
View-Based Query Processing for Regular Path Queries
with Inverse

Diego Calvanese
Giuseppe De Giacomo

Maurizio Lenzerini
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

lastname@dis.uniroma1.it

Moshe Y. Vardi
Department of Computer Science

Rice University, P.O. Box 1892
Houston, TX 77251-1892, U.S.A.

vardi@cs.rice.edu

ABSTRACT

View-based query processing is the problem of computing
the answer to a query based on a set of materialized views,
rather than on the raw data in the database. The prob-
lem comes in two different forms, called query rewriting and
query answering, respectively. In the first form, we are given
a query and a set of view definitions, and the goal is to refor-
mulate the query into an expression that refers only to the
views. In the second form, besides the query and the view
definitions, we are also given the extensions of the views and
a tuple, and the goal is to check whether the knowledge on
the view extensions logically implies that the tuple satisfies
the query.

In this paper we address the problem of view-based query
processing in the context of semistructured data, in partic-
ular for the case of regular-path queries extended with the
inverse operator. Several authors point out that the inverse
operator is one of the fundamental extensions for making
regular-path queries useful in real settings. We present a
novel technique based on the use of two-way finite-state au-
tomata. Our approach demonstrates the power of this kind
of automata in dealing with the inverse operator, allowing us
to show that both query rewriting and query answering with
the inverse operator has the same computational complexity
as for the case of standard regular-path queries.

1. INTRODUCTION

View-based query processing is the problem of computing
the answer to a query based on a set of materialized views,
rather than on the raw data in the database [32; 2]. It repre-
sents an abstraction for various data management problems
arising in several contexts, including query optimization,

query answering with incomplete information, data ware-
housing, and data integration.

There are two approaches to view-based query processing,
called query rewriting and query answering, respectively. In
the former approach, we are given a query Q and a set of
view definitions, and the goal is to reformulate the query into
an expression that refers only to the views, and provides the
answer to Q. The rewriting is usually expressed in the same
language used for both the query Q and the views, and is
called exact if it is equivalent to Q. In the latter approach,
besides Q and the view definitions, we are also given the
extensions of the views. The goal is to compute the set
of tuples t such that the knowledge on the view extensions
logically implies that t is an answer to Q, i.e., t is in the
answer to Q in all the databases that are consistent with
the views.

Notice the difference between the two approaches. In query
rewriting, query processing is divided in two steps, where
the first re-expresses the query in terms of a given query lan-
guage over the alphabet of the view names, and the second
evaluates the rewriting over the view extensions. Obviously,
it may happen that no rewriting in the target language ex-
ists that is equivalent to the original query. In this case, we
are interested in computing a so-called maximally contained
rewriting, i.e., an expression that captures the original query
in the best way.

In query answering, we do not pose any limit on how queries
are processed, and the only goal is to exploit all possible
information, in particular the view extensions, to compute
the answer to the query. Since the view extensions provide
partial knowledge on the database, the problem is a special
case of query answering with incomplete information [33].

A large number of results have been reported for both prob-
lems in the last years. Several papers investigate query
rewriting for the case of conjunctive queries (with or with-
out arithmetic comparisons) [25; 28], disjunctive views [5],
queries with aggregates [30; 15], recursive queries and non-
recursive views [16], queries expressed in Description Log-
ics [6], regular-path queries [10], and in the presence of in-
tegrity constraints [22; 17]. Rewriting techniques for query
optimization are described, for example, in [13; 4; 31], and

in [19; 26; 27] for the case of path queries in semistructured
data.

A comprehensive framework for view-based query answer-
ing, as well as several interesting results, is presented in [21].
The framework considers various assumptions for interpret-
ing the view extensions with respect to the correspond-
ing definitions (closed, open, and exact view assumptions).
In [2], an analysis of the data complexity of the problem
under the different assumptions is carried out for the case
where the views and the queries are expressed in terms of
various languages (conjunctive queries, Datalog, first-order
queries, etc.). In [11], a further distinction is proposed for
characterizing the domain of the database (open vs. closed
domain assumption), and the problem is studied for the case
of regular-path queries. In [9], upper bound results are re-
ported for view-based query answering in Description Log-
ics.

In this paper, we address view-based query processing in
the context of semistructured data. Semistructured data
are modeled by labeled directed graphs, and have been in-
troduced with the aim of capturing data in the web. The
main difficulty arising in this context is that languages
for querying semistructured data enable expressing regular-
path queries [3; 8; 18]. A regular-path query asks for all pairs
of nodes in the database connected by a path conforming to
a regular expression, and therefore may contain a restricted
form of recursion. Note that when the query contains un-
restricted recursion, both view-based query rewriting and
view-based query answering become undecidable, even when
the views are not recursive [16].

To the best of our knowledge, the only known decidability
results for view-based query processing in the case where
the query and the views may contain recursion are reported
in [10; 11].

In [10], a method for rewriting a regular-path query in terms
of other regular-path queries is proposed. The method com-
putes the rewriting in 2EXPTIME, and is able to check
whether the computed rewriting is exact in 2EXPSPACE.
It is also shown that checking whether there is a nonempty
rewriting is EXPSPACE-complete, and verifying the exis-
tence of an exact rewriting is 2EXPSPACE-complete.

In [11], algorithms and complexity results for view based
query answering for regular-path queries are presented.
With respect to data complexity, the problem is co-NP-
complete under all assumptions, whereas with respect to
combined complexity it is co-NP-complete under the closed
domain assumption, and PSPACE-complete under the open
domain assumption.

While regular-path queries represent the core of any query
language for semistructured data, their expressive power is
limited. Several authors point out that extensions are re-
quired for making them useful in real settings (see for ex-
ample [7; 8; 26]). One fundamental step in this direction
is to enrich regular-path queries with the inverse operator.
The inverse operator is essential for expressing navigations
in the database that traverse the edges both backward and
forward [14].

The existing approaches to view-based query processing for
regular-path queries do not easily extend to the case with the
inverse operator. The goal of this paper is to present a novel
technique for this case, based on the use of two-way finite-
state automata. Unlike standard finite-state automata, two-
way automata are equipped with a head that can move back
and forth on the input string. A transition of this kind of
automata indicates not only the new state, but also whether
the head should move left, right, or stay in place.

Generally speaking, the method presented here works by
searching for counterexamples. In the case of rewriting, a
counterexample demonstrates that a certain rewriting is not
good for the query, whereas in the case of answering, the
counterexample demonstrates that a given tuple is not an
answer to the query. The basic idea underlying our tech-
niques is to encode candidate counterexamples as words
over a suitable alphabet, and then use two-way automata to
check that a candidate is indeed a counterexample. The abil-
ity of two-way automata to move back and forth on words is
essential in capturing the computation done when process-
ing a regular-path query with inverse over a database, and
therefore in checking candidate counterexamples. Indeed,
the power of two-way automata in dealing with the inverse
operator allows us to derive the following results:

• View-based query rewriting can be done with the
same computational complexity as for the case with-
out inverse. Indeed, we describe a method based on
two-way automata that computes the maximal con-
tained rewriting in 2EXPTIME, and checks whether
the rewriting is exact in 2EXPSPACE.

• We provide algorithms for view-based query answer-
ing under different assumptions. With respect to data
complexity, the algorithm works in co-NP in all cases.
With respect to combined complexity, the algorithm
works in co-NP under the closed domain assumption,
and in PSPACE under the open domain assumption.
Once again, by exploiting two-way automata, we are
able to show that the complexity of the problem does
not increase by adding the inverse operator.

Besides the specific results, our method provides the ba-
sis for using two-way automata in reasoning about complex
queries. Indeed, the idea of encoding candidate counterex-
amples as words, and then checking candidates with two-
way automata, can be adapted to reasoning about queries
of more general forms and in other logical formalisms (e.g.,
temporal and dynamic logics with a backward modality).
A first step in this direction is presented in [12], where the
technique is used to show that containment of conjunctive
regular-path queries with inverse is EXPSPACE-complete.

The paper is organized as follows. Section 2 defines regular-
path queries with inverse, and Section 3 introduces the no-
tion of two-way automata. Sections 4 and 5 present the re-
sults for query rewriting and query answering, respectively.
Section 6 concludes the paper.

2. REGULAR-PATH QUERIES WITH IN-

VERSE

Following the usual approach in semistructured data, we
define a (semi-structured) database (DB) as a graph whose
nodes represent objects, and whose edges are labeled by el-
ements from a given alphabet Σ′, which we assume to be
finite [7; 1]. Different nodes represent different objects, and

an edge from node x to node y labeled by p, denoted x
p
→ y,

represents the fact that relation p holds between the object
represented by x and the object represented by y.

The basic querying mechanism on a DB is that of regular-
path queries (RPQs). An RPQ E is expressed as a regular
expression or a finite-state automaton over Σ′, and computes
the set of pairs of nodes of the DB connected by a path
that conforms (see formal definition below) to the regular
language L(E) defined by E.

As we said in the introduction, we consider queries that
extend regular-path queries with the inverse operator. For-
mally, let Σ = Σ′ ∪ {p− | p ∈ Σ′} be the alphabet including
a new symbol p− for each p in Σ′. Intuitively, p− denotes
the inverse of the binary relation p. If r ∈ Σ, then we use
r− to mean the inverse of r, i.e., if r is p, then r− is p−,
and if r is p−, then r− is p.

Regular-path queries with inverse (RPQIs) are expressed by
means of regular expressions or finite-state automata over
Σ. Thus, in contrast with RPQs, RPQIs may use also the
inverse p− of p, for each p ∈ Σ′.

When evaluated over a DB B, an RPQI E computes the
set ans(E,B) of pairs of nodes connected by a semipath
that conforms to the regular language L(E) defined by E.
A semipath in B from x to y (labeled with r1 · · · rq) is a
sequence of the form (y1, r1, y2, . . . , yq, rq, yq+1), where q ≥
0, y1 = x, yq+1 = y, and for each yi, ri, yi+1, ri ∈ Σ, and, if

ri = p then yi
p
→ yi+1, and if ri = p− then yi+1

p
→ yi is in

B. We say that a semipath (y1, r1, . . . , rq, yq+1) conforms to
E if r1 · · · rq ∈ L(E). A semipath is said to be simple if no
node appears more than once in the corresponding sequence.

A word w = r1 · · · rq over Σ satisfies E iff (x, y) ∈
ans(E,Bw), where Bw is constituted by a single semipath
(x, r1, . . . , rq, y) labeled with w. Note that w may satisfy E

even if w 6∈ L(E), since we may obtain the semipath from
x to y conforming to E by moving back and forth on the
nodes of Bw.

Example 1. Let us consider a DB of software modules,
where the relation hassubmodule connects m1 to m2 if m2

is a module defined in m1, and the relation containsvar

connects m to v if v is a variable defined in module m. The
RPQI

(hassubmodule−)∗·(containsvar ∪ hassubmodule)

computes the pairs (m, x) such that x (either a variable, or
a module) is visible in module m, according to the usual
visibility rules of Algol-like languages.

3. TWO-WAY AUTOMATA

A two-way automaton [23] A = (Γ, S, S0, ρ, F) consists of
an alphabet Γ, a finite set of states S, a set of initial states
S0 ⊆ S, a transition function

ρ : S × Σ → 2S×{−1,0,1}

and a set of accepting states F ⊆ S.

Intuitively, a transition indicates both the new state of the
automaton, and whether the head reading the input should
move left (-1), right (1), or stay in place (0). If for all s ∈ S

and a ∈ Γ we have that ρ(s, a) ⊆ S ×{1}, then the automa-
ton is a traditional nondeterministic finite-state automaton
(also called one-way automaton).

A configuration of A is a pair consisting of a state and a po-
sition represented as a natural number. A run is a sequence
of configurations. The sequence ((s0, j0), . . . , (sm, jm)) is
a run of A on a word w = a0, . . . , an−1 in Γ∗ if s0 ∈ I,
j0 = 0, jm ≤ n, and for all i ∈ {0, . . . , m− 1}, we have that
0 ≤ ji < n, and there is some (t, k) ∈ δ(si, aji

) such that
si+1 = t and ji+1 = ji + k. This run is accepting if jm = n

and sm ∈ F . A accepts w if it has an accepting run on w.
The set of words accepted by A is denoted L(A).

It is well known that two-way automata define regular lan-
guages, and that, given a two-way automaton A with n

states, one can construct a one-way automaton B1 with
O(2n log n) states such that L(B1) = L(A), and a one-
way automaton B2 with O(2n) states such that L(B2) =
Γ∗ − L(A) [23; 35].

The ability of two-way automata to scan words in both di-
rections allows us to use them to evaluate RPQIs over DBs.
To gain some intuition on how two-way automata capture
computations of RPQIs over DBs, we show how to construct,
with linear blow-up, from an RPQI E a two-way automaton
AE that accepts all words w$ ∈ Σ∗·$ such that w satisfies
E. To construct AE , we assume that E is represented as
a finite-state (one-way) automaton E = (Σ, S, I, δ, F) over
the alphabet Σ. Then AE = (ΣA, SA, I, δA, {sf}), where

• ΣA = Σ ∪ {$},

• SA = S ∪ {sf} ∪ {s← | s ∈ S}, and

• δA is defined as follows:

1. (s←,−1) ∈ δA(s, ℓ), for each s ∈ S and ℓ ∈ ΣA.
Such transition makes the automaton ready to
scan one step backward by placing it in “back-
ward mode”.

2. (s2, 1) ∈ δA(s1, r) and (s2, 0) ∈ δA(s←1 , r−), for
each transition s2 ∈ δ(s1, r) of E. These transi-
tions correspond to the transitions of E that are
performed forward or backward according to the
current “scanning mode”.

3. (sf , 1) ∈ δA(s, $), for each s ∈ F .

Notice that the $ symbol, which acts as a terminator in the
words accepted by AE , is necessary to allow the automaton

to continue backwards, even when it has reached the end of
the input word.

Theorem 2. Let E be an RPQI, and AE the two-way
automaton constructed from E as specified above. Then w

satisfies E iff w$ ∈ L(AE).

4. VIEW-BASED QUERY REWRITING

Let E0 be an RPQI, and E = {E1, . . . , Ek} a finite set of
RPQIs over the alphabet Σ. We assume that associated
with E we always have an alphabet Σ′E containing exactly
one symbol for each query in E , and we denote the query
associated to the symbol p ∈ Σ′E with def (p).

Intuitively, we want to rewrite E0 in terms of the views
E = {E1, . . . , Ek}, where pi is the name of the i-th view,
and def (pi) = Ei is its definition. The only constraint we
impose on the rewriting is that it is an expression denoting
a set of words in the alphabet ΣE = Σ′E ∪{p− | p ∈ Σ′E}, i.e.,
the target query language for the rewriting is a formalism
for specifying languages over ΣE . This means that in the
rewriting, the inverse operator can be applied to symbols in
Σ′E , and therefore we have to specify the semantics of such
applications.

For this purpose, we extend the function def to all symbols
in ΣE as follows: if p ∈ Σ′E , then def (p−) is the regular ex-
pression inv(def (p)) over Σ, where inv is defined as follows:

• inv(a) = a−,

• inv(a−) = a,

• inv(e1·e2) = inv(e2) · inv(e1),

• inv(e1 ∪ e2) = inv(e1) ∪ inv(e2),

• inv(e∗) = inv(e)∗.

Given a language ℓ over ΣE , we denote by expandΣ(ℓ) the
language over Σ defined as follows

expandΣ(ℓ) =
[

e1···en∈ℓ

{w1 · · ·wn | wi ∈ L(def (ei))}

Definition 3. Let R be any language over ΣE . We say
that R is a rewriting of E0 wrt E if ans(expandΣ(R),B) ⊆
ans(E0,B), for every DB B.

The following theorem is a useful characterization of “bad”
rewritings, based on the notion of satisfaction of a query by
a word, as defined in Section 2.

Theorem 4. Let R be a language over ΣE . Then R is not
a rewriting of E0 wrt E iff there exists a word in expandΣ(R)
that does not satisfy E0.

Proof. If R is not a rewriting of E0 wrt E , then
there exists a DB B with nodes x, y such that (x, y) ∈
ans(expandΣ(R),B) and (x, y) 6∈ ans(E0,B). This means
that there is a semipath from x to y in B labeled by a word
in expandΣ(R) that does not satisfy E0.

If there exists a word r1 · · · rq in expandΣ(R) that does not
satisfy E0, then the DB B constituted by the single semipath
(x, r1, . . . , rq, y) is such that (x, y) ∈ ans(expandΣ(R),B)
and (x, y) 6∈ ans(E0,B).

We are interested both in maximal rewritings, i.e., rewritings
that capture in the best possible way the query E0, and in
exact rewritings, which capture exactly the query E0.

Definition 5. Let R be a rewriting of E0 wrt E. R is
said to be maximal if for each rewriting R′ of E0 wrt E
we have ans(expandΣ(R′),B) ⊆ ans(expandΣ(R),B), for
every DB B. R is said to be exact if for every DB B,
ans(expandΣ(R),B) = ans(E0,B).

Our technique is based on characterizing the words in ΣE
that do not belong to a rewriting of E0 wrt E . By Theo-
rem 4, these are the words w ∈ Σ∗E such that some word
in expandΣ({w}) does not satisfy E0. Based on the use of
two-way automata, we define an automaton that accepts ex-
actly such words, and then complement such automaton to
get the rewriting.

Let A0 be the one-way automaton over Σ corresponding to
the query E0, and let ΣE be {e1, . . . , en}. We consider words
over Σ ∪ ΣE ∪ {$, :} of the form

$ei1 :wi1$ · · · $eim :wim$

with eij
∈ ΣE , and wij

∈ Σ∗.

Following the idea described in Section 3, we construct a
two-way automaton A1 that accepts words of the above
form such that wi1 · · ·wim satisfies E0. Let A2 be a one-
way automaton that complements A1. Let A3 be a one-way
automaton that accepts a word of the form

$ei1 :wi1$ · · · $eim :wim$

iff for every ij , the word wij
is in L(def (eij

)), i.e., iff the
word wi1 · · ·wim is in expandΣ({ei1 · · · eim}). Now consider
the automaton A3 ∩ A2. A word

$ei1 :wi1$ · · · $eim :wim$

is accepted by this automaton iff the word wi1 · · ·wim is
in expandΣ({ei1 · · · eim}) and does not satisfy E0. Let A4

accept all words ei1 · · · eim that are projections on the eij
’s

of the words

$ei1 :wi1$ · · · $eim :wim$

that are accepted by A3 ∩ A2. By construction, A4 ac-
cepts all words ei1 · · · eim such that there is a word in
expandΣ({ei1 · · · eim}) that does not satisfy E0. Finally, let
RE,E0

be the complement of A4. By virtue of the above
construction, RE,E0

accepts all words ei1 · · · eim such that
every word in expandΣ({ei1 · · · eim}) satisfies E0.

Theorem 6. RE,E0
is a maximal rewriting of E0 wrt E.

Proof. By exploiting Theorem 4, it is easy to show that
RE,E0

is a rewriting of E0 wrt E . To see that RE,E0
is maxi-

mal, consider a word ei1 · · · eim ∈ ΣE that is not accepted by
RE,E0

. Obviously, ei1 · · · eim is accepted by A4, and there-
fore there is a word $ei1 :wi1$ · · · $eim :wim$ that is accepted
by A3 ∩ A2. It follows that expandΣ({ei1 · · · eim}) contains
a word that does not satisfy E0. By Theorem 4, this in turn
implies that ei1 · · · eim does not belong to a rewriting of E0

wrt E .

Observe that the only constraint we put on the rewriting
is that it defines a language over ΣE . Theorem 6 shows
that the language over ΣE (and therefore also the language
over Σ) defined by the maximal rewriting is regular (indeed,
RE,E0

is a finite-state automaton).

Theorem 7. The problem of generating the maximal
rewriting of an RPQI wrt a set of RPQIs is in 2EXPTIME.

Proof. The size of A1 is polynomial in the size of E0,
the size of A2 is exponential in the size of A1, and the size
of A3 is polynomial in the size of E . Finally, the size of A4

is polynomial in the size of A3 and A2. The claim follows
from the fact the size of RE,E0

is exponential in the size of
A4, and therefore double exponential in the size of E0, and
exponential in the size of E .

By exploiting the techniques and the results in [10], it is
easy to prove the following theorem, which shows that our
method for computing the maximal rewriting of an RPQI is
essentially optimal.

Theorem 8. The problem of verifying the existence of a
nonempty rewriting of an RPQI E0 wrt a set E of RPQIs is
EXPSPACE-complete.

Next we address the problem of verifying whether the
rewriting RE,E0

of E0 wrt E is exact. We proceed as
in [10], and construct a one-way automaton B that ac-
cepts expandΣ(RE,E0

), by replacing each edge labeled by ei

in RE,E0
by a one-way automaton Ai such that L(Ai) =

L(def (ei)). We then check whether ans(L(A0),B) ⊆
ans(L(B),B), for every DB B. Using the techniques de-
scribed in [12], the following result can be proven.

Theorem 9. The problem of verifying the existence of
an exact rewriting of an RPQI E0 wrt a set E of RPQIs is
2EXPSPACE-complete.

5. VIEW-BASED QUERY ANSWERING

As pointed out in [2; 21; 24; 11], the problem of view-based
query answering comes in different forms, depending on var-
ious assumptions about how accurate is the knowledge on

both the objects of the DB, and the pairs satisfying the
views.

Consider a DB that is accessible only through a set of views
V1, . . . , Vk, and suppose we want to answer an RPQI only
on the basis of our knowledge on the views. Specifically,
associated to each view Vi we have

• its definition def (Vi) in terms of an RPQI;

• information about its extension in terms of a set
ext(Vi) of pairs of objects1,

• a specification as(Vi) of which assumption to adopt for
the view Vi in interpreting ext(Vi) with respect to the
answer set of def (Vi).

The possible assumptions on views are:

• Sound View Assumption (SVA). We say that a view
Vi is sound (satisfies SVA) with respect to a DB B, if
ext(Vi) ⊆ ans(def (Vi),B).

• Complete View Assumption (CVA). We say that a
view Vi is complete, (satisfies CVA) with respect to
a DB B, if ext(Vi) ⊇ ans(def (Vi),B).

• Exact View Assumption (EVA). We say that a view
Vi is exact (satisfies EVA) with respect to a DB B, if
ext(Vi) = ans(def (Vi),B).

We say that a DB B is consistent with a view Vi if Vi satisfies
the assumption as(Vi) with respect to B.

We observe that, complete views can be reformulated in
terms of exact views, by exploiting union in RPQIs [11].
Hence, in the following, we will focus on sound and exact
views only.

With respect to the information available on the objects in
the DB, one can further distinguish between: Closed Do-
main Assumption (CDA) and Open Domain Assumption
(ODA). Under CDA, the exact set of objects in the DB
coincides with the set of objects that appear in the view ex-
tensions, while under ODA the DB may contain additional
objects. Formally, we call DV the set of objects appearing
in ext(V1) ∪ · · · ∪ ext(Vk), and we say that a DB (D, E) is
consistent with DV under CDA (resp. ODA) if DV is equal
to (resp. is a subset of) D.

Definition 10. Given (i) def (Vi), ext(Vi), and as(Vi),
for 1 ≤ i ≤ k; (ii) a query Q; (iii) a pair of objects c, d ∈
D, view-based query answering under CDA (resp. ODA)
consists in deciding whether (c, d) ∈ ans(Q,B), for every B
that is consistent with DV under CDA (resp. ODA), and
consistent with V1, . . . , Vk.

1We assume that objects are represented by constants and
we adopt the unique name assumption [29], i.e., different
constants denote different objects, and therefore different
nodes.

Assumption on Assumption on Complexity
domain views data expression combined

all sound co-NP co-NP co-NP
closed all exact co-NP co-NP co-NP

arbitrary co-NP co-NP co-NP
all sound co-NP PSPACE PSPACE

open all exact co-NP PSPACE PSPACE
arbitrary co-NP PSPACE PSPACE

Table 1: Summary of complexity results for view-based query answering (all bounds are tight)

We observe that view-based query answering can be inter-
preted as checking whether (c, d) is a certain answer to
Q [2]. On the other hand, we may be interested in check-
ing whether (c, d) is a possible answer to Q, i.e., whether
(c, d) ∈ ans(Q,B), for some B that is consistent with the
views. Following the method in [11], it is possible to show
that computing possible answers can be reduced to comput-
ing certain answers. Therefore, in the following we concen-
trate on certain answers.

The complexity of the problem can be measured in three
different ways [34]:

• data complexity, as a function of the size of ext(V1) ∪
· · · ∪ ext(Vk);

• expression complexity, as a function of the size of Q

and of the expressions def (V1), . . . , def (Vk);

• combined complexity, as a function of the size of
both ext(V1) ∪ · · · ∪ ext(Vk) and the expressions
Q, def (V1), . . . , def (Vk).

5.1 Closed domain assumption

Under the CDA, the techniques for view-based query an-
swering for RPQs in [11] extend directly to RPQIs. Indeed,
such techniques are based on guessing a DB B and then
checking that B is consistent with the views and does not
satisfy the query. Such check basically requires to evalu-
ate each view and the query on B. It is easy to see that
the presence of the inverse operator does not influence the
complexity of the evaluation.

Theorem 11. View-based query answering under CDA
for RPQIs is co-NP-complete wrt data complexity, expres-
sion complexity, and combined complexity.

5.2 Open domain assumption

Under ODA, the presence of the inverse operator requires
introducing novel techniques. As we said in the introduc-
tion, the techniques we present are based on searching for
a “counterexample DB” represented in a linearized form as
a special word, and using two-way automata to check that
candidate counterexample DBs satisfy all required condi-
tions.

First of all, it can be shown that it is sufficient to restrict
the search for counterexamples on canonical DBs.

Definition 12. Let DV be the set of objects appearing in
the extensions of the views. A DB is called canonical if it is

composed of a set of simple semipaths a
r1→ x1 · · ·xn−1

rn→ b,
where a, b ∈ DV and x1, . . . , xn−1 are not in DV and do not
occur in any other semipath in the set.

Theorem 13. Given an RPQI E, a set of views, and a
DB B that is consistent with the views and such that (c, d) 6∈
ans(E,B), there exists a canonical DB B′ that is consistent
with the views and such that (c, d) 6∈ ans(E,B′).

The importance of canonical DBs lies in the fact that they
are suitable for being linearized. Each canonical DB B =
(D, E) can be represented by a word wB over the alphabet
ΣA = Σ ∪ DV ∪ {$}, which has the form

$d1w1d2$d3w2d4$ · · · $d2m−1wmd2m$

where d1, . . . , d2m range over DV , wi ∈ Σ+, and the $
acts as a separator. Specifically, wB consists of one sub-
word d2i−1wid2i, for each simple semipath in B from d2i−1

to d2i conforming to wi. Observe that the same DB can
be represented by several words that differ in the direction
considered for the semipaths and in the order in which the
subwords corresponding to the semipaths appear.

We show now how a two-way automaton A(E,a,b) can be used
for the fundamental task of verifying whether a pair (a, b),
with a, b ∈ DV , is in the answer set of an RPQI E over a lin-
earized DB. The automaton A(E,a,b) accepts a word wB over
the alphabet ΣA representing a DB B iff (a, b) ∈ ans(E,B).
To do so we exploit not only the ability of two-way automata
to move on the word both forward and backward (see Sec-
tion 3), but also the ability to “jump” from one position in
the word representing a node to any other position (either
preceding or succeeding) representing the same node. These
two capabilities ensure that the automaton evaluating the
RPQI on the word simulates exactly the evaluation of the
query on the DB.

To construct A(E,a,b), we assume that E is represented as a
one-way automaton E = (Σ, S, I, δ, F) over the alphabet Σ.
Then AE = (ΣA, SA, {s0}, δA, {sf}), where

• SA = S ∪ {s0, sf} ∪ {s← | s ∈ S} ∪ S ×D, and

• δA contains the following transitions2:

2The transitions defined by items 1 and 2 are the same as
those defined by items 1 and 2 in Section 3, considering the
current definition of ΣA.

1. (s←,−1) ∈ δA(s, ℓ), for each s ∈ S and ℓ ∈
Σ ∪ DV . At any point such transition makes the
automaton ready to scan one step backward by
placing it in “backward mode”.

2. (s2, 1) ∈ δA(s1, r) and (s2, 0) ∈ δA(s←1 , r−), for
each transition s2 ∈ δ(s1, r) of E. These transi-
tions correspond to the transitions of E which are
performed forward or backward according to the
current “scanning mode”.

3. (s0, 1) ∈ δA(s0, ℓ), for each ℓ ∈ ΣA, and also
(s, 0) ∈ δA(s0, a) for each s ∈ I. These transitions
place the head of the automaton in some ran-
domly chosen occurrence of a in the input string
and set the state of the automaton to some ran-
domly chosen initial state of E.

4. for each s ∈ S and each d ∈ DV

((s, d), 0) ∈ δA(s, d)
((s, d), 0) ∈ δA(s←, d)
((s, d), 1) ∈ δA((s, d), ℓ), for each ℓ ∈ ΣA

((s, d),−1) ∈ δA((s, d), ℓ), for each ℓ ∈ ΣA

(s, 0) ∈ δA((s, d), d)
(s, 1) ∈ δA(s, d)

Whenever the automaton reaches a symbol rep-
resenting a node d (first and second clause), it
may enter into “search (for d) mode” and move to
any other occurrence of d in the word. Then the
automaton exits search mode (second last clause)
and continues its computation either forward (last
clause) or backward (see item 2).

5. (sf , 0) ∈ δA(s, b), for each s ∈ F and (sf , 1) ∈
δA(sf , ℓ), for each ℓ ∈ ΣA. These transitions place
the automaton in the final state when it reads b

in a final state of E. Then the head moves to the
end of the input string to accept.

The following theorem characterizes the relationship be-
tween an RPQI and the corresponding two-way automaton.

Theorem 14. Let Q be an RPQI, B a canonical DB, wB
the word representing B, and a, b two objects in DV . Then
A(Q,a,b) accepts wB iff (a, b) ∈ ans(Q,B).

Given a set of views V1, . . . , Vn, an RPQI Q, and objects
c, d ∈ DV , we can exploit the construction above to build a
two-way automaton that checks the existence of a canonical
DB B that is consistent with the views and such that (c, d) 6∈
ans(Q,B). In particular:

1. We construct the one-way automaton A0 that ac-
cepts the language ($·DV ·Σ+·DV)∗·$, hence enforcing
the general structure of words representing canonical
databases.

2. For each (sound or exact) view Vi and for each
pair (a, b) ∈ ext(Vi), we construct the automaton
A(def (Vi),a,b) as specified above.

3. For each exact view Vi we build a two-way automaton
AVi

that checks whether a pair of objects other than

those in ext(Vi) is in ans(def (Vi),B). More precisely,
AVi

is the union of the following automata, which are
all obtained by adapting the construction above:

• an automaton A(Vi,a), for each object a appear-
ing as the first component in a pair in ext(Vi),
which starts by placing the head on some ran-
domly chosen occurrence of a, evaluates def (Vi),
and after that makes a transition to the final state
only if it does not read a symbol b such that
(a, b) ∈ ext(Vi).

• an additional automaton A(Vi,other), which starts
by placing the head on some randomly chosen
symbol in the word different from any a that ap-
pears as the first component in a pair in ext(Vi),
and accepts if it can evaluate the query def (Vi)
from there.

4. Finally, we construct the automaton A(Q,c,d) as speci-
fied above.

To check whether (c, d) 6∈ ans(Q,B) for some DB B consis-
tent with the views, we check for nonemptiness of the one-
way automaton AODA obtained as the intersection of the
one-way automata corresponding to each A(def (Vi),a,b) con-
structed at point 1, of the one-way automata corresponding
to the complement of each AVi

constructed at point 2, and
of the one-way automaton corresponding to the complement
of A(Q,c,d) constructed at point 3.

By exploiting Theorems 13 and 14 it is possible to prove the
following correctness result.

Theorem 15. Let V1, . . . , Vn be a set of views, Q an
RPQI, and c, d objects in DV . Then (c, d) 6∈ ans(Q,B) for
some DB B consistent with V1, . . . , Vn iff the one-way au-
tomaton AODA constructed as specified above is nonempty.

Observe that all two-way automata constructed above are
of linear size in the size of Q, def (V1), . . . , def (Vk), and
ext(V1), . . . , ext(Vk). Hence, the corresponding one-way au-
tomata would be exponential. However, we do not need to
construct AODA explicitly. Instead, we can construct it “on
the fly” while checking for nonemptiness, by exploiting the
fact that the transition function of the one-way automaton
corresponding to a two-way automaton or its complement
can be computed verifying local conditions only [35], and
that the same observation holds for intersection.

Considering the lower bounds for view-based query answer-
ing under ODA for RPQs in [11], we obtain the following
characterization of computational complexity.

Theorem 16. View-based query answering under ODA
for RPQIs is PSPACE-complete wrt expression complexity
and combined complexity.

As for data complexity, it is known that the lower bound is
co-NP [11]. To get a matching upper bound, the construc-
tion above cannot be directly applied. To isolate the impact

of the extensions of the views on complexity, we have to
look into the transformation from two-way to complemen-
tary one-way automata. In particular, such transformation
is based on searching for the existence of a sequence T0 · · ·Tn

of sets of states of the two-way automaton labeling an input
word w of length n, such that the sequence satisfies certain
conditions on adjacent sets [35].

For simplicity, we consider only the case where the two-way
automaton checks whether there is some word wB represent-
ing a canonical DB B, such that (a, b) 6∈ ans(Q,B). In our
case, the number of states of the two-way automaton de-
pends on the objects in the extensions of the views only due
to those states used to implement “search mode”. Hence,
we need to avoid search mode in the two-way automaton.
Therefore, we consider the two-way automaton that com-
putes Q over words representing databases as specified in
Section 3, and simulate search mode by ensuring that for
each occurrence di of an object d ∈ DV in the input word,
the set of states in which the two-way automaton may be
when the head scans di is the same. Then, to check whether
the two-way automaton accepts some word wB, we guess a
labeling of each object d with a set of states of the two-way
automaton, and then check for the existence of the sequence
of sets of states that completes such labeling. Such check
can be done in polynomial time with respect to the number
of objects in the extensions of the views.

Theorem 17. View-based query answering under ODA
for RPQIs is co-NP-complete wrt data complexity.

The summary of our results on the complexity of view-based
query answering for regular-path queries with inverse is re-
ported in Table 1. Entries with “all sound” (resp., “all ex-
act”) in the column named “Assumption on views” refer to
the case where all views are assumed to be sound (resp., ex-
act), whereas “arbitrary” means that for each view V , as(V)
can be either SVA, CVA, or EVA. Each entry of the table
referring to a complexity class C means that the correspond-
ing problem is complete with respect to C. The table shows
that view-based query answering for regular-path queries
with inverse has the same computational complexity as for
standard regular-path queries.

6. CONCLUSIONS

We have presented a novel technique for view-based query
processing in the context of semistructured data, and in par-
ticular for regular-path queries extended with the inverse
operator. The technique is based on the idea of encoding
candidate counterexamples as words, and then checking can-
didates with two-way automata.

The ability of two-way automata to move back and forth
on words is crucial for checking candidate counterexamples,
and allows us to show that the inverse operator does not
increase the complexity of view-based query rewriting and
query answering.

We believe that, besides the specific results, our method
has the merit of showing the power of two-way automata

in reasoning on complex queries. Indeed, the techniques
described in this paper can be adapted to reasoning about
queries of more general forms. First results in this direction
are reported in [12] for the problem of checking containment
of conjunctive regular-path queries with inverse.

7. ACKNOWLEDGMENTS

This work was supported in part by the NSF grant CCR-
9700061, by MURST, by ESPRIT LTR Project No. 22469
DWQ (Foundations of Data Warehouse Quality), and by the
Italian Space Agency (ASI) under project “Integrazione ed
Accesso a Basi di Dati Eterogenee”.

8. REFERENCES

[1] S. Abiteboul. Querying semi-structured data. In Proc.
of the 6th Int. Conf. on Database Theory (ICDT’97),
pages 1–18, 1997.

[2] S. Abiteboul and O. Duschka. Complexity of
answering queries using materialized views. In Proc. of
the 17th ACM SIGACT SIGMOD SIGART Sym. on
Principles of Database Systems (PODS’98), pages
254–265, 1998.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. L. Wiener. The Lorel query language for
semistructured data. Int. J. on Digital Libraries,
1(1):68–88, 1997.

[4] S. Adali, K. S. Candan, Y. Papakonstantinou, and
V. S. Subrahmanian. Query caching and optimization
in distributed mediator systems. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages
137–148, 1996.

[5] F. N. Afrati, M. Gergatsoulis, and T. Kavalieros.
Answering queries using materialized views with
disjunction. In Proc. of the 7th Int. Conf. on Database
Theory (ICDT’99), volume 1540 of Lecture Notes in
Computer Science, pages 435–452. Springer-Verlag,
1999.

[6] C. Beeri, A. Y. Levy, and M.-C. Rousset. Rewriting
queries using views in description logics. In Proc. of
the 16th ACM SIGACT SIGMOD SIGART Sym. on
Principles of Database Systems (PODS’97), pages
99–108, 1997.

[7] P. Buneman. Semistructured data. In Proc. of the 16th
ACM SIGACT SIGMOD SIGART Sym. on Principles
of Database Systems (PODS’97), pages 117–121, 1997.

[8] P. Buneman, S. Davidson, G. Hillebrand, and
D. Suciu. A query language and optimization
technique for unstructured data. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages
505–516, 1996.

[9] D. Calvanese, G. De Giacomo, and M. Lenzerini.
Answering queries using views in description logics. In
Proc. of the 1999 Description Logic Workshop
(DL’99), pages 9–13. CEUR Electronic Workshop

Proceedings http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-22/,
1999.

[10] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Rewriting of regular expressions and
regular path queries. In Proc. of the 18th ACM
SIGACT SIGMOD SIGART Sym. on Principles of
Database Systems (PODS’99), pages 194–204, 1999.

[11] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Answering regular path queries using
views. In Proc. of the 16th IEEE Int. Conf. on Data
Engineering (ICDE 2000), 2000. To appear.

[12] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Containment of conjunctive regular path
queries with inverse. In Proc. of the 7th Int. Conf. on
the Principles of Knowledge Representation and
Reasoning (KR 2000), 2000. To appear.

[13] S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, and
K. Shim. Optimizing queries with materialized views.
In Proc. of the 11th IEEE Int. Conf. on Data
Engineering (ICDE’95), Taipei (Taiwan), 1995.

[14] J. Clark and S. Deach. Extensible Stylesheet
Language (XSL). Technical report, World Wide Web
Consortium, 1999. Available at
http://www.w3.org/TR/WD-xsl.

[15] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting
aggregate queries using views. In Proc. of the 18th
ACM SIGACT SIGMOD SIGART Sym. on Principles
of Database Systems (PODS’99), pages 155–166, 1999.

[16] O. M. Duschka and M. R. Genesereth. Answering
recursive queries using views. In Proc. of the 16th
ACM SIGACT SIGMOD SIGART Sym. on Principles
of Database Systems (PODS’97), pages 109–116, 1997.

[17] O. M. Duschka and A. Y. Levy. Recursive plans for
information gathering. In Proc. of the 15th Int. Joint
Conf. on Artificial Intelligence (IJCAI’97), pages
778–784, 1997.

[18] M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy,
and D. Suciu. Catching the boat with strudel:
Experiences with a web-site management system. In
Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 414–425, 1998.

[19] M. F. Fernandez and D. Suciu. Optimizing regular
path expressions using graph schemas. In Proc. of the
14th IEEE Int. Conf. on Data Engineering
(ICDE’98), pages 14–23, 1998.

[20] M. L. Ginsberg, editor. Readings in Nonmonotonic
Reasoning. Morgan Kaufmann, Los Altos, 1987.

[21] G. Grahne and A. O. Mendelzon. Tableau techniques
for querying information sources through global
schemas. In Proc. of the 7th Int. Conf. on Database
Theory (ICDT’99), volume 1540 of Lecture Notes in
Computer Science, pages 332–347. Springer-Verlag,
1999.

[22] J. Gryz. Query folding with inclusion dependencies. In
Proc. of the 14th IEEE Int. Conf. on Data
Engineering (ICDE’98), pages 126–133, 1998.

[23] J. E. Hopcroft and J. D. Ullman. Introduction to
Automata Theory, Languages, and Computation.
Addison Wesley Publ. Co., Reading, Massachussetts,
1979.

[24] A. Y. Levy. Obtaining complete answers from
incomplete databases. In Proc. of the 22nd Int. Conf.
on Very Large Data Bases (VLDB’96), pages 402–412,
1996.

[25] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and
D. Srivastava. Answering queries using views. In Proc.
of the 14th ACM SIGACT SIGMOD SIGART Sym.
on Principles of Database Systems (PODS’95), pages
95–104, 1995.

[26] T. Milo and D. Suciu. Index structures for path
expressions. In Proc. of the 7th Int. Conf. on Database
Theory (ICDT’99), volume 1540 of Lecture Notes in
Computer Science, pages 277–295. Springer-Verlag,
1999.

[27] Y. Papakonstantinou and V. Vassalos. Query rewriting
using semistructured views. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, 1999.

[28] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering
queries using templates with binding patterns. In
Proc. of the 14th ACM SIGACT SIGMOD SIGART
Sym. on Principles of Database Systems (PODS’95),
1995.

[29] R. Reiter. On closed world data bases. In H. Gallaire
and J. Minker, editors, Logic and Databases, pages
119–140. Plenum Publ. Co., New York, 1978.
Republished in [20].

[30] D. Srivastava, S. Dar, H. V. Jagadish, and A. Levy.
Answering queries with aggregation using views. In
Proc. of the 22nd Int. Conf. on Very Large Data
Bases (VLDB’96), pages 318–329, 1996.

[31] O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis.
The GMAP: A versatile tool for phyisical data
independence. Very Large Database J., 5(2):101–118,
1996.

[32] J. D. Ullman. Information integration using logical
views. In Proc. of the 6th Int. Conf. on Database
Theory (ICDT’97), volume 1186 of Lecture Notes in
Computer Science, pages 19–40. Springer-Verlag, 1997.

[33] R. van der Meyden. Logical approaches to incomplete
information. In J. Chomicki and G. Saake, editors,
Logics for Databases and Information Systems, pages
307–356. Kluwer Academic Publishers, 1998.

[34] M. Y. Vardi. The complexity of relational query
languages. In Proc. of the 14th ACM SIGACT Sym.
on Theory of Computing (STOC’82), pages 137–146,
1982.

[35] M. Y. Vardi. A note on the reduction of two-way
automata to one-way automata. Information
Processing Letters, 30(5):261–264, 1989.

