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Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

lenzerini@dis.uniroma1.it

Moshe Y. Vardi
Department of Computer Science
Rice University, P.O. Box 1892

Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu

Abstract

View-based query processing requires to answer a query
posed to a database only on the basis of the information
on a set of views, which are again queries over the same
database. This problem is relevant in many aspects of
database management, and has been addressed by means
of two basic approaches, namely, query rewriting and query
answering. In the former approach, one tries to compute
a rewriting of the query in terms of the views, whereas in
the latter, one aims at directly answering the query based
on the view extensions. We study view-based query pro-
cessing for the case of regular-path queries, which are the
basic querying mechanisms for the emergent field of semi-
structured data. Based on recent results, we first show that
a rewriting is in general a co-NP function wrt to the size of
view extensions. Hence, the problem arises of characteriz-
ing which instances of the problem admit a rewriting that
is PTIME. A second contribution of the work is to estab-
lish a tight connection between view-based query answer-
ing and constraint-satisfaction problems, which allows us to
show that the above characterization is going to be difficult.
As a third contribution of our work, we present two meth-
ods for computing PTIME rewritings of specific forms. The
first method, which is based on the established connection
with constraint-satisfaction problems, gives us rewritings
expressed in Datalog with a fixed number of variables. The
second method, based on automata-theoretic techniques,
gives us rewritings that are formulated as unions of con-
junctive regular-path queries with a fixed number of vari-
ables.

1. Introduction

Several recent papers in the literature show that the prob-
lem of view-based query processing [45, 2] is relevant in
many aspects of database management, including query op-
timization, data warehousing, data integration, and query
answering with incomplete information. Informally speak-
ing, the problem requires answering a query posed to a
database only on the basis of the information on a set of
views, which are again queries over the same database. In
query optimization, the problem is relevant because using
the views may speed up query processing. In data integra-
tion, the views represent the only information sources ac-
cessible to answer a query. A data warehouse can be seen
as a set of materialized views, and, therefore, query process-
ing reduces to view-based query answering. Finally, since
the views provide partial knowledge on the database, view-
based query processing can be seen as a special case query
answering with incomplete information.

There are two approaches to view-based query process-
ing, called query rewriting and query answering, respec-
tively. In the former approach, we are given a query Q and
a set of view definitions, and the goal is to reformulate the
query into an expression that refers only to the views, and
provides the answer to Q. Typically, the rewriting is ex-
pressed in the same language used for both the query and
the views. In the latter approach, besides Q and the view
definitions, we are also given the extensions of the views.
The goal is to compute the set of tuples that are implied by
these extensions, i.e., the set of tuples t such that t satisfies
Q in all the databases that are consistent with the views.

Notice the difference between the two approaches. In
query rewriting, query processing is divided in two steps,



where the first re-expresses the query in terms of a given
query language over the alphabet of the view names, and the
second evaluates the rewriting over the view extensions. In
query answering, we do not pose any limit to query process-
ing, and the only goal is to exploit all possible information,
in particular the view extensions, to compute the answer to
the query.

In the last years a large number of results have been re-
ported for both problems. Query rewriting has been studied
under different assumptions on the form of the queries and
views in [34, 38, 42, 6, 19, 7, 28, 20, 17, 27]. Rewriting
techniques for query optimization are described, for exam-
ple, in [16, 5, 43, 23, 35, 36]. A comprehensive frame-
work for view-based query answering, as well as several
interesting results, are presented in [2, 26]. In [11, 13, 15]
view-based query processing has been studied for the case
of regular-path queries (RPQs).

In this paper, we address view-based query processing in
the context of semistructured data. Semistructured data are
modeled by labeled directed graphs, and have been intro-
duced with the aim of capturing data in the web. The main
difficulty arising in this context is that languages for query-
ing semistructured data enable expressing RPQs [4, 10, 22].
An RPQ asks for all pairs of nodes in the database con-
nected by a path conforming to a regular expression, and
therefore may contain a restricted form of recursion. Note
that when the query contains unrestricted recursion, both
view-based query rewriting and view-based query answer-
ing become undecidable, even when the views are not re-
cursive [19]. To the best of our knowledge, the only known
decidability results for view-based query processing in the
case where both the query and the views may contain recur-
sion are reported in [11, 13, 15].

In spite of the large amount of work on the subject, the
relationship between view-based query rewriting and view-
based query answering is not completely clarified yet. The
first contribution of our work concerns a study of this re-
lationship. We define a rewriting of a query with respect
to a set of views as a function that, given the extensions of
the views, returns a set of pairs of objects that is contained
in the answer set of the query with respect to the views.
We call the rewriting that returns exactly such set the per-
fect rewriting of the query wrt the views. Thus, view-based
query answering, and evaluating the perfect rewriting over
given view extensions, are equivalent problems.

Typically, one is interested in queries that are PTIME
functions (in data complexity). Hence, we would like
rewritings to be PTIME as well. By exploiting the relation-
ship between view-based query rewriting and view-based
query answering, and by using the results in [13], we show
that the perfect rewritings are not PTIME in general, as-
suming P6=NP. Hence, the problem arises of characterizing
which instances of query rewriting admit a perfect rewrit-

ing that is PTIME. A second contribution of the work is to
show that this is going to be difficult. To draw such conclu-
sion, we establish a tight connection between view-based
query answering and constraint-satisfaction problems. A
constraint-satisfaction problem (CSP) is traditionally de-
fined in terms of a set of variables, a set of values, and a
set of constraints, and asks whether there is an assignment
of the variables with the values that satisfies the constraints.
An elegant characterization of CSP can be given in terms
of homomorphisms between relational structures [21]. Let
A and B be two classes of finite relational structures. The
constraint-satisfaction problem CSP(A,B) is the following
decision problem: given a structure A ∈ A and a structure
B ∈ B over the same vocabulary, is there a homomorphism
h : A → B? We show that CSP is polynomially reducible
to view-based query answering and vice versa. This indi-
cates that there is a close relationship between the problem
of characterizing the instances of query rewriting that ad-
mit a perfect rewriting that is in PTIME and the problem of
characterizing the instances of CSP that are in PTIME. As
discussed in [31, 21], the latter problem is a longstanding
open problem that appears to be difficult to solve.

This result suggests that one should look for other ways
to compute a PTIME rewriting (in general not perfect).
Here comes the third contribution of our work. We present
two methods for computing PTIME rewritings for RPQs,
considering rewritings that can be formulated in expres-
sive but tractable query languages. First, based on the con-
nection between view-based query answering and CSP, we
show how to obtain rewritings expressed in Datalog with a
fixed number of variables. We show that this rewriting is
maximal in a certain sense. In particular, the rewriting ob-
tained is perfect if a perfect rewriting of such form exists.
Second, using automata-theoretic techniques we show how
to obtain maximal rewritings expressed as unions of con-
junctive regular-path queries (CRPQs) with a fixed number
of variables.

2. View-based query processing for regular-
path queries

We consider a setting in which databases are expressed
in terms of edge-labeled graphs, and queries ask for pairs of
nodes connected by a specified path. This setting is typical
in semistructured data, where all data models share the char-
acteristic that data are organized in a labeled graph, where
the nodes represent objects, and the edges represent links
between objects [37, 9, 8, 1, 24].

Formally, we consider a database as an edge labeled
graph DB = (D, E), where D is a set of nodes (called the
domain) that represent the objects of DB , and E = {re |
e ∈ Σ} is a set of binary relations corresponding to the
edges of the graph labeled by elements from an alphabet Σ.



Such edges represent links between objects labeled by at-
tribute names. We denote an edge from node x to node y
labeled by r, i.e., (x, y) ∈ r, with x r−→ y.

As query mechanism we consider regular-path queries
(RPQs), which are the basic constituents of full-fledged
query languages over semistructured data [10, 1, 23, 35, 18].
Such queries denote all the paths corresponding to words of
a specified regular language over the alphabet Σ, and hence
are expressed by means of regular expressions or finite au-
tomata [11]. The answer set of an RPQ Q over a database
DB is ans(Q,DB) = {(x, y) | there is a path x r1−→
· · · rn−→ y in DB s.t. r1 · · · rn ∈ L(Q)}, where L(Q) is the
regular language defined by Q.

Next we introduce the problem of view-based query an-
swering [2, 26, 33, 13]. Consider a database that is acces-
sible only through a set V = {V1, . . . , Vk} of views, and
suppose we want to answer an RPQ only on the basis of our
knowledge on the views. Specifically, associated to each
view Vi we have:

• its definition def (Vi) in terms of an RPQ over the al-
phabet Σ;

• information about its extension in terms of a set
ext(Vi) of pairs of objects1.

We denote (def (V1), . . . , def (Vk)) by def (V),
(ext(V1), . . . , ext(Vk)) by ext(V), and the set of ob-
jects appearing in ext(V) by DV .

We say that a database DB is consistent with the views
V if ext(Vi) ⊆ ans(def (Vi),DB), for each Vi ∈ V .
The certain answer set of Q wrt the views V is the set
cert(Q,V) ⊆ DV × DV such that (c, d) ∈ cert(Q,V) if
and only if (c, d) ∈ ans(Q,DB), for every DB that is con-
sistent with V .

The problem of view-based query answering is the fol-
lowing: Given

• a set V of views, their definitions def (V), and exten-
sions ext(V),

• a query Q,

• a pair of objects c, d ∈ DV ,

decide whether (c, d) ∈ cert(Q,V).
The complexity of the problem can be measured in three

different ways [46]:

• Data complexity: as a function of the size of ext(V).

• Expression complexity: as a function of the size of Q
and of the expressions in def (V).

1We assume that objects are represented by constants, and we adopt
the unique name assumption [39], i.e., different constants denote different
objects and therefore different nodes.

• Combined complexity: as a function of the size of
ext(V), Q, and def (V).

In [13] the following complexity characterization of
view-based query answering is given.

Theorem 2.1 ([13]) View-based query answering for
RPQs is co-NP-complete in data complexity and PSPACE-
complete in expression and combined complexity.

The definition of view-based query answering given
above reflects two implicit assumptions. (i) The views are
sound, i.e., from the fact that a pair (a, b) is in ext(Vi) we
can conclude that (a, b) is in ans(def (Vi),DB), but not
vice-versa. (ii) The domain is open, i.e., a database con-
sistent with the views may contain additional objects that
do not appear in the view extensions. Other assumptions
about the accurateness of the knowledge on the objects of
the database and the pairs satisfying the views, have been
studied [2, 26, 13].

We now study the relationship between view-based
query answering and query rewriting. An instance of query
rewriting is given by a query Q and a set V of views with
definitions def (V). One then tries to generate a new query
Q′ over the symbols in V such that Q′ approximates the an-
swer to Q, when Vi is interpreted as ext(Vi), for each Vi ∈
V . Formally, we require ans(Q′, ext(V)) ⊆ cert(Q,V). In
the context of RPQs, Q and def (V1), . . . , def (Vk) are reg-
ular expressions over the alphabet Σ, while Q′ is a regular
expression over the alphabet V .

A solution to the problem of RPQ rewriting is described
in [11], where an algorithm is given to compute the max-
imal rewriting wrt to all rewritings that are RPQs. How-
ever, such rewriting is in general not maximal if we allow
for rewritings that belong to a larger class of queries. The
next example shows that we gain already by considering
conjunctive regular-path queries (CRPQs), i.e., conjunctive
queries whose atoms are RPQs.

Example 2.2 Consider the queryQ = R1·R3 +R2·R4 and
the views V1, V2, V3 with

def (V1) = R1

def (V2) = R2

def (V3) = R3 +R4

The maximal rewriting of Q in terms of V1, V2, and V3

that is an RPQ is empty. Now, consider the CRPQ over
{V1, V2, V3}

R(x, y) ← xV1 z, x V2 z, z V3 y

By expanding V1, V2, and V3 with their definitions we ob-
tain

R(x, y) ← xR1 z, xR2 z, z (R3 +R4) y,



which is contained in Q. Hence R is a CRPQ that is a
(nonempty) rewriting of Q.

From a more abstract point of view, we can define a
rewriting of Q wrt V as a function that, given ext(V), re-
turns a set of pairs of objects that is contained in the certain
answer set cert(Q,V). We call the rewriting that returns
exactly cert(Q,V) the perfect rewriting of Q wrt V . The
problem of view-based query rewriting is the one of com-
puting a rewriting of Q wrt V . The problem comes in dif-
ferent forms, depending of the properties that we require for
the rewriting. In particular:

• It is sometimes interesting to consider rewritings that
are expressible in a certain query language, e.g., Data-
log.

• It is also interesting to consider rewritings belonging to
a certain data complexity class, for example, polyno-
mial time2. A rewriting f belongs to a data complexity
class C if the problem of deciding whether a pair of ob-
jects (c, d) is in f(ext(V)) is in the class C, where the
complexity of the problem is measured with respect to
the size of ext(V).

• Finally, it is worthwhile to compute rewritings that are
maximal in a certain class. A rewriting f of Q wrt V is
maximal in a class C if, for every rewriting g ∈ C of Q
wrt V , we have that g(ext(V)) ⊆ f(ext(V)) for every
ext(V).

An algorithm for view-based query answering is an al-
gorithm that takes as input a query, a set of view defini-
tions, and a set of view extensions, and determines whether
a given pair of objects is in the answer set of the query for
every database that is consistent with the views. Hence, if
we fix the query Q and the view definitions def (V), we can
consider every algorithm for view-based query answering
as an algorithm for the recognition problem for the perfect
rewriting of Q wrt V . We remind the reader that the recog-
nition problem for a query Q is to check whether a certain
tuple is in the answer of Q over a given database. This ob-
servation establishes a tight connection between view-based
query answering [2] and query rewriting [45].

Now, considering that in the present setting view-based
query answering is co-NP-complete in data complexity (see
Theorem 2.1), we obtain the following result.

Theorem 2.3 The perfect rewriting of an RPQ wrt RPQ
views is a co-NP function. There is an RPQ Q and a set
V of RPQ views such that the rewriting of Q wrt V is a co-
NP-complete function.

2A query belongs to a data complexity class C if the corresponding
recognition problem is in C wrt data complexity.

Proof. The membership in co-NP follows by using the al-
gorithm for view-based query answering as the rewriting.
For the hardness, note that we can obtain a method for
view-based query answering as follows: compute the per-
fect rewriting R of the query wrt the views and evaluate it
against the extension of the views. Since view-based query
answering is co-NP-hard wrt the size of the view extensions,
and computingR does not depend on the view extensions, it
follows that evaluating R against the extension of the views
is co-NP-hard in general.

Typically, one is interested in queries that are PTIME
functions. Hence, we would like rewritings to be PTIME as
well. Unfortunately, by Theorem 2.3, the perfect rewrit-
ings are not PTIME in general, assuming P6=NP. Hence
it would be interesting to characterize which instances of
query rewriting admit a perfect rewriting that is PTIME.
Note, however, that finding such instances corresponds to
finding those instances of view-based query answering that
are PTIME in data complexity. In Section 4 we show that
this is going to be difficult, by exhibiting a tight connection
between view-based query answering and constraint satis-
faction.

3. Constraint-satisfaction problems

A constraint-satisfaction problem (CSP) is traditionally
defined in terms of a set of variables, a set of values, and a
set of constraints, and asks whether there is an assignment
of the variables with the values that satisfies the constraints.
An elegant characterization of CSP can be given in terms of
homomorphisms between relational structures [21].

A vocabulary is a set V = {R1, . . . , Rt} of predicates,
each with an associated arity. A relational structure A =
(∆A, ·A) over V is a domain ∆A together with an interpre-
tation function ·A that assigns to each predicate Ri a rela-
tionRA

i of the appropriate arity over ∆A. A homomorphism
h : A→ B between two relational structures A and B over
the same vocabulary is a mapping h : ∆A → ∆B such that,
if (c1, . . . , cn) ∈ RA, then (h(c1), . . . , h(cn)) ∈ RB , for
every predicate R in the vocabulary.

LetA and B be two classes of finite relational structures.
The (uniform) constraint-satisfaction problem CSP(A,B)
is the following decision problem: given a structure A ∈ A
and a structure B ∈ B over the same vocabulary, is there
a homomorphism h : A → B? We denote such instance
as CSP(A,B), and if such a homomorphism exists we say
that CSP(A,B) is satisfiable. We also consider the special
case where B consists of a single relational structure B and
A is the set of all relational structures over the vocabulary
of B, and denote it by CSP(B). Such problem is a (spe-
cial case of) non-uniform constraint-satisfaction problem,
i.e., with B fixed, the input is just a structure A ∈ A. In



the case where we take the relational structures to be (di-
rected) graphs, CSP corresponds to directed-graph homo-
morphism. Since general CSP is polynomially equivalent to
directed-graph homomorphism [21], that is, for each struc-
ture B there is a directed graph GB such that CSP(B) is
polynomially equivalent to CSP(GB), we restrict attention
without loss of generality to CSP over directed graphs, un-
less explicitly stated otherwise.

From the very definition of CSP it follows directly that
every CSP(A,B) problem is in NP. In general, the com-
plexity of a non-uniform constraint-satisfaction problem
CSP(B) depends on B. For example, CSP(K2), is the
Two-Colorability Problem, while CSP(K3) is the Three-
Colorability Problem (Kn is the n-node complete graph);
the former is in PTIME, while the latter is NP-complete. In
some cases, e.g., when the domain of B has at most two
elements or when B is an undirected graph, it is known
that CSP(B) is either in PTIME or NP-complete [40, 29].
The Dichotomy Conjecture states that this holds for every
structure B [21]. (Recall that if PTIME is different than
NP then there are problems that are neither in PTIME nor
NP-complete [32].) It is an open problem whether the Di-
chotomy Conjecture holds. A related open question is that
of characterizing the structures B for which CSP(B) is in
PTIME [21].

4. CSP and view-based query answering

We establish a tight relationship between constraint-
satisfaction problems and view-based query answering. We
show first that every CSP is polynomially reducible to view-
based query answering.

Theorem 4.1 Let B be a directed graph. There exists an
RPQ Q and RPQ views V with definitions def (V) such
that the following holds: for every directed graph A, there
are extensions ext(V) and objects c, d such that (c, d) 6∈
cert(Q,V) if and only if CSP(A,B) is satisfiable.

Proof. Let A = (NA, EA) and B = (NB , EB). We define
an instance of view-based query answering as follows:

• The alphabet is Σ = ΣN∪ΣE , where ΣN = {Sx | x ∈
NB} ∪ {Fx | x ∈ NB} and ΣE = {Rx,y | (x, y) ∈
EB}.

• The set of objects in the view extensions isDV = NA∪
{c, d}, where c, d are two symbols not in NA.

• The views are Vs, Vf , and VA with

def (Vs) =
∑

x∈NB
Sx

def (Vf ) =
∑

x∈NB
Fx

def (VA) =
∑

(x,y)∈EB
Rx,y

ext(Vs) = {(c, a) | a ∈ NA}
ext(Vf ) = {(a, d) | a ∈ NA}
ext(VA) = EA

Intuitively, the extension of VA represents A, while Vs

and Vf are used to connect c and d to all nodes of A,
using respectively the “start” relations Sx and “final”
relations Fx.

• The query is

Q =
∑

x,y∈NB , x 6=y

Sx·Fy +∑
x∈NB

y 6=x, (y,z)∈EB

Sx·Ry,z·Fz +

∑
x∈NB

(x,y)∈EB, z∈NB\{y}

Sx·Rx,y·Fz

We show that there is a homomorphism from A to B if and
only if (c, d) 6∈ cert(Q,V).

“⇒” Let h be such a homomorphism, and consider
the database DB = (D, E), where D = DV and E is
defined as follows: for each node a ∈ NA, there are

two edges c
Sh(a)−→ a and a

Fh(a)−→ d, and for each pair of
nodes a, b ∈ NA, there is an edge a r−→ b if and only if
(a, b) ∈ EA and r = Rh(a),h(b). By construction, and since
h is a homomorphism, DB is consistent with the views.
Suppose towards contradiction that (c, d) ∈ ans(Q,DB).
Clearly, for no pair x, y ∈ NB , x 6= y, we have that
(c, d) ∈ ans(Sx·Fy,DB). Hence, there must be two ob-
jects a1, a2 ∈ DV such that c r1−→ a1

r2−→ a2
r3−→ d, and

r1r2r3 ∈ L(Q). By construction of DB , r1 = Sh(a1),
r2 = Rh(a1),h(a2), and r3 = Fh(a2). We get a contradiction
to (c, d) ∈ ans(Q,DB).

“⇐” Let DB = (D, E) be a database consistent with the
views and such that (c, d) 6∈ ans(Q,DB). By the form of
the definitions and of the extensions of the views, we have
that (i) D = DV , (ii) for each node a ∈ NA, there are in E
two edges c r1−→ a, and a r2−→ d, with r1 = Sx and r2 = Fy

for some x, y ∈ NB , (iii) for each edge (a, b) ∈ EA there is
in E an edge a r−→ b, with r = Rx,y for some x, y ∈ NB .
By the form of def (VA) we have that, given a database DB ′

consistent with the views, if for a pair of nodes a, b of DB ′

we remove from DB ′ all but one labeled edge connecting
a and b, we obtain a database that is still consistent with
the views. Hence, we can assume wlog that for each pair
of nodes a, b ∈ D there is at most one labeled edge in DB



connecting a and b. We define a mapping h from A to B as
follows: for each node a ∈ NA, we take h(a) = x, where
x ∈ NB is determined by the label Sx of the (unique) edge
c

Sx−→ a in E . We show that (c, d) 6∈ ans(Q,DB) implies
that h is a homomorphism from A to B. Indeed, for each
node b ∈ NA, the edge in E from b to d must be labeled by
Fh(b). Moreover, for each edge (a, b) ∈ EA, we must have
that Rh(a),h(b) is defined and labels the (unique) edge in E
from a to b. It follows that EB contains an edge from h(a)
to h(b), and therefore h is a homomorphism.

The reduction in the proof above is polynomial, so we
get the following corollary.

Corollary 4.2 Every uniform CSP is polynomially re-
ducible to view-based query answering. Every non-uniform
CSP is polynomially reducible to the recognition problem
for perfect rewritings.

Observe that the difference between view-based query an-
swering and the recognition problem for perfect rewritings
is that, in the first case the input includes the query, the view
definitions, and the view extensions, while in the latter case
one already has the perfect rewriting and wants to check
whether a given pair is in the answer. Hence, in the latter
case the input is the perfect rewriting and the view exten-
sions.

We show next that the co-NP data complexity results
of [13] can be recast as a reduction from view-based query
answering to CSP. To this end, given a query Q and a set
V of views with definitions def (V), we call the constraint
template ofQ wrt V the structureB defined as follows. The
vocabulary ofB is V∪{Uc, Ud}, where symbols in V denote
binary predicates, and Uc and Ud denote unary predicates.
Let AQ = (Σ, S, S0, ρ, F ) be a (nondeterministic) automa-
ton for Q. The structure B = (∆B , ·B) is given by:

• ∆B = 2S ;

• (σ1, σ2) ∈ V B
i iff there exists a word w ∈ L(def (Vi))

such that ρ(σ1, w) ⊆ σ2;

• σ ∈ UB
c iff S0 ⊆ σ, and σ ∈ UB

d iff σ ∩ F = ∅.

Theorem 4.3 Let Q be an RPQ and V a set of RPQ views
with definitions def (V). Then the problem of verifying,
given ext(V) and objects c, d, whether (c, d) 6∈ cert(Q,V)
is polynomially reducible to CSP(B), where B is the con-
straint template of Q wrt V .

Proof. Given the view extensions ext(V) and a pair of
objects c, d, we construct the constraint instance Ac,d

V =
(∆A, ·A) of CSP(B) as follows:

• ∆A = DV , whereDV is the set of objects in the exten-
sions (which includes also c and d);

• V A
i = ext(Vi);

• UA
c = {c}, and UA

d = {d}.

We show that (c, d) 6∈ cert(Q,V) if and only if there is
an homomorphism h : Ac,d

V → B.
“⇐” Given a homomorphism h : Ac,d

V → B, we
construct a database DB as follows: for every view Vi

and every pair (a, b) ∈ ext(Vi) we (i) choose a word
w = r1 · · · rn ∈ L(def (Vi)) such that ρ(h(a), w) ⊆ h(b)
and (ii) introduce in DB a path a r1−→ x1 · · ·xn−1

rn−→ b,
where x1, . . . , xn−1 are new objects. DB is consistent
with the views by construction and it can be verified that
(c, d) 6∈ ans(Q,DB).

“⇒” Given a database DB that is consistent with the
views and such that (c, d) 6∈ ans(Q,DB), we build a map-
ping h′ : D → 2S by putting each state in S0 in h′(c) and
repeating the following until h′ does not change any more:
if there is an edge x r−→ y in DB and s ∈ h′(x), then add
ρ(s, r) to h′(y). Projecting h′ on DV we obtain a homo-
morphism h : Ac,d

V → B.

As a consequence of this theorem we have the following
corollary.

Corollary 4.4 View-based query answering is polynomi-
ally (in data complexity) reducible to uniform CSP. The
recognition problem for perfect rewritings is polynomially
reducible (in data complexity) to non-uniform CSP.

Theorems 4.1 and 4.3 exhibit a very strong connection
between CSP and view-based query answering.3 This indi-
cates that there is a close relationship between the problem
of characterizing the instances of query rewriting that ad-
mit perfect rewriting that is in PTIME and the problem of
characterizing the instances of CSP that are in PTIME. As
discussed in [31, 21], the latter problem is a longstanding
open problem that appears to be difficult to solve.

5. Rewriting via CSP

As we saw in Section 2, we cannot hope to always
have perfect rewritings in PTIME. Furthermore, it follows
from the results in Section 4 that characterizing when a
PTIME perfect rewriting is possible seems to be a rather
difficult problem. This motivates to consider rewritings that
can be expressed in an expressive but tractable query lan-
guage. Datalog, which is the language of database logic
programming, is such a language and has received tremen-
dous amount of attention over the past two decades (cf. [3]).

3This is quite different than the connection applied between CSP and
query containment in [31], since the connection there applies to conjunc-
tive queries. As the proof in the appendix shows, the connection we estab-
lish here applies to union of path queries, whose containment problem is
decidable in polynomial time.



A Datalog program is a finite set of rules of the form
t0 ← t1, . . . , tm, where each ti is an atomic formula
R(x1, . . . , xn). The relational predicates that occur in the
heads of the rules are the intensional database predicates
(IDBs), while all others are the extensional database pred-
icates (EDBs). One of the IDBs is designated as the goal
of the program. Note that IDBs may occur in the bodies
of rules and, thus, a Datalog program is a recursive specifi-
cation of the IDBs with semantics obtained via least fixed-
points of monotone operators (see [44]). Each Datalog pro-
gram defines a query, which, given a set of EDB predicates,
returns the value of the goal predicate. If the goal predicate
is 0-ary, then the program is a Boolean query, i.e., it either
holds or does not. Note that a Datalog query is computable
in polynomial time, since the bottom-up evaluation of the
least fixed-point of the program terminates within a polyno-
mial number of steps (in the size of the given EDBs) (see
[44]). Thus, expressibility in Datalog is a sufficient condi-
tion for tractability of a query. It is easy to see that RPQs
are a special case of Datalog queries.

Suppose we are given a query Q and a set V of views,
with definitions def (V). A Datalog query Q′ is a Datalog
rewriting ofQwrt V if ans(Q′, ext(V)) ⊆ cert(Q,V). It is
not clear, however, how we can check whether Q′ is a Dat-
alog rewriting of Q wrt V . The algorithm in [11] critically
depends on the regularity of candidate rewritings, using the
fact that containment of regular expressions is decidable.
On the other hand, it is known that containment of Data-
log queries is undecidable [41]. Somewhat surprisingly the
connection between view-based query answering and CSP
can be used to obtain Datalog rewritings for RPQs.

Let ¬CSP(B) be the class of structuresA such that there
is no homomorphism h : A → B. Feder and Vardi [21]
provided a unifying explanation for the tractability of many
non-uniform CSP(B) problems by showing that ¬CSP(B)
is expressible in Datalog. That is, they show that in many
cases in which CSP(B) is tractable there is a boolean Dat-
alog program P such that P (A) holds iff A 6∈ CSP(B),
for every structure A (of the same vocabulary as B.) In
fact, they also showed how to obtain sound Datalog pro-
grams, i.e., Datalog programs P such that if P (A) holds
then A 6∈ CSP(B). A key parameter that shows up in this
analysis is the number of variables used. For every posi-
tive integer n, let n-Datalog be the collection of all Datalog
programs in which the body of every rule has at most n dis-
tinct variables and also the head of every rule has at most n
variables (the variables of the body may be different from
the variables of the head). For example, the query Non-2-
Colorability is expressible in 4-Datalog, since it is definable
by the goal predicate Q of the following Datalog program,
which asserts that a cycle of odd length exists:

p(x, y) ← e(x, y)

p(x, y) ← p(x, z), e(z, w), e(w, y)
q ← p(x, x).

The key fact about n-Datalog and CSP is the existence
of canonical n-Datalog programs.

Theorem 5.1 ([21, 31]) LetB be a relational structure and
let n be a positive integer. There exists an n-Datalog pro-
gram Pn

B such that Pn
B is the maximal sound n-Datalog

program for ¬CSP(B), that is, it is sound for ¬CSP(B)
and it contains every n-Datalog program that is sound for
¬CSP(B).

Note that Theorem 5.1 implies that if ¬CSP(B) is ex-
pressible in n-Datalog, then it is expressible by Pn

B . The
proof of the theorem is constructive. That is, there is an
(exponential-time) algorithm that constructs Pn

B , given B
and n. We now show how the theorem can be used to derive
Datalog query rewritings.

Let Q be an RPQ and let V be a set of RPQ views
with definitions def (V). Construct a constraint template B
for Q wrt V as in Section 4. As shown in the appendix,
(c, d) 6∈ cert(Q,V) if and only if there is an homomor-
phism h : A → B, where A consists of ext(V) with the
addition of unary relations Uc and Ud for the objects c and
d, respectively. Given a positive integer n, we construct the
Datalog program Pn

B . By Theorem 5.1, if Pn
B(A) holds,

then (c, d) ∈ cert(Q,V). What we want, however, is a Dat-
alog program that computes an answer, rather than check
whether a pair of objects is in the answer. That is, we want
the program to check that (c, d) ∈ cert(Q,V) simultane-
ously for all pairs (c, d). To that end we modify Pn

B in the
following way:

1. let s, t be a pair of variables not occurring in Pn
B ,

2. replace an IDB atom R(x1, . . . , xm) in Pn
B by

R(x1, . . . , xm, s, t) (in particular, the 0-ary goal pred-
icate G becomes G(s, t)), and

3. replace atoms Uc(xi) (resp., Ud(xi)) by xi = s (resp.,
xi = t).

(It is well known that equality atoms can be eliminated
[44].) Call the resulting Datalog program Qn

B . We now
show that Qn

B is in some sense a maximal rewriting.

Theorem 5.2 Let Q be an RPQ and let V be a set of RPQ
views with definitions def (V). Let B be the constraint tem-
plate of Q wrt V , and let n be a positive integer. Qn

B is a
rewriting of Q wrt V that contains all n-Datalog rewritings
of Q wrt V . In particular if there is an n-Datalog program
that is a perfect rewriting of Q wrt V , then Qn

B is a perfect
rewriting of Q wrt V .



Proof. Let P be an n-Datalog rewriting of Q wrt V . Let G
be the (binary) goal predicate of P . (So we can assume that
n > 1.) Add to P the rule

goal ← G(s, t), Uc(s), Ud(t)

Call the resulting n-Datalog program P ′. Given an exten-
sion ext(V) and objects c, d, let Ac,d

V be the corresponding
constraint instance, defined in the proof of Theorem 4.3.
Clearly, if P ′(Ac,d

V ) holds then Ac,d
V 6∈ CSP(B). Thus, P ′

is sound for ¬CSP(B), so, by Theorem 5.1, it is contained
in Pn

B . Suppose now that (c, d) ∈ P (ext(V)), then we have
that P ′(Ac,d

V ) holds, so Pn
B(Ac,d

V ) holds. But then we have
that (c, d) ∈ Qn

B(ext(V)).

Note that Qn
B is an (n + 2)-Datalog program. It is an open

question whether we can get a maximal n-Datalog rewrit-
ing. Note also that Qn

B is a perfect rewriting of Q wrt V if
there exists an n-Datalog program that is a perfect rewrit-
ing of Q wrt V . We do not know, however, how to check
whether Qn

B is a perfect rewriting of Q wrt V , and we do
not even know how to check whether Qn

B is exact, i.e., to
check whetherQn

B is logically equivalent to the query mod-
ulo the definitions of the views [12]. In the next section we
describe a rewriting technique using a more restricted class
of queries for which we do know how to check whether we
have obtained an exact rewriting.

6. Rewriting via automata-theoretic tech-
niques

We exploit automata-theoretic techniques to construct
rewritings that are expressed as unions of CRPQs (UCR-
PQs) with a fixed number of variables. In particular we
use standard one-way and two-way finite automata (1NFA,
2NFA) [30, 47].

For technical reasons, we start by considering CRPQs
with a fixed skeleton. A skeleton for a CRPQ is de-
fined by the number n of variables that appear in the
body of the query and for each pair of variables, by
the number of conjuncts that involve that pair. With-
out loss of generality we assume that the variables in the
body of the query are x1, . . . , xn, and that x1 and x2 are
the distinguished variables that appear in the head of the
CRPQ. Hence we can denote a skeleton by a pair S =
(n, {(y1, y2), . . . , (y2s−1, y2s)}), where the second com-
ponent is a multiset of pairs of variables that range over
x1, . . . , xn.

A CRPQ Q with a skeleton

S = (n, {(y1, y2), . . . , (y2s−1, y2s)})

is an CRPQ of the form

Q(x1, x2) ← y1E1 y2, . . . , y2s−1Es y2s

i.e., the body of Q contains one conjunct y2i−1Ei y2i for
each pair (y2i−1, y2i) in the multiset of S. A UCRPQ with
skeleton S is a union of CRPQs with skeleton S.

We provide now a method that, given an RPQQ over the
alphabet Σ, a set V of views with definitions def (V), and
a skeleton S = (n, {(y1, y2), . . . , (y2k−1, y2k)}), computes
an UCRPQ with skeleton S, that is the maximal rewriting of
Q wrt V among the UCRPQs with skeleton S. The method
is based on characterizing the counterexamples to the con-
tainment of the expansion of a rewriting in Q by means of
words of a special form. In particular, we consider words
over the alphabet Σ ∪ V ∪ {x1, . . . , xn} ∪ {$,#, :} of the
form

$y1`1y2$ · · · $y2s−1`sy2s$ (1)

where each `i has the form

#Vhi,1 :ei,1# · · ·#Vhi,mi
:ei,mi#

with each Vhi,j
∈ V and each ei,j ∈ Σ∗. Such a word repre-

sents a database containing nodes x1, . . . , xn, constituting
of s paths that are node and edge disjoint (i.e., only start and
end nodes can be shared between different paths), such that
y2i−1 is connected to y2i by a path labeled by ei,1 · · · ei,mi

.
Moreover the word associates the view Vhi,j

to the fragment
ei,j of the path.

To construct the rewriting we first construct an automa-
ton AS

Q,V as follows:

1. Construct a 2NFA A1 that accepts words of the
form (1) iff Q, when evaluated on the database rep-
resented by the word, is not empty. The construction
of A1 exploits the ability of 2NFA to jump from one
occurrence of a symbol xi to any other occurrence of
xi in the word (as in [14]).

2. Construct a 1NFA A2 that complements A1. The au-
tomaton A2 accepts a word of the form (1) iff Q, when
evaluated on the database represented by the word, is
empty.

3. Construct a 1NFAA3 that accepts exactly the words of
the form (1) such that ei,j ∈ L(def (Vhi,j

)), for every
i, j. The automaton A3 accepts a word of the form (1)
iff each path fragment ei,j is in the language of the
view associated to it.

4. Construct the 1NFA A2 ∩ A3. Such an automaton ac-
cepts a word of the form (1) iff each path fragment ei,j

is in the language of the view associated to it, and the
query evaluated over the database corresponding to the
word is empty.

5. Construct the 1NFA A4 that accepts the projections
on V ∪ {x1, . . . , xn} ∪ {$} of the words accepted by
A2 ∩ A3, The automaton A4 accepts a word of the



form $·y1·V∗·y2·$ · · · $·y2s−1·V∗·y2s·$ if such a word
represents view extensions for which there exists a
database consistent with the views in which the query
is empty.

6. Finally, construct the automaton AS
Q,V by intersect-

ing the complement of A4 with an 1NFA that ac-
cepts $·y1·V∗·y2·$ · · · $·y2s−1·V∗·y2s·$. The automa-
tonAS

Q,V accepts words that represent view extensions
for which in all databases consistent with the views the
query is empty.

Now, observe that each word accepted by AS
Q,V can be

viewed as a CRPQ with skeleton S of a simple form, where
each RPQ is simply a concatenation of symbols in V , we
call such CRPQs simple. Hence the language accepted by
AS

Q,V denotes a possibly infinite union of simple CRPQs.
We show now that we can represent such a possibly infinite
union by a finite union of CRPQs.

To this end we construct a new automaton FS
Q,V with the

same set of states as AS
Q,V , same initial and final states, and

over an alphabet formed by $ and symbols that are regu-
lar languages xi·E·xj , with xi, xj variables and E ⊆ V∗.
The transitions labeled by $ are as in AS

Q,V , while the other
transitions are obtained as follows. For each pair of states
s1, s2 and each pair of variables xi, xj , let xi·E·xj be
the intersection of xi·V∗·xj with the language accepted by
the automaton obtained from AS

Q,V by changing the initial
states to {s1} and the final states to {s2}. When such in-
tersection is not empty, then FS

Q,V contains the transition
(s1, xi·E·xj , s2). Since AS

Q,V accepts only words that cor-
respond to simple CRPQs with fixed skeleton S, FS

Q,V ac-
cepts only words with a number of symbols of the form
xi·E·xj equal to the number s of conjuncts determined by
the skeleton. Hence the language accepted by FS

Q,V is finite,
and corresponds to a finite union RS

Q,V of CRPQs, each ob-
tained directly from a word accepted by FS

Q,V .

Theorem 6.1 RS
Q,V is the maximal rewriting of Q wrt V

among the rewritings that correspond to (possibly infinite)
unions of CRPQs with skeleton S.

Proof. It suffices to focus on words accepted by AS
Q,V . We

prove that every word accepted byAS
Q,V represents a simple

CRPQ such that replacing each V ∈ V by def (V ) results
in a CRPQ Q′ contained in Q. It is possible to show that
to check that Q′ is contained in Q it is sufficient to verify
that for each database DB that is canonical for Q′, Q(DB)
contains the pair (x1, x2). A database DB is canonical for
Q′ if: (i) DB constitutes of s paths, one for each conjunct of
Q′, which are node and edge disjoint; (ii) for i ∈ {1, . . . , s},
the path associated to the conjunct y2i−1Ei y2i connects
the node y2i−1 to the node y2i and is labeled by a word

in L(Ei). Observe that databases canonical for Q′ can be
represented by words in $·y1·Σ∗·y2·$ · · · $·y2s−1·Σ∗·y2s·$.

Now consider a word w that is accepted by AS
Q,V . Since

w is not accepted by A4, it follows that each word w′ that
expands w is either not accepted by A2 or not accepted by
A3. If w′ is not accepted by A3 then either it does not cor-
respond to a canonical database (and hence needs not to be
considered), or it corresponds to a canonical database DB
in which subwords in Σ∗ are not well annotated with view
symbols. In the latter case there exists another word w′′ that
expands w that corresponds to DB and is well annotated. If
w′ corresponds to a well annotated canonical database then
it is not accepted by A2. This means that it is accepted by
A1, and hence represents a canonical database on which Q
does yield (x1, x2).

To see that AS
Q,V is maximal among the rewritings that

correspond to unions of CRPQs with skeleton S, assume
there is a rewritingR containing a simple CRPQ with skele-
ton S that corresponds to a word w not accepted by AS

Q,V .
Then w is accepted by A4 and hence there is an expansion
w′ of w accepted both by A2 and by A3. w′ corresponds to
a canonical database of the CRPQ Q′ obtained by replacing
each V ∈ V by def (V ), on whichQ does not yield (x1, x2),
hence contradicting the fact that R is a rewriting.

In the case where we do not fix the skeleton of the
rewriting, but only the number n of variables, the con-
struction above of FS

Q,V carries through almost unchanged.
A CRPQ Q with n variables is a CRPQ of the form
Q(x1, x2) ← y1E1 y2, . . . , y2m−1Em y2m, where m is
any integer and y1, . . . , y2m range over {x1, . . . , xn}. Note
that the body of Q may contain an arbitrary number of con-
juncts y2h−1Eh y2h for each pair (xi, xj) 1 ≤ i, j ≤ n.
An UCRPQ with n variables is a union of CRPQs with n
variables. To represent such queries we need to consider,
instead of words of the form (1), words with an unlimited
number of subwords of the form xi`xj . We proceed with
steps (1)–(6) as before with this modification. Let us call
the resulting automaton An

Q,V . Consider an accepting run
of An

Q,V on such a word. Each subword of the form xi`xj

corresponds to a subrun of An
Q,V . If An

Q,V has at most p
states, then a simple pumping argument shows that it suf-
fices to consider words with at most p distinct subwords of
the form xi`xj (this is because by deleting subwords we get
a “bigger” query). So we can proceed with the construction
of the rewriting as before, with the proviso that we consider
only words with at most p subwords of the form xi`xj . We
still end up with an UCRPQs, which we call Rn

Q,V .

Theorem 6.2 Rn
Q,V is the maximal rewriting of Q wrt V

among the rewritings that correspond to (possibly infinite)
unions of CRPQs with n variables.

Note that an UCRPQ with n variables can be rewritten as
an n-Datalog program. Thus, by Theorem 5.2,Rn

Q,V is con-



tained in Qn
B . However, a nice property of Rn

Q,V is that we
know how to test whether it is an exact rewriting. Indeed, by
using techniques similar to those in [14], we can check ef-
fectively if an UCRPQ rewriting is exact. Unfortunately, as
for the case of Qn

B , we do not know how to check whether
Rn

Q,V is a perfect rewriting. Observe also that it is easier
to evaluate UCRPQs than Datalog, since the data complex-
ity of UCRPQs is NLOGSPACE, while that of Datalog is
PTIME.

7. Conclusions

We have studied view-based query processing in semi-
structured data. We have set up a framework that clari-
fies the relationships between the two approaches to the
problem, namely, query rewriting and query answering.
Based on such framework, we have first shown that the
perfect rewriting is in general a co-NP function wrt to the
size of view extensions. We have then turned our atten-
tion to the problem of characterizing which instances of
query rewriting admit a rewriting that is PTIME. Based on a
tight connection between view-based query answering and
constraint-satisfaction problems, we have shown that the
above characterization is going to be difficult. Finally, we
have proposed two methods for computing PTIME rewrit-
ings. In the first method, rewritings are expressed in Dat-
alog, whereas in the second method, rewritings are formu-
lated as unions of conjunctive regular-path queries. In both
methods the rewritings are parametrized by the number of
variables used.

There are several interesting open problems to investi-
gate. One is to study the impact of extending the language
of RPQs with the inverse operator, in the line of [15]. It
also remains open to devise a method that allows us to com-
pute the maximal PTIME rewriting, independently of the
language used to express such a rewriting.
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