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Abstract. In this paper we consider a powerful mechanism, called Regular
XPath, for expressing queries and constraints over XML data, including DTDs
and existential path constraints and their negation. Regular XPath extends XPath
with binary relations over XML nodes specified by means two-way regular path
queries. Our first contribution deals with checking satisfiability of Regular XPath
constraints. While this problem could be reduced in terms of reasoning in repeat
converse deterministic PDL, a well-known variant Propositional Dynamic Logic
(PDL), the resulting technique would be of little practical use, due to the notori-
ous difficulty of implementing efficient reasoners for such a logic. We therefore
propose a direct algorithm for Regular XPath constraints satisfiability, based on
checking emptiness of two way alternating automata on finite trees. We show
how this algorithm can be implemented symbolically, by using Binary Decision
Diagrams (BDDs) as the underlying data structure, which can be significantly
more efficient than explicit graph-based algorithms. We then move to query con-
tainment and view based query answering for Regular XPath, and show that both
problems can be reduced to checking satisfiability of Regular XPath constraints,
thus allowing for taking advantage of the techniques developed for constraints
satisfiability.

1 Introduction

XML4 is becoming the standard language for semistructured data, and the last few
years have witnessed a strong interest in reasoning about XML queries and integrity
constraints. From a conceptual point of view, an XML document can be seen as a fi-
nite node labeled tree, and several mechanisms have been proposed for the specification
of constraints that trees should satisfy in order to represent legal documents in a cer-
tain application domain. As pointed out in [9], such constraints can be classified into
structural and data value constraints.

Structural constraints are those imposing a certain form on the trees corresponding
to the documents, with no explicit reference to values associated with nodes. Notable
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examples of formalisms allowing for expressing such constraints are DTDs (see foot-
note 1 and [5]), and XML Schema5.

On the other hand, data-value constraints are used to enforce specific rules for the
possible values associated with nodes, and/or to relate data values across the elements
of the document. Popular constraints of this type are key and foreign-key constraints.
Several recent papers carry out an extensive investigation of the decidability and com-
plexity of reasoning about data-value constraints, also in the presence of some form of
specification of structural constraints (e.g., [10]). A thorough analysis of semistructured
and XML data-value constraints is reported in various surveys, see, e.g., [9].

This paper deals with structural constraints, by introducing a powerful mechanism,
called Regular XPath (RXPath), for expressing both constraint of this type, and queries
over XML trees. Our language stems from the work on XPath reported in [16, 17].
In particular, we extend XPath both with nominals, and with binary relations over
XML nodes, expressed as two-way regular expressions over XPath axes. Nominals
are a mechanism for denoting a single node in a document, and are similar to XML
global identifiers built through the construct ID. While XPath queries traditionally se-
lect nodes from XML documents by specifying paths from the root, binary relations
are abstractions for sets of node pairs connected by suitably specified paths. Notably,
RXPath can express an array of popular structural constraints, including DTDs and ex-
istential path constraints, together with their negation. Additionally, the power of our
language in expressing paths is the one of Propositional Dynamic Logic (PDL) [11]
extended with converse, nominals, and deterministic programs. This combination of
path-forming constructs results in one of the most expressive languages ever consid-
ered for specifying structural constraints in XML.

Our first contribution deals with checking satisfiability of RXPath constraints. We
first mention that this problem could be reduced to reasoning in Repeat-Converse-
Deterministic PDL (repeat-CDPDL) a well-known variant of PDL. Unfortunately, the
reasoning technique resulting from this reduction is of little practical use by itself, due
to the notorious difficulty of implementing efficient reasoners for such a logic [23, 24].
We address this issue by providing a direct algorithm for RXPath constraints satisfia-
bility, based on checking emptiness of two-way alternating automata on finite trees [7].
The worst-case complexity of the algorithm is EXPTIME, and therefore matches the
lower bound of the problem.

The second contribution of our work concerns the practical applicability of our
technique. Towards this goal, we show how the automata-based algorithm can be im-
plemented symbolically. The method makes use of Binary Decision Diagrams (BDDs)
as the underlying data structure, and can be significantly more efficient than explicit
graph-based algorithms [19].

The third contribution is a study of RXPath as a query language, with the goal of
characterizing both query containment and view-based query answering for our lan-
guage. We show that both problems can be reduced to checking satisfiability of RXPath
constraints, thus enabling us to take advantage of the above-mentioned techniques de-
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veloped for constraint satisfiability. Again, we argue that ours is the richest XML-based
framework for which a solution to view-based query answering is provided.

2 Regular XPath

Following [17, 18], we formalize XML documents as finite sibling trees, which are tree
like structures, whose nodes are linked to each other by two relations: the child relation,
connecting each node with its children in the tree; and the immediate-right-sibling re-
lation, connecting each node with its sibling immediately to the right in the tree, such a
relation models the order between the children of the node in an XML documents. Each
node of the sibling tree is labeled by (possibly many) elements of a set of atomic propo-
sitions Σ. We consider the set Σ to be partitioned into Σa and Σid . The set Σa is a
set of atomic propositions that represent either XML tags or XML attribute-value pairs.
Instead, Σid is a set of special propositions representing (node) identifiers, i.e., that are
true in (i.e., that label) exactly a single node of the XML document. Such identifiers
are essentially an abstraction of the XML identifiers built through the construct ID6,
though a node can have multiple identifiers in our case. Observe that in general sibling
trees are more general than XML document since they would allow the same node to
be labeled by several tags. It is easy to impose RXPath constraints (see later) that force
propositions representing tags to be disjoint if needed. Formally, a sibling tree is a pair
Ts = (∆Ts , ·Ts), where ∆Ts is a tree (i.e., a complete prefix closed set of strings over
N), and ·Ts is an interpretation function that assigns to each atomic symbol A ∈ Σa a
set ATs of nodes of ∆Ts , to each identifier Id a singleton IdTs containing one node of
∆Ts , and that interprets the axis relations in the obvious way, namely:

childTs = {(z, z·i) | z, z·i ∈ ∆Ts}
rightTs = {(z·i, z·(i+1)) | z·i, z·(i+1) ∈ ∆Ts}

As in [17, 18], we focus on a variant of XPath that allows for full regular expressions
over the XPath axes. In fact, we make it explicit that such a variant of XPath is tightly
related to Propositional Dynamic Logic (PDL) [11, 1], and adopt the PDL syntax to ex-
press node and path expressions. RXPath expressions are of two sorts: node expressions,
denoted by ϕ, and path expressions, denoted by P , defined by the following syntax (we
omit parenthesis for clarity):

ϕ −→ A | Id | 〈P 〉ϕ | [P ]ϕ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

P −→ child | right | ϕ? | P1;P2 | P1 ∪ P2 | P ∗ | P−

where A ∈ Σa, Id ∈ Σid , and child and right denote the two main XPath axis
relations. We consider the other XPath axis relations parent and left as abbreviations
for child− and right−, respectively. Also, we use the usual abbreviations true and
false.

Given a sibling tree Ts = (∆Ts , ·Ts), we extend the interpretation function ·Ts to
arbitrary node and path expressions as shown in Figure 1, where we have used the stan-
dard notions of chaining (· ◦ ·) and reflexive-transitive closure (·∗) over binary relations.
Note that, [P ]ϕ is equivalent to ¬〈P 〉¬ϕ.
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(〈P 〉ϕ)Ts = {z | ∃z′.(z, z′) ∈ PTs ∧ z′ ∈ ϕTs}
([P ]ϕ)Ts = {z | ∀z′.(z, z′) ∈ PTs → z′ ∈ ϕTs}
(¬ϕ)Ts = ∆T − ϕTs

(ϕ1 ∧ ϕ2)
Ts = ϕTs

1 ∩ ϕ
Ts
2

(ϕ1 ∨ ϕ2)
Ts = ϕTs

1 ∪ ϕ
Ts
2

(ϕ?)Ts = {(z, z) | z ∈ ϕTs}
(P1;P2)

Ts = PTs
1 ◦ P

Ts
2

(P1 ∪ P2)
Ts = PTs

1 ∪ P
Ts
2

(P ∗)Ts = (PTs)∗

(P−)Ts = {(z′, z) | (z, z′) ∈ PTs}

Fig. 1. Semantics of node and path expressions

In order to develop our techniques for inference on RXPath, we consider an addi-
tional axis fchild, connecting each node to its first child only, interpreted as

fchildTs = {(z, z·1) | z, z·1 ∈ ∆Ts}

Using fchild, we can thus re-express the child axis as fchild; right∗. In this way,
we can view sibling trees, which are unranked, as binary (and hence ranked) trees.

We say that a path expression is normalized if it is expressed by making use of
fchild and right only, if the ·− is pushed inside as much as possible, in such a way
that it appears only in front of fchild and right only, and if all node expression
occurring in it are normalized. A node expression is normalized if all path expressions
occurring in it are normalized, and if it is in negation normal form, i.e., negation is
pushed inside as much as possible, in such a way that it appears only in front of atomic
symbols.

RXPath expressions are used both to specify constraints and to express queries on
XML documents. Queries are dealt with in Section 5, here we concentrate on con-
straints. An RXPath root constraint is a node expression intended to be true on the root
of the document. The root constraint ϕ is satisfied in a sibling tree Ts if ε ∈ ϕTs , i.e.,
the root is in the extension of ϕ in Ts. A (finite) set Γ of RXPath root constraints is
satisfiable if there exists a sibling tree Ts that satisfies all constraints in Γ . A set Γ of
RXPath root constraints implies an RXPath root constraint ϕ, written Γ |= ϕ, if ϕ is
satisfied in every sibling tree that satisfies all constraints in Γ . Note that unsatisfiability
and implication of RXPath root constraints are mutually reducible to each other.

RXPath root constraints are indeed a quite powerful mechanism to describe struc-
tural properties of documents. As shown in [18], RXPath node expressions allow one
to express all first-order definable sets of nodes, and this allows for quite sophisticated
conditions as RXPath root constraints. Also they allow for capturing DTDs, Specialized
DTDs [20] and the structural part of XML Schema Definitions.

In [17] it was shown that for RXPath root constraints without identifiers satisfiability
is EXPTIME-complete, and this result carries over also to our variant of RXPath.

Theorem 1. Satisfiability of RXPath root constraints is EXPTIME-complete.

The known techniques for checking satisfiability of RXPath root constraints, as well
as the EXPTIME-completeness result in [17], are based on a reduction to checking
satisfiability in Propositional Dynamic Logics (PDLs). Specifically, one can resort to
Repeat-Converse-Deterministic PDL (repeat-CDPDL) [26], a variant of PDL that al-
lows for expressing the finiteness of trees. While from a theoretical point of view this



is fully satisfying, indeed satisfiability for repeat-CDPDL is EXPTIME-complete [27],
from a practical point of view the decision procedures for repeat-CDPDL require the
difficult determinization construction by Safra and parity games, which up to now have
resisted implementations that work efficiently [23, 24]. So far, no implementation of
repeat-CDPDL has been announced. Thus, the above complexity result does not induce
viable automated reasoning techniques for reasoning for RXPath constraints. Hence,
next, we look at a direct reasoning technique based on automata on finite (as opposed
to infinite) trees. As we argue later, this offer a more promising path towards a viable
reasoning technique.

3 Satisfiability of root constraints via automata

We work on complete binary trees. In order for such trees to represent sibling trees we
make use of special labels ifc, irs , hfc, hrs , where ifc (resp., irs) are used to keep track
of whether a node is the first child (resp., is the right sibling) of its predecessor, and hfc
(resp., hrs) are used to keep track of whether a node has the first child (resp., has the
right sibling).

Formally, we consider binary trees whose nodes are labeled with subsets of Σ ∪
{ifc, irs, hfc, hrs}. We call a tree T = (∆T , `T ) well-formed if it satisfies the following
conditions:

– For each node x of T , if `T (x) contains hfc, then x·1 is meant to represent the
fchild successor of x and hence `T (x·1) contains ifc but not irs . Similarly, if
`T (x) contains hrs , then x·2 is meant to represent the right successor of x and
hence `T (x·2) contains irs but not ifc.

– The label `T (ε) of the root of T contains neither ifc nor irs nor hrs . In this way,
we restrict the root of T so as to represent the root of a sibling tree.

– For each Id ∈ Σid , there is at most one node x of T with Id ∈ `T (x).

A well-formed binary tree T = (∆T , `T ), induces a sibling tree Ts = (∆Ts , ·Ts)
defined as follows. We inductively define on ∆T both ∆Ts and a mapping π as follows:

– π(ε) = ε, and ε ∈ ∆Ts ;
– if `T (ε) contains hfc, then 1 ∈ ∆Ts and π(1) = 1;
– if `T (x) contains hfc and π(x) = z·n, then z·n·1 ∈ ∆Ts and π(x·1) = z·n·1;
– if `T (x) contains hrs and π(x) = z·n, then z·(n+1) ∈ ∆Ts and π(x·2) =
z·(n+1).

Then, we define the interpretation function ·Ts as follows: for each A ∈ Σa, we define
ATs = {π(x) ∈ ∆Ts | A ∈ `T (x)}; similarly, for each Id ∈ Σid , we define IdTs =
{π(x) ∈ ∆Ts | Id ∈ `T (x)}. Notice that, since T is well-formed, IdTs contains at
most one element.

To simplify the use of automata-theoretic techniques, we assume in the following
that (normalized) path expressions are represented by means of finite automata rather
than regular expressions. Given a (finite) set of RXPath root constraints Γ , let ϕ be the
normalized node expression formed by the conjunction of the constraints in Γ . We can
construct a 2ATA Aϕ, with a number of states linear in the size of ϕ, such that, for each
well-formed tree T accepted by Aϕ, ϕ is satisfied in the sibling tree induced by T .



Lemma 1. Let Γ be a (finite) set of RXPath root constraints, ϕ the normalized node
expression formed by the conjunction of the constraints in Γ , Aϕ the 2ATA constructed
from ϕ, T a well-formed tree, and Ts the sibling tree induced by T . Then Aϕ accepts
T if and only if Γ is satisfied in Ts.

Next we can modify Aϕ so as to consider only trees that are well-formed. The
resulting 2ATA is denoted Awf

ϕ , still with a number of states linear in the size of ϕ.

Theorem 2. Let Γ be a (finite) set of RXPath root constraints, ϕ the conjunction of the
constraints in Γ , and Awf

ϕ the 2ATA constructed from Aϕ Then Awf
ϕ is nonempty if and

only if Γ is satisfiable.

Theorem 3. Checking the satisfiability of a (finite) set Γ of RXPath root constraints by
checking nonemptiness of the 2ATA constructed above can be done in EXPTIME.

4 Symbolic Algorithms

As we showed earlier, satisfiability of RXPath root constraints can be reduced to satis-
fiability of formulas in repeat-CDPDL, which is in EXPTIME. This upper bound, how-
ever, is established using sophisticated infinite-tree automata-theoretic techniques (cf.,
e.g., [22]), which so far have resisted attempts at practically efficient implementation,
due to the use of Safra’s determinization construction [21] and parity games [13]. The
main advantage of our approach here is that we use only automata on finite trees, which
require a much “lighter” automata-theoretic machinery. As noted in [7], nonemptiness
for 2ATA can be tested in time that is exponential in the number of states and linear
in the size of the alphabet. This result is just sketched in [7]. We provide more details
here, based on more recent developments in [27] for infinite-tree automata, in order to
show that our 2ATA-based decision procedure can be implemented using a symbolic
approach, which has the potential to be capable of handling automata with large states
spaces [4]. The restriction to finite trees enables us to simplify the framework of [27]
significantly.

The first step in testing nonemptiness of 2ATA is converting them to equivalent one-
way nondeterministic tree automata (NTA). A 2ATA A = (L, S, s0, δ) is an NTA if the
directions −1 and 0 are not used in δ and, for each state s ∈ S and letter a ∈ L, the
positive Boolean formula δ(s, a), when written in DNF, does not contain a disjunct with
two distinct atoms (c, s1) and (c, s2). (For simplicity we focus here on binary trees.) In
other words, each disjunct corresponds to sending at most one “subprocess” in each
direction. While for 2ATA we have separate input tree and run tree, for NTA we can
assume that the run of the automaton over an input tree T = (∆T , `T ) is an S-labeled
tree R = (∆T , `R), which has the same underlying tree as T , but a different labeling.

The advantage in working with NTA is that they have a very simple, linear-time,
nonemptiness algorithm. The algorithm computes, in a bottom-up fashion the set Acc
of states of the automaton that can lead to acceptance. Then, all that is left to check is
that s0 is one of these states. Initially, Acc is empty. In each iteration, we add to Acc all
states s such that there is a letter a where δ(s, a) is satisfied by some assignment that
assigns true to the atoms (1, s1) and (1, s2), for some s1, s2 ∈ Acc. Using techniques



used in checking satisfiability of propositional Horn formulae [8], nonemptiness testing
can be done in time that is linear in the size of A.

The linear-time algorithm for NTA nonemptiness requires an explicit enumeration
of all automaton states. When the number of states is extremely large, this approach may
be infeasible. Instead we may want to take advantage of the fact that large sets of states
may be described compactly using an appropriate symbolic representation. A represen-
tation that has enjoyed significant success in the context of automated verification [4]
is that of binary decision diagrams [3]. A binary decision diagram (BDD) is a rooted
directed acyclic graph that has only two terminal nodes labeled 0 and 1. Every non-
terminal node is labeled with a Boolean variable and has two outgoing edges labeled
0 and 1. An ordered binary decision diagram (OBDD) is a BDD with the constraint
that the input variables are ordered and every path in the OBDD visits the variables in
ascending order. An ROBDD is an OBDD where every node represents a distinct logic
function. Experience has shown that in many cases Boolean functions with very large
sets of support can be described by ROBDDs very compactly. CUDD7 is a software
package that provides functions for the manipulation of Boolean functions, based on
the reduced, ordered, binary decision diagram (ROBDD) representation. In particular,
CUDD provides APIs for set-theoretic operations such as union and complement, for
existential quantification, and for equality checking between two functions. To imple-
ment the NTA-nonemptiness algorithm symbolically we need to be able to describe sets
of automaton states symbolically. The basic iteration of the algorithm can then be im-
plemented in terms of ROBDD operations. The whole algorithm can be implemented
symbolically without ever constructing the NTA explicitly. For examples of this ap-
proach for K and CTL, see [19, 15].

We believe that a symbolic approach offers a viable path towards an automated
reasoning technique for RXPath.

It remains to describe the translation of 2ATAs to NTAs, showing that sets of NTA’s
states lend themselves to symbolic representation. Given a 2ATA A and an input tree
T as above, a strategy for A on T is a mapping τ : ∆T → 2S×[k]×S . Thus, each
label in a strategy is an edge-[k]-labeled directed graph on S. Intuitively, each label is
a set of transitions. For each label ζ, we define state(ζ) = {u : (u, i, v) ∈ ζ}, i.e.,
state(ζ) is the set of sources in the graph ζ. In addition, we require the following:
(1) s0 ∈ state(τ(ε)), (2) for each node x ∈ ∆T and each state s ∈ state(τ(x)), the
set {(c, s′) : (s, c, s′) ∈ τ(x)} satisfies δ(s, `T (x)) (thus, each label can be viewed as a
strategy of satisfying the transition function), and (3) for each node x ∈ ∆T , and each
edge (s, i, s′) ∈ τ(x), we have that s′ ∈ state(τ(x·i)).

A path β in the strategy τ is a maximal sequence (u0, s0), (u1, s1), . . . of pairs
from ∆T × S such that u0 = ε and, for all i ≥ 0, there is some ci ∈ [k] such that
(si, ci, si+1) ∈ τ(ui) and ui+1 = ui·ci. Thus, β is obtained by following transitions in
the strategy. We say that τ is accepting if it has no infinite paths.

Proposition 1. A 2ATA A accepts an input tree T iff A has an accepting strategy tree
for T .

7 http://vlsi.colorado.edu/˜fabio/CUDD/



We have thus succeeded in defining a notion of run for alternating automata that will
have the same tree structure as the input tree. We are still facing the problem that paths
in a strategy tree can go both up and down. We need to find a way to restrict attention
to uni-directional paths. For this we need an additional concept.

An annotation for A on T with respect to a strategy τ is a mapping η : ∆T → 2S×S .
Thus, each label in an annotation is a directed graph on S. We require η to satisfy
some closure conditions for each node x ∈ ∆T . Intuitively, these conditions say that
η contains all relevant information about finite paths in τ . The conditions are: (a) if
(s, s′) ∈ η(x) and (s′, s′′) ∈ η(x), then (s, s′′) ∈ η(x), (b) if (s, 0, s′) ∈ τ(x) then
(s, s′) ∈ η(x), (c) if x = y·i, (s,−1, s′) ∈ τ(x), (s′, s′′) ∈ η(y), and (s′′, i, s′′′) ∈
τ(x), then (s, s′′′) ∈ η(x), (d) if y = x·i, (s, i, s′) ∈ τ(x), (s′, s′′) ∈ η(y), and
(s′′,−1, s′′′) ∈ τ(y), then (s, s′′′) ∈ η(x). The annotation η is accepting if for no node
x ∈ ∆T and state s ∈ S we have that (s, s) ∈ η(x). In other words, η is accepting if it
contains no cycles.

Proposition 2. A 2ATA A accepts an input tree T iff A has a strategy tree τ on T and
an accepting annotation η of τ .

Consider now annotated trees (∆T , `T , τ, η), where τ is a strategy tree for A on
(∆T , `T ) and η is an annotation of τ . We say that (∆T , `T , τ, η) is accepting if η is
accepting.

Theorem 4. Let A be a 2ATA. Then there is an NTA An such that L(A) = L(An).
The number of states in An is exponential in the number of states of A.

Proof (sketch). Let A = (L, S, s0, δ) and let the input tree be T = (∆T , `T ). The
automaton An guesses mappings τ : ∆T → S × [k] × S and η : ∆T → S × S and
checks that τ is a strategy for A on T and η is an accepting annotation for A on T
with respect to τ . The state space of An is 2S × 2S2; intuitively, after reading the label
of a node x, An needs to remember the value of state(τ(x)) and η(x). The transition
function of An checks that τ and η satisfies all the required conditions.

The key feature of the state space of An is the fact that states are pairs consisting of
subsets of S and S2. Thus, a set of states of An can be described by a Boolean function
on the domain S3. Similarly, the transition function of An can also be described as a
Boolean function. Such functions can be represented by ROBDDs, enabling a symbolic
approach to nonemptiness testing of 2ATAs. We note that the framework of [27] also
converts a 2ATA (on infinite trees) to a nondeterministic tree automaton (on infinite
trees). The state space of the latter, however, is considerably more complex than the
one obtained here due to Safra’s determinization construction. This makes it practically
infeasible to apply the symbolic approach in the infinite-tree setting.

5 Satisfiability, containment and view-based answering for
RXPath queries

In this section we consider RXPath as query language, and consider a number of prob-
lems involving RXPath queries. An RXPath query Q is an RXPath path expression that,



when evaluated over a sibling tree Ts, returns the set of pairs of nodes QTs . We do
not introduce explicitly RXPath node expressions as (unary) queries, since they can be
rephrased as path expressions: indeed ϕTs = {z | (z, z) ∈ (ϕ?)Ts}.

Besides the basic task of query answering, i.e., evaluating a query over a database,
data and knowledge representation systems should support other reasoning services
related to querying. In particular, we are interested in query satisfiability, query con-
tainment under constraints, and view-based query answering. For each of such prob-
lem we show a linear time reduction to satisfiability of RXPath root constraints. As a
consequence, we get that all such problems are EXPTIME-complete. Moreover the re-
ductions allow us to exploit the automata-based techniques developed in the previous
sections to deal with such problems as well.

We start our investigation with the query satisfiability problem. An RXPath query
Q is satisfiable under a (finite) set of root constraints Γ if there exists a sibling tree Ts
satisfying Γ such that QTs is non-empty. Considering the semantics of RXPath queries
and root constraints, it is immediate to verify that Q is satisfiable under Γ if and only
if Γ ∪ {〈u;Q〉true} is satisfiable, where u is an abbreviation for (fchild ∪ right)∗.
Hence we get:

Proposition 3. Query satisfiability under root constraints in RXPath can be linearly
reduced to satisfiability of RXPath root constraints.

We now turn our attention to query containment under constraints, i.e., verifying
whether for all databases satisfying a certain set of integrity constraints, the answer to
a query is a subset of the answer to a second query, which is crucial in several contexts.

Query containment under constraints in our setting is defined as follows: An RXPath
query Q1 is contained in an RXPath query Q2 under a set of RXPath constraints Γ ,
written Γ |= Q1 ⊆ Q2, if for every sibling tree Ts that satisfies all constraints in Γ ,
we have that QTs

1 ⊆ Q
Ts
2 . Again we can resort to root constraints satisfiability to verify

containment. Namely: Γ |= Q1 ⊆ Q2 if and only if

Γ ∪ {〈u; Id st?;Q1; Idend?〉true, [u; Id st?;Q2; Idend?]false}

is unsatisfiable, where Id st and Idend are newly introduced identifiers.

Proposition 4. Query containment under root constraints in RXPath can be linearly
reduced to unsatisfiability of RXPath root constraints.

View-based query processing is another form of reasoning that has recently drawn
a great deal of attention in the database community [12]. In several contexts, such as
data integration, query optimization, query answering with incomplete information, and
data warehousing, the problem arises of processing queries posed over the schema of
a virtual database, based on a set of materialized views, rather than on the raw data
in the database [25, 14]. integration system exports a global virtual schema over which
user queries are posed, and such queries are answered based on the data stored in a
collection of data sources, whose content in turn is described in terms of views over the
global schema. In such a setting, each data source corresponds to a materialized view,
and the global schema exported to the user corresponds to the schema of the virtual
database. Notice that typically, in data integration, the data in the sources are correct



(i.e., sound) but incomplete with respect to their specification in terms of the global
schema. This is due the fact that typically the global schema is not designed taking the
sources into account, but rather the information needs of users. Hence it may not be
possible to precisely describe the information content of the sources. In this paper we
will concentrate on this case (sound views)

Consider now a document that is accessible only through a collection of views ex-
pressed as RXPath queries, and suppose we need to answer an RXPath query over the
document only on the basis of our knowledge on the views. Specifically, the collec-
tion of views is represented by a finite set V of view symbols, each denoting a binary
relation. Each view symbol V ∈ V has an associated view definition QV and a view
extension EV . The view definition QV is simply an RXPath query. The view extension
EV is a set of pairs of node references, where each node reference is either an identifier,
or an explicit path expression that is formed only by chaining fchild and right and
that identifies the node by specifying how to reach it from the root. Observe that a node
reference a is interpreted in a sibling tree Ts as a singleton set of nodes aTs . We use
(EV )Ts to denote the set of pairs of nodes resulting from interpreting the node refer-
ences in Ts. We say that a sibling tree Ts satisfies a view V if (EV )Ts ⊆ (QV )Ts . In
other words, in Ts all the tuples denoted by (EV )Ts must appear in (QV )Ts , but (QV )Ts

may contain tuples not in (EV )Ts .
Given a set V of views, and an RXPath Q, the set of certain answers to Q with re-

spect to V under root constraints Γ is the set certQ,V,Γ of pairs (a, b) of node references
such that (aTs , bTs) ∈ QTs for every sibling tree Ts satisfying each V ∈ V and each
constraint in Γ . View-based query answering under root constraints consists in deciding
whether a given pair of node references is a certain answer to Q with respect to V .

Also view-based query answering can be reduced to satisfiability of root constraints.
Given a view V , with extension EV and definition QV , for each (a, b) ∈ EV :

– if both a and b are identifiers, denoted by Ida and Idb respectively, then we intro-
duce the root constraint 〈u; Ida?;QV ; Idb?〉true;

– if both are a and b are explicit path expressions, denoted by Pa and Pb re-
spectively, then we introduce the root constraint 〈Pa;QV ;P−b ; Idε?〉true, where
Idε = [fchild− ∪ right−]false expresses that the final node reached by the
path is the root, i.e., the only node that has no parent node;

– the other two cases are an obvious combination of the above.

Let ΓV be the set of root RXPath constraints corresponding to the set of RXPath views
V , Q an RXPath query and Γ a finite set of root constraints. Then a pair (a, b) of node
references belongs to certQ,V,Γ if and only if the following set of root constraints is
unsatisfiable:

– Γ ∪ΓV ∪{[u; Ida?;Q; Idb?]false}, if both a and b are identifiers, denoted by Ida
and Idb respectively;

– Γ ∪ ΓV ∪ {[Pa;Q;P−b ; Idε?]false} where again Idε = [fchild− ∪
right−]false, if both a and b are explicit path expressions, denoted by Pa and Pb
respectively;

– similarly for the other two cases.

Hence we can state:



Proposition 5. View based query answering under root constraints in RXPath can be
linearly reduced to unsatisfiability of RXPath root constraints.

6 Conclusions

In this paper we have studied RXPath, a powerful mechanism for expressing structural
constraints and queries in XML. We have presented symbolic automata-based tech-
niques for checking satisfiability of RXPath constraints, and we have illustrated how to
apply these techniques for both the query containment and the view-based query an-
swering problem. Of course, further algorithmic-engineering work is needed to demon-
strate the practicality of our proposed approach. (See [19] for such work in the context
of the modal logic K, where issues such as state-space representation, symbolic vari-
able order, and formula-rewriting techniques are discussed.)

There are a number of interesting open problems related to RXPath, and they will
be the subject of further research work. First, we aim at exploring extensions of the
constraint language studied in the paper. One extension is with the so-called graded
modalities, similar to number restrictions in Description Logics [2, 5], allowing one
to impose conditions on the number of nodes that are reachable from a source node by
means of a specified axis, and satisfy a given additional property. We conjecture that our
satisfiability algorithm can be directly extended to deal with this type of constraints. A
more complex class of constraints are those extending graded modalities so as to impose
conditions on the number of nodes that are reachable from a given node by means of
a specified path. As for queries, we aim at moving to interesting fragments of XQuery.
The first fragment we aim at addressing corresponds to the language of conjunctive
RXPath, whose queries are formed as conjunctions of atoms, where each atom denotes a
binary relation expressed in RXPath. Another direction of inquiry is identifying the data
complexity of view-based query processing of RXPath queries, which might be lower
than the combined complexity studied here (cf. [6]). It is an open question whether
the constraint-theoretic techniques used in [6] to obtained improved bounds for data
complexity for graph-like structures can be adapted to the tree-like structures of XML
data.
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