
Regular Open APIs

Diego Calvanese
Faculty of Computer Science

Free Univ. of Bozen-Bolzano, Italy
calvanese@inf.unibz.it

Giuseppe De Giacomo,
Maurizio Lenzerini

Dip. di Informatica e Sistemistica
Univ. di Roma “La Sapienza”, Italy

degiacomo@dis.uniroma1.it
lenzerini@dis.uniroma1.it

Moshe Y. Vardi
Department of Computer Science
Rice Univ., Houston, TX, U.S.A.

vardi@cs.rice.edu

Abstract

Open APIs are software intermediaries that make it possible
for application programs to interact with data and processes,
which can both be viewed as forms of services. In many sce-
narios, when one wants to obtain or publish a new service,
one would like to check whether the new functionality can
simply be obtained by suitably composing existing services.
In this paper we study this problem by distinguishing be-
tween the two forms of services, that we call data-centric and
process-centric, respectively. In the former, each API is an
abstraction of a query specified on a data source, and compo-
sition amounts to building a new query by using the available
APIs as views over the data. In the latter, each API abstracts
a process made up by sequences of atomic actions, and com-
position means realizing a new process by suitably using the
APIs exposed by the available services. We make the assump-
tion that the semantics of services is specified by means of
one of the most basic formalisms used in Computer Science,
namely, regular languages. As a result, we get a rich analy-
sis framework, where composition shows similarities to con-
formant and conditional planning. We describe composition
principles and automated synthesis techniques for each of the
two settings.

1 Introduction

An Open API (Application Programming Interface), or sim-
ply API, is a software intermediary that makes it possible for
application programs to interact with each other and coop-
erate (Benslimane, Dustdar, and Sheth 2008). Specifically,
an API specifies the mechanism for invoking a software ser-
vice, i.e., an abstraction of a specific software functionality,
exposed to clients, while hiding internal details of the ap-
plication. Recent years have witnessed a significant interest
in service modeling and service composition (Bouguettaya,
Sheng, and Daniel 2014). Services are modeled by specify-
ing the functionality they realize, and by associating with
each of them an API that exposes the service to clients.
With a set of services already available, new functionali-
ties can thus be obtained by suitably composing them. The
composition is specified by using suitable operators, and its
result is a new service, again abstracted by means of an
API. Given a service to realize, called target service, how

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

do we check whether it can be obtained by a suitable com-
position of the available services? If the answer to the above
question is positive, how is the composition determined and
constructed? And additionally, “can we build the composi-
tion automatically”? The last question characterizes what
is called the automatic service-composition problem (Be-
rardi et al. 2003; Hull 2005; Bartalos and Bieliková 2011;
De Giacomo, Patrizi, and Sardiña 2013). For very recent
results on service-composition approaches, we refer to the
work by Bouguettaya, Sheng, and Daniel (2014).

The above simple, general scheme is a good abstraction of
many approaches to automatic service composition. Indeed,
in this paper we illustrate the richness of the automatic com-
position problem, by considering several relevant settings,
and describing principles and techniques for each of them.
Since our goal in this work is to address fundamental is-
sues of automatic service composition, we make the assump-
tion that the semantics of services is specified by means of
one of the most basic formalisms used in Computer Science,
namely, regular languages. More precisely, we assume that
associated with each service, be it one of the available ser-
vices, or the target service to realize, we have a finite-state
automaton, specifically a deterministic finite-state automa-
ton (DFA), specifying its behavior. Correspondingly, we call
the APIs associated with services, regular APIs. Obviously,
our analysis can be extended to consider different, and more
powerful mechanisms for modeling services.

In classifying the various settings, the main distinction is
between the data-centric view and the process-centric view
of services. Roughly speaking, in the data-centric view, each
service corresponds to a view, i.e., a query specified over a
hidden database, and its invocation triggers the execution of
such query, which returns the corresponding result. Service-
composition means here building a new query by using
the available services as views over the database (Navathe,
Elmasri, and Larson 1986). Instead, in the process-centric
view, APIs represent processes made up by sequences of in-
accessible atomic actions, and service composition means
realizing a target process, again specified in terms of the in-
accessible atomic actions, by exploiting the available APIs.

The goal of this paper is to present techniques and compu-
tational complexity analyses for the automatic service com-
position problems in the various settings. Specifically, we
present and discuss the following results.

Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

329

Data-centric view. Under this view, we address the com-
position problem in two distinct settings: one in which the
views can be used freely (unrestricted access), and one in
which the views have an input-output access pattern, which
requires certain arguments to be given as input to the query
(restricted access). For the unrestricted access setting, we
essentially recast the results on view-based query answer-
ing for regular path queries (Calvanese et al. 2000c; 2000a;
2000b; 2002) in the context of open APIs. The main differ-
ence being that since APIs are implemented through con-
crete programs, which need to be deterministic, we consider
regular path queries expressed as DFAs, instead of NFAs.
We discuss the result that computing the certain answers to
a query based only on the available APIs is intractable, and
in particular CONP-complete in data complexity, i.e., with
respect to the size of the data stored in the views represented
by the APIs. To overcome this high data complexity, we in-
troduce the notion of rewriting, and show that using this no-
tion, we can build a DFA that, when evaluated over the view
extensions, computes an approximation of the answers in
polynomial time. We also present a new formulation of the
rewriting in terms of Datalog (a logical language for query-
ing deductive databases), rather than in terms of a DFA, by
which we can compute the set of answers to the target query
with a more efficient method.

For the restricted access setting, we present the first in-
vestigation on the service composition problem. Based on
its relationship with constraint satisfaction discussed by Cal-
vanese et al. (2000c), we again show that computing the cer-
tain answers to a query based only on the available APIs with
restricted access is CONP-complete in data complexity. As
in the case of unrestricted access, we also study a rewriting-
based approach, by which we can build a DFA that is able
to compute an approximation of the answers in polynomial
time. And, again, we show that from the rewriting we can
generate a Datalog program that computes the result of the
rewriting more efficiently than the corresponding DFA.

Process-centric view. Under this view, there are two fun-
damental ways to achieve a composition, which we call
static and dynamic, respectively. The aim of the former is
to find the DFA such that each sequence of actions it de-
notes is guaranteed to be consistent with the target service
despite the nondeterminism of the domain, i.e., despite the
uncertainty in the initial condition and the nondeterministic
effects of actions. We call this form of composition simply
composition, and we observe that it resembles the notion of
conformant planning in AI Planning (Rintanen 2004), i.e.,
finding a sequence that, in spite of partial knowledge on the
outcome of the actions themselves, is guaranteed to satisfy
the goal property. Instead, composition in the dynamic set-
ting, which we call here orchestration (Berardi et al. 2003;
Balbiani, Cheikh, and Feuillade 2009; Bouguettaya, Sheng,
and Daniel 2014), aims at finding the DFA that is able to
orchestrate the available services dynamically. This means
that, at each step, the DFA takes the sequence of actions ex-
ecuted so far into account, and uses this knowledge to de-
cide the next action in a way to guarantee the coherence
with the target service. Orchestration resembles the notion
in AI of conditional planning with full observability (Rinta-

nen 2004), i.e., finding a plan for satisfying the goal property
that at each step prescribes the action to do conditionally,
based on the outcome of the actions at the previous steps.
We address the composition problem in both the static and
the dynamic settings. In the static one, the key observation
is that we can recast this problem as a regular-language-
rewriting problem, where we are trying to rewrite the regular
language corresponding to the target service as a new DFA,
whose atomic actions are the available APIs. From this ob-
servation, we derive that the composition problem in this set-
ting is PSPACE-complete. In the dynamic setting, we solve
orchestration by devising a specific game between a client,
corresponding to the orchestrator, and an adversary, which is
able to call the available APIs. In particular, we reformulate
the game as an infinite-duration turn-based game, and we
show that orchestration can be solved in polynomial time.

The paper is organized as follows. In Section 2, we re-
view the technique described by Calvanese et al. (2002) for
rewriting regular languages. This technique is then used ex-
tensively in the subsequent sections. Section 3 illustrates the
problems and the techniques for service composition in the
data-centric setting, both for unrestricted and for restricted
access. Section 4 deals with the process-centric setting, and
presents techniques for composition and orchestration. Sec-
tion 5 concludes the paper with a discussion on future work.

2 Rewriting of Regular Languages

We review now a technique by Calvanese et al. (2002) for
the following regular language rewriting problem: Given
a regular language E0 and a finite set E = {E1, . . . , Ek}
of regular languages expressed over a source alphabet Σ,
re-express, if possible, E0 by a suitable combination of
E1, . . . , Ek. We assume that associated with E we always
have a target alphabet ΣE containing exactly one symbol for
each regular language in E . For a symbol e ∈ ΣE , we call
expansion of e wrt E , denoted expΣ(e), the regular language
over the source alphabet Σ associated with e. We extend the
notion of expansion naturally to words and languages over
ΣE , i.e., for a word e1 · · · em ∈ Σ∗

E , we have that

expΣ(e1 · · · em) = {w1 · · ·wm | wi ∈ expΣ(ei),
for i ∈ {1, . . . ,m}},

and for a language L ⊆ Σ∗
E , we have that

expΣ(L) =
⋃

w∈L expΣ(w).

Thus, expΣ(L) denotes all the words over Σ obtained from
a word e1 · · · em ∈ L by substituting each ei with all words
of the regular language associated with ei.

Definition 1 Let R be a language over the target alphabet
ΣE . We say that R is a rewriting of a regular language E0

over the source alphabet Σ with respect to a set E of regular
languages over Σ if expΣ(R) ⊆ E0.

We are interested also in maximal rewritings, i.e., rewrit-
ings that capture in the best possible way the language de-
fined by the original regular language E0.

Definition 2 A rewriting R of E0 wrt E is Σ-maximal if for
each rewriting R′ of E0 wrt E we have that expΣ(R

′) ⊆

330

expΣ(R). A rewriting R of E0 wrt E is ΣE -maximal if for
each rewriting R′ of E0 wrt E we have that R′ ⊆ R.

Intuitively, when considering Σ-maximal rewritings we
look at the languages obtained after substituting each sym-
bol in the rewriting by the corresponding regular language
over the source alphabet Σ, whereas when considering ΣE -
maximal rewritings we look at the languages over the tar-
get alphabet ΣE . Observe that by definition all Σ-maximal
rewritings define the same language (similarly for ΣE -
maximal rewritings), and that not all Σ-maximal rewritings
are ΣE -maximal. However, all ΣE -maximal rewritings are
also Σ-maximal, as shown by Calvanese et al. (2002).

Given E0 and E , we are interested in deriving a Σ-
maximal rewriting of E0 wrt E . It is shown by Calvanese et
al. (2002) that such a maximal rewriting always exists (al-
though it may be empty). In fact, there is a method that,
given E0 and E constructs a ΣE -maximal rewriting of E0

wrt E , which is also Σ-maximal. The method presented by
Calvanese et al. (2002) is based on the idea of characterizing
by means of an automaton, which we call A′, exactly those
ΣE -words that are not a rewriting of E0 wrt E . Observe that
a ΣE -word e1 · · · em is not in a rewriting of E0 wrt E if there
is a Σ-word in its expansion that is not in E0. If we can build
such an automaton A′, then its complement is the maximal
rewriting we are looking for, in the sense that it accepts ex-
actly those ΣE -words whose expansions are contained in E0.
The crucial point is the construction of A′.

In this paper, we assume that the set of signatures of the
available APIs constitutes the target alphabet. Each API pro-
gram is constituted by a regular language over the source
alphabet. Since such program represents executable code,
the associated regular language is in fact given in terms of a
deterministic finite-state automaton (DFA). Hence, we start
from a DFA A0 for E0 and let A′ have the same states as
A0. With regard to the transitions of A′, we place in A′ a
ΣE -edge e between two states si and sj if there is a Σ-word
in the expansion of e that leads from si to sj in A0. Now,
in A′ a ΣE -word e1 · · · em leads from s to s′ if in A0 there
is a sequence of Σ-words w1 · · ·wm that leads from s to s′.
Hence we should let A′ accept only those ΣE -words that
lead from the initial state to a state that is non-final for A0.
Notice that the automaton A′ is nondeterministic! Based on
this idea, the construction takes E0 and E as input, and re-
turns an automaton AE,E0

built as follows:
1. Start with a DFA A0 = (Σ, S, s0, ρ, F) such that

L(A0) = E0.
2. Define the nondeterministic finite automaton (NFA)

A′ = (ΣE , S, s0, ρ′, S \ F), where sj ∈ ρ′(si, e) if
and only if there exists a word w ∈ expΣ(e) such that
sj ∈ ρ∗(si, w) 1. In other words, A′ has the same states
as A0, the same initial state s0, and as final states all states
that are not final in A0. With regard to the transitions, A′
has a transition from si to sj labeled with e ∈ ΣE if and
only if there is a Σ-word in the expansion of e that leads
from si to sj in A0.
1ρ∗ denotes the extension of the transition function ρ to words,

defined in the standard way for finite automata (Hopcroft and Ull-
man 1979).

A0

a

b, c

b

c

a

a, b, c

A′

e2
e1

e3

e3

e1, e2

e1, e2, e3

A′

e2
e1

e3

Figure 1: Construction of the rewriting of a·(b·a + c)∗ with
respect to {a, a·c∗·b, c}

3. AE,E0
= A′, i.e., AE,E0

is the complement of A′, which
is a DFA.

Step 2 of the construction requires to check whether there
exists a word w ∈ expΣ(e) such that sj ∈ ρ∗(si, w). To
do so, we consider the automaton Ai,j

0 = (Σ, S, si, ρ, {sj}),
obtained from A0 by suitably changing the initial and final
states, and check for non-emptiness the product automaton
between Ai,j

0 and an automaton for expΣ(e). This can be
done in nondeterministic logspace in the size of Ai,j

0 and
the automaton for expΣ(e). The above construction is cor-
rect (Calvanese et al. 2002), in the sense that L(AE,E0

) is
a ΣE -maximal rewriting of E0 wrt E . We illustrate the con-
struction by means of an example.

Example 1 Let E0 = a·(b·a + c)∗, E = {a, a·c∗·b, c}, and
ΣE = {e1, e2, e3}, with expΣ(e1) = a, expΣ(e2) = a·c∗·b,
and expΣ(e3) = c. The DFA A0 shown in Figure 1 accepts
E0, while A′ is the corresponding automaton constructed in
Step 2 of the rewriting algorithm. Since in this example A′ is
deterministic, by simply swapping final and non-final states
we obtain its complement A′, which is the automaton AE,E0

computed by the algorithm. It accepts e∗2·e1·e∗3 which is the
ΣE -maximal (hence Σ-maximal) rewriting of E0 wrt E .

It remains to analyze the computational complexity of
this technique. The complexity analysis by Calvanese et
al. (2002) is with respect to regular languages represented in
terms of regular expressions. Considering that here we start
from regular languages represented as DFAs, we can avoid
the initial determinization step, and reduce the complexity
by an exponential, as shown by the next theorem.

Theorem 1 Let E0 be represented through a DFA A0, and
let the regular languages in E be represented through DFAs
A1, . . . , Ak. Let further AE,E0 be the DFA accepting the
maximal rewriting of E0 with respect to E .

1. The size of AE,E0 is exponential in the size of A0.
2. Checking if AE,E0

is nonempty is PSPACE-complete with
respect to A0, and is in NLOGSPACE with respect to
A1, . . . , Ak.

Proof. Note that the state set of A′ is the same as that of
A0, but while A0 is a DFA, A′ is an NFA. Note also that the
size of A1, . . . , Ak does not affect the number of states of
A′. Finally, AE,E0

is obtained by complementation, which

331

involves a subset construction (Hopcroft and Ullman 1979),
resulting in an exponential blow-up.

Checking that AE,E0 is nonempty can be done without
constructing the automaton in full. Instead, we search for
a path from the initial to an accepting state. Each state of
AE,E0

is a set of states of A0; thus, the search can be con-
ducted in polynomial space with respect to A0. Construct-
ing the transition relation ρ′ of A′ requires a search for paths
from initial to accepting states of the automata A1, . . . , Ak.
This search can be conducted in non-deterministic logarith-
mic space with respect to those automata.

To prove PSPACE-hardness with respect to A0, we reduce
from the linear-space bounded nonemptiness of Turing ma-
chines. Let M be a Turing machine and n > 0 an integer
represented in unary. The linear-space bounded nonempti-
ness problem is to decide if M accepts the empty word us-
ing space n. Let Γ be the configuration alphabet of M ; that
is, each configuration is a word of length n over Γ, and an
accepting computation of M is a sequence of configurations
that starts in an initial configuration and ends in an accepting
configuration.

Given a configuration C = a1 · · · an and a position i ∈
{1, . . . , n}, the local neighborhood of i, denoted local(C, i)
is the triple (ai−1, ai, ai+1), where we take as default a0 =
an+1 = # as a special symbol in Γ. It is known (cf. Hopcroft
and Ullman 1979) that there is a binary relation TM over Γ3

such that a configuration C2 follows configuration C1 if for
i ∈ {1, . . . , n} we have that (local(C1, i), local(C2, i)) ∈
TM . We call two such triples of symbols locally related.

Let Γ = {γ1, . . . , γk}. For i ∈ {1, . . . , k}, let γ′
i be a

marked version of γi. We take E = {E1, . . . , Ek}, where
Ei = {γi, γ′

i} is denoted by the symbol ei. Thus, every can-
didate rewriting over ΣE = {e1, . . . , ek} is a possible com-
putation of M , with the possibility of some of the symbols
being marked.

It remains to describe the target language E0 to ensure
that a legal rewriting R over ΣE must be an accepting com-
putation of M .

1. The length of R is a multiple of n.

2. The first configuration in R must be an initial configura-
tion; and the last configuration must be accepting.

3. If there are two marked symbols in R, then the distance
between them must be n, and their local neighborhoods
must be locally related.

It is easy to express each condition by a DFA of size O(n).
Thus, their conjunction can be expressed by a DFA A0 of
size O(n3). Now AE,E0 is nonempty precisely if M accepts
the empty word using space n.

3 Data-centric View

In this section we study data-centric APIs formalized as
queries over a graph database.

A graph database (or, simply database) is a finite directed
graph whose edges are labeled by elements from a given
finite alphabet Σ. Each node represents an objects and an
edge from object x to object y labeled by r, denoted r(x, y),
represents the fact that relation r holds between x and y.

Regular-path queries (RPQs) are formulated as regular lan-
guages over Σ; here we express such languages using DFAs.
The answer QB to an RPQ Q over a graph database B is
the set of pairs of nodes connected in B by a directed path
traversing a sequence of edges forming a word in the regular
language L(Q) defined by Q. We assume that the language
associated with an RPQ does not contain the empty word.
Indeed, if this were the case, then the RPQ would need to
return the set of all pairs (a, a), where a is a node in B,
which is not useful.

Consider now a database B that is unknown, but that
can be accessed through a finite set V = {v1, . . . , vk} of
APIs representing RPQs. Each API vi has an associated
view definition def (vi), that is an RPQ over Σ. We con-
sider the APIs to be sound (Abiteboul and Duschka 1998;
Grahne and Mendelzon 1999), i.e., for each API vi we are
given only an extension ext(vi), which in general is a subset
of the result obtained by applying the query def (vi) to the
database B.

We distinguish two cases of API-based query answering,
depending on the form of access provided by APIs:

• We call unrestricted access the case where the APIs can
be used freely, i.e., for each API vi, we have complete
access to the extension ext(vi).

• We call restricted access the case where the APIs can be
used only to return the set of nodes connected by the cor-
responding query to an initial node given as input. That is,
given a node a to an API vi, return the restricted extension
rext(vi, a) = {b | (a, b) ∈ ext(vi)}.

Suppose now that a user wants to compute an RPQ Q over
the database B. Since the database is accessible only through
the APIs V , we need to provide the answer to the RPQ by
making use of the APIs only, including taking into account
the restrictions on the form of access.

Unrestricted Access. In this case, API-based query an-
swering amounts to what has been studied in the litera-
ture as view-based query answering (Calvanese et al. 2000a;
2002). In particular, the APIs act as views, and the answer to
Q we are looking for corresponds to the certain answers of
Q with respect to V . We call adom(V) the set of nodes oc-
curring in ext(v1)∪· · ·∪ext(vk). The set cert(Q,V) of cer-
tain answers to Q with respect to V is the set of pairs (c, d) of
nodes in adom(V) such that (c, d) ∈ QB, for every database
B such that ext(vi) ⊆ def (vi)

B, for i ∈ {1, . . . , k}.
To check whether a pair of nodes (c, d) is in cert(Q,V),

we can exploit the correspondence with CSP shown by Cal-
vanese et al. (2000c). We generate the constraint template
T of Q wrt V defined as follows. The vocabulary of T is
V ∪ {u0, uf}, where symbols in V denote binary predi-
cates, and u0 and uf denote unary predicates. Let AQ =
(Σ, S, S0, ρ, F) be an automaton2 for Q. The structure T =
(ΔT , ·T) is given by:

• ΔT = 2S is the domain of T ;

2In fact, for this construction it is irrelevant whether we start
from a deterministic or a nondeterministic automaton for Q.

332

• (σ1, σ2) ∈ vTi , for i ∈ {1, . . . , k}, iff there exists a word
w ∈ L(def (vi)) such that ρ(σ1, w) ⊆ σ2;

• σ ∈ uT
0 iff S0 ⊆ σ, and σ ∈ uT

f iff σ ∩ F = ∅.

Above, we use ρ(σ1, w) to denote the set of states in S
reachable from some state in σ1 by following the word w.
Observe that T can be constructed in polynomial space in
the size of the expressions Q and def (v1), . . . , def (vk). In
particular, verifying the existence of a word w ∈ L(def (vi))
such that ρ(σ1, w) ⊆ σ2 amounts to verifying whether it is
not the case that L(def (vi)) is included in the language ac-
cepted by the automaton (Σ, S, σ1, ρ, S \ σ2).

Further, from the extensions ext(vi) and two nodes c, d,
we can immediately construct a new database I , called con-
straint instance for V and c, d, as follows:

• vIi = ext(vi), for i ∈ {1, . . . , k},

• uI
0 = c and uI

f = d.

Notably (c, d) /∈ cert(Q,V) iff there exists a homomor-
phism from I to T (Calvanese et al. 2000c).

Moreover, Calvanese et al. (2000c) provide a complexity
characterization for certain answer computation in terms of
combined, expression, and data complexity (Vardi 1982). In
our case, expression complexity is measured in the size |Q|
of the query Q and the combined size

∑
vi∈V |def (vi)| of

the view definitions, while data complexity is measured in
the combined size

∑
vi∈V |ext(vi)| of the view extensions.

Note that query and view definitions typically tend to be
short, while data size tends to be large. Thus, data complex-
ity is usually the more significant barrier to query evalua-
tion. Now, checking whether (c, d) ∈ cert(Q,V) is CONP-
complete in data complexity (Calvanese et al. 2000a). Hence
we get:

Theorem 2 API-based query answering under unrestricted
access is CONP-complete in data complexity.

To overcome such high data complexity, we can compute
an approximation of the answers based on exploiting rewrit-
ings. We call such problem unrestricted access API-based
query rewriting. According to such an approach, an RPQ
Q over the graph database alphabet is processed by first re-
formulating Q into an RPQ Rmax , called maximal rewrit-
ing, expressed over the API symbols V , and then evaluating
Rmax over the API extensions. Again, this problem has a
correspondent in the database literature, where it is called
view-based query rewriting. The relationship between view-
based query answering and view-based query rewriting is
investigated by Halevy (2001), Calvanese et al. (2000c;
2007), and Lenzerini (2002).

Let Q be an RPQ over the database alphabet, and let
R be an RPQ over the API alphabet V = (v1, . . . , vk).
We say that R is a rewriting of Q under APIs V , if for
every graph database B and for every possible extension
D = (D1, . . . , Dk) for V such that Di ⊆ def (vi)

B, for
i ∈ {1, . . . , k}, we have that RD ⊆ QB.

Among the rewritings, we are interested in the maximal
ones. An RPQ Rmax over V is the maximal rewriting of Q
under V if (i) Rmax is a rewriting of Q under V , and (ii) for
every rewriting R of Q under V , we have that RD ⊆ RD

max ,

for every graph database B and for every extension D =
(D1, . . . , Dk) for V such that Di ⊆ def (vi)

B.
Actually, as shown by Calvanese et al. (2002), the maxi-

mal rewriting of an RPQ Q under APIs V can be computed
by resorting to the maximal language rewriting presented in
Section 2.

Theorem 3 The maximal rewriting of an RPQ Q under
APIs V is the RPQ AE,E0 , where E = {def (vi) | vi ∈ V} is
the set of API definitions, and E0 = Q.

With respect to computation complexity we obtain the fol-
lowing result.

Theorem 4 The maximal unrestricted access API-based
query rewriting of an RPQ Q under APIs V can be com-
puted in exponential time in the size of Q and in polynomial
time in the size of def (v1), . . . , def (vk).

Turning to actually computing the answer to Q under
APIs V through the maximal rewriting Rmax , we observe
that Rmax is a DFA, and hence could be transformed into a
regular expression, to be evaluated by performing joins and
transitive closure operations over the API extensions (Cal-
vanese et al. 2002). This comes with the price of a further
worst-case exponential blowup of converting a DFA into a
regular expression. Here, however, we propose a different
query evaluation technique that avoids this blowup by re-
sorting to a Datalog program Πm that is evaluated over an
extensional database formed by the API extensions. Data-
log is a well studied query language whose prominent fea-
ture is the possibility of using recursion in queries. It can
also be seen as a fragment of Prolog where we do not al-
low for nesting of terms, though the evaluation procedures
used for it are typically bottom-up instead of top-down. A
Datalog program consists of a finite set of rules of the form
P (�x) ← ϕ(�x, �y),where P (�x) is an atom with free vari-
ables �x, and ϕ(�x, �y) is a (possibly empty) conjunction of
atoms whose variables are in �x and �y. The variables �y are
implicitly existentially quantified, while the variables �x oc-
cur free and are used to transfer data from ϕ(�x) to P (�x). The
data complexity of evaluating Datalog programs is PTIME-
complete. We call linear Datalog the fragment of Datalog
in which we allow for at most one recursive call per rule.
Such a fragment is NLOGSPACE-complete in data complex-
ity (Abiteboul, Hull, and Vianu 1995).

Let the maximal rewriting Rmax be the DFA
(V, S, s0, ρ, F) over the set of APIs. The Datalog pro-
gram Πm contains the following predicates, which are all
binary: (i) one predicate s for each state s ∈ S, where
s(x, y) states that from node x one can reach node y by
executing Rmax and stopping in s; (ii) one predicate v for
each v ∈ V , denoting the extension ext(v) of v; and (iii) the
answer predicate ans . The rules of the program are shown
in Figure 2.

Theorem 5 For each pair (c, d) of nodes, Πm returns
ans(c, d) if and only if Rmax , when evaluated over the ex-
tension of the views in V , returns (c, d).

Turning to computational complexity, consider that Πm

has at most one recursive call per rule, hence is a linear Data-

333

s0(x, x) ← v(x, y), for each v ∈ V such that
there exists s′ = ρ(so, v).

s′(x, y) ← s(x, z), v(z, y), for each s, s′, v
such that s′ = ρ(s, v).

ans(x, y) ← s(x, y), for each s ∈ F .

Figure 2: Rules of the Datalog program Πm for unrestricted
access

log program. Now considering the data complexity of linear
Datalog, we obtain the following result.

Theorem 6 Computing the answer to an RPQ Q under un-
restricted access APIs V through the maximal rewriting is in
NLOGSPACE in data complexity, i.e., in the combined size
of ext(v1), . . . , ext(vk).

Proof. The claim follows from Theorem 5 and the fact
that the data complexity of linear Datalog is NLOGSPACE-
complete, and hence can be done in polynomial time.

We get also a characterization of expression complex-
ity by considering the complexity of computing the max-
imal rewriting Rmax established in Theorem 4, and ob-
serving that Πm is linear in the number of states of
Rmax . Specifically the complexity is single exponential in
the size of Q, and polynomial in the combined size of
def (v1), . . . , def (vk). Notice that in general we expect the
size of the query to be much smaller than the size of the API
extensions.

Restricted Access. In the case of restricted access, API-
based query answering becomes a form of view-based query
answering in the presence of views with access restrictions
(Li and Chang 2001; Deutsch, Ludäscher, and Nash 2007;
Benedikt, Bourhis, and Ley 2012). In this case, in the query
answering problem, we assume that also the user RPQ is a
query with restricted access, in particular it asks for all nodes
reachable from a given node via a path in the language of the
RPQ.

To check whether a pair (c, d) of nodes is in cert(Q,V),
we can again exploit the construction above involving the
constraint template. However this time we do not have di-
rect access to the constraint instance, since the APIs do not
return directly the extension but need the first argument as
input to return the second. Now, given a node c we can com-
pute for each API all pairs formed by c and the result of
invoking the API. This gives us a first approximate exten-
sion of each API. Then from each of the nodes obtained in
this way we can repeat the process getting a larger exten-
sion for each API, and so on, until the extension of each API
does not increase anymore. Formally, for each API vi, the
extension of vi relative to c, denoted extc(vi), is defined by
simultaneous induction on all APIs as follows:
• (c, x) ∈ extc(vi), for each x ∈ rext(vi, c), for i ∈
{1, . . . , k};

• if (x1, x2)∈ extc(vj) for some j, then, for i∈{1, . . . , k}:
– (x1, y1) ∈ extc(vi), for each y1 ∈ rext(vi, x1), and
– (x2, y2) ∈ extc(vi), for each y2 ∈ rext(vi, x2).

Now, from the extensions extc(vi) and two nodes c, d, we
can immediately construct a new database Ic, called con-
straint instance relative to c for V and d, as follows:
• vIi = extc(vi), for i ∈ {1, . . . , k},

• uI
0 = c and uI

f = d.
Then we get the following result.

Theorem 7 Let Q be an RPQ, V a set of RPQ restricted ac-
cess APIs, and c, d a pair of nodes. Further, let Ic be the cor-
responding constraint instance relative to c, and T the cor-
responding constraint template. Then (c, d) /∈ cert(Q,V) iff
there exists a homomorphism from Ic to T .
Proof. For each API vi ∈ V , let ext(vi) be the extension
of vi, and let I be the corresponding constraint instance. To
show the claim, it suffices to show that there is a homomor-
phism from I to T iff there is a homomorphism from Ic to T .
Notice that by definition extc(vi) ⊆ ext(vi). Hence if there
is a homomorphism h from I to T , then h restricted to the
domain of Ic is a homomorphism from Ic to T . For the other
direction, suppose there is a homomorphism h from Ic to T .
Then h can be extended to a homomorphism h′ from I to T
by mapping all nodes x not occurring in Ic to the empty set,
which is an element of T . Notice that, in T by construction,
we have (∅, σ2) ∈ vTi for every domain element σ2 of T
and for every view vi. Hence, h′ is indeed a homomorphism
from I to T .

We can use this result to obtain an upper bound for the
restricted access case that is analogous to the one for the
unrestricted access case. In the following theorem, we prove
also a matching lower bound.
Theorem 8 Restricted access API-based query answering
is CONP-complete in data complexity.
Proof. For the upper bound, we observe that the constraint
instance relative to a node c can be computed in polynomial
time in the number of nodes. The claim then follows from
Theorem 7, by observing that checking the existence of a
homomorphism from a structure U1 to a structure U2 can be
done in NP in the size of U1 (Feder and Vardi 1999).

For the lower bound, we provide a reduction from
graph 3-colorability (Garey and Johnson 1979). Let
G = (N,E) be an undirected graph to be checked
for 3-colorability. The alphabet is given by Σ =
{arg, agr, arb, abr, agb, abg, as, ae}, where arg , agr, arb,
abr, agb, and abg denote pairs of colors assigned to the
two vertexes of a directed edge, and as and ae are two ad-
ditional symbols. We make use of restricted access APIs
V = {vs, ve, vG} with adom(V) = N ∪ {xs, xe}, where
xs, xe are two nodes not in N . The API definitions and ex-
tensions are defined as follows:

def (vs) = as,
def (ve) = ae,
def (vG) = arg + agr + arb + abr + agb + abg;

ext(vs) = {(xs, x) | x ∈ N},
ext(ve) = {(x, xe) | x ∈ N},
ext(vG) = E ∪ {(x, x′) | (x′, x) ∈ E}.

Intuitively, vG represents G given as a symmetric directed
graph, while vs and ve are used to connect xs and xe to

334

all nodes of the graph. The RPQ Q is such that L(Q) =
as·M ·ae, where

M =
⋃

{x,y,z,w}⊆{r,g,b}, x �=y, y �=z, z �=w

axy·azw.

Intuitively, M describes all paths of length two that contain
a pair of mismatched color pairs, e.g., the pair arg·arb is
mismatched, because arg denotes an edge from a red node
to a green node, so it should be followed by agb or agr.

It is easy to see that, if the graph G is 3-colorable, then
there is a database B containing the API extensions (i.e.,
such that ext(v) ⊆ def (v)B, for v ∈ V), on which the
RPQ corresponding to M , and hence Q, is empty; therefore
(c, d) /∈ cert(Q,V). Instead, if G is not 3-colorable, then ev-
ery database B containing the API extensions will contain a
sequence of two axy edges representing a mismatched color
pair. On such database B, the RPQ corresponding to M , and
hence Q, is nonempty, and hence (xs, xe) ∈ cert(Q,V).
Notice that the latter holds also taking into account that the
APIs are restricted access, since (i) in ext(vs), the node xs

is connected to every node of N , (ii) ext(vG) is a symmetric
relation, and (iii) in ext(ve), every node of N is connected
to xe. Hence, starting from xs, one can navigate to xe fol-
lowing a path in Q.

Again, to overcome the high data complexity of restricted
access API-based query answering, we can resort to rewrit-
ing. Notice that the maximal rewriting Rmax of an RPQ Q
under APIs V described above, being an automaton, can be
used directly in the presence of restricted access APIs. In-
deed the automaton, starts at a node c and progresses by ex-
ecuting transitions, keeping track of the collected nodes. At
each state s, given a node x and a transition s′ = ρ(s, vi),
the automaton computes the set of successor nodes for x as
rext(vi, x).

Hence, we obtain the same complexity characterization
as for the unrestricted access case, with the proviso that this
time we are going to explore only the extensions of the APIs
relative to the initial node in the user query.

In order to actually compute the answer to Q under APIs
V starting from node c through the maximal rewriting, again
we first compute such maximal rewriting Rmax , which is a
DFA (V, S, s0, ρ, F) over the set of APIs, and then generate
from Rmax a Datalog program Πc

m. In this case, the pro-
gram contains the following predicates: (i) one unary pred-
icate s for each state s ∈ S, where s(y) states that from the
initial node c one can reach node y by executing the DFA
Rmax and stopping in s; (ii) one binary predicate v for each
v ∈ V , denoting the extension ext(v) of v; and (iii) the
unary answer predicate ans . The rules of the program are
shown in Figure 3. Notice that Πc

m is not only linear but also
a monadic Datalog program (Cosmadakis et al. 1988).
Theorem 9 For each node d, Πc

m returns ans(d) if and only
if Rmax , when evaluated over the extension of the views in
V , return (c, d).

By analogous considerations, we get the same complexity
results of Theorem 6 for the restricted access case as well.
Theorem 10 Computing the answer to an RPQ Q starting
from c under restricted access APIs V through the maximal

s0(c).
s′(y) ← s(x), v(x, y), for each s, s′, v

such that s′ = ρ(s, v).
ans(y) ← s(y), for each s ∈ F .

Figure 3: Rules of the Datalog program Πc
m for restricted

access

rewriting is in NLOGSPACE in data complexity, i.e., in the
combined size of ext(v1), . . . , ext(vk).

4 Process-Centric View

In the previous section, we focused on data-centered tasks
and APIs, and we used regular languages as specifications
for linked data items. In this section we focus on process-
centered tasks and APIs, and we use regular languages to
specify action languages. More formally, the alphabet Σ is
now viewed as a finite set of atomic actions, and a regu-
lar language over Σ expresses an action-sequence language.
Thus, given a task T specified as a DFA accepting the regular
language L(T), the task T is accomplished by performing a
sequence w = a1a2 · · · an of actions in Σ, where w ∈ L(T).
We assume that L(T) does not contain the empty word,
since it would have the unintuitive meaning of accomplish-
ing the task exported by the API without taking any action3.
As in the previous section, in this setting the client does not
have direct access to the actions in Σ. Rather, the client has
access to a set V = {v1, . . . , vk} of APIs, where each API vi
is a regular language specified by means of a DFA def (vi)
over Σ. The intuition is that each call to the API vi results
in an execution of an action sequence wi ∈ L(def (vi)).
(Again, we assume that L(def (vi)) does not contain the
empty word.) The challenge is then for the client to carry
out the task T by means of API calls. The term “carry out”
can, however, be interpreted in different ways, giving rise
to different synthesis problems. We consider two settings,
which we call static and dynamic composition.

Static Composition. In the first setting, the client is look-
ing for a “static” sequence that is composed from the set V
of APIs. A conformant composition consists of a sequence
of API calls that is guaranteed to achieve the goal regardless
of the uncertainty about the nondeterministic effects of API
calls. (This is essentially conformant planning, cf. (Rintanen
2004).) In our setting, a call to an API vi results in the execu-
tion of an arbitrary action sequence w ∈ L(def (vi)). A se-
quence vi1 · · · vim of API calls is conformant with the task T
if every word w = wi1 · · ·wim , where wij ∈ L(def (vij)),
for j ∈ {1, . . . ,m}, is in L(T). The API composition prob-
lem is to find a sequence vi1 · · · vim that is conformant with
T . The key observation is that we can recast this problem as

3We observe that the empty word has a different meaning than
epsilon transitions. In particular, one could consider an extension of
our work with “test-actions” probing the current state, which would
appear in the word (thus not generate the empty word), though they
would generate empty transitions.

335

a regular-language rewriting problem, as described in Sec-
tion 2, where we are trying to rewrite the regular language
L(T) in terms of a set E = {E1, . . . , Ek} of regular lan-
guages, where Ei = L(def (vi)), for i ∈ {1, . . . , k}. In that
terminology, a sequence vi1 · · · vim of API calls is confor-
mant precisely when {vi1 · · · vim} is a rewriting of L(T)
with respect to E . Thus, a conformant plan exists iff the max-
imal rewriting of L(T) with respect to E is nonempty.

Theorem 11 Every word accepted by AE,T is a conformant
composition.

Corollary 12 The API composition problem is PSPACE-
complete.

Dynamic Composition. In the second setting, we look for a
“dynamic” plan, where the client need not obtain in advance
a conformant composition of API calls. Rather, the client
can decide which API call to make dynamically. This can be
viewed as an orchestration of the APIs, cf., (Bouguettaya,
Sheng, and Daniel 2014). This can be thought as a game
GV,T , called a regular API game, between the client and an
adversary. In round j of the game, the client calls an API
vij in V . The adversary then responds by returning a word
wij , with wij ∈ L(def (vij)). The client wins GV,T when
the sequence wi0wi1 · · ·wim is in L(T). The task T is re-
alizable with respect to V if the client has a winning strat-
egy in GV,T . Deciding if the task is realizable is the API-
orchestration problem. If the task is realizable, then we wish
for an effective representation of this winning strategy. This
is the API-orchestration synthesis problem.

Example 2 Let Σ = {a, b, c, d} be the set of atomic ac-
tions. Let T be a task with L(T) = a·c + b·d, and let
V = {v1, v2, v3} be APIs with

def (v1) = a+ b, def (v2) = c, def (v3) = d.

It is easy to see that no conformant composition exists in
this case. Every conformant composition must start with v1,
but then it cannot continue with either v2 or v3. On the other
hand, the client has an orchestration strategy: first call v1,
and then if v1 returns a call v2, otherwise call v3.

On the face of it, the regular API game seems a finite
game, which can be solved using standard game-solving
techniques. But the twist here is that an API may have an in-
finite set of responses to a client move, when the language of
the API is infinite. Thus, to solve the API orchestration and
synthesis problems, we reformulate the regular API game as
an infinite-duration turn-based game between the client and
the adversary. At each round, the client either selects an API
in V , waits, which we denote by ⊥, or signals the end of
the play, which we denote by 	. (We denote V ∪ {⊥,	}
by V ′.) The adversary responds by selecting a symbol from
Σ′ = Σ∪{$}, where $ is a new symbol, which we use as an
endmarker. The configuration of the game after each round
is a word w ∈ (V ′ × Σ′)∗. The projection of the configu-
ration on the second components (the sequence of moves of
the adversary) is proj (w). We write strip(proj (w)) to de-
note the word in Σ∗ that results from deleting all endmarkers
in proj (w).

A play is an infinite sequence of rounds in the game. Let
us now describe the conditions for the client to win a play
in this game, which we refer to as the symbol-based regular
API game Gs

V,T .

1. After the adversary makes a $ move, the client must re-
spond with an API call (a symbol in V) or with 	 (other-
wise, the adversary wins).

2. After the adversary makes a Σ move, the client must re-
spond with ⊥ (otherwise the adversary wins).

3. Suppose that the client follows the above rules, and con-
sider a round where the adversary makes a $ move and
the client has not yet made a 	 move. At this point, the
configuration of the game is w = uv, where the last round
in u is (⊥, $), and v = m1 · · ·mn, where m1 = (vi, σ)
for some vi ∈ V and σ ∈ Σ, and mn = (⊥, $). If then
strip(proj (v)) /∈ L(def (vi)), then the client wins.
In other words, the adversary must respect the client API
calls, and when the client issues an API call vi, the adver-
sary must respond with a sequence in L(def (vi)).

4. Suppose that the client follows the above rules, and
makes a 	 move (which means that the prior move by
the adversary was $). The configuration of the game be-
fore that last round is w. If strip(proj (w)) ∈ L(T), then
the task is accomplished and the client wins. Otherwise
the adversary wins.

5. Suppose that the client follows the above rules, but never
makes a 	 move. Then there are two possibilities. First,
from some point on the adversary never makes a $ move,
but only makes moves in Σ. Then the client wins. If,
on the other hand, the adversary makes infinitely many
$ moves, then the client must make infinitely many API
calls, and the adversary wins.

Proposition 13 The client has a winning strategy in GV,T

iff it has a winning strategy in Gs
V,T .

We now show that we can express the winning conditions
of plays in Gs

V,T by means of a deterministic finite-state au-
tomaton AV,T on infinite words over the alphabet V ′ × Σ′.
This automaton accepts an infinite play, which is an infinite
word in (V ′ × Σ′)ω precisely when the client wins in this
play.

Recall that we have a DFA T = (Σ, ST , s
0
T , ρ

T , FT) to
describe the task action language. We also have that the ac-
tion language of each API vi is given as a DFA def (vi) =
(Σ, Si, s

0
i , ρi, Fi). Without loss of generality we assume that

the state sets Si’s are disjoint. Define S′ =
⋃n

i=1 Si ∪ {$}.
We define AV,T = (V ′ × Σ′, S, s0, ρ, F) as follows. The
state set is S = (ST×S′)∪{s0, acc, rej}, where acc and rej
are special accept and reject sink states, respectively. Thus,
ρ(acc, c) = acc, and ρ(rej , c) = rej , for all c ∈ V ′ × Σ′.
F ⊆ S defines the acceptance condition, discussed below.

We now define the transition function ρ : S × V ′ ×Σ′ →
S. The idea is that AV,T simulates T from the start, to check
that when the client signals the end of the game, the result-
ing action sequence is in LT . Also, AV,T simulates def (vi)
from every API call vi to check that the adversary returns an
action sequence in L(def (vi)).

336

• ρ(s0, (⊥, σ)) = ρ(s0, (, σ)) = rej , for σ ∈ Σ: the client
must start the game with an API call.

• ρ(s0, (vi, $)) = acc: the adversary cannot return an
empty action sequence.

• ρ(s0, (vi, σ)) = (ρT (s
0
T , σ), ρi(s

0
i , σ)), for σ ∈ Σ: simu-

late both T and Ui.

• ρ((s, t), (⊥, σ)) = (ρT (s, σ), ρi(t, σ)), for s ∈ ST , t ∈
Si, and σ ∈ Σ: simulate both T and def (vi).

• ρ((s, t), (, σ)) = ρ((s, t), (vi, σ)) = rej , for s ∈ ST ,
t ∈ ⋃n

i=1 Si, σ ∈ Σ, and i ∈ {1, . . . , n}: the client must
wait for $ to issue an API call or signal play end.

• ρ((s, t), (⊥, $)) = acc, for s ∈ ST , t ∈ ⋃n
i=1 Si, and

t /∈ ⋃n
i=1 Fi: the adversary returned an incorrect action

sequence.

• ρ((s, t), (⊥, $)) = (s, $), for s ∈ ST and t ∈ ⋃n
i=1 Fi:

the client is ready to act.

• ρ((s, $), (⊥, σ)) = rej , for s ∈ ST and σ ∈ Σ: the client
must act.

• ρ((s, $), (, σ)) = acc, for s ∈ FT and σ ∈ Σ: task was
accomplished.

• ρ((s, $), (, σ)) = rej , for s ∈ ST , s /∈ FT , and σ ∈ Σ:
task was not accomplished

• ρ((s, $), (vi, $)) = acc, for s ∈ ST : the adversary cannot
return an empty action sequence.

• ρ((s, $), (vi, σ)) = (ρT (s, σ), ρi(s
0
i , σ)), for s ∈ ST and

σ ∈ Σ: simulate both T and def (vi).

Note that the size of ST is the product of the size of T and
the combined size of the def (vi)’s.

It remains to define the acceptance condition of AV,T

on infinite words. We use here the co-Büchi condition,
which specifies which states cannot be visited infinitely of-
ten (Grädel, Thomas, and Wilke 2002). Let F = (ST ×
{$}) ∪ {rej}. The co-Büchi automaton AV,T accepts an in-
put word if it has a run that visits F only finitely often. Since
rej is a sink state, this means that rej was not visited at all. It
follows that the adversary returned control to the client only
finitely many times and the task T was accomplished.

Proposition 14 A play of Gs
V,T is winning for the client iff

it is accepted by AV.T .

Infinite-duration games where winning plays can be de-
fined by means of deterministic co-Büchi automata are
called co-Büchi games (Grädel, Thomas, and Wilke 2002).
Such games can be solved in quadratic time in the size of
the automaton defining winning plays (Kupferman and Vardi
2001). Thus, we get:

Theorem 15 The regular API orchestration problem can be
solved in polynomial time.

Furthermore, the co-Büchi game algorithm yields an ex-
plicit winning strategy. In our case, for every state (s, t) ∈ S,
the algorithm yields a symbol α(s,t) ∈ V ′ such that the client
can win Gs

V,T by selecting αρ(s0,w) when the game is in con-
figuration w. This can be easily transformed into a strategy
in the game GV,T . Thus, we get:

Theorem 16 The regular API orchestration synthesis prob-
lem can be solved in polynomial time.

We can now contrast the static and dynamic settings for
accomplishing regular tasks by means of regular APIs. In the
static setting we compile the task into a conformant compo-
sition, while in the dynamic setting we compile the task into
an orchestrator. The computational-complexity price we pay
for the static setting is PSPACE-completeness, in contrast to
polynomial complexity in the dynamic setting.

5 Conclusions

In this paper, we have studied the composition of open APIs
from a foundational perspective, where services provided by
APIs are specified by means of regular languages. We have
demonstrated the richness and diversity of the composition
problem by illustrating several relevant scenarios in both
the data-centric and the process-centric settings. For each
scenario, we have presented techniques and computational
complexity results, thus providing a comprehensive picture
of the problem.

In the future, we plan to continue our work along several
directions. In particular, we plan to investigate the compo-
sition problem in the case where the semantics of services
behind the APIs is expressed using formalisms that are more
expressive than regular languages. For example, in the data-
centric setting, it would be interesting to consider a language
allowing the edge of the graph database to be traversed both
forward and backward, or enabling the expression of con-
junctions of regular path queries. While these extensions
have already been considered in the case of unrestricted ac-
cess (Calvanese et al. 2007), at least partially, nothing is
known about the composition problem in the case of re-
stricted access. In the process-centric setting, we will con-
sider mechanisms allowing for modeling services that export
information about the internal state of the computation (con-
versational services), thus going beyond the stateless nature
of traditional APIs. Such mechanisms have been considered,
for instance, by Berardi et al. (2005b), De Giacomo, Patrizi,
and Sardiña (2013), and Lustig and Vardi (2013). Another
important extension to consider is the case where the service
modeling language allows one to combine the data-centric
and the process-centric views, in the spirit of the artifact-
centric approach to process modeling (Nigam and Caswell
2003; Berardi et al. 2005a; Sardiña and De Giacomo 2009;
Calvanese, De Giacomo, and Montali 2013; Calvanese et al.
2013; Belardinelli, Lomuscio, and Patrizi 2014). In this case,
the main challenge is to design the formalism taking into ac-
count the trade-off between expressiveness and decidability
of the composition problem.

Acknowledgments

This research has been partially supported by the EU IP
project Optique (Scalable End-user Access to Big Data),
grant FP7-318338; by NSF grants CCF-1319459 and IIS-
1527668; by the NSF Expeditions in Computing project Ex-
CAPE: Expeditions in Computer Augmented Program Engi-
neering; by BSF grant 9800096; and by Sapienza research
project Immersive Cognitive Environments.

337

References

Abiteboul, S., and Duschka, O. 1998. Complexity of an-
swering queries using materialized views. In Proc. of PODS,
254–265.
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison Wesley Publ. Co.
Balbiani, P.; Cheikh, F.; and Feuillade, G. 2009. Algorithms
and complexity of automata synthesis by asynhcronous or-
chestration with applications to web services composition.
ENTCS 229:3–18.
Bartalos, P., and Bieliková, M. 2011. Automatic dynamic
web service composition: A survey and problem formaliza-
tion. Computing and Informatics 30(4):793–827.
Belardinelli, F.; Lomuscio, A.; and Patrizi, F. 2014. Verifi-
cation of agent-based artifact systems. JAIR 51:333–376.
Benedikt, M.; Bourhis, P.; and Ley, C. 2012. Querying
schemas with access restrictions. PVLDB 5(7):634–645.
Benslimane, D.; Dustdar, S.; and Sheth, A. 2008. Services
mashups: The new generation of web applications. IEEE
Internet Computing 12(5):13–15.
Berardi, D.; Calvanese, D.; De Giacomo, G.; Lenzerini, M.;
and Mecella, M. 2003. Automatic composition of e-services
that export their behavior. In Proc. of ICSOC, volume 2910
of LNCS, 43–58. Springer.
Berardi, D.; Calvanese, D.; De Giacomo, G.; Hull, R.; and
Mecella, M. 2005a. Automatic composition of transition-
based Semantic Web services with messaging. In Proc. of
VLDB, 613–624.
Berardi, D.; Calvanese, D.; De Giacomo, G.; Lenzerini, M.;
and Mecella, M. 2005b. Automatic service composition
based on behavioral descriptions. Int. J. of Cooperative In-
formation Systems 14(4):333–376.
Bouguettaya, A.; Sheng, Q. Z.; and Daniel, F., eds. 2014.
Web Services Foundations. Springer.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2000a. Answering regular path queries using views.
In Proc. of ICDE, 389–398.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2000b. Containment of conjunctive regular path
queries with inverse. In Proc. of KR, 176–185.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2000c. View-based query processing and constraint
satisfaction. In Proc. of LICS, 361–371.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2002. Rewriting of regular expressions and regular
path queries. JCSS 64(3):443–465.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2007. View-based query processing: On the relation-
ship between rewriting, answering and losslessness. TCS
371(3):169–182.
Calvanese, D.; De Giacomo, G.; Montali, M.; and Patrizi, F.
2013. Verification and synthesis in description logic based
dynamic systems. In Proc. of RR, volume 7994 of LNCS,
50–64. Springer.

Calvanese, D.; De Giacomo, G.; and Montali, M. 2013.
Foundations of data aware process analysis: A database the-
ory perspective. In Proc. of PODS, 1–12.
Cosmadakis, S. S.; Gaifman, H.; Kanellakis, P. C.; and
Vardi, M. Y. 1988. Decidable optimization problems for
database logic programs. In Proc. of STOC, 477–490.
De Giacomo, G.; Patrizi, F.; and Sardiña, S. 2013. Auto-
matic behavior composition synthesis. AIJ 196:106–142.
Deutsch, A.; Ludäscher, B.; and Nash, A. 2007. Rewrit-
ing queries using views with access patterns under integrity
constraints. TCS 371(3):200–226.
Feder, T., and Vardi, M. Y. 1999. The computational struc-
ture of monotone monadic SNP and constraint satisfaction.
SIAM J. on Computing 28:57–104.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability — A guide to NP-completeness. San Francisco
(CA, USA): W. H. Freeman and Company.
Grädel, E.; Thomas, W.; and Wilke, T., eds. 2002. Automata,
Logics, and Infinite Games: A Guide to Current Research,
volume 2500 of LNCS. Springer. Outcome of a Dagstuhl
seminar in February 2001.
Grahne, G., and Mendelzon, A. O. 1999. Tableau techniques
for querying information sources through global schemas. In
Proc. of ICDT, volume 1540 of LNCS, 332–347. Springer.
Halevy, A. Y. 2001. Answering queries using views: A
survey. VLDBJ 10(4):270–294.
Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to
Automata Theory, Languages, and Computation. Addison
Wesley Publ. Co.
Hull, R. 2005. Web services composition: A story of models,
automata, and logics. In Proc. of ICWS, 30–31.
Kupferman, O., and Vardi, M. Y. 2001. Weak alternating
automata are not that weak. ACM TOCL 2(3):408–429.
Lenzerini, M. 2002. Data integration: A theoretical perspec-
tive. In Proc. of PODS, 233–246.
Li, C., and Chang, E. 2001. Answering queries with useful
bindings. ACM TODS 26(3):313–343.
Lustig, Y., and Vardi, M. Y. 2013. Synthesis from com-
ponent libraries. Int. J. on Software Tools for Technology
Transfer 15(5–6):603–618.
Navathe, S.; Elmasri, R.; and Larson, J. 1986. Integrating
user views in database design. Computer 19(1):50–62.
Nigam, A., and Caswell, N. S. 2003. Business artifacts:
An approach to operational specification. IBM Systems J.
42(3):428–445.
Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In Proc. of ICAPS, 345–354.
Sardiña, S., and De Giacomo, G. 2009. Composition of
ConGolog programs. In Proc. of IJCAI, 904–910.
Vardi, M. Y. 1982. The complexity of relational query lan-
guages. In Proc. of STOC, 137–146.

338

