.e., is equiva-
lent to the query. In [5, 7], methods for checking exactness
of regular rewritings are reported for the classes of regular
path queries, and regular path queries with inverse. Note,
however, that regular rewritings may not be sufficient for
computing all certain answers [8], and therefore, checking
losslessness of a set of regular path views with respect to a
regular path query cannot be reduced to checking the ex-
actness of the rewriting of the query with respect to the
views.

In this paper, we study the problem of losslessness in a con-
text where the database is semistructured [2], i.e., has the
form a labeled graph, and both the query and the views are
expressed as regular path queries. The presence of recursion
in regular path queries, although of a limited form, prevents
us from applying known results to our case. In particular,
all the known results on losslessness checking are valid for
settings where the problem can be reduced to checking the
equivalence of the query with respect to a certain query ex-
pression representing its maximally contained rewriting. As
we said before, we cannot directly apply this method in our
case.

The main contributions of our work are as follows.

1. First, we address the problem of checking losslessness
in the case where the views are materialized, i.e., we
have view extensions available. This version of lossless-
ness is particularly relevant in data integration, where
views model data sources, and view extensions corre-
spond to the data accessible to the integration sys-
tem for answering queries. In this case, losslessness
should be determined relative to the available data.
We present a method that searches for a counterex-
ample to losslessness, i.e., two databases that are both
coherent with the view extensions, and that differ in
the answers to the query. We show that the avail-
ability of view extensions makes this case solvable by
extending known techniques.

2. We then study the more general version of the prob-
lem, namely the one where we abstract from the spe-
cific view extension. As we said before, the losslessness
question in this case consists of checking whether, for
every database, the answer to the query over such a
database can be obtained by computing the certain
answers only on the basis of the view extensions. This
version of losslessness is the one needed in those sit-
uations where only intensional information is avail-
able, e.g., at design time of a data warehouse, and
in those situations where view extensions are expected
to change frequently, so that measuring losslessness on
the current view extension only is meaningless. The
search for a counterexample is much more difficult in
this case, due to the presence of a quantification over
all possible view extensions. Nevertheless, we show



that the problem is solvable even in this case, at least
under the sound view assumption. In particular, we
prove that, under such an assumption, we can re-
strict our attention to counterexamples that are linear
databases, and this allows us to devise a method that
uses, via automata-theoretic techniques, the known
connection between view-based query answering and
constraint satisfaction [8].

We also present a comparison with the case of loss-
lessness under the exact view assumption, for which
we have no algorithm at present. Moreover, we show
that if a query @ is equivalent to its maximally con-
tained regular rewriting with respect to views V), then
V is lossless with respect to @ under the sound view
assumption.

3. Finally, we study the computational complexity of
checking losslessness of regular views under the sound
views assumption. In particular, we show that, for
a fixed view extension, checking losslessness is coNP-
complete in data complexity (i.e., with respect to the
size of view extensions), and PSPACE-complete wrt
the query and the view definitions. In the general case,
we show that the problem is PSPACE-complete wrt
the view definitions, and we provide an EXPSPACE
upper bound with respect to the query.

The paper is organized as follows. Section 2 introduces regu-
lar path queries, and provides the definition of losslessness of
views. Section 4.1 recalls the connection between view-based
query answering and constraint satisfaction [8]. Section 3
presents the method for checking losslessness with respect
to a view extension. Section 4 and Section 4.3 address the
general version of the problem, for the case of sound views
and exact views, respectively. Section 5 presents a discus-
sion on the comparison between the notion of losslessness
and the notion of equivalence with the maximally contained
rewriting. Fianlly, Section 6 concludes the paper.

2. PRELIMINARIES

A (semi-structured) database is a graph whose nodes repre-
sent objects, and whose edges are labeled by elements from
a given alphabet X, which we assume to be finite [4, 1]. Dif-
ferent nodes represent different objects, and an edge from
node x to node y labeled by r, denoted (z,,y), represents
the fact that relation r holds between the object represented
by x and the object represented by y.

In this paper, we restrict our attention to regular-path
queries (RPQs). An RPQ Q@ is expressed as a regular ex-
pression or a finite-state automaton over 3. When evalu-
ated over a database B, an RPQ @ computes the set Q(B)
of pairs of nodes connected by a path that conforms to the
regular language L(Q) defined by Q. A path in B from z to
y (labeled with 71 - - -7y,) is a sequence of the form

(y077'17y17- .- aym—hrm:ym)

where

e m >0,y =, Yym =y, and

e for each ¢ € {1,...,m}, we have that r; € ¥ and
(yi—hrivyi) in B.

We say that a path (yo,71,...,7m,Ym) conforms to @ if
ri--Tm € L(Q).

A path is said to be simple if no node appears more than
once in the corresponding sequence.

Consider a database that is accessible only through a collec-
tion of views V), and suppose we want to answer an RPQ only
on the basis of our knowledge on the views. Specifically, the
collection of views is represented by a tuple V = (V1,..., Vx)
of view definitions and a tuple & = (Eu,...,Ey) of corre-
sponding view extensions. For each i, the i-th view is char-
acterized by the pair (V;, E;), where

e view definition V; is an RPQ over the alphabet X;

e view extension F; is a set of pairs of objects. We as-
sume that objects are represented by constants and
we adopt the unique name assumption [20], i.e., differ-
ent constants denote different objects, and therefore
different nodes.

We denote by Ag the set of objects appearing in £. Also
for a database B, we use V(B) to denote the view exten-
sions (Vi(B),...,Vix(B)), and for two databases B and B,
we use V(B) C V(B') to denote that V;(B) C V;(B'), for
1e{l,...,k}.

We say that a database B is consistent with V; and E; under
the sound view assumption if E; C V;(B). A database B is
consistent with ¥V and € under the sound view assumption if
B is consistent with V; and F; under the same assumption,
for each i € {1,...,k}.

Note that the definition makes it clear that the sound view
assumption models a situation where the view extensions
provide a subset of the results of applying the view expres-
sions to the database. For a sound view (V, E), all the tuples
in E must appear in V' (B), but V' (B) may contain tuples not
in B.

On the other hand, the exact view assumption models a situ-
ation where the view extensions provide sound and complete
information about which data satisfies the view expressions
over the given database. It follows that query answering
based on exact views means basically applying the closed
world assumption on the views [3]. We say that a database
B is consistent with V; and E; under the exact view assump-
tion if E; = V;(B). A database B is consistent with V and £
under the exact view assumption if B is consistent with V;
and E; under the same assumption, for each i € {1,...,k}.

Given view definitions V, view extensions £, and a query @,
the set of certain answers to () under either the sound or
the exact view assumption with respect to V and & is the
set of pairs (c, d) such that (c,d) € Q(B), for every B that is
consistent with V and £ under the same assumption. View-
based query answering consists in deciding whether a given



pair (c,d) of objects is a certain answer to ) with respect
to V and €.

Given view definitions V and a query (), we denote by
cert 5 () (cert&3s'(+), resp.) the function that, for every
view extension £ for V, returns the set of certain answers to
Q@ under the sound view assumption (exact view assumption,
resp.) with respect to V and &.

We now define the notion of losslessness of a collection of
views with respect to a query. We first refer to the case
where we have the view extensions available.

DEFINITION 1. Given view definitions V, corresponding
view extensions £, and a query Q, V is said to be lossless
with respect to @ relative to £ under the sound view assump-
tion (exact view assumption, resp.), if, for every database B
such that V(B) = €, we have that Q(B) = certi4(V(B))
(Q(B) = certés (V(B)), resp.).

ExAMPLE 1. Consider the alphabet ¥ = {0, 1}, the query

Q=11
the views V = (V1, V2, V3) with
i = 0+1
Vo = 0
Vi = (0+1)

and the extension & = (E1, Es, E3) with

El = {(avb)7(b’c)}
Ey = 0

E; = {(a’7 b)v (a7 C)v (b’ C)}

Then V is not lossless with respect to @ relative to £ un-
der the sound view assumption. Consider for example the
database B constituted by the single path (a,1,b,1,¢), for
which V(B) = €. Clearly, Q(B) = {(a,c)}, but it is easy
to verify that (a,c) & certgf{?d(é'), take e.g., the database
B' = (a,0,b,1,c).

On the other hand, one can check that V is lossless with
respect to @ relative to £ under the exact view assumption.
Intuitively, this is due the fact that E; = (), and since the
views are exact, in each database B consistent with V and
&, the pairs of nodes (y1,y2) such that (yi,1,y2) are in B,
are precisely those in Ej. [

Finally, we extend this notion to the case where we abstract
from view extensions. Intuitively, in this case losslessness
of V with respect to @@ means that, no matter what the
database is, there is no difference between issuing @ to such
a database and computing the certain answers to ) on the
basis of the data satisfying the views on the database.

DEFINITION 2. Given view definitions V and a query Q,
V is said to be lossless with respect to @ under the sound
view assumption (exact view assumption, resp.), if for every
database B we have that Q(B) = certs$*(V(B)) (Q(B) =
cert&S (V(B), resp.).

ExaMPLE 2. Consider the alphabet ¥ = {0, 1}, the query

Q=1(0+1)1
the views V = (V1, V2) with

w =1

Vo = 01

Then V is lossless with respect to @ both under the sound
and under the exact view assumption. Intuitively, this is
due to the fact that for each database B, a path conforming
to @ has either the form (yo,1,y1,1,y2,1,y3) or the form
(yo0,1,y1,0,y2,1,y3). In the first case, the path conforms
to V1-V1-V1, while in the second case it conforms to V;-V5.
Hence, for each database B’ such that V(B) C V(B'), we
have that (yo,y3) € Q(B’). Notice that, in this case, there
is an equivalent rewriting of the query ) with respect to the
views V (cf. Section 5). m

3. LOSSLESSNESS WITH RESPECT TO A
VIEW EXTENSION

We address the problem of checking, given a query Q, view
definitions V, and corresponding view extensions £, whether
V are lossless with respect to @ relative to £. We deal first
with losslessness under sound views. Following the defini-
tion, we have that V is not lossless with respect to @ relative
to £ under the sound view assumption if and only if there
exists a pair of objects ¢ and d such that:

1. there exists a database B with V(B) = £ and (c,d) €
Q(B);

2. (c,d) & cert3 3 (€).

Condition (2) corresponds to checking whether (¢, d) is not
a certain answer to ) under the sound view assumption
with respect to V and &£, while condition (1) corresponds to
checking whether (c,d) is a possible answer to @ under the
sound view assumption with respect to V and £.

Using such a characterization, we devise an algorithm to
determine losslessness relative to a given extension. In [6],
techniques are given to check both kinds of conditions when
both ¢ and d are in Ag. Observe, however, that we need
to deal also with the case where ¢ and/or d are not in Ag.
To this end, note that, if (¢,d) € Ag X Ag, then trivially
(c,d) & certis’r®(£), since there are databases in which ¢ and
d do not appear. Hence, for this case we need only to check
condition (1). The basic idea to do so, is to include two new
objects Cpew and dpeyw in the extension without changing the
extensions of the views in V. These new objects stand as
representatives for objects not in Ag.

The algorithm that checks whether there is no pair of objects
c and d satisfying conditions (1) and (2) proceeds as follows:

e Iterate over all pairs of objects (c,d) € Ag x Ag,
and for each such pair, check whether conditions (1)
and (2) hold.

e Add a new object cpew, and a new view with exten-
sion {(Cnew, Cnew) } and with definition 7pew, where rnew



is a new symbol not appearing in the alphabet ¥ of
the original views and the query. Iterate over all ob-
jects d € Ag, and for each pair (cpew, d) and each pair
(d, €new), check whether condition (1) holds.

e Add a new pair of objects (Cnew, dnew), and a new view
with extension {(Cnew, dnew)} and with definition r,ew,
where again 7new € 3. Check whether condition (1)
holds for (¢new, dnew)-

The algorithm returns false if one of the above checks suc-
ceeds, true otherwise.

THEOREM 3. V is lossless with respect to Q relative to €
if and only if the algorithm above returns true.

Each of the checks performed by the algorithm can be done
in PSPACE in Q and V [6]. If we measure the complexity
only with respect to view extensions & (i.e., we consider data
complezity), then each of the checks can be done in NP in
£ [6]. Hence we get the following upper bounds.

THEOREM 4. Checking losslessness of V with respect to Q
relative to £ under the sound view assumption can be done
in PSPACE wrt Q and V, and in coNP wrt £.

The above complexity bounds are indeed tight.

THEOREM 5. Checking losslessness of V with respect to Q
relative to € under the sound view assumption is PSPACE-
complete wrt @, PSPACE-complete wrt V, and coNP-
complete wrt E.

PrOOF. By Theorem 4 it is sufficient to show hardness.
We show both PSPACE hardness results by reductions
from regular expression universality, known to be PSPACE-
complete [12].

To show PSPACE-hardness wrt @, we reduce non-
universality of a regular expression R over the alphabet
{0,1} to non-losslessness of ¥V = ($-(0 + 1)*-$) with respect
to @ = $-R-$ relative to £ = ({(¢,d)}), where $ is a new
symbol. We observe that (c,d) is the only pair of objects
satisfying condition (1), and such a pair satisfies also condi-
tion (2) if and only if R is not equivalent to (04 1)*.

To show PSPACE-hardness wrt ), we reduce non-
universality of a regular expression R over the alphabet
{0,1} to non-losslessness of ¥V = ($-R-$) with respect to
Q = $-(0+ 1)"-8 relative to £ = (#). We observe that there
is no pair of objects in cert%’f{}‘d (&), and hence all pairs of ob-
jects satisfy condition (2). Moreover, there exists a database
B and a pair (c,d) of objects in B with V(B) = (@) and
(c,d) € Q(B) — i.e, satisfying condition (1) — if and only
if R is not equivalent to (0 +1)*.

To show coNP-hardness wrt £ we can exploit an idea in [6],
and reduce graph 3-colorability [12] to non-losslessness rela-
tive to an extension. Without loss of generality, we consider

3-colorability of connected graphs with at least one edge.
The alphabet is ¥ = {r,g, gr, Trb, Tor, Tgbs Thg, T's, Te ;. Intu-
itively, ros is used to connect two vertices that have colors «
and (3 respectively, and s and r. are two additional symbols.
We use three views V = (V,, Ve, Vo), where

Vs = Ts
‘/e = Te
Va = Trg+Tgr+7Trb+ Tor +7gb + Tag

The query is Q@ = rs-M-r., where M is a regular expression
over the symbols 7., that describes all paths that contain
a pair of mismatched color pairs. E.g., the pair ryg-ry is
mismatched, because .4, denotes an edge from a red node
to a green node, so it should be followed by 74 or r4,. Now,
given a graph G = (N, E) to be checked for 3-colorability
and two objects ¢, d not in N, we define the extension £ =
(Es, Ee, Eg) as follows

Es = {(c,a)|a€e N}
E. = {(a,d)|a€e N}
Ec = {(av b)7 (b7 a) | (avb) € E}

Intuitively, Eg represents G given as a symmetric directed
graph, while E; and E. connect ¢ and d to all nodes of
the graph. Since G is connected and contains at least one
edge, there is always a database B such that V(B) = £ and
(c,d) € Q(B) — for example, take all edges in Eg to be
in rgp. Moreover, (c,d) is the only possible answer. On the
other hand, (¢, d) & certy*(€), i.e., there exists a database
on which M and hence @ is empty, if and only if G is 3-
colorable. []

The results presented in this section extend immediately to
the case of losslessness with respect to a view extension un-
der exact views. By definition, V is not lossless with respect
to @ relative to £ under the exact view assumption if and
only if there exists a pair of objects ¢ and d such that:

1. there exists a database B with V(B) = £ and (¢, d) €
Q(B);

2. (c,d) & cert&%'(€).

It follows that, to check losslessness in this case, we can
simply apply the same algorithm as for sound views, except
that, we use the algorithm for computing certain answers
with respect to exact views when we check condition (2).
So the upper bound is the same as for losslessness under the
sound view assumption. With respect to the lower bound,
it is easy that the proof of Theorem 5 still applies for exact
views. Thus we can conclude with the following theorem.

THEOREM 6. Checking losslessness of V with respect to Q
relative to £ under the exact view assumption is PSPACE-
complete wrt Q, PSPACE-complete wrt V, and coNP-
complete wrt £.

4. LOSSLESSNESS ABSTRACTING FROM
VIEW EXTENSIONS

In this section, we deal with checking losslessness abstract-
ing from the view extensions. We discuss losslessness under



the sound and the exact view assumptions separately. The
technique for checking losslessness under the sound view as-
sumption makes use of the connection between constraint
satisfaction and view based query answering [8], which we
briefly recall here.

4.1 Constraint-satisfaction and View-Based
Query Answering

A constraint-satisfaction problem (CSP) is traditionally de-
fined in terms of a set of variables, a set of values, and a set
of constraints, and asks whether there is an assignment of
the variables with the values that satisfies the constraints.
A characterization of CSP can be given in terms of homo-
morphisms between relational structures [11].

A wocabulary is a set V.= {Ru1,..., R:} of predicates, each
with an associated arity. A relational structure A = (Aa,-*)
over V is a domain A4 together with an interpretation
function -* that assigns to each predicate R; a relation
R of the appropriate arity over Aa. A homomorphism
h: A — B between two relational structures A and B over
the same vocabulary is a mapping h : As — Ap such that,
if (c1,...,¢n) € RA, then (h(c1),...,h(cn)) € RE, for every
predicate R in the vocabulary.

Let A and B be two classes of finite relational structures.
The (uniform) constraint-satisfaction problem CSP(A, B) is
the following decision problem: given a structure A € A
and a structure B € B over the same vocabulary, is there a
homomorphism h : A — B? We denote such an instance as
CSP(A, B), and if such a homomorphism exists we say that
CSP(A, B) is satisfiable. When B consists of a single rela-
tional structure B and A is the set of all relational structures
over the vocabulary of B, we get the so-called non-uniform
constraint-satisfaction problem, denoted by CSP(B), where
B is fixed and the input is just a structure A € A.

In [8] a tight relationship between constraint-satisfaction
and view-based query answering under the sound view as-
sumption is illustrated. In particular, the following reduc-
tion from view-based query answering for RPQs to non-
uniform CSP is developed. Given a query ) and view defi-
nitions V = (W1, ..., V&), the constraint template CTq,v of
Q wrt V is the structure B defined as follows.

e The vocabulary of B is {R1,..., Ry }U{U., Us}, where
each R;, corresponding to V;, denotes a binary predi-
cate, and U, and U, denote unary predicates.

o Let Ag = (X, S, S0, p, F) be a (nondeterministic) au-
tomaton for Q. The structure B = (Ag,-?) is given
by:

- Ap =2
—oceUBiff Sy C o
ceUPifonF =0;

— (01,02) € RE iff there exists a word w € L(V;)
such that p(o1,w) C o2 — we consider here p as
extended to sets of states and words in the usual
way.

Given view extensions £ = (E1, ..., E) and a pair of objects
c and d, the constraint instance £ of CSP(CTq.v) is the
structure (Ar,-") defined as follows:

[ ) A[:ASU{C’d};
e RI=FE; foric{l,... k};
o U! ={c}, and Uj = {d}.

THEOREM 7. [8] Let Q be a query, V view definitions, €
corresponding view extensions, and c, d a pair of objects.
Then (c,d) & certs$3*(€) if and only if there is a homo-
morphism from £9% to CTgyv.

4.2 Losslessness under Sound Views

We show how to check losslessness under the sound view
assumption. The technique we propose is based on searching
for counterexamples to losslessness. A counterexzample to
losslessness of view definitions V with respect to a query
Q is a database B containing a pair of objects (c,d) such
that (c,d) € Q(B) but (c,d) & cert34(V(B)). A linear
counterezample is a counterexample database formed by a
single simple path from c¢ to d.

It turns out that, without loss of generality, we can concen-
trate on linear counterexamples. To show this, we exploit
the correspondence between CSP and view-based query an-
swering discussed above. We first prove the following tech-
nical lemma.

LEMMA 8. Let Q be a query, V view definitions, &1 and
&y two corresponding view extensions, and (c,d) a pair
of objects. Then, if there exists a homomorphism h
god — gMONMD e have that (c,d) € certy5 4 (E1) implies
(h(c),h(d)) € certy 3" (&2).

PRrOOF. If (h(c),h(d)) & certyys'(€2), then, by Theo-
rem 7, there exists a homomorphism h’(-) from the con-

straint instance E;(C)’h(d) to the constraint template CTq,v.

Now, the mapping h’(h(-)), obtained by composing h(-) and
R'(-), is a homomorphism from £ to CTg,y. But then,
again by Theorem 7, (c,d) & certyyy(€1). O

Intuitively, the crux for the above result is that view-based
query answering is monotonic in our setting. This means
that, if a pair of objects is a certain answer to a query with
respect to given view extensions, and we add to such exten-
sions more pairs of objects and/or more equalities (i.e., we
identify elements), then the pair of objects is still a certain
answer.

Exploiting such a result we can indeed show that we can
concentrate on linear counterexamples to losslessness.

THEOREM 9. If there is a counterexample to losslessness
of V with respect to @ under the sound view assumption,
then there is a linear counterexample.



PRrROOF. Suppose there exists a database B such that for
some pair of objects ¢ and d, we have that (¢,d) € Q(B)
and (c,d) & cert{ys*(V(B)). Since (¢,d) € Q(B), there is a
path (yo,71,...,7m,ym) in B such that yo = ¢, ym = d, and
r1---Tm € L(Q). Observe that the y;’s are not necessarily
distinct.

Let us define a database B’ consisting of the distinct objects
do,...,dn and of the edges (di—1,7:,d;), for i € {1,...,m}.
Clearly, (do,dm) € Q(B’). Consider now the extensions
of the views. For each pair of objects d; and dj, in B, if
(d;,dpn) € Vi(B'), then (y;,yn) € Vi(B). Thus, the mapping
that maps d; to y; is a homomorphism from V(B')%%m to
V(B)¥o¥™ . Since (yo,ym) & certs*(V(B)), by Lemma 8
we also have that (do,dn) & certiy*(V(B')). O

The fact that we can restrict the attention to linear coun-
terexamples allows us to show decidability fairly easily from
known results. By Theorem 7, computing pairs that are
not certain answers can be expressed as CSP. On the other
hand, CSP can be expressed in existential monadic second-
order logic [11], and, by the classical result by Biichi, Elgot,
and Trakhtenbrot, monadic second-order sentences on words
can be translated to automata [21]. It follows that the set
of linear counterexamples is regular, and we can construct
an automaton that accepts it and check for its emptiness.
This decidability result, however, does not provide us with
good upper bounds for complexity. We show below how to
obtain such bounds.

Without loss of generality, we search for a linear counterex-
ample B of the form (zo,71,21,72,...,7m,Tm), for some m,
such that 71 ---7mm € L(Q) and thus (zo,zm) € Q(B). By
Theorem 7, we have that (zo, zm) & certiys(V(B)) iff there
is a homomorphism from V(B)*%®™ to the constraint tem-
plate CTq,v. In other words, (zo, zm) & certs*(V(B)) if
and only if there is a function £(-) (i.e., the homomorphism)
that labels xo, ..., z, with sets of states of the automaton
Ag = (%, 5,50, p, F) for Q such that the following condi-
tions (which we call CT-conditions) hold:

[ ) S() Q E(ZE());
o l(xm)NE =10

e for each pair of objects z; and x5 in B and each
view definition V; in V, we have that, if rj11-- -7, €
L(V;), then there exists a word w € L(V;) such that
p(l(x;), w) € £(zn).

Thus, we are looking for a word of the form
lo,71, ... T"m,lm, where each ¢; is a set of states of
Agq, representing £(z;), and that satisfies these conditions.
We construct an automaton Ag v that accepts such words
and check its emptiness. The automaton is over the
alphabet & U A, with A = 25, and is obtained as the cross
product of two automata, Ay and Aj,.

e Ag accepts words that

1. consist of an alternation of symbols in A and sym-
bols in ¥;

2. start with a symbol ¢ € A such that Sy C ¢;
3. end with a symbol £ € A such that £ N F =
4. have a projection on X that is in L(Q).

A’Q can be obtained by intersecting the straightforward
automata that check conditions (1), (2), and (3) with
an automaton Ag a that checks condition (4). Ag.a
can be obtained from A¢g by adding for each state s €
S and each subset £ € A a transition p(s,£) = s. The
number of states of Ag is polynomial in @ and does
not depend on V.

e For the automaton A),, let us define for each view V;
a binary relation V;° on A as follows: (¢,¢) € V7 if
there exists a word w € L(V;) such that p(¢,w) C ¢
Note that for each ¢, ¢ we can decide in PSPACE
whether (£,¢') € V;° holds?, so all the relations V;°
can be constructed in time exponential in the size of
Ag and linear in the size of V. Now we can construct
the automaton AQ'/Z, as follows. It reads a word, guesses
positions j and h > j, checks that rj11---ry € L(V;)
and (¢;,4r) € V;°. Clearly the size of this automaton
is linear in V; and exponential in Ag, since it has to
remember ¢; along its computation. To obtain A}, we
take the union of the automata Ay, and complement
it.

THEOREM 10. V is not lossless with respect to QQ under
the sound view assumption if and only if the automaton
Aq,v is non-empty.

Proor. “=" 1If V is not lossless with respect to @, by
Theorem 9 there exists a linear counterexample B of the
form (zo,7r1,Z1,72,...,Tm,ZTm) such that r1 -7y, € L(Q)
and thus (2o, Tm) € Q(B). Since (zo, Tm) & certis 33 (V(B)),
by Theorem 7 there exists a labeling £(-) of the objects
Zo,...,Tm with states of Ag such that the CT-conditions
hold. Now consider the word £(xzo)rif(zi)rs - - Tml(Tm).
Such a word is accepted by both Ay and A),, and hence
by Ag,v.

“=” If Ag,y accepts a word w = Lorilira--Tmbm,
then there exists a linear database B of the form
(z0,71,%1,72, ... ,Tm,Tm) and a labeling £(-) of the objects
Zo,...,Tm with states of Ag defined by f(x;) = ¢;, for
i € {0,...,m}. Since w is accepted by Ag, we have
that 71 -+ 7 € L(Q). Since w is accepted by A}, the
CT-conditions hold and hence, by Theorem 7 (xo,Zm) &
certy 3 (V(B)). Hence V is not lossless with respect to
Q. O

s

The automata theoretic characterization above provides us
with an upper bound for verifying losslessness.

THEOREM 11. Checking losslessness of V with respect to
Q can be done in PSPACE with respect to V, and in EX-
PSPACE with respect to Q.

21t suffices to check whether L(V;) is contained in the lan-
guage accepted by the automaton (X, S, £, p, S\ £') obtained
from Ag = (%, S, So, p, F') by changing the initial and final
states.




PrOOF. The number of states of the automaton Ag is
polynomial in @ and does not depend on V. All the relations
V;® can be constructed in time exponential in the size of Q
and linear in the size of V. A"’,i has a number of states that
is exponential in @ and polyﬁomial in V, and Aj},, which
requires complementation, has a number of states that is
double exponential in @) and exponential in V. Considering
that emptiness of automata is NLOGSPACE in the number
of states and that the construction of the above automata
can be done on the fly while checking for emptiness, we get
the claim. []

The following theorems show us that the above upper
bounds are indeed tight.

THEOREM 12. Checking whether a set V of views is loss-
less with respect to a query Q under the sound view assump-
tion is PSPACE-complete wrt V.

PrOOF. By Theorem 11 it suffices to show hardness. We
reduce again universality of a regular expressions R over the
alphabet {0,1} to losslessness of V = ($-R-$) with respect
to @ = $-(0U1)*-$. As shown in the proof of Theorem 5, if
R is not equivalent to (0 4 1)*, then V is not lossless with
respect to @ relative to the extension £ = (). Hence V is
not lossless with respect to Q. On the other hand, if R is
equivalent to (0 + 1)*, then the view $-R-$ is equivalent to
@, and hence V is trivially lossless. [J

THEOREM 13. Checking whether a set V of views is loss-
less with respect to a query Q under the sound view assump-
tion is EXPSPACE-complete wrt Q.

PROOF. Again by Theorem 11 it suffices to show hard-
ness. We use a reduction from an EXPSPACE-complete
tiling problem [23]. A tiling problem (A, Hor, Ver) is de-
fined by a finite set A of tile types, a horizontal adjacency
relation Hor € A x A, and a vertical adjacency relation
Ver € A x A, and consists in determining whether there
exists a tiling of a region of the integer plane of size 2" X k,
for some k, with tiles of type in A such that the adjacency
conditions are satisfied. Such a tiling is called a good tiling.
We reduce the problem of checking whether (A, Hor, Ver)
admits a good tiling to the problem of checking whether a
set of views V is not lossless with respect to a query @) under
the sound view assumption.

By Theorem 9, it is enough to consider linear coun-
terexamples to losslessness, i.e., a database of the form
(Ts,a0,...,am,zy5). We'll just refer to the word ag- - am
as the database.

We encode a tiling by a word in
€goot = $-(#-(0+ 1)A-(0+ 1)")"$

where $ is a begin-end marker, # is a block marker, and
(0 + 1)™ are n-bit vectors. Such words are called good. We
refer to each subword of the form (0+1)"-¢(0+1)", where ¢
is a tile type in A, as a block, and each block represents one

tile. The idea is that the n-bit vectors provide an address
between 0 and 2™ — 1. We intend the addresses to start from
0 and behave like an n-bit counter. In each block we have
two addresses, referred to as left address and right address.
The intention is to have the two addresses be identical. A
sequence of blocks is called a segment. Each segment where
the addresses go once from 0 to 2"~ ' represents one hori-
zontal row of exponential length.

In addition to $, #, 0, 1 and the tile types, which we call old
symbols, we have other symbols, called new symbols. As we
shall see, new symbols cannot appear in a counterexample
database.

The query @ accepts, among other words, all words over the
old symbols that (i) do not conform to the intended format,
(ii) contain a block with two distinct addresses, (iii) contain
successive addresses that are not adjacent, or (iv) contain
successive tiles that do not satisfy the horizontal tiling con-
straint. Also, () accepts words that mix old and new sym-
bols. We call all of these errors. A database that contains
an error is a bad database. (Note that a database can be
neither good nor bad). We use a regular expression epqq of
size linear in n and the size of the tiling system to describe
bad databases. The expression ep.q is the first part of Q.

The challenge is to relate blocks that represent vertically
adjacent tiles. Such blocks have the same addresses and have
precisely one block with the address 2" ! between them. For
this we use views V.

The first view is

Viad = €bad

If the database B is bad, then Viyea(B) = {(xs,zs)}. Thus,
(zs,25) € certiy3*(V(B)). This means that a bad database
cannot be a counterexample, because () accepts all bad
words.

Then we have views V(; .y, for i € {1,...,n}, and c € {0,1}.
The intention for one such a view is to connect xs to a node
following a left address where the i-th bit is c¢. Such views
are defined as

Vi) = (8:(-block)™#-(0+ 1) e (0+ 1) ") + (1,4, ¢)

where (1,4, c) is a new symbol. Thus, when we see the pair
(zs,z) in Véyc)(B), we do not know whether z, and = are
connected in B by a word of the form $-(#-block)” -#-(0 +
1)7tc(0 4+ 1)"7* or by the single letter (,4,c). The latter
is called a nonstandard interpretation.

Analogously, we have views V{; ., for i € {1,...,n}, and
c € 0,1, where the intention for one such a view is to connect

a node before a right address where the i-th bit is ¢ to xy.
Such views are defined as

Viiey =0+ 1)i_1-c-(0 + 1)"_i~(#-block)*-$ + (ryi,¢)

where (r,i,c¢) is a new symbol. Here we can also have a
nonstandard interpretation.

Finally, we have a view Vo defined as a constrained ver-



sion of

€ 2

t,t"|(¢,t") ¢ Ver

t-(041)"(#-block) ™ -#-(0+1)"t")+(b1+- - ~+by)

where b1,...,b, are new symbols. The constraint is that
the subword 1" can occur only once between ¢ and t'. (We
can construct a regular expression of size quadratic in n that
contains all words in (0+1)"-(#-block)*-#-(0+1)" that obey
this constraint.) When we see a pair (x,y) in Verror (B), we
do not know whether x and y are connected in B by a word
of the form ¢-(0+ 1)™(#-block)*-#-(0+1)™-t' or by a single
letter b;. The latter is called a nonstandard interpretation.

We can now define the query @ as the sum of terms

€bad + €good + Z ‘/(li,c) bl‘/(:,c)

ie{l,...,n}
ce{o,1}

We first show that if there is a good tiling, then there is
a counterexample database. Let w = as---ay be a word
that describes the good tiling. We claim that the database
B = (zs,as,...,af,2f) is a counterexample database. Since
w is a good word, clearly (zs,zf) is in Q(B). We need to
show that (zs,2y) is not in certyy*(V(B)). For this we
need to display a database B’ such that V(B) C V(B'), but
(xs,xf) is not in Q(B').

First note that Vi.q(B) is empty, since the database is good.
The view V&@ connects x5 to every node z following a left
address where the i-th bit is c¢. In B’ we take the nonstan-
dard interpretation and assume that = is connected to x by
letter (,4,c). We handle V; ., analogously. Finally, suppose
that (x,y) is in Veror (B). Since B describes a good tiling, x
and y cannot represent vertically adjacent tiles. Thus, the
address after  and the address before y must differ on some
bit i of the n address bit. In B’ we take the nonstandard
interpretation and connect x and y by the single letter b;.

We now need to show that (zs,zy) is not in Q(B’). Clearly,
Zs is not connected in B’ to xs by either a word in epqq
or a word in egoo4. The only other possibility is that z, is
connected in B’ to z5 by a word (I,4,c)b;(r,4,c), for some
t € {1,...,n}, and ¢ € {0,1}. But this means that x; is
connected to some z by (l,14,c), = is connected to some y by
bi, and y is connected to xy by (r,i,¢). By construction, x
follows a left address where the i-th bit is ¢, and y precedes a
right address where the i-th bit is c¢. But since z is connected
to y by b;, these addresses need to differ on the i-th bit,
which is a contradiction.

It remains to show that only good tilings provide counterex-
ample databases. Assume that there is no good tiling and let
B = (zs,as,...,af,2f) be a database such that (zs,zyf) €
Q(B). We show that (zs,zy) is in cert{y4?(V(B)). Since
(zs,z5) € Q(B), there are three possibilities:

1. x, is connected to x5 by a bad word.

2. x5 is connected to zy by a good word.

3. x, is connected to ¢ by a word in V(li,c))-bi-‘/(’;’c)), for
some ¢ € {1,...,n}, and ¢ € {0,1}.

In the first case, (zs,xy) is in Vieq(B). This means that for
all databases B’ such that V(B) C V(B'), we have that z
is connected to z; by a bad word also in B’, so (zs,75) €

Q(B").

In the third case, we have that (zs,z) is in V(lm)(B), (z,v)
is in Verror(B), and (y,xzy) is in V{j ./(B). Thus, for all
databases B’ such that V(B) C V(B'), we also have that
(s, ) is in V(; ,(B), (z,y) is in Verror(B'), and (y,zy) is
in V(; ,(B'). Each of these views can have a standard or
nonstandard interpretation in B’. If all interpretations are
standard, then z; is connected to x; in B’ by a good word,
so (zs,zy) is in Q(B’). If some of these interpretations are
standard and some are nonstandard, then z, is connected to
xy in B’ by a bad word that mixes old and new symbols, so
(zs,z¢) is in Q(B'). Tt follows that all three interpretations
must be nonstandard, which means that also in B’ we have
that x, is connected to some x by (I,4,c), x is connected to
some y by b;, and y is connected to zy by (7,4, ¢). But then
we also have that (xs,zy) is in Q(B').

It remains to consider the case that z; is connected to zy
in B by a good word w that is not a bad word. Thus, w
must be representing a tiling that contains a vertical error.
That is, there is some x following an address a and preced-
ing a tile ¢, and some y following a tile t' and preceding
the same address a such that (¢,t') ¢ Ver even though the
two tiles are in vertically adjacent positions. It follows that
(2,9) € Verror(B). Consider an arbitrary database B’ such
that V(B) C V(B'). In particular, (z,y) € Verror(B'). We
now have two cases to consider: a) We have a nonstandard
interpretation in B’, which means that x is connected to y
in B’ by some b;, with i € {1,...,n}. b) We have a standard
interpretation in B’, which means that x is connected to y
in B’ by a word in ¢-(0 + 1)"-(#-block)*-#-(0 + 1)™-¢'.

In case (a), let the i-th bit of the address a be c¢. We know
that (zs,x) is in V(ILC)(B) and (y,zy) is in V{; ., (B). Tt follows
that (z,,2) is in V(; ,(B') and (y, ) is in V{; . (B'). That
is, in B’ we have that z, is connected to = by a word in
V&@, x is connected to y by b;, and y is connected to zy by
a word in V{; .y. Tt follows that (zs,zy) is in Q(B').

In case (b), choose an arbitrary ¢ € {1,...,n}, and let the
i-th bit of the address a be c¢. We know that (zs,z) is in
V(li’c) (B) and (y, z¢) isin V{; .)(B). It follows that (zs, z) is in
Ve (B') and (y,zy) is in V{; . (B'). If either has a nonstan-
dard interpretation, then we have in B’ a path that mixes
old and new symbols, which is bad, so (zs,zf) € Q(B’). If
both have a standard interpretation, then we have in B’ a
good path from zs to zy, so again (xs,z¢) € Q(B’). Thus,
if there is no good tiling, B cannot be a counterexample
database. [

4.3 Losslessness under Exact Views

We remind the reader that a set of views V is lossless with
respect to @ under the exact view assumption , if for every
database B we have that Q(B) = cert&55" (V(B)). From the
definition, it is immediate to verify that losslessness under
sound views implies losslessness under exact views.



However, the following example shows that, in the context
of regular path queries, losslessness under exact views does
not imply losslessness under sound views.

ExAMPLE 3. Consider the alphabet ¥ = {0, 1}, the query
Q with

L(Q) = (0+1)*\ {111}
and the views V = (V4, Va2, V3, V4) with
L(Vi) = {0,1}

L(Vz) = {1}
L(Vs) = {01}
L(Va) = {10}

It is easy to see that V is not lossless with respect to @ under
sound views. Indeed, the database

B = ($170,CL‘2,0,$3,O7£C4)

is a counterexample to losslessness, since (z1,z4) € Q(B)
and there exists a database B’

B' = (z1,1,22,1,23,1,24)

such that V(B) C V(B'), and (z1,z4) & Q(B').

We show, however, that V is lossless with respect to @ under
exact views. By contradiction, assume there is a database B
with a pair of objects z1 and x4 such that (z1,z4) € Q(B),
and there is a database B’ such that V(B') = V(B) but
(x1,74) € Q(B'). Since (z1,z4) € Q(B), B contains two
objects z2 and z3 (possibly non-distinct and possibly coin-
ciding with z1 or z4) and a path (z1,a, z2,b, x3, ¢, 4), with
a,b,c € ¥, such that abc # 111. Since V1 (B') = V1(B), we
have that B’ contains at least a path (z1,e, 2, f, T3, 9, T4),
with e, f,g € 3. Since (z1,74) € Q(B’'), for all such paths
we have that efg = 111. However, since abc # 111, in the
case where a = b = ¢ = 0 we have that V2(B’) # Va(B), in
the cases where a = 0 or b = 0 we have that V3(B') # V3(B),

and in the cases where b = 0 or ¢ = 0 we have that
Va(B') # Va(B). In all cases, this contradicts the assumption
that V(B') = V(B). "

Note that, an interesting consequence of the above example
is that searching for linear counterexamples is not sufficient
for deciding losslessness under exact views. This means that
we cannot directly extend our technique to deal with this
case.

The question of losslessness under exact views is largely un-
explored. To the best of our knowledge, no technique is
known for this problem, even for the case of conjunctive
queries and views. This question is an interesting direction
for continuing the work presented here.

5. RELATIONSHIP TO REWRITING

The notion of losslessness allows us to compare a query with
the answers derivable from a collection of views. However,
losslessness as introduced in the previous sections is not the
only way to perform such a comparison. In particular, pre-
vious attempts at defining view losslessness have been in

terms of query rewriting. We show here that, in the context
of regular path queries, our notion is strictly more general.

We briefly recall the notion of query rewriting in our setting.
Given views V, we assume to have an alphabet Xy consisting
of one symbol v; for each view definition V; in V. Given a
language A\ over Xy, we denote by ezpands, () the language
defined as follows

ewpands(\) = |J {wnewa | wn € L(V,),
v, ex forhe{l,...,n}}

Viy

If R is a regular language over Xy, we say that R is a
(regular) rewriting of a query @ with respect to views V
if ezpandy,(L(R)) C L(Q). A rewriting R of @) with respect
to V is a mazimally contained rewriting if for each rewriting
R’ of Q with respect to V we have that ezpands(L(R')) C
expandys,(L(R)).

Determining whether a query is equivalent to its maximally
contained rewriting is 2EXPSPACE-complete [5]. Since
checking losslessness (under the sound view assumption)
can be done in EXPSPACE, the two notions cannot coin-
cide. The following theorem demonstrates that losslessness
is more general.

THEOREM 14. If Q s equivalent to its maximally con-
tained rewriting with respect to views V, then V is lossless
with respect to Q under the sound (and hence under the ex-
act) view assumption.

PRrROOF. Let B be a database with a path from z to y
labeled by w € L(Q). Since Q is equivalent to its maximally
contained rewriting rew(Q) with respect to V, there exist
words w1 € L(V5,),...,wn € L(V;,) such that w1 -+ w, =
w and v;, ---v;, € L(rew(Q)). Now, let B’ be a database
such that V(B) C V(B’). Then B’ contains a path from z to
y labeled by wj - - - w;, with wy, € L(V;,,). Since v, -« v;, €
L(rew(Q)), the word w} - - - w), belongs to L(Q) and hence
(x,y) € Q(B'). It follows that V is lossless with respect to
@ under the sound view assumption. []

The following example shows a case where the query @ is not
equivalent to its maximally contained rewriting with respect
to views V, and still views V are lossless with respect to the
query under the sound (and hence under the exact) view
assumption.

EXAMPLE 4. Consider the alphabet ¥ = {0, 1}, the query
Q@ with

L(Q) = {0000,0101, 1010, 1111}
and the views V = (V4, V), with

L(vi) = {0,1}
L(Va) = {000,010,101,111}

It is easy to see that the maximally contained rewriting of
@ with respect to V is empty.

On the other hand, suppose we have a database B with a
path (z1,a,2,b,x3,a,74,b,25), with a,b € 3. We have
that



o (z1,25) € Q(B),
e Vi(B) ={(z1,x2), (x2,23), (x3,x4), (x4, 25)}, and

o Vo(B) = {(x1,x3), (x2,24), (x3,25)}.

Consider now a database B’ such that V(B) C
V(B'). Since Vi(B) C Vi(B'), B’ contains a path
(z1,¢,m2,d,x3,€, 24, f,x5), with ¢,d,e, f € X. Moreover,
since V2(B) C V2(B'), we have that ¢ = e and d = f, and
therefore

(z1,5) € Q(B).

Hence V is lossless with respect to ) under the sound view
assumption. ]

6. CONCLUSIONS

In several applications the question arises of whether a set of
views are lossless with respect to a query, i.e., whether the
information content of the views is sufficient to answer com-
pletely a given query. We have addressed this question in a
context where the database is semistructured, and both the
query and the views are expressed as regular path queries.

We have shown that, in the case where we have the view
extensions available, the problem is solvable by extending
known techniques. The more general version of the prob-
lem, namely the one where we abstract from the specific
view extension, can be studied in at least two different set-
tings. In a first setting, losslessness is checked by assuming
the views are sound, but not necessarily complete. In this
case, we have illustrated a technique for checkng lossless-
ness, and we have stidied the computational complexity of
the problem. In a second setting, views are considered exact
(i-e., both sound and complete). In this case, the question
of losslessness under exact views is largely unexplored, and
needs further investigation.

Indeed, we plan to address this problem in the continuation
of the work presented here. We are also interested in inves-
tigating losslessness (under both sound and exact views) for
other classes of queries for semistructured databases, e.g.,
regular path queries with inverse, and conjunctive regular
path queries.
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