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Abstract

View-based query processing requires to answer a query posed to a database
only on the basis of the information on a set of views, which are again queries
over the same database. This problem is relevant in many aspects of database
management, and has been addressed by means of two basic approaches, namely,
query rewriting and query answering. In the former approach, one tries to com-
pute a rewriting of the query in terms of the views, whereas in the latter, one aims
at directly answering the query based on the view extensions. Based on recent
results, we first show that already for very simple query languages, a rewriting is
in general a coNP function wrt to the size of view extensions. Hence, the problem
arises of characterizing which instances of the problem admit a rewriting that is
PTIME. However, a tight connection between view-based query answering and
constraint-satisfaction problems, allows us to show that the above characteriza-
tion is going to be difficult.

1 Introduction

Several recent papers in the literature show that the problem of view-based query
processing [25, 2] is relevant in many aspects of database management, including
query optimization, data warehousing, data integration, and query answering with
incomplete information. Informally speaking, the problem requires to answer a query
posed to a database only on the basis of the information on a set of views, which are
again queries over the same database. In query optimization, the problem is relevant
because using the views may speed up query processing. In data integration, the views
represent the only information sources accessible to answer a query. A data warehouse
can be seen as a set of materialized views, and, therefore, query processing reduces
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to view-based query answering. Finally, since the views provide partial knowledge
on the database, view-based query processing can be seen as a special case of query
answering with incomplete information.

There are two approaches to view-based query processing, called query rewriting
and query answering, respectively. In the former approach, we are given a query and
a set of view definitions, and the goal is to reformulate the query into an expression,
the rewriting, that refers only to the views, and provides the answer to the query.
Typically, the rewriting is formulated in the same language used for the query and
the views but in the alphabet of the view names, rather than the alphabet of the
database. In the latter approach, besides the query and the view definitions, we are
also given the extensions of the views. The goal is to compute the set of tuples that
are implied by these extensions, i.e., the set of tuples that are in the answer set of the
query in all the databases that are consistent with the views.

Notice the difference between the two approaches. In query rewriting, query pro-
cessing is divided in two steps, where the first re-expresses the query in terms of a
given query language over the alphabet of the view names, and the second evaluates
the rewriting over the view extensions. In query answering, we do not pose any limit
to query processing, and the only goal is to compute the answer to the query by
exploiting all possible information, in particular the view extensions.

In the last years a large number of results have been reported for both problems.
View-based query rewriting and query answering have been studied under different
assumptions on the form of the queries and views. For query rewriting see, e.g., [19,
20, 23, 24, 10, 3, 14, 5, 9], and for query answering see, e.g., [2, 13, 6, 7, 4].

Unfortunately, many of these papers do not distinguish between view-based query
answering and view-based query rewriting, and give raise to a sort of confusion between
the two notions. Part of the problem comes from the fact that when the query and the
views are conjunctive queries, there are algorithms for computing the best possible
rewriting as union of conjunctive queries and therefore is basically expressible in the
same language as the original query and views. However, as we will see in this paper,
for other query languages this is not the case. So, in spite of the large amount of work
on the subject, the relationship between view-based query rewriting and view-based
query answering is not completely clarified yet.

In this paper we focus on this relationship. Abstracting from the language used
to express the rewriting, thus generalizing the notion of rewriting considered in the
literature, we define a rewriting of a query with respect to a set of views as a function
that, given the extensions of the views, returns a set of tuples that is contained in
the answer set of the query in every database consistent with the views. We call the
rewriting that returns precisely such set the perfect rewriting of the query wrt the
views. Observe that, by evaluating the perfect rewriting over given view extensions,
one obtains the same set of tuples provided by view-based query answering. Hence,
the perfect rewriting is the best rewriting that one can obtain, given the available
information on both the definitions and the extensions of the views.

An immediate consequence of the relationship between perfect rewriting and query
answering is that the data complexity of evaluating the perfect rewriting over the
view extensions is the same as the data complexity of answering queries using views.
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Typically, one is interested in queries that can be evaluated in PTIME (i.e., are PTIME
functions in data complexity), and hence we would like rewritings to be PTIME as
well. For queries and views that are conjunctive queries (without union), the perfect
rewriting is a union of conjunctive queries and hence is PTIME [2]. By exploiting the
results in [6, 8], we show that already for very simple query languages containing union
the perfect rewriting is not PTIME in general. Hence, for such languages it would be
interesting to characterize which instances of query rewriting admit a perfect rewriting
that is PTIME. However, by establishing a tight connection between view-based query
answering and constraint-satisfaction problems (CSP), we argue that this is going to
be difficult due to its connection with a longstanding open problem for CSP [16, 11].

2 View-based query processing

Let us introduce the problem of view-based query answering [2, 13, 18, 6]. Consider
a database that is accessible only through a set V = {V1, . . . , Vk} of views, and sup-
pose we want to answer a query only on the basis of our knowledge on the views.
Specifically, associated to each view Vi we have:

• its definition def (Vi) in terms of a query over the alphabet Σ;

• information about its extension in terms of a set ext(Vi) of tuples of objects1.

We denote (def (V1), . . . , def (Vk)) by def (V), (ext(V1), . . . , ext(Vk)) by ext(V), and the
set of objects appearing in ext(V) by DV .

Let Q be a query and DB a database. We denote by ans(Q,DB) the answer
set of Q over DB . We say that a database DB is consistent with the views V if
ext(Vi) ⊆ ans(def (Vi),DB), for each Vi ∈ V. The certain answer set of Q wrt the
views V is the set cert(Q,V) ⊆ Dn

V of n-tuples (where n is the arity of Q) such that
t ∈ cert(Q,V) if and only if t ∈ ans(Q,DB), for every database DB that is consistent
with V.

We first introduce the decision problem version of view-based query answering,
called view-based boolean query answering, as follows. Given

• a set V of views, their definitions def (V), and extensions ext(V),

• a query Q of arity n,

• a tuple of objects t ∈ Dn
V ,

decide whether t ∈ cert(Q,V). The problem of view-based query answering differs
from its decision problem version, in that it does not have a tuple of objects as inputs,
and aims at computing the whole cert(Q,V).

The definition of view-based query answering given above reflects two implicit
assumptions. (i) The views are sound, i.e., from the fact that a tuple t is in ext(Vi)
we can conclude that t is in ans(def (Vi),DB), but not vice-versa. (ii) The domain is
open, i.e., a database consistent with the views may contain additional objects that

1We assume that objects are represented by constants, and we adopt the unique name assump-

tion [21], i.e., different constants denote different objects.
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do not appear in the view extensions. Other assumptions about the accurateness of
the knowledge on the objects of the database and the tuples satisfying the views, have
been studied. For a discussion, see [2, 13, 6].

Next we focus on view-based query rewriting. An instance of view-based query
rewriting is given by a query Q and a set V of views with definitions def (V), and the
goal is to compute a new query R over the symbols in V such that ans(R, ext(V)) ⊆
cert(Q,V). In other words one tries to generate a new query over the symbols in V
that approximates the answer to Q, when Vi is interpreted as ext(Vi), for each Vi ∈ V.

From an abstract point of view, a rewriting of Q wrt V is a function that, given
ext(V), returns a set of tuples of objects that is contained in the certain answer set
cert(Q,V). The problem of view-based query rewriting is the one of computing one
such function. The problem comes in different forms, depending of the properties that
we require for the rewriting [19, 20, 10, 3, 5, 8]. In particular:

• It is sometimes interesting to consider rewritings that are expressible in a certain
query language, e.g., Datalog.

• It is also interesting to consider rewritings belonging to a certain data complexity
class, for example, polynomial time. A rewriting f belongs to a data complexity
class C if the problem of deciding whether a tuple of objects is in f(ext(V)) is
in the class C, where the complexity of the problem is measured with respect to
the size of ext(V).

• Finally, it is worth computing rewritings that are maximal in a certain class. A
rewriting f of Q wrt V is maximal in a class C if, for every rewriting g ∈ C of Q

wrt V, we have that g(ext(V)) ⊆ f(ext(V)) for every ext(V).

However, a question comes up: Which is the best possible rewriting? The answer
to this question is: the rewriting (or, any rewriting) P such that, for every ext(V),
we have that ans(P, ext(V)) = cert(Q,V). In other words, the best possible rewriting
is the one that exploits the information on the views as much as possible, exactly
like an algorithm for view-based query answering. We call any such rewriting perfect
rewriting of Q wrt V. Perfect rewritings should not be confused with exact rewritings.
A rewriting R of Q wrt V is exact if the query R′ obtained by substituting each view
symbols with the corresponding definition, satisfies the following condition: for each
database DB , ans(R′,DB) = ans(Q,DB).

Note that, there are Q and V such that no exact rewriting of Q wrt V exist,
whereas the perfect rewriting always exists. In particular, a perfect rewriting can be
obtained from any algorithm for view-based query answering. Indeed an algorithm for
view-based query answering takes as input a query, a set of view definitions, and a set
of view extensions, and computes the answer set of the query for every database that
is consistent with the views. Hence, every algorithm for view-based query answering,
instantiated on a query Q and view definitions def (V), is the perfect rewriting of
Q wrt V. From this observation, one can conclude, for example, that the problem
of view-based query rewriting raised in [3] has been solved. Indeed the algorithm
presented in [4] directly yields the perfect rewriting for description logics knowledge
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bases. Obviously, it remains open whether such a rewriting can be formulated in a
conventional query language, such as disjunctive Datalog.

3 Hardness of view-based query processing

We consider a simple setting in which a database is constituted by a set of binary
relations, and hence can be viewed as an edge-labeled graph. We use as query language
unions of path queries (UPQs), defined as follows:

Q −→ P | Q1 ∪ Q2

P −→ R | P1 ◦ P2

where R denotes a (binary) database relation, P denotes a path query, which is a
chaining of database relations, and Q denotes a union of path queries. Observe that
such a language is a simplified form both of unions of conjunctive queries [25] and of
regular path queries [1].

The problems of view-based query answering and query rewriting for UPQs are
defined as in the previous section, considering that now Q and def (V1), . . . , def (Vk)
are UPQs over the alphabet Σ, while Q′ is an UPQ over the alphabet V.

Considering first view-based query answering, we observe that the complexity of
the problem can be measured in three different ways [26]:

• Data complexity : as a function of the size of ext(V).

• Expression complexity : as a function of the size of Q and of the expressions in
def (V).

• Combined complexity : as a function of the size of ext(V), Q, and def (V).

Here we are interested in data complexity.
The following theorem gives a lower bound for the data complexity of view-based

query answering for UPQs.

Theorem 3.1 ([6]) View-based boolean query answering for UPQs is coNP-hard in
data complexity.

Proof. The result follows from the lower bound for regular path queries in [6]. It
is easy to see that the proof of that lower bound does not exploit reflexive transitive
closure, and hence holds also for UPQs.

In fact, being view-based query answering for regular path queries coNP-complete [6],
we have that the problem is coNP-complete for UPQs.

Now, we have seen in the previous section that a perfect rewriting can be obtained
from an algorithm for view-based query answering by fixing the query and the view
definitions. Hence we have that the complexity of evaluating the perfect rewriting is
the data complexity of view-based query answering.

We remind the reader that the recognition problem for a query Q is to check
whether a certain tuple is in the answer of Q over a given database. Since Q can
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be regarded as a function, we say that Q is a coNP-hard function if the recognition
problem for Q is coNP-hard. Now, by Theorem 3.1, we obtain the following result.

Theorem 3.2 There is an UPQ Q and a set V of UPQ views such that the perfect
rewriting of Q wrt V is a coNP-hard function.

Typically, one is interested in queries that are PTIME functions. Hence, we would
like rewritings to be PTIME as well. Unfortunately, even for such a simple language
(containing union) as UPQs, by Theorem 3.2, the perfect rewritings are not PTIME
in general. Hence it would be interesting to characterize which instances of query
rewriting admit a perfect rewriting that is PTIME. Note, however, that finding such
instances corresponds to finding those instances of view-based query answering that
are PTIME in data complexity. Next we show that this is going to be difficult,
by exhibiting a tight connection between view-based query answering and constraint
satisfaction.

4 Constraint-satisfaction problems

A constraint-satisfaction problem (CSP) is traditionally defined in terms of a set of
variables, a set of values, and a set of constraints, and asks whether there is an
assignment of the variables with the values that satisfies the constraints. An elegant
characterization of CSP can be given in terms of homomorphisms between relational
structures [11].

A vocabulary is a set V = {R1, . . . , Rt} of predicates, each with an associated
arity. A relational structure A = (∆A, ·A) over V is a domain ∆A together with
an interpretation function ·A that assigns to each predicate Ri a relation RA

i of the
appropriate arity over ∆A. A homomorphism h : A → B between two relational
structures A and B over the same vocabulary is a mapping h : ∆A → ∆B such
that, if (c1, . . . , cn) ∈ RA, then (h(c1), . . . , h(cn)) ∈ RB, for every predicate R in the
vocabulary.

Let A and B be two classes of finite relational structures. The (uniform) constraint-
satisfaction problem CSP(A,B) is the following decision problem: given a structure
A ∈ A and a structure B ∈ B over the same vocabulary, is there a homomorphism
h : A → B? We denote such instance as CSP(A, B), and if such a homomorphism
exists we say that CSP(A, B) is satisfiable. We also consider the special case where B
consists of a single relational structure B and A is the set of all relational structures
over the vocabulary of B, and denote it by CSP(B). Such problem is a (special
case of) non-uniform constraint-satisfaction problem, i.e., with B fixed, the input is
just a structure A ∈ A. In the case where we take the relational structures to be
(directed) graphs, CSP corresponds to directed-graph homomorphism. Since general
CSP is polynomially equivalent to directed-graph homomorphism [11], that is, for
each structure B there is a directed graph GB such that CSP(B) is polynomially
equivalent to CSP(GB), we restrict attention without loss of generality to CSP over
directed graphs, unless explicitly stated otherwise.
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From the very definition of CSP it follows directly that every CSP(A,B) problem
is in NP. In general, the complexity of a non-uniform constraint-satisfaction problem
CSP(B) depends on B. For example, CSP(K2), is the Two-Colorability Problem,
while CSP(K3) is the Three-Colorability Problem (Kn is the n-node complete graph);
the former is in PTIME, while the latter is NP-complete. In some cases, e.g., when the
domain of B has at most two elements or when B is an undirected graph, it is known
that CSP(B) is either in PTIME or NP-complete [22, 15]. The Dichotomy Conjecture
states that this holds for every structure B [11]. (Recall that if PTIME is different
than NP then there are problems that are neither in PTIME nor NP-complete [17].) It
is an open problem whether the Dichotomy Conjecture holds. A related open question
is that of characterizing the structures B for which CSP(B) is in PTIME [11].

5 CSP and view-based query processing

We establish a tight relationship between constraint-satisfaction problems and view-
based query answering and query rewriting. We show first that every CSP is polyno-
mially reducible to view-based boolean query answering.

Theorem 5.1 Let B be a directed graph. There exists an UPQ Q and UPQ views
V with definitions def (V) such that the following holds: for every directed graph A,
there are extensions ext(V) and objects c, d such that (c, d) 6∈ cert(Q,V) if and only
if CSP(A, B) is satisfiable.

Proof (sketch). Let A = (NA, EA) and B = (NB, EB). We define an instance of
view-based boolean query answering as follows:

• The alphabet is Σ = ΣN ∪ΣE , where ΣN = {Sx | x ∈ NB} ∪ {Fx | x ∈ NB} and
ΣE = {Rx,y | (x, y) ∈ EB}.

• The set of objects in the view extensions is DV = NA ∪ {c, d}, where c, d are
two symbols not in NA.

• The views are Vs, Vf , and VA with

def (Vs) =
⋃

x∈NB
Sx ext(Vs) = {(c, a) | a ∈ NA}

def (Vf ) =
⋃

x∈NB
Fx ext(Vf ) = {(a, d) | a ∈ NA}

def (VA) =
⋃

(x,y)∈EB
Rx,y ext(VA) = EA

Intuitively, the extension of VA represents A, while Vs and Vf are used to connect
c and d to all nodes of A, using respectively the “start” relations Sx and “final”
relations Fx.
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• The query is

Q =
⋃

x,y∈NB , x 6=y

Sx ◦ Fy ∪

⋃

x∈NB
y 6=x, (y,z)∈EB

Sx ◦ Ry,z ◦ Fz ∪

⋃

x∈NB
(x,y)∈EB, z∈NB\{y}

Sx ◦ Rx,y ◦ Fz

It is possible to show that there is a homomorphism from A to B if and only if
(c, d) 6∈ cert(Q,V).

Theorem 5.1 exhibits a strong connection between CSP and view-based query
answering. If we take as input for the CSP both A and B (i.e., we consider uniform
CSP), this corresponds to taking as input both the extension and the view and query
definitions. Since the reduction in the proof above is polynomial, we get the following
corollary.

Corollary 5.2 Every uniform CSP is polynomially reducible to view-based boolean
query answering for UPQs.

Moreover, in the reduction of Theorem 5.1, the query and the view definitions
depend only on graph B, and only the view extensions depend on graph A. Hence, the
theorem shows also that non-uniform CSP, where B (corresponding to query and view
definitions) is fixed and the input is only A (corresponding to the view extensions),
can be polynomially reduced to checking whether a pair of objects is in the answer set
of the perfect rewritings wrt the view extensions. More precisely we have the following
corollary:

Corollary 5.3 Every non-uniform CSP is polynomially reducible to the recognition
problem for perfect rewritings for UPQs.

Observe that the difference between view-based boolean query answering and the
recognition problem for perfect rewritings is that, in the first case the input includes
the query, the view definitions, and the view extensions and a pair of objects, while
in the latter case one already has a perfect rewriting and wants to check whether a
given pair is in the answer set wrt the view extensions.

The theorem and the corollaries above indicate that there is a close relationship
between the problem of characterizing the instances of query rewriting that admit a
perfect rewriting that is in PTIME and the problem of characterizing the instances of
CSP that are in PTIME. In particular as a consequence of Theorem 5.1, if we had a
method to decide whether an instance of query rewriting admits a perfect rewriting
that is PTIME, we would then be able to single out an interesting class of instances of
non-uniform CSP that are in PTIME. However, as discussed in [16, 11], characterizing
those instances of non-uniform CSP that are in PTIME is a longstanding open problem
that appears to be difficult to solve. This is an indication of the difficulty of isolating
those instances of the rewriting problem which admit a PTIME perfect rewriting.
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6 Conclusions

We have set up a framework that clarifies the relationships between view-based query
rewriting and view-based query answering. Based on such a framework, we have first
shown that the perfect rewriting is in general a coNP function wrt to the size of
view extensions. We have then turned our attention to the problem of characterizing
which instances of query rewriting admit a rewriting that is PTIME. Based on a tight
connection between view-based query answering and constraint-satisfaction problems,
we have shown that the above characterization is going to be difficult.

The discussion above shows that in general there is a tradeoff between completeness
of a rewriting and the efficiency of using the rewriting to compute the answers to
the query. To retain efficiency, one has in general to give up the perfectness of the
rewriting, and adopt weaker notions of completeness. For example, one can fix a priori
the language of the rewriting (such language should have PTIME data complexity)
and find a maximal rewriting expressible in such a language, possibly verifying whether
it is an exact rewriting.
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