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Abstract

Reasoning on queries is a basic problem both
in knowledge representation and databases.
A fundamental form of reasoning on queries is
checking containment, i.e., verifying whether
one query yields necessarily a subset of the re-
sult of another query. Query containment is
crucial in several contexts, such as query opti-
mization, knowledge base verification, infor-
mation integration, database integrity check-
ing, and cooperative answering.

In this paper we address the problem of query
containment in the context of semistructured
knowledge bases, where the basic query-
ing mechanism, namely regular path queries,
asks for all pairs of objects that are connected
by a path conforming to a regular expres-
sion. We consider conjunctive regular path
queries with inverse, which extend regular
path queries with the possibility of using both
the inverse of binary relations, and conjunc-
tions of atoms, where each atom specifies that
one regular path query with inverse holds
between two variables. We present a novel
technique to check containment of queries in
this class, based on the use of two-way finite
automata. The technique shows the power
of two-way automata in dealing with the in-
verse operator and with the variables in the
queries. We also characterize the computa-
tional complexity of both the proposed algo-
rithm and the problem.

1 INTRODUCTION

Querying is the fundamental mechanism for extracting
information from a knowledge base. The basic rea-

soning task associated to querying is query answer-
ing, which amounts to compute the information to
be returned as result of a query. However, there are
other reasoning services involving queries that knowl-
edge representation systems should support. One of
the most important is checking containment, i.e., ver-
ifying whether one query yields necessarily a subset of
the result of another one. Query containment is cru-
cial in several contexts, such as query optimization,
knowledge base verification, information integration,
integrity checking, and cooperative answering.

Query optimization aims at improving the efficiency of
query answering, and largely benefits from the possi-
bility of performing various kinds of comparisons be-
tween query expressions. In particular, query contain-
ment checks are useful to recognize equivalent sub-
expressions, to avoid computing results already avail-
able, to recognize the possibility of using material-
ized views, and to use integrity constraints to speed-
up query processing (Levy & Sagiv, 1995; Chaudhuri,
Krishnamurthy, Potarnianos, & Shim, 1995; Widom,
1995; Adali, Candan, Papakonstantinou, & Subrahma-
nian, 1996; Buneman, Davidson, Hillebrand, & Suciu,
1996; Fernandez & Suciu, 1998; Milo & Suciu, 1999).

Recently, it has been shown that query containment
is relevant for the task of knowledge base verification
(Levy & Rousset, 1997). In (Levy & Rousset, 1998b),
the problem of verifying whether a knowledge base
produces the correct set of output for any set of in-
put is solved by means of a method that exploits the
ability of checking query containment.

One of the major issues in information integration
(Fensel, Knoblock, Kushmerick, & Rousset, 1999) is
to reformulate a query expressed over a unified do-
main representation in terms of the local sources. Sev-
eral recent papers point out that query containment
is essential for this purpose (Calvanese, De Giacomo,
Lenzerini, Nardi, & Rosati, 1998; Levy, Rajaraman,



& Ordille, 1996; Knoblock & Levy, 1995; Friedman,
Levy, & Millstein, 1999). Also, many information inte-
gration applications are developed on the web, where
data are expressed using XML-like languages (Bray,
Paoli, & Sperberg-McQueen, 1998; Calvanese, De Gi-
acomo, & Lenzerini, 1999) and semistructured mod-
els (Buneman, 1997; Florescu, Levy, & Mendelzon,
1998a). This new scenario poses interesting challenges
to both database and knowledge representation tech-
nologies, and query containment is one notable exam-
ple of such challenges (Florescu, Levy, & Suciu, 1998b;
Calvanese, De Giacomo, Lenzerini, & Vardi, 2000).

Besides the above described applications, query con-
tainment is crucial in integrity constraint checking
(Gupta & Ullman, 1992; Fernandez, Florescu, Levy,
& Suciu, 1999), cooperative answering (Motro, 1996),
and in general in knowledge representation systems
based on description logics and conceptual graphs,
where it comes in the form of subsumption check, and
is at the heart of all relevant reasoning tasks (Donini,
Lenzerini, Nardi, & Schaerf, 1996; Eklund, Nagle, Na-
gle, & Gerholz, 1992; Donini, Lenzerini, Nardi, &
Schaerf, 1998; Levy & Rousset, 1998a).

Needless to say, query containment is undecidable if
we do not limit the expressive power of the query lan-
guage. In fact, in knowledge representation suitable
query languages have been designed for retaining de-
cidability. The same is true in databases, where the
notion of conjunctive query is the basic one in the in-
vestigation on reasoning on queries (Chandra & Mer-
lin, 1977). A conjunctive query is simply a conjunction
of atoms, where each atom is built out from relation
symbols and (existentially quantified) variables, and
correspond to a single rule in non-recursive datalog.

Most of the results on query containment concern con-
junctive queries and their extensions. In (Chandra &
Merlin, 1977), NP-completeness has been established
for conjunctive queries, in (Klug, 1988; van der Mey-
den, 1992), Πp

2-completeness of containment of con-
junctive queries with inequalities was proved, and in
(Sagiv & Yannakakis, 1980) the case of queries with
the union and difference operators was studied. For
various classes of datalog queries with inequalities, de-
cidability and undecidability results were presented
in (Chaudhuri & Vardi, 1992) and (van der Meyden,
1992), respectively. Other papers consider the case of
conjunctive query containment in the presence of vari-
ous types of constraints (Aho, Sagiv, & Ullman, 1979;
David S. Johnson, 1984; Chan, 1992; Levy & Rousset,
1996; Levy & Suciu, 1997), or in knowledge representa-
tion systems integrating datalog and description logics
(Levy & Rousset, 1998a).

In this paper we address the problem of query contain-
ment in the context of a general form of knowledge
bases, called semistructured knowledge bases. Our
goal is to capture the essential features of knowledge
bases as found in semantic networks, description logics,
conceptual graphs, and in databases, both traditional
and semistructured. For this purpose, we conceive a
knowledge base as a labeled graph, where nodes rep-
resent objects, and a labeled edge between two nodes
represents the fact that the binary relation denoted by
the label holds for the objects.

In our framework, the basic querying mechanism is
the one of regular path queries (Buneman, 1997; Cal-
vanese, De Giacomo, Lenzerini, & Vardi, 1999; Abite-
boul, Buneman, & Suciu, 1999), which ask for all pairs
of objects that are connected by a path conforming
to a regular expression. Regular path queries are ex-
tremely useful for expressing complex navigations in a
graph. In particular, union and transitive closure are
crucial when we do not have a complete knowledge of
the structure of the knowledge base.

In this work, we consider conjunctive regular path
queries with inverse, which extend regular path queries
with the possibility of using both the inverse of binary
relations, and conjunctions of atoms, where each atom
specifies that one regular path query with inverse holds
between two variables. Notably, several authors argue
that these kinds of extensions are essential for making
regular path queries useful in real settings (see for ex-
ample (Buneman, 1997; Buneman et al., 1996; Milo &
Suciu, 1999)). Conjunctive regular path queries have
been studied in (Florescu et al., 1998b), where an EX-
PSPACE algorithm for query containment in this class
is presented. However, no lower bound is provided
for the problem, and, moreover, the method does not
seem easily generalizable to take into account the in-
verse operator. The case with the inverse operator
is implicitly addressed in (Calvanese, De Giacomo, &
Lenzerini, 1998), where an 2EXPTIME algorithm is
proposed for query containment. However, the frame-
work investigated in (Calvanese et al., 1998) includes
a rich set of constraints, and is not suited for a precise
characterization of containment of conjunctive regular
path queries with inverse.

We present a novel technique to check containment of
queries in this class, based on the use of two-way finite
automata. Differently from standard finite state au-
tomata, two-way automata are equipped with a head
that can move back and forth on the input string. A
transition of these kinds of automata indicates not only
the new state, but also whether the head should move
left, right, or stay in place. Our technique shows the



power of two-way automata in dealing with the inverse
operator and with the variables in conjunctive queries.
In particular, we describe an algorithm that checks
containment of two queries by checking nonemptiness
of a two-way automaton constructed from the two
queries. The algorithm works in exponential space,
and therefore has the same worst-case complexity as
the best algorithm known for the case of conjunctive
regular path queries without inverse (Florescu et al.,
1998b).

We also prove an EXPSPACE lower bound for
the computational complexity of the problem, thus
demonstrating that our method is essentially optimal.
Interestingly, the lower bound holds even if we disre-
gard the inverse operator, and therefore provides the
solution to the open problem of whether containment
of conjunctive regular path queries could be done in
PSPACE (Florescu et al., 1998b). Besides the specific
result, our method provides the basis for using two-way
automata in reasoning on complex queries, and can be
adapted to more general forms of queries (e.g., unions
of conjunctive queries) and reasoning tasks (e.g., query
rewriting), as well as to other formalisms in Artificial
Intelligence (e.g., temporal and dynamic logics with a
backward modality, and action theories with converse).

2 KNOWLEDGE BASES AND
QUERIES

We consider a semistructured knowledge base (KB) K
as an edge-labeled graph (D, E), where D is the set of
nodes, and E is the set of edges labeled with elements
of an alphabet Σ′. A node represents an object, and
an edge between nodes x and y labeled p represents
the fact that the binary relation p holds for the pair
(x, y). We denote an edge from x to y labeled by p

with x
p→ y.

The basic querying mechanism on a KB is that of regu-
lar path queries (RPQs). An RPQ R is expressed as a
regular expression or a finite automaton, and computes
the set of pairs of nodes of the KB connected by a path
that conforms to the regular language L(R) defined by
R. As we said in the introduction, we consider queries
that extend regular path queries with both the inverse
operator, and the possibility of using conjunctions and
variables.

Formally, let Σ = Σ′ ∪ {p− | p ∈ Σ′} be the alphabet
including a new symbol p− for each p in Σ′. Intuitively,
p− denotes the inverse of the binary relation p. If
r ∈ Σ, then we use r− to mean the inverse of r, i.e., if
r is p, then r− is p−, and if r is p−, then r− is p.

Regular path queries with inverse (RPQIs) are ex-
pressed by means of regular expressions or finite au-
tomata over Σ. Thus, in contrast with RPQs, RPQIs
may use also the inverse p− of p, for each p ∈ Σ′.
When evaluated over a KB K, an RPQI E computes
the set ans(E,K) of pairs of nodes connected by a
semipath that conforms to the regular language L(E)
defined by E. A semipath in K from x to y is a se-
quence of the form (y1, r1, y2, r2, y3, . . . , yq, rq, yq+1),
where q ≥ 0, y1 = x, yq+1 = y, and for each yi, ri, yi+1,

either yi
ri→ yi+1 or yi+1

r−
i→ yi is in K. The semipath

conforms to E if r1 · · · rq ∈ L(E). The semipath is
simple if each yi, for i ∈ {2, . . . , q}, is a node that
does not occur elsewhere in the semipath.

Finally, we add to RPQIs the possibility of using con-
junctions of atoms, where each atom specifies that one
regular path query with inverse holds between two
variables. More precisely, if Φ is an alphabet of vari-
ables, then a conjunctive regular path query with in-
verse (CRPQI) Q is a formula of the form

Q(x1, . . . , xn) ← y1 E1 y2 ∧ · · · ∧ y2m−1 Em y2m

where x1, . . . , xn, y1, . . . , y2m range over a set
{u1, ..., uk} of variables in Φ, each xi, called a distin-
guished variable, is one of y1, . . . , y2m, and E1, . . . , Em

are RPQIs.

The answer set ans(Q,K) to a CRPQI Q over a
KB K = (D, E) is the set of tuples (d1, . . . , dn) of
nodes of K such that there is a total mapping σ from
{u1, . . . , uk} to D with σ(xi) = di for every distin-
guished variable xi of Q, and (σ(y), σ(z)) ∈ ans(E,K)
for every conjunct yEz in Q.

Example 1 Let us consider a KB of parental relation-
ships. The CRPQI

Q(x1, x2) ←
x1 (father−·father ∪mother−·mother)+ x2 ∧
x1 (father ∪mother)∗·father y ∧
x2 (father ∪mother)∗·mother y

returns all pairs of individuals (x1, x2) that are in the
transitive closure of the sibling (including stepsibling)
relation, and such that there is some individual y such
that x1 and x2 have two descendants who are respec-
tively the father and the mother of y.

Given two CRPQIs Q1 and Q2, we say that Q1 is con-
tained in Q2, written Q1 ⊆ Q2, if for every KB K,
ans(Q1,K) ⊆ ans(Q2,K). Obviously, Q1 6⊆ Q2 iff
there is a counterexample KB to Q1 ⊆ Q2, i.e., a KB
K with a tuple in ans(Q1,K) and not in ans(Q2,K).



Example 1 (cont.) It is possible to verify that the
CRPQI

Q′(x1, x2) ← x1 father−·father·mother−·motherx2 ∧
x1 father·mother− x2

is contained in Q.

In order to characterize containment between CR-
PQIs, we introduce the notion of canonical KB. Let
Q be the CRPQI

Q(x1, . . . , xn) ← y1 E1 y2 ∧ · · · ∧ y2m−1 Em y2m

K be a KB, and ν be a total mapping from the vari-
ables {u1, . . . , uk} of Q to the nodes of K. Then K is
said to be ν-canonical for Q if:

• K constitutes of m simple semipaths, one for each
conjunct of Q, which are node and edge disjoint,
i.e., only start and end nodes can be shared be-
tween different semipaths.

• for i ∈ {1, . . . ,m}, the simple semipath asso-
ciated to the conjunct y2i−1 Ei y2i connects the
node ν(y2i−1) to the node ν(y2i), and conforms
to Ei.

It is easy to see that, if K is ν-canonical for Q, then
the tuple (ν(x1), . . . , ν(xn)) belongs to ans(Q,K), and
therefore ans(Q,K) is nonempty.

In the following, we assume that Qh, for h = {1, 2},
are of the form

Qh(x1, . . . , xn) ← yh,1 Eh,1 yh,2 ∧ · · · ∧
yh,2mh−1 Eh,mh

yh,2mh

i.e., Q1 and Q2 have the same distinguished variables
x1, . . . , xn, and the sets of non-distinguished variables
of respectively Q1 and Q2 are disjoint. This assump-
tion can be made without loss of generality, since we
can rename variables and simulate equality between x
and y by introducing xεy in the right hand side.

Let K = (D, E) be a ν-canonical KB for Q1. A total
mapping µ from the variables of Q2 to D, is called a
(Q2,K, ν)-mapping if

• it maps distinguished variables of Q2 into nodes
of K corresponding to distinguished variables of
Q1, i.e., for each xi, we have that µ(xi) = ν(xi),
and

• for all j ∈ {1, . . . ,m2}, we have that
(µ(y2,2j−1), µ(y2,2j)) ∈ ans(E2,j ,K).

Note that the existence of a (Q2,K, ν)-mapping im-
plies that (µ(x1), . . . , µ(xn)) ∈ ans(Q2,K).

The following theorem provides an important charac-
terization of containment between CRPQIs.

Theorem 2 Let Q1 and Q2 be two CRPQIs. Then
Q1 6⊆ Q2 iff there exists a KB K and a mapping ν from
the variables of Q1 to the nodes of K such that (i) K
is ν-canonical for Q1 and (ii) no (Q2,K, ν)-mapping
exists.

Proof (sketch). For the if-part, it is easy to see that
K is a counterexample to Q1 ⊆ Q2. For the only-if-
part, it is possible to show that any counterexample
can be transformed into a KB of the form stated in the
theorem and that such KB is still a counterexample to
Q1 ⊆ Q2.

3 TWO-WAY AUTOMATA

A two-way automaton (Hopcroft & Ullman, 1979;
Vardi, 1989) A = (Γ, S, I, δ, F ) consists of an alpha-
bet Γ, a finite set of states S, a set I ⊆ S of initial
states, a transition function δ : S × Σ → 2S×{−1,0,1},
and a set F ⊆ S of accepting states. Intuitively, a
transition indicates both the new state of the automa-
ton, and whether the head reading the input should
move left (−1), right (1), or stay in place (0). If for all
s ∈ S and a ∈ Γ we have that δ(s, a) ⊆ S × {1}, then
the automaton is a traditional nondeterministic finite
state automaton (also called one-way automaton).

A configuration of A is a pair consisting of a state
and a position represented as a natural number. A
run is a sequence of configurations. The sequence
((s0, j0), . . . , (sm, jm)) is a run of A on a word w =
a0, . . . , an−1 in Γ∗ if s0 ∈ I, j0 = 0, jm ≤ n, and for
all i ∈ {0, . . . ,m − 1}, we have that 0 ≤ ji < n, and
there is some (t, k) ∈ δ(si, aji) such that si+1 = t and
ji+1 = ji + k. This run is accepting if jm = n and
sm ∈ F . A accepts w if it has an accepting run on w.
The set of words accepted by A is denoted L(A).

It is well known that two-way automata define regular
languages (Hopcroft & Ullman, 1979), and that, given
a two-way automaton with n states, we can construct
a one-way automaton with O(2n log n) states accepting
the same language (Vardi, 1989).

We want to gain some intuition on how two-way au-
tomata capture computations of CRPQIs over KBs.
To this end we show how a two-way automaton can
be used for the fundamental task of verifying the
nonemptiness of an RPQI over a given KB.



The basic idea that allows us to exploit automata is
that we can represent special KBs by means of words.
In particular, we consider KBs in which the domain
D contains a fixed set D0 of nodes, and that are con-
stituted by simple semipaths which are node and edge
disjoint and such that the start and end nodes of each
semipath are in D0. Each such KB K = (D, E) is rep-
resented by a word WK over the alphabet Σ∪D0∪{$},
which has the form

$d1w1d2$d3w2d4$ · · · $d2m−1wmd2m$

where d1, . . . , d2m range over D0, wi ∈ Σ+, and the $
acts as a separator. Specifically, WK consists of one
subword d2i−1wid2i, for each simple semipath in K
from d2i−1 to d2i conforming to wi. Observe that we
can represent the same KB by several words that dif-
fer in the direction considered for the semipaths and
in the order in which the subwords corresponding to
the semipaths appear.

Now, given an RPQI E, we build a two-way automaton
AE over the alphabet Σ∪D0∪{$} such that AE accepts
a word WK iff E has a nonempty answer on the KB K
represented by WK. To do so we exploit the ability of
two-way automata to:

• move on the word both forward and backward,
which corresponds to traversing edges of the KB
in both directions;

• “jump” from one position in the word represent-
ing a node to any other position (either preceding
or succeeding) representing the same node.

These two capabilities ensure that the automaton eval-
uating the RPQI on the word simulates exactly the
evaluation of the query on the KB.

To construct AE , we assume that E is represented as
a finite (one-way) automaton E = (Σ, S, I, δ, F ) over
the alphabet Σ. Then AE = (ΣA, SA, {s0}, δA, {sf}),
where ΣA = Σ ∪ D0 ∪ {$}, SA = S ∪ {s0} ∪ {sb | s ∈
S} ∪ S ×D0, and δA is defined as follows:

1. (s0, 1) ∈ δA(s0, `), for each ` ∈ ΣA, and also
(s, 1) ∈ δA(s0, `) for each s ∈ I. These transi-
tions place the head of the automaton in some
randomly chosen position of the input string and
set the state of the automaton to some randomly
chosen initial state of E.

2. (sb,−1) ∈ δA(s, `), for each s ∈ S and ` ∈ Σ∪D0.
At any point such transition makes the automaton
ready to scan one step backward by placing it in
“backward mode”.

3. (s2, 1) ∈ δA(s1, r) and (s2, 0) ∈ δA(sb
1, r

−), for
each transition s2 ∈ δ(s1, r) of E. These transi-
tions correspond to the transitions of E which are
performed forward or backward according to the
current “scanning mode”.

4. for each s ∈ S and each d ∈ D0

((s, d), 0) ∈ δA(s, d)
((s, d), 0) ∈ δA(sb, d)
((s, d), 1) ∈ δA((s, d), `), for each ` ∈ ΣA

((s, d),−1) ∈ δA((s, d), `), for each ` ∈ ΣA

(s, 0) ∈ δA((s, d), d)
(s, 1) ∈ δA(s, d)

Whenever the automaton reaches a symbol rep-
resenting a node d (first and second clause), it
may enter into “search (for d) mode” and move to
any other occurrence of d in the word. Then the
automaton exits search mode (second last clause)
and continues its computation either forward (last
clause) or backward (see item 2).

5. (s, 1) ∈ δA(s, `), for each s ∈ F and each ` ∈ ΣA.
These transitions move the head of the automaton
to the end of the input string, when the automa-
ton enters a final state.

Observe that the separator symbol $ does not allow
transitions except in “search mode”. Its role is to force
the automaton to move in the correct direction when
exiting “search mode”.

The following theorem characterizes the relationship
between an RPQI and the corresponding two-way au-
tomaton.

Theorem 3 Let E be an RPQI, K a KB over D, and
WK the word representing K. Then AE accepts WK iff
ans(E,K) is nonempty.

4 CHECKING CONTAINMENT

We characterize both the upper bound and the lower
bound of the problem of checking containment between
CRPQIs.

4.1 UPPER BOUND

Let Qh, for h = {1, 2}, be in the form

Qh(x1, . . . , xn) ← yh,1 Eh,1 yh,2 ∧ · · · ∧
yh,2mh−1 Eh,mh

yh,2mh

and let V1,V2 ⊆ Φ be the sets of variables of Q1 and
Q2 respectively. To show that Q1 is not contained in



Q2, we have to search for a counterexample KB. From
Theorem 2, we know that it is sufficient to look for a
KB K and a mapping ν from the variables of Q1 to
the nodes of K, such that K is ν-canonical for Q1, and
such that no (Q2,K, ν)-mapping exists.

To generate candidate counterexample KBs and asso-
ciated ν-mappings, we first construct a one-way au-
tomaton A1 that accepts the set of words of the form

$d1w1d2$d3w2d4$ · · · $d2m1−1wm1d2m1$

that represent a KB that is ν-canonical for Q1 for some
ν, where each di is an element of a fixed set of nodes
D0. We take D0 to be 2V1 and we explicitly encode in a
word accepted by A1 the mapping ν from the variables
of Q1 to the nodes in D0. This requires to ensure that
the elements of D0 appearing in a word accepted by
A1 constitute a partition of V1 into equivalence classes.
To construct A1, we define:

• A one-way automaton AQ1
1 that accepts all words

of the form above, where for i ∈ {1, . . . , m1},
y1,2i−1 ∈ d2i−1, y1,2i ∈ d2i, and wi is a word in
L(Ei).

• A one-way automaton Ap
1 that checks that in a

word w the distinct symbols di ∈ D0 appearing in
w constitute a partition of V1.

• A one-way automaton Aa
1 that checks that in a

word w, whenever two symbols d2i−1 and d2i are
adjacent, then d2i−1 = d2i.

The number of states in AQ1
1 is polynomial in the size

of Q1 (although the alphabet is exponential), while
the number of states in Ap

1 and Aa
1 is exponential in

the number of variables in Q1. A1 is the product au-
tomaton of AQ1

1 , Ap
1, and Aa

1 , and hence is of exponen-
tial size in Q1. We call a word W accepted by A1 a
Q1-word, and use KW and νW to denote the KB and
mapping corresponding to Q1.

By virtue of the correspondence between Q1-words
and KBs that are ν-canonical for Q1, our method for
checking whether Q1 6⊆ Q2 is based on searching for a
Q1-word W such that no (Q2,KW , νW )-mapping ex-
ists. Now, let W be a Q1-word. To check whether
there is no (Q2,KW , νW )-mapping, we define a two-
way automaton A3 that checks the existence of such a
mapping, and then complement A3, obtaining an au-
tomaton A4.

In order to define A3, we represent (Q2,KW , νW )-
mappings as annotations of Q1-words, which specify
where the variables of Q2 are being mapped to in
W , and hence in KW . More precisely, the Q1-word

$`1 · · · `r$ with each symbol `i 6= $ annotated with γi

is represented by the word $(`1, γ1) · · · (`r, γr)$ over
the alphabet ((Σ ∪ D0) × 2V2) ∪ {$}. The intended
meaning is that the variables in γi are mapped in KW

to the node `i, if `i ∈ D0, and are mapped to the tar-
get node of the edge corresponding to the occurrence
of `i, if `i ∈ Σ.

Given a word W ′ representing an annotated Q1-word
W , an automaton A2 can check if the annotation cor-
responds to a (Q2,KW , νW )-mapping. To construct
A2, we define:

1. A one-way automaton Ad
2 that checks that for ev-

ery symbol d ∈ D0 containing a distinguished vari-
able x of Q1, every occurrence of d in W is an-
notated in W ′ with a set of variables containing
x.

2. A one-way automaton As
2 that checks that for ev-

ery variable y ∈ V2, either y appears in the anno-
tation of at most one symbol in Σ, or it appears
in the annotation of every occurrence of a symbol
d ∈ D0.

3. A one-way automaton A$
2 that checks that every

occurrence in W of a symbol preceding a $ is an-
notated in W ′ with the same set of variables as
the symbol preceding it.

4. A two-way automaton AQ2
2 that checks that for all

i ∈ {1, . . . , m2}, the atom y2,2i−1E2,iy2,2i of Q2 is
satisfied in KW , i.e., there are symbols `1, `2 in W
annotated in W ′ with γ1 and γ2 respectively, such
that y2,2i−1 ∈ γ1, y2,2i ∈ γ2, and the pair of nodes
corresponding to `1 and `2 is in ans(E2,i,KW ).
To build AQ2

2 we exploit the construction in Sec-
tion 3.

The number of states in AQ2
2 is polynomial in the size

of Q2, while the number of states in Ad
2, As

2, and A$
2

is exponential in the number of variables in Q2. A2

is the product automaton of Ad
2, As

2, A$
2, and of the

one-way automaton equivalent to AQ2
2

1. Hence A2 is
of exponential size in Q2.

Next we define the one-way automaton A3 that sim-
ulates the guess of an annotation of a Q1-word, and
emulates the behaviour of A2 on the resulting anno-
tated word. The simulation of the guess and the em-
ulation of A2 can be obtained simply by constructing
A2 and then projecting out the annotation from the

1Notice that the number of states of the one-way au-
tomaton equivalent to AQ2

2 does not depend on the size of
the alphabet, which is exponential in the number of vari-
ables of Q1.



transitions. The idea behind this construction is that
a path in A3 from an initial state to a final state that
leads to the acceptance of a non-annotated word W ,
corresponds to a path in A2 that leads to the accep-
tance of a word W ′ which represents W with some
annotation, and vice-versa. Observe that A3 has the
same number of states as A2.

Let us stress that projecting out the annotations from
the transitions corresponds to guess them. However, in
order for the guesses to be meaningful the automaton
must be one-way, since with a two-way automaton we
cannot ensure that we make the same guess each time
we pass over the same position in a word.

Finally, we define the one-way automaton A4 as the
complement of A3.

Theorem 4 Let Q1 and Q2 be two CRPQIs and A1

and A4 be as specified above. Then Q1 6⊆ Q2 iff A1∩A4

is nonempty.

Proof (sketch). By Theorem 2, to check Q1 6⊆ Q2, it
is sufficient to find a KB K and a mapping ν from the
variables of Q1 to the nodes of K, such that K is ν-
canonical for Q1, and such that no (Q2,K, ν)-mapping
exists. Each word W accepted by A1 represents a KB
KW and a mapping νW such that KW is νW -canonical
for Q1. A4 accepts a Q1-word W iff there is no anno-
tation of W that represents a (Q2,KW , νW )-mapping.
Thus, A1 ∩ A4 is nonempty iff there exists a Q1-word
W such that KW is canonical for Q1, and is such that
no (Q2,KW , νW )-mapping exists. Hence, A1 ∩ A4 is
nonempty iff Q1 is not contained in Q2.

Theorem 5 Given two CRPQIs Q1 and Q2, checking
whether Q1 ⊆ Q2 can be done in EXPSPACE.

Proof. By theorem 4, Q1 ⊆ Q2 iff A1 ∩ A4 is empty.
The size of A1 is exponential in the size of Q1, the size
of A2 is exponential in the size of Q2, the size of A3 is
polynomial in the size of A2, and finally, the size of A4

is exponential in the size of A3. Therefore, the size of
A4 is doubly exponential in the size of Q2. However,
to check whether A1 ∩ A4 is empty we do not need
to construct A4 explicitly. Instead, starting from A3,
we construct A4 “on-the-fly”; whenever the emptiness
algorithm wants to move from a state s1 of the inter-
section of A1 and A4 to a state s2, it guesses s2 and
checks that it is directly connected to s1. Once this
has been verified, the algorithm can discard s1. Thus,
at each step the algorithm needs to keep in memory at
most two states and there is no need to generate all of
A4 at any single step of the algorithm.

4.2 LOWER BOUND

Next we show an EXPSPACE lower bound for contain-
ment of conjunctive regular path queries without in-
verse (CRPQs). This closes the open problem in (Flo-
rescu et al., 1998b) on whether containment of CRPQs
could be done in PSPACE.

To prove the result we exploit a reduction from tiling
problems (van Emde Boas, 1982, 1997; Berger, 1966).
A tile is a unit square of one of several types and the
tiling problem we consider is specified by means of a
finite set ∆ of tile types, two binary relations H and V
over ∆, representing horizontal and vertical adjacency
relations, respectively, and two distinguished tile types
tS , tF ∈ ∆. The tiling problem consists in determining
whether, for a given number n in unary, a region of the
integer plane of size 2n×k, for some k, can be tiled con-
sistently with the adjacency relations H and K, and
with the left bottom tile of the region of type tS and
the right upper tile of type tF . Using a reduction from
acceptance of EXPSPACE Turing machines analogous
to the one in (van Emde Boas, 1997), it can be shown
that this tiling problem is EXPSPACE-complete.

Theorem 6 The problem of checking whether Q1 ⊆
Q2, where Q1 and Q2 are two CRPQs, is EXPSPACE-
hard.

Proof (sketch). Let T = (∆,H, V, tS , tF ) be an
instance of the EXPSPACE-complete tiling problem
above and n a number in unary. The alphabet is
Σ = ∆ ∪ {0, 1}. The query Q1 is

Q1(x1, x2) ← x1 E x2

where the regular expression in the right hand side is

E = 0n·tS ·((0 + 1)n·∆)∗·1n·tF .

Thus, a word in L(E) consists of a sequence of blocks,
each block consists of an n-bit address and a tile in
∆. We intend the sequence of addresses to behave
as an n-bit counter, starting with 0n and ending with
1n. A word in L(E) encodes a tiling if each pair of
adjacent tiles is consistent with H and each pair of
tiles that have the same address, where there is no tile
in between them with the same address, is consistent
with V . Thus, a word in L(E) does not encode a tiling,
if it contains an error. An error is a pair of blocks that
exhibit an incorrect behavior of the counter or that has
a pair of tiles that is inconsistent with H or V . We
detect errors using the query Q2, which is

Q2(x1, x2) ← x1 E1 y1 ∧ (
∧

i∈{0,...,n}
y1 Fi y2) ∧ y2 E1 x2



where E1 is the regular expression ((0 + 1)n·∆)∗, and
Fi, for i ∈ {0, . . . , n} are constructed as explained be-
low. The intuition is that y1 and y2 map to a pair that
represents an error.

We define a regular expression FC that detects adja-
cent blocks with an error in the address bits. FC can
be constructed by encoding an n-bit counter (Börger,
Gräedel, & Gurevich, 1997).

We define a regular expression FH that detects adja-
cent blocks in which the tiles do not respect the hori-
zontal adjacency relation H:

FH =
∑

(t1,t2) 6∈H

((0 + 1)n·∆)∗·
(0 + 1)n·t1·(0 + 1)n·t2·
((0 + 1)n·∆)∗

In order to construct a regular expression that detects
a sequence of 2n+1 blocks, in which the tiles in the first
and last block do not respect the vertical adjacency
relation V , we define:

G0 =
∑

(t1,t2)6∈V

(0 + 1)n·t1·
((0 + 1)n·∆)∗·
(0 + 1)n·t2

and, for i ∈ {1, . . . , n}, we define Gi = G0
i +G1

i , where
for b ∈ {0, 1} (b denotes the complement of bit b):

Gb
i = (0 + 1)i−1·b·(0 + 1)n−i·∆·

(0 + 1)∗·b·(0 + 1)∗·∆·
b
n·∆·

(0 + 1)∗·b·(0 + 1)∗·∆·
(0 + 1)i−1·b·(0 + 1)n−i·∆

Assuming that the address bits are correct, a word ac-
cepted by all G1, . . . , Gn is constituted by a sequence
of blocks in which the first and the last block are ex-
actly 2n blocks apart. This follows from the fact that
the first and the last block coincide in all the address
bits, and in between there is either exactly one block
with all address bits equal to 0, or exactly one block
with all address bits equal to 1. The intersection of
G0, G1, . . . , Gn detects errors due to the vertical adja-
cency relation V .

Hence, by defining Fi = Gi + FH + FC , for i ∈
{0, . . . , n}, the query Q2 detects all three types of er-
rors.

If there is no tiling, then every word in L(E) contains
an error and Q1 is contained in Q2. If there is a tiling,
then there is a word in L(E) without an error, and this
word provides a counterexample to the containment of
Q1 in Q2.

5 CONCLUSIONS

We have presented both upper bound and lower bound
results for containment of conjunctive regular path
queries with inverse. This class of queries has sev-
eral features that are typical of modern query lan-
guages for knowledge and data bases. In particular,
it is the largest subset of query languages for XML
data (Deutsch, Fernandez, Florescu, Levy, Maier, &
Suciu, 1999) for which containment has been shown
decidable.

The upper bound shows that adding inverse to con-
junctive regular path queries does not increase the
complexity of query containment. The lower bound
holds also for the case without the inverse operator,
and provides the answer to the question of which is
the inherent complexity of checking containment of
conjunctive regular path queries.

One interesting feature of our method is to demon-
strate the power of two-way automata in reasoning on
complex queries. The method can also be adapted to
more general forms of queries and reasoning tasks. In-
deed, it is easy to extend our algorithm to the case of
union of conjunctive regular path queries with inverse.

Query containment is typically the first step in ad-
dressing the more involved problems of query rewrit-
ing and query answering using views. For the case of
regular path queries, such problems have been stud-
ied in (Calvanese et al., 1999, 2000). We are currently
working on extending these results to more powerful
query languages, such as the one considered in this
paper, by exploiting the techniques based on two-way
automata.
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