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Via Salaria 113, I-00198 Roma, Italy

E-mail: calvanese@dis.uniroma1.it, degiacomo@dis.uniroma1.it, lenzerini@dis.uniroma1.it

and

Moshe Y. Vardi

Department of Computer Science, Rice University, P.O. Box 1892, Houston, Texas 77251-1892
E-mail: vardi@cs.rice.edu

Received September 7, 1999; revised June 19, 2001; published online March 6, 2002

Recent work on semi-structured data has revitalized the interest in path
queries, i.e., queries that ask for all pairs of objects in the database that are
connected by a path conforming to a certain specification, in particular to a
regular expression. Also, in semi-structured data, as well as in data integra-
tion, data warehousing, and query optimization, the problem of view-based
query rewriting is receiving much attention: Given a query and a collection of
views, generate a new query which uses the views and provides the answer to
the original one. In this paper we address the problem of view-based query
rewriting in the context of semi-structured data. We present a method for
computing the rewriting of a regular expression E in terms of other regular
expressions. The method computes the exact rewriting (the one that defines
the same regular language as E) if it exists, or the rewriting that defines the
maximal language contained in the one defined by E, otherwise. We present a
complexity analysis of both the problem and the method, showing that the
latter is essentially optimal. Finally, we illustrate how to exploit the method
for view-based rewriting of regular path queries in semi-structured data. The
complexity results established for the rewriting of regular expressions apply
also to the case of regular path queries. © 2002 Elsevier Science (USA)

Key Words: semistructured data; query rewriting; regular path queries;
regular expressions; computational complexity.

1. INTRODUCTION

Database research has often shown strong interest in path queries, i.e., queries
that ask for all pairs of objects in the database that are connected by a specified



path (see for example [CMW87, CM90]). Recent work on semi-structured data has
revitalized such interest. Semi-structured data are data whose structure is irregular,
partially known, or subject to frequent changes [Abi97]. They are usually
formalized in terms of labeled graphs, and capture data as found in many application
areas, such as web information systems, digital libraries, and data integration
[BDFS97, CACS94, MMM97, QRS+95].
The basic querying mechanism over such graphs is the one that retrieves all pairs
of nodes connected by a path conforming to a given pattern. Since a user may
ignore the precise structure of the graph, the mechanism for specifying path pat-
terns should be flexible enough to allow for expressing regular path queries, i.e.,
queries that provide the specification of the requested paths through a regular lan-
guage [AQM+97, BDHS96, FFK+98]. For example, the regular path query
(_g · (rome+jerusalem) · _g · restaurant) specifies all the paths having at some point
an edge labeled rome or jerusalem, followed by any number of other edges and by
an edge labeled with a restaurant.
Methods for reasoning about regular path queries have been recently proposed in
the literature. In particular, [AV97, BFW98] investigate the decidability of the
implication problem for path constraints, which are integrity constraints that are
exploited in the optimization of regular path queries. Also, containment of
conjunctions of regular path queries has been addressed and proved decidable in
[CDGL98, FLS98].
In semi-structured data, as well as in data integration, data warehousing, and
query optimization, the problem of view-based query rewriting is receiving much
attention [Ull97, Hal00, DGL00]: Given a query Q and k queries Q1, ..., Qk asso-
ciated with the symbols q1, ..., qk, respectively, generate a new query QŒ over the
alphabet q1, ..., qk such that, first interpreting each qi as the result of Qi, and then
evaluating QŒ on the basis of this interpretation, provides the answer to Q.
Several papers investigate this problem for the case of conjunctive queries (with
or without arithmetic comparisons) [LMSS95, RSU95], queries with aggregates
[SDJL96, CNS99], recursive queries [DG97], disjunctive views [DG98, AGK99],
nonrecursive queries and views for semi-structured data [PV99], and queries
expressed in Description Logics [BLR97]. Rewriting techniques for query optimi-
zation are described, for example, in [CKPS95, ACPS96, TSI96], and in [FS98,
MS99] for the case of path queries in semi-structured data. For some relevant prior
work see [Con71].
None of the above papers provides a method for rewriting regular path queries.
Observe that such a method requires a technique for the rewriting of regular
expressions, i.e., the problem that, given a regular expression E0, and other k
regular expressions E1, ..., Ek, checks whether we can re-express E0 by a suitable
combination of E1, ..., Ek. As noted in [MS99], such a problem is still open.
In this paper we present the following contributions:

• We describe a method for computing the rewriting of a regular expression E0
in terms of other regular expressions. The method computes the exact rewriting (the
one that defines the same regular language as E0) if it exists, or the rewriting that
defines the maximal language contained in the one defined by E0, otherwise.
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• We provide a complexity analysis of the problem of rewriting regular
expressions. We show that our method computes the rewriting in 2EXPTIME, and
is able to check whether the computed rewriting is exact in 2EXPSPACE. We also
show that the problem of checking whether there is a nonempty rewriting is
EXPSPACE-complete, and demonstrate that our method for computing the rewrit-
ing is essentially optimal. Finally, we show that the problem of verifying the exis-
tence of an exact rewriting is 2EXPSPACE-complete.

• We illustrate how to exploit the above mentioned method in order to devise
an algorithm for the rewriting of regular path queries for semi-structured databases.
The complexity results established for the rewriting of regular expressions apply to
the new algorithm as well. Also, we show how to adapt the method in order to
compute rewritings with specific properties. In particular, we consider partial
rewritings (which are rewritings that, besides E1, ..., Ek, may use also symbols in
E0), in the case where an exact one does not exist.

We point out that the results established in this work provide the first decidability
results for rewriting recursive queries using recursive views. Indeed, in our context,
both the query and the views may contain a form of recursion due to the presence
of transitive closure. Observe that the case where the query contains unrestricted
recursion has been shown undecidable, even when the views are not recursive
[DG97]. More precisely, the authors in [DG97] present a method that computes
the maximally contained rewriting of a Datalog query in terms of a set of conjunc-
tive queries, and show that it is undecidable to check whether the rewriting is
equivalent to the original query.
The paper is organized as follows. Section 2 presents the method for rewriting
regular expressions. Section 3 describes the complexity analysis of both the method
and the problem. Section 4 illustrates the use of the technique to rewrite path
queries for semi-structured databases. Finally, Section 5 describes possible devel-
opments of our research.

2. REWRITING OF REGULAR EXPRESSIONS

In this section, we present a technique for the following problem: Given a regular
expression E0 and a finite set E={E1, ..., Ek} of regular expressions over an
alphabet S, re-express, if possible, E0 by a suitable combination of E1, ..., Ek.
We assume that associated with E we always have an alphabet SE containing
exactly one symbol for each regular expression in E, and we denote the regular
expression associated with the symbol e ¥ SE with re(e). Given any language a over
SE, we denote by expS(a) the expansion of a wrt E, i.e., the language over S defined
as follows

expS(a)= 0
e1 · · · en ¥ a

{w1 · · ·wn | wi ¥ L(re(ei))},

where L(e) is the language defined by the regular expression e. Thus, expS(a)
denotes all the words obtained from a word e1 · · · en ¥ a by substituting for each ei
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all words of the regular language associated with ei. Given a SE-word w, expS({w})
is simply called the expansion of w.

Definition 2.1. Let R be any formalism for defining a language L(R) over SE.
We say that R is a rewriting of E0 wrt E if expS(L(R)) ı L(E0).

Note that we do not constrain in any way the form of the rewritings, which, a
priori, need not even be recursive. We are interested in maximal rewritings, i.e.,
rewritings that capture in the best possible way the language defined by the original
regular expression E0.

Definition 2.2. A rewriting R of E0 wrt E is S-maximal if for each rewriting RŒ
of E0 wrt E we have that expS(L(RŒ)) ı expS(L(R)). A rewriting R of E0 wrt E is
SE-maximal if for each rewriting RŒ of E0 wrt E we have that L(RŒ) ı L(R).

Intuitively, when considering S-maximal rewritings we look at the languages
obtained after substituting each symbol in the rewriting by the corresponding
regular expression over S, whereas when considering SE-maximal rewritings we
look at the languages over SE. Observe that by definition all S-maximal rewritings
define the same language (similarly for SE-maximal rewritings), and that not all
S-maximal rewritings are SE-maximal, as shown by the following example.

Example 2.1. Let E0=ag, E={ag}, and SE={e}, where re(e)=ag. Then
both R1=eg and R2=e are S-maximal rewritings of E0 wrt E, but R1 is also
SE-maximal while R2 is not.

However, it turns out that SE-maximality is a sufficient condition for
S-maximality.

Theorem 2.1. Let R be a rewriting of E0 wrt E. If R is SE-maximal then it is also
S-maximal.

Proof. Assume by contradiction that R is a SE-maximal rewriting of E0 wrt E
that is not S-maximal. Then there is a rewriting RŒ of E0 wrt E, a SE-word
uŒ ¥ L(RŒ), and a S-word w ¥ L(expS({uŒ})) such that for no SE-word u ¥ L(R), it
holds that w ¥ L(expS({u})). Hence uŒ ¨ L(R) and L(RŒ) ł L(R). Contradiction. L

Given E0 and E, we are interested in deriving a S-maximal rewriting of E0 wrt E.
We show that such a maximal rewriting always exists (although it may be empty).
In fact, we provide a method that, given E0 and E, constructs a SE-maximal rewrit-
ing of E0 wrt E. By Theorem 2.1 the constructed rewriting is also S-maximal.
The method is based on the idea of characterizing by means of an automaton,
which we call AŒ, exactly those SE-words that are not in any rewriting of E0 wrt E.
Observe that a SE-word e1 · · · en is not in any rewriting of E0 wrt E if there is a
S-word in its expansion that is not in L(E0). If we can build such an automaton AŒ,
then its complement is the maximal rewriting we are looking for, in the sense that it
accepts exactly those SE-words whose expansions are contained in L(E0).
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FIG. 1. Construction of the rewriting of a · (b · a+c)g wrt {a, a · cg · b, c}.

The crucial point is the construction of AŒ. Intuitively, we start from an automa-
ton Ad for E0 and let AŒ have the same states as Ad. With regard to the transitions
of AŒ, we place in AŒ a SE-edge e between two states si and sj if there is a S-word in
the expansion of e that leads from si to sj in Ad. Now, in AŒ a SE-word e1 · · · en leads
from s to sŒ if in Ad there is a sequence of S-words w1 · · ·wn that leads from s to sŒ.
Hence we should let AŒ accept only those SE-words that lead from the initial state
to a state that is non-final for Ad. However, to guarantee that each S-word in the
expansion of e1 · · · en does not lead also to a final state of Ad (and hence is in
L(E0)), the automaton Ad we start from must be deterministic.
Based on this idea, the construction takes E0 and E as input, and returns an
automaton RE, E0 built as follows:

1. Construct a deterministic automaton Ad=(S, S, s0, r, F) such that
L(Ad)=L(E0).

2. Define the automaton AŒ=(SE, S, s0, rŒ, S−F), where sj ¥ rŒ(si, e) if and
only if there exists a word w ¥ L(re(e)) such that sj ¥ rg(si, w) 1. In other words, AŒ

1 rg denotes the extension of the transition function r to words, defined in the standard way for finite
automata [HU79].

has the same states as Ad, the same initial state s0, and as final states all states that
are not final in Ad. With regard to the transitions, AŒ has a transition from si to sj
labeled with e ¥ SE if and only if there is a S-word in the expansion of e that leads
from si to sj in Ad.

3. RE, E0=AŒ, i.e., RE, E0 is the complement of AŒ.

Step 2 of the construction requires to check whether there exists a word
w ¥ L(re(e)) such that sj ¥ rg(si, w). To do so, we consider the automaton
A i, jd =(S, S, si, r, {sj}), obtained from Ad by suitably changing the initial and final
states, and check the product automaton between A i, jd and an automaton for
L(re(e)) for non-emptiness.
We illustrate the construction by means of an example.

Example 2.2. Let E0=a·(b · a+c)g, E={a, a · cg · b, c}, and SE={e1, e2, e3},
with re(e1)=a, re(e2)=a·cg · b, and re(e3)=c. The deterministic automaton Ad
shown in Fig. 1 accepts L(E0), while AŒ is the corresponding automaton constructed
in Step 2 of the rewriting algorithm. Since AŒ is deterministic, by simply exchanging
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final and nonfinal states we obtain its complement AŒ, which is the automaton RE, E0

computed by the algorithm.

The following theorem states the correctness of the above construction.

Theorem 2.2. The automaton RE, E0 is a SE-maximal rewriting of E0 wrt E.

Proof. We first show that RE, E0=AŒ is a rewriting of E0 wrt E. If AŒ accepts a
SE-word e1 · · · en, then there exist n S-words w1, ..., wn such that wi ¥ L(re(ei)) for
i=1, ..., n and such that the S-word w1 · · ·wn leads to a non-final state of Ad. Since
Ad is deterministic, the fact that w1 · · ·wn leads to a non-final state means that it is
rejected by Ad. On the other hand if there exist n S-words w1, ..., wn such that
wi ¥ L(re(ei)), for i=1, ..., n, and w1 · · ·wn is rejected by Ad, then the SE-word
e1 · · · en is accepted by AŒ. That is, AŒ accepts a SE-word e1 · · · en if and only if there
is a S-word in expS({e1 · · · en}) that is rejected by Ad. Hence, RE, E0 , being the
complement of AŒ, accepts a SE-word e1 · · · en if and only if all S-words w1 · · ·wn
such that wi ¥ L(re(ei)) for i=1, ..., n, are accepted by Ad. It follows that RE, E0 is a
rewriting of E0 wrt E.
Next we prove by contradiction that RE, E0 is SE-maximal. Let R be a rewriting of
E0 wrt E such that L(R) ł L(AŒ). Let e1 · · · en be a SE-word such that
e1 · · · en ¥ L(R) but e1 · · · en ¨ L(AŒ). By definition of rewriting, all S-words w1 · · ·wn
such that wi ¥ L(re(ei)) for i=1, ..., n, are in L(E0)=L(Ad). On the other hand,
since e1 · · · en ¨ L(AŒ), the SE-word e1 · · · en is accepted by AŒ. Thus there is a S-word
w1 · · ·wn, such that wi ¥ L(re(ei)) for i=1, ..., n, that is rejected by Ad. Contradic-
tion. L

Notably, although Definition 2.1 does not constrain in any way the form of the
rewritings, Theorem 2.2 shows that the language over SE (and therefore also the
language over S) defined by the SE-maximal rewritings is in fact regular (indeed, AŒ
is a finite automaton).
Next we address the problem of verifying whether the rewriting RE, E0 captures
exactly the language defined by E0.

Definition 2.3. A rewriting R of E0 wrt E is exact if expS(L(R))=L(E0).

To verify whether RE, E0 is an exact rewriting of E0 wrt E we proceed as follows:

1. We construct an automaton B over S that accepts expS(L(RE, E0 )) as
follows.
We first construct an automaton Ai such that L(Ai)=L(re(ei)) for i=1, ..., k.
We assume, without loss of generality, that Ai has unique start state and accepting
state, and that the start state has no incoming edges and the accepting state no
outgoing edges.
We then obtain B by replacing each edge labeled by ei in RE, E0 by a fresh copy of
Ai, identifying the start state of the fresh copy with the source of the edge, and the
accepting state with the target of the edge.
Observe that, since RE, E0 is a rewriting of E0, L(B) ı L(Ad).

2. We check whether L(Ad) ı L(B), that is, we check whether
L(Ad 5 B̄)=”.
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Theorem 2.3. The automaton RE, E0 is an exact rewriting of E0 wrt E if and only
if L(Ad 5 B̄)=”.

Proof. By Theorem 2.2 the automaton RE, E0 is a rewriting of E0 wrt E. Suppose
L(Ad 5 B̄)=”. Then any S-word w ¥ L(E0)=L(Ad) is also accepted by B. Hence
by construction of B there is a SE-word e1 · · · en ¥ L(AŒ) such that w=w1 · · ·wn and
wi ¥ L(re(ei)) for i=1, ..., n. Suppose that L(Ad 5 B̄) ]”. Then there exists a
S-word w ¥ L(E0)=L(Ad) that is rejected by B. Hence by construction of B there
is no SE-word e1 · · · en ¥ L(AŒ) such that w=w1 · · ·wn and wi ¥ L(re(ei)) for
i=1, ..., n. L

Corollary 2.1. An exact rewriting of E0 wrt E exists if and only if
L(Ad 5 B̄)=”.

Example 2.3. Referring to Example 2.2, one can easily verify that
RE, E0=e

g
2 · e1 · e

g
3 is exact. Observe that, if E did not include c, the rewriting algo-

rithm would give us eg2 · e1 as the SE-maximal rewriting of E0 wrt {a, a · cg · b},
which, however, is not exact.

3. COMPLEXITY ANALYSIS

In this section we analyze the computational complexity of both the problem of
rewriting regular expressions, and the method described in Section 2.

3.1. Upper Bounds

Let us analyze the complexity of the algorithms presented above for computing
the maximal rewriting of a regular expression. By considering the cost of the
various steps in computing RE, E0 , we immediately derive the following theorem.

Theorem 3.1. The problem of generating the SE-maximal rewriting of a regular
expression E0 wrt a set E of regular expressions is in 2EXPTIME.

Proof. We refer to the algorithm that computes RE, E0 , and we observe that:
(i) Generating the deterministic automaton Ad from E0 is exponential. (ii) Building
AŒ from Ad and the expressions E1, ..., Ek is polynomial. (iii) Complementing AŒ
is again exponential. L

With regard to the cost of verifying the existence of an exact rewriting,
Corollary 2.1 ensures us that we can solve the problem by checking L(Ad 5 B̄)=”.
Observe that, if we construct L(Ad 5 B̄), we get a cost of 3EXPTIME, since B̄ is of
triply exponential size with respect to the size of the input. However, we can avoid
the explicit construction of B̄, thus getting the following result.

Theorem 3.2. The problem of verifying the existence of an exact rewriting of a
regular expression E0 wrt a set E of regular expressions is in 2EXPSPACE.

Proof. We refer to the algorithm that verifies whether the automaton RE, E0 is an
exact rewriting of E0 wrt E, and we observe that: (i) By Theorem 3.1, the automa-
ton RE, E0 is of doubly exponential size. (ii) Building the automaton B from RE, E0 is
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polynomial. (iii) Complementing B to get B̄ is exponential. (iv) Verifying the emp-
tiness of the intersection of Ad and B̄ can be done in nondeterministic logarithmic
space [RS59, Jon75]. Combining (i)–(iv), we get a nondeterministic 2EXPSPACE
bound, and using Savitch’s Theorem [Sav70], we get a deterministic 2EXPSPACE
bound.
Some care, however, is needed to getting the claimed space bound. We cannot
simply construct B̄, since it is of triply exponential size. Instead, we construct B̄ ‘‘on-
the-fly’’; whenever the nonemptiness algorithm wants to move from a state s1 of the
intersection of Ad and B̄ to a state s2, the algorithm guesses s2 and checks that it is
directly connected to s1. Once this has been verified, the algorithm can discard s1.
Thus, at each step the algorithm needs to keep in memory at most two states and
there is no need to generate all of B̄ at any single step of the algorithm. L

3.2. Lower Bounds

We show that the upper bounds established in Section 3.1 are essentially optimal.
To prove the matching lower bounds we exploit variants of tiling problems (see e.g.,
[vEB82, vEB97, Ber66]). A tile is a unit square of one of several types and a tiling
system is specified by means of a finite set D of tile types and two binary relations
H and V over D, representing horizontal and vertical adjacency relations, respec-
tively. A generic tiling problem consists in determining whether there exists a
mapping y (called tiling) from a given region R of the integer plane to D which is
consistent with H and V. That is, if (i, j), (i, j+1) ¥ R then (y(i, j), y(i, j+1)) ¥H
and if (i, j), (i+1, j) ¥ R then (y(i, j), y(i+1, j)) ¥ V. We get a specific tiling
problem by imposing additional conditions on the region to be tiled and on the tile
types that can be placed in certain positions of the region, such as the first/last
row/column, or the borders.
Different tiling problems have been shown to be complete for various complexity
classes [vEB82, vEB97]. We will use EXPSPACE and 2EXPSPACE-complete
tiling problems.

3.2.1. Existence of a nonempty rewriting

We say that a rewriting R is SE-empty if L(R)=”. We say that it is S-empty if
expS(L(R))=”. Clearly SE-emptiness implies S-emptiness. The converse also
holds except for the non-interesting case where E contains one or more expressions
E such that L(E)=”. Therefore, we will talk about the emptiness of a rewriting R
without distinguishing between the two definitions.
We consider the tiling problem T=(D, H, V, tS, tF, CES), where tS and tF are two
distinguished tile types in D, and for a given number n in unary, CES requires to tile
a region of size 2n×k, for some number k, in such a way that the left bottom tile of
the region (i.e., the one in position (0, 0)) is of type tS and the right upper tile (i.e.,
the one in position (2n−1, k−1)) is of type tF. Using a reduction from acceptance
of EXPSPACE Turing machines analogous to the one in [vEB97], it can be shown
that this variant of tiling problem is EXPSPACE-complete.
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We exploit such a tiling problem to prove the EXPSPACE lower bound of the
problem of verifying the existence of a nonempty rewriting. That is, given an
instance T of the above tiling problem and a number n, we construct a regular
expression E0 and a set E of regular expressions such that a tiling corresponding to
T (a T-tiling) exists if and only if there is a nonempty rewriting of E0 wrt E.
A tiling of a region of size 2n×k can be described as a word over D of length k2n,
where every block of 2n symbols describes a row of the tiling. We take SE to
be D. We will define E0 and re(e) for each letter e ¥ D such that a D-word e1 · · · ea
describes a T-tiling if and only if expS(e1 · · · ea) ı L(E0). E0 will be defined as
the sum Ebad+Egood of two regular expressions Ebad and Egood, which are in turn
defined as sums of regular expressions.
The construction of re(e) for e ¥ D is uniform: we take the alphabet S to be
D 2 {0, 1, $} (so SE ı S), and define re(e)=$· (0+1)3n+1 · e; that is, the language
associated with e consists of e prefixed with a $ sign and all binary words of length
3n+1. Intuitively, the $ sign is a marker, the first n bits encode the column of a tile
(n bits are needed to describe the column in a row of length 2n), and the next 2n bits
encode bookkeeping information. The 3n+1-st bit is a highlight. As will become
clear shortly, highlights are used to identify either a tile not in the last column or a
pair of vertically adjacent tiles. Given a word w ¥ L(re(e)), we use

• position(w) to denote the first n bits after the $ marker,

• carry(w) to denote the second n bits after the $ marker, and

• next(w) to denote the third n bits after the $ marker.

Also, we use position(w, i), carry(w, i) and next(w, i), for 0 [ i < n to denote the
i+1-st bit in position(w), carry(w), and next(w), respectively. This means that we
count bits starting from 0 and consider the least significant bit to be the one in
position 0.
Consider now a word e0 · · · ea over D, and let w=w0 · · ·wa be a word in
expS(e0 · · · ea). We call each wj, which is a word of length 3n+3, a block. We clas-
sify such words w into two classes. Our intention is that position(wj) describes an
n-bit counter, and that precisely one or two highlight bits are on. When only one
highlight bit is on it is located in a block wh such that position(wh) ] 1n, and
when two highlight bits are on, they are located in blocks wh and wk such
that position(wh)=position(wk) and for at most one j, h < j < k, we have
position(wj)=0n. Requiring position(wj) to be an n-bit counter means that we
expect position(w0)=0n and position(wa)=1n, and we expect carry(wj) to be the
sequence of n carry bits when position(wj) is incremented to yield next(wj), which is
equal to position(wj+1). If the intended conditions do not hold, then w is a bad
word. More precisely, a word w=w0 · · ·wa is bad if one of the following holds:

1. position(w0, i)=1, for some i, 0 [ i < n;

2. position(wa, i)=0, for some i, 0 [ i < n;

3. carry(wj, 0)=0, for some j, 0 [ j [ a;

4. carry(wj, i) ] carry(wj, i−1) and position(wj, i−1), for some j and i,
0 [ j [ a, 1 [ i < n;

REWRITING OF REGULAR EXPRESSIONS 451



5. next(wj, i) ] position(wj, i) xor carry(wj, i), for some j and i, 0 [ j [ a,
0 [ i < n;

6. position(wj, i) ] next(wj−1, i), for some j and i, 1 [ j [ a, 0 [ i < n;

7. conditions on the highlight bits, which are:

(i) no highlight bit in w is 1;

(ii) only one highlight bit in w is 1 and it is located in a block wh such that
position(wh)=1n;

(iii) at least three highlight bits in w are 1;

(iv) the two highlight bits that are 1 are located in two blocks wh and wk
and there are at least two blocks wj1 and wj2 between wh and wk such that
position(wj1 )=position(wj2 )=0

n;

(v) the two highlight bits that are 1 are located in two blocks wh and wk
and position(wh, i) ] position(wk, i) for some i, 0 [ i < n.

We define Ebad in such a way that all bad words belong to L(Ebad). Each of the
above conditions can be ‘‘detected’’ by a regular expression of size polynomial in n,
which contributes to Ebad (and hence to E0). To illustrate the idea, we provide the
regular expressions for some of the conditions above.
Condition (1) is detected by the regular expression

1 C
n−1

i=0
$ · (0+1) i · 1 · (0+1)3n−i ·D2 ·Bg

where B stands for the regular expression $ · (0+1)3n+1 ·D.
Condition (4) is detected by the sum of four regular expressions

Bg ·1 C
n−1

i=1
$ · (0+1) i−1 · p · (0+1)n−i

· (0+1) i−1 · c · cŒ(0+1)n−1−i · (0+1)n+1 ·D2 ·Bg,

one for each choice of 0 or 1 for p, c, and cŒ such that cŒ ] c and p.
Condition (6) is detected by the sum of two regular expressions

Bg ·1 C
n−1

i=0
$ · (0+1)2n · (0+1) i · b · (0+1)n−1−i · (0+1) ·D

· $ · (0+1) i · b̄ · (0+1)n−1−i · (0+1)2n · (0+1) ·D2 ·Bg,

one for b=0 and b̄=1, and one for b=1 and b̄=0.
Condition (7-ii) is detected by the regular expression

($ · (0+1)3n · 0 ·D)g · $ · 1n · (0+1)2n · 1 ·D · ($ · (0+1)3n · 0 ·D)g.
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Condition (7-v) is detected by the sum of two regular expressions

Bg ·1 C
n−1

i=0
$ · (0+1) i · b · (0+1)3n−1−i · 1 ·D ·Bg

· $ · (0+1) i · b̄ · (0+1)3n−1−i · 1 ·D2 ·Bg

one for b=0 and b̄=1, and one for b=1 and b̄=0.
Words that satisfy none of the above conditions are good words, and will be
handled differently. In such words either one or two highlight bits are on. When
one highlight bit is on, it is located at a block that corresponds to a tile not in the
last column in a tiling of the region. The types of this tile and of the one immedi-
ately to the right have to be related in a way that depends on the horizontal adja-
cency relation H of T. When two highlight bits are on, they are located at two
positions that are precisely 2n blocks apart, and these blocks correspond to verti-
cally adjacent tiles. The types of these tiles have to be related in a way that depends
on the vertical adjacency relation V of T. We can use regular expressions of size
polynomial in n to force such blocks to be related in the right way, and also to force
the tiling to satisfy the additional conditions on the left bottom and right upper
tiles. Egood is the sum of all such regular expressions.
For example, the following regular expression ensures that the horizontal adja-
cency relation is respected in the case where the highlight bit is on at a block that is
neither the first nor the last one:

$ · (0+1)3n · 0 · tS · ($ · (0+1)3n · 0 ·D)g

·1 C
(t1, t2) ¥H

$ · (0+1)3n · 1 · t1 · $ · (0+1)3n · 0 · t2 2

· ($ · (0+1)3n · 0 ·D)g · $ · (0+1)3n · 0 · tF.

The following regular expression ensures that the vertical adjacency relation is res-
pected in the case where the two highlight bits are on at blocks that are neither the
first nor the last one:

$ · (0+1)3n · 0 · tS · ($ · (0+1)3n · 0 ·D)g

·1 C
(t1, t2) ¥ V

$ · (0+1)3n · 1 · t1 · ($ · (0+1)3n · 0 ·D)g · $ · (0+1)3n · 1 · t2 2

· ($ · (0+1)3n · 0 ·D)g · $ · (0+1)3n · 0 · tF.

Similar regular expressions can be provided for the cases where the highlight bits
are on at the first or last block.
Thus, all the good words w=w0 · · ·wa in expS(e0 · · · ea) are in L(Egood) if and only
if e0 · · · ea describes a T-tiling. If no T-tiling exists then for every e0 · · · ea we can find
a good word w=w0 · · ·wa in expS(e0 · · · ea) that is not in L(Egood) and hence not in
L(E0). Thus, E0 has a nonempty rewriting wrt E if and only if a T-tiling exists.
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Theorem 3.3. The problem of verifying the existence of a nonempty rewriting of
a regular expression E0 wrt a set E of regular expressions is EXPSPACE-complete.

Proof. By Theorem 3.1, we generate the SE-maximal rewriting of a regular
expression E0 wrt a set E of regular expressions in 2EXPTIME. Checking whether a
given finite-state automaton is non-empty can be done in NLOGSPACE. The
upper bound follows (see comments in the proof of Theorem 3.2). The lower bound
follows from the reduction from the EXPSPACE-complete tiling problem described
above, by observing that E0 and all regular expressions in E are of size polynomial
in T and n. L

Note that Theorem 3.3 implies that the upper bound established in Theorem 3.1
is essentially optimal. If we can generate maximal rewritings in, say, EXPTIME,
then we could test emptiness in PSPACE, which is impossible by Theorem 3.3. We
can get, however, an even sharper lower bound on the size of rewritings.

Theorem 3.4. For each n > 0 there is a regular expression En0 and a set E
n of

regular expressions such that the combined size of En0 and E
n is polynomial in n, but

the shortest nonempty rewriting (expressed either as a regular expression or as an
automaton) of En0 wrt E

n is of length 22
n
.

Proof. We use the encoding technique of Theorem 3.3. Instead, however, of
encoding tiling problems, we directly encode a 2n-bit counter using an alphabet
SE={b000, b001, ..., b111} of 8 symbols representing the 8 possible combinations of a
position, a carry, and a next bit. For a symbol bpcx, where p, c, x ¥ {0, 1}, we say
that p is the position-component, c the carry-component, and x the next-component
of bpcx. In a word over SE representing the evolution of the 2n-bit counter, the three
components of symbols that are exactly 2n positions apart will represent the posi-
tion, carry, and next bits in the same position of two successive configurations of
the counter. By using the highlight bits of the encoding technique of Theorem 3.3
we can enforce the correct relationships between such symbols. Hence, we can
define En0 and the set E

n={Bn000, ..., B
n
111} of regular expressions associated to the

symbols in SE in such a way that a word w=bp0c0x0 · · · bpmcmxm is a rewriting of E
n
0

wrt En if and only if the bit vector p0 · · · pm represented by the position-components
of w is of the form w0 · · ·w22n−1, where wj is the 2n-bit representation of j.
Using pumping arguments it is easy to see that any regular expression or auto-
maton describing such a rewriting has to be of length at least 22

n
. Indeed, assume

there is a regular expression or automaton R of size less than 22
n
describing the

rewriting. Then, since any nonempty regular expression or automaton accepts at
least one word of length less than or equal to its size, R accepts also a word wŒ of
length less than 22

n
, contradicting the hypothesis that R is a correct rewriting of En0

wrt En. L

3.2.2. Existence of an Exact Rewriting

The technique used in Theorem 3.3 turns out to be an important building block
in the proof that Theorem 3.2 is also tight.
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We consider the tiling problem T=(D, H, V, tS, tF, tL, tR, C2ES), where tS, tF, tL,
and tR are distinguished tile types in D such that (tR, tL) ¥H, and for a given
number n in unary, C2ES requires to tile a region of size 22

n
×k, for some number k,

in such a way that: (i) the left bottom tile of the region is of type tS, (ii) all other
tiles on the left border are of type tL, (iii) the right upper tile is of type tF, and
(iv) all other tiles on the right border are of type tR. Intuitively, tS corresponds to
the initial state of a Turing machine on the first tape position, tF corresponds to the
final state on the last tape position reached by the machine in the final configura-
tion, and tL and tR correspond respectively to left and right endmarkers of Turing
machine configurations. Using a reduction from acceptance of 2EXPSPACE
Turing machines analogous to the one in [vEB97], it can be shown that this tiling
problem is 2EXPSPACE-complete.
We exploit such a tiling problem to prove the 2EXPSPACE lower bound of the
problem of verifying the existence of an exact rewriting. That is, given an instance T
of the above tiling problem and a number n, we construct a regular expression E0
and a set E of regular expressions such that a T-tiling exists if and only if there is an
exact rewriting of E0 wrt E. Each row of a T-tiling is of doubly exponential length
in n. We describe such a tiling as a word over D, and to ‘‘check’’ the vertical adja-
cency conditions we need to compare the types of tiles that are a doubly exponen-
tial distance apart, which requires ‘‘yardsticks’’ of such length. Fortunately, we
have seen in the proofs of Theorems 3.3 and 3.4 how to construct such yardsticks.
We directly exploit the construction described in Theorem 3.4 to encode a 2n bit
counter. Let EC0 and EC be respectively the regular expression En0 and the set
En={Bn000, ..., B

n
111} of regular expressions of Theorem 3.4. Such regular expres-

sions are over the alphabet SC={0, 1, $} 2 DC, where we have denoted with DC the
set SCE={b000, b001, ..., b111} of 8 symbols representing the 8 possible combinations
of a position, a carry, and a next bit of the 2n bit counter, used in the proof of
Theorem 3.4. Let reC( · ) be the mapping that associates each regular expression in
EC with the corresponding symbol in SCE . Then for a word w over S

C
E we have that

expS(w) ı L(E
C
0 ) precisely when w=wC, where wC is the word that describes the

22
n
successive bit configurations (for the position, the carry and the next bits) of the

2n bit counter. In particular, since each bit configuration is of length 2n, we have
that wC is of length 2n · 22

n
, which is precisely what we need. We will use EC0 and E

C

to construct regular expressions that detect errors in T-tilings with rows of length
exactly2 1+2n · 22

n
.

2We use tilings with rows of length 1+2n · 22
n
instead of 22

n
since this simplifies the construction of the

regular expressions.

Let D̃={t̃ | t ¥ D}, where D is the set of tile types of T. We take S to be
SC 2 D̃ 2 D and SE to be S

C
E 2 D̃. The set E of regular expressions used for the

rewriting is obtained by taking re(e)=reC(e)+D, for each e ¥ SCE , and re(t̃)=t̃+t,
for each t̃ ¥ D̃. Thus each symbol in SCE generates also all possible tile types in D,
while each symbol in D̃ generates itself and only the corresponding tile type.
We construct regular expressions EV0 , E

H
0 , E

S
0 , E

F
0 , E

L
0 , and E

R
0 , which are used to

detect errors in candidate tilings. EV0 is used to detect conflicts with respect to the
vertical adjacency relation V, which arise between tiles that are 1+2n · 22

n
symbols
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apart. EH0 is used to detect conflicts with respect to the horizontal adjacency rela-
tion H, which arise between tiles that are directly adjacent. Note that since
(tR, tL) ¥H, also the last tile of a row and the first tile of the next row have to
respect the horizontal adjacency condition. ES0 , E

F
0 , E

L
0 , and E

R
0 are used to detect

tiles of the wrong type at the beginning and end, and on the left and right border
respectively. The regular expressions are constructed in such a way that for a word
w over SE we have that:

• expS(w) ı L(E
V
0 ) precisely when w is in the form

SCE
g ·1 C

(t1, t2) ¥ V
t̃1 ·S

C
E ·wC · t̃2 2 ·SCE g

where V is the set of pairs of tiles that are not in V.

• expS(w) ı L(E
H
0 ) precisely when w is in the form

SCE
g ·1 C

(t1, t2) ¥H
t̃1 · t̃2 2 ·SCE g

where H is the set of pairs of tiles that are not in H.

• expS(w) ı L(E
S
0 ) precisely when w is in the form

1 C
t ¥ D0{tS}

t̃2 ·SCE g

• expS(w) ı L(E
F
0 ) precisely when w is in the form

(SCE ·wC)
g ·wC ·1 C

t ¥ D0{tF}
t̃2

• expS(w) ı L(E
L
0 ) precisely when w is in the form

(SCE ·wC)
g ·SCE ·wC ·1 C

t ¥ D0{tL}
t̃2 ·SCE g

• expS(w) ı L(E
R
0 ) precisely when w is in the form

(SCE ·wC)
g ·wC ·1 C

t ¥ D0{tR}
t̃2 ·SCE ·SCE g.

The construction of EH0 and E
S
0 is immediate. For the other regular expressions we

need to construct a regular expression ECD0 , of size polynomial in n, whose rewriting
is wC. We make use of E

C
0 and E

C, but need to take into account that, wrt the con-
struction in Theorem 3.4, now a symbol e in SCE generates not only all possible
sequences of type $ · (0+1)3n+1 · e (and hence of length 3n+3) but also all symbols
in D. We can however exploit the fact that EC0 is composed of subexpressions that
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generate words of length 3n+3 and thus obtain ECD0 from E
C
0 by simply adding the

expression D to each such subexpression. Then we have for example that

EV0=(B
C+D)g ·1 C

(t1, t2) ¥ V
(t̃1+t1) · (BC+D) ·E

CD
0 · (t̃2+t2)2 · (BC+D)g,

where BC stands for the regular expression $ · (0+1)3n+1 ·DC. The regular expres-
sions EF0 , E

L
0 , and E

R
0 are constructed in a similar way.

The regular expression E10=E
V
0+E

H
0 +E

S
0+E

F
0+E

L
0+E

R
0 is such that a rewrit-

ing of E10 generates only candidate tilings with some error (in addition to words
containing also $, 0, 1, the symbols in DC, and at most two symbols in D̃).
To encode the problem of the existence of an exact rewriting, we take E0 to be
E10+D

g, i.e., E0 expresses also all ‘‘candidate’’ tilings using the tile types in D. If no
T-tiling exists, then every candidate tiling will have an error, and thus will already
be generated by a rewriting of E10. If, on the other hand, a T-tiling exists, such a
tiling does not have an error and will not be generated by the rewriting of E10,
resulting in a non-exact rewriting. Notice that we cannot attempt to construct a
rewriting of Dg separately, and the only way to get one is via the rewriting of E10.
This is due to the fact that, from the symbols in SE=S

C
E 2 D̃, each symbol e in SCE

generates not only all symbols in D, but also sequences of type $ · (0+1)3n+1 · e,
while each symbol t̃ in D̃ generates besides t also t̃.

Theorem 3.5. The problem of verifying the existence of an exact rewriting of a
regular expression E0 wrt a set E of regular expressions is 2EXPSPACE-complete.

Proof. The upper bound proof is given in Theorem 3.2. The lower bound
follows from the reduction from the 2EXPSPACE complete tiling problem
described above, by observing that E0 and all regular expressions in E are of size
polynomial in T and n. L

4. QUERY REWRITING IN SEMI-STRUCTURED DATA

In this section we show how to apply the results presented above to query rewrit-
ing in semi-structured data.
All semi-structured data models share the characteristic that data are organized
in a labeled graph [Bun97, Abi97]. Following this idea two different approaches
have been proposed:

1. The first approach associates data both with the nodes and with the edges.
Specifically, nodes represent objects, and edges represent relations between objects
[Abi97, QRS+95, FFLS97, FFK+98].

2. The second approach associates data with the edges only [BDFS97,
BDHS96, FS98], but queries are not expressed directly over the constants labeling
the edges of databases, but over logical formulae describing the properties of such
edges.

The basic query mechanism in both approaches is that of regular path queries. A
regular path query is specified through a regular expression and the answer to such

REWRITING OF REGULAR EXPRESSIONS 457



a query is a set of pairs of nodes connected in the database through a path con-
forming to the regular expression.
The rewriting techniques proposed in Section 2 can be applied to rewrite regular
path queries in both approaches. In the first approach it can be applied directly. It
is sufficient to show that R is a rewriting of a query Q if and only if R (considered
as a mechanism to define a language) is a rewriting of the regular expression Q.3 In

3 The proof is similar to that for Theorem 4.1 below.

the second approach more care is required due to the fact that queries are over
formulae rather than directly over symbols representing data. In the rest of the
section we concentrate on this case.

4.1. Semi-structured Data Models and Queries

Following [BDFS97], we consider a (semi-structured) database as a graph DB
whose edges are labeled by elements from a given domain D, which we assume
finite. We denote an edge from node x to node y labeled by a with xQa y. Typi-
cally, a database will be a rooted connected graph; however, in this paper we do not
need to make this assumption. In order to define queries over a semi-structured
database we start from a decidable, complete4 first-order theoryT over the domain

4 The theory is complete in the sense that for every closed formula j, either T entails j, or T entails
¬ j [BDFS97].

D. We assume that the language of T includes one distinct constant for each
element of D (in the following we do not distinguish between constants and ele-
ments of D). We further assume that among the predicates ofT we have one unary
predicate of the form lz.z=a, for each constant a in D. We use simply a as an
abbreviation for such predicate. Finally, as in [BDFS97], we consider both the size
of T (and hence the number of constants in D), and the time needed to check
validity of any formula inT to be constant.
In this setting, a regular path query (which we call simply query), denotes all the
paths corresponding to words of a specified regular language defined over the
(finite) set F of formulae of T with one free variable. Such formulae are used to
describe properties that the labels of the edges of the database must satisfy. Regular
path queries are the basic constituents of queries in semi-structured data, and are
typically expressed by means of regular expressions [BDHS96, Abi97, FS98,
MS99]. Another possibility to express regular path queries is to use finite auto-
mata.
When evaluated over a database, a query Q returns the set of pairs of nodes
connected by a path that conforms to the regular language L(Q) defined by Q,
according to the following definitions.

Definition 4.1. Given an F-word j1 · · ·jn, a D-word a1 · · · an matches j1 · · ·jn
(wrtT) if and only ifT/ ji(ai), for i=1, ..., n.

We denote the set of D-words that match an F-word w by match(w), and, given
a language a overF, we denote 1w ¥ amatch(w) by match(a).
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Definition 4.2. The answer to a query Q over a database DB is the set
ans(L(Q), DB), where for a language a overF

ans(a, DB)={(x, y) | there is a path x|Q
a1 · · · |Q

an y in DB s.t. a1 · · · an ¥match(a)}

4.2. Rewriting Regular Path Queries

In order to apply the results on rewriting of regular expressions to query rewrit-
ing in semi-structured data we need to take into account that the alphabet over
which queries (the one we want to rewrite and the views to use in the rewriting) are
expressed, is the set F of formulae of the underlying theory T, and not the set of
constants that appear as edge labels in graph databases.
In the following, let Q0 be a regular path query and Q={Q1, ..., Qk} be a finite
set of views, also expressed as regular path queries, in terms of which we want to
rewrite Q0. Let F be the set of formulae of T appearing in Q0, Q1, ..., Qk, and let
Q have an associated alphabet SQ containing exactly one symbol for each view in Q.
We denote the view associated with the symbol q ¥ SQ with rpq(q).
Given a language a over SQ, we denote by expF(a) the language over F defined
as

expF(a)= 0
q1 · · · qn ¥ a

{w1 · · ·wn | wi ¥ L(rpq(qi))}

Definition 4.3. Let R be any formalism for defining a language L(R) over SQ.
R is a rewriting of Q0 wrt Q if for every database DB, ans(expF(L(R)), DB)
ı ans(L(Q0), DB), and is said to be

• maximal if for each rewriting RŒ of Q0 wrt Q we have that ans(expF(L(RŒ)),
DB) ı ans(expF(L(R)),DB),

• exact if ans(expF(L(R)), DB)=ans(L(Q0), DB).

Theorem 4.1. R is a rewriting of Q0 wrt Q if and only if match(expF(L(R)))
ı match(L(Q0)). Moreover, R is maximal if and only if for each rewriting RŒ of Q0
wrt Q we have that match(expF(L(RŒ))) ı match(expF(L(R))), and it is exact if and
only if match(expF(L(R)))=match(L(Q0)).

Proof. We prove only that R is a rewriting of Q0 wrt Q iff match(expF(L(R))
ı match(L(Q0)). The other assertions can be proved in a similar way.
‘‘2 ’’ By contradiction. Assume there exists a D-word a1 · · · an ¥ match(expS
[F](L(R))) such that a1 · · · an ¨ match(L(Q0)). Then for the database DB consist-
ing of a single path x|Q

a1 · · · |Q
an y it holds that (x, y) ¥ ans(expF(L(R)),

DB) but (x, y) ¨ ans(L(Q0), DB). Contradiction.
‘‘1 ’’ Again by contradiction. Assume there exists a database DB and two
nodes x and y in DB such that (x, y) ¥ ans(expF(L(R)), DB) and (x, y) ¨
ans(L(Q0), DB). Then there exists a path x|Q

a1 · · · |Q
an y in DB such that

a1 · · · an ¥ match(expF(L(R))). Hence a1 · · · an ¥ match(L(Q0)) and thus (x, y) ¥
ans(L(Q0), DB). Contradiction. L
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We say that R is SQ-maximal if for each rewriting RŒ of Q0 wrt Q we have that
L(RŒ) ı L(R). By arguing as in Theorem 2.1, and exploiting Theorem 4.1, it is easy
to show that a SQ-maximal rewriting is also maximal.
Next we show how to compute a SQ-maximal rewriting, by exploiting the con-
struction presented in Section 2. Applying the construction literally, considering F
as the base alphabet S, we would not take into account the theory T, and hence
the construction would not give us the maximal rewriting in general. As an
example, suppose that T/ -x.A(x) ‡ B(x), Q0=B, and Q={A}. Then the
maximal rewriting of Q0 wrt Q is A, but the algorithm would give us the empty
language.
In order to take the theory into account, we proceed as follows: For each query
Q ¥ {Q0} 2 Q we construct an automaton Qg accepting the language match(L(Q)).
This can be done by viewing the query Q as a (possibly nondeterministic) automa-
ton Q=(F, S, s0, r, F) and constructing Qg as (D, S, s0, rg, F), where sj ¥ rg(si, a)
if and only if sj ¥ r(si, j) and T/ j(a). Observe that the set of states of Q and Qg

is the same. We denote {Qg1 , ..., Q
g
k} with Q

g. Then we proceed as before:

1. Construct a deterministic automaton Ad=(D, Sd, s0, r
g
d, Fd) such that

L(Ad)=L(Q
g
0).

2. Define the automaton AŒ=(SQ, Sd, s0, rŒ, Sd−Fd), where sj ¥ rŒ(si, q) if
and only if there exists a word w ¥ match(L(rpq(q))), i.e., w ¥ L(Qg) where
Q=rpq(q), such that sj ¥ r

g
d
g(si, w).

3. Return RQ, Q0=RQ
g, Qg0
=AŒ.

Theorem 4.2. The automaton RQ, Q0 is a SQ-maximal rewriting of Q0 wrt Q.

Proof. First we show that every rewriting R of Qg0 wrt Q
g is also a rewriting of

Q0 wrt Q, and vice-versa. If R is a rewriting of Q
g
0 wrt Q

g, then by definition
expD(L(R)ı L(Q

g
0), which implies that match(expF(L(R)))ımatch(L(Q0)). Hence,

by Theorem 4.1, R is a rewriting of Q0 wrt Q. On the converse, if R is a rewriting of
Q0 wrt Q, then by Theorem 4.1 match(expF(L(R)))ımatch(L(Q0)), which implies
that expD(L(R) ı L(Q

g
0), i.e., R is a rewriting of Q

g
0 wrt Q

g.
Now, by Theorem 2.2 we know that RQ

g, Qg0
=RQ, Q0 is a SQ-maximal rewriting of

Qg0 wrt Q
g. Hence it is a rewriting of Q0 wrt Q. As RQ

g, Qg0
is a SQ-maximal rewriting

of Qg0 wrt Q
g, we have that, for each rewriting R of Qg0 wrt Q

g, and hence for each
rewriting R of Q0 wrt Q, L(R) ı L(RQ

g, Qg0
)=L(RQ, Q0 ), which implies that RQ, Q0 is a

SQ-maximal rewriting of Q0 wrt Q. L

To check that RQ, Q0 is an exact rewriting of Q0 wrt Q we can proceed as in Sec-
tion 2, by constructing an automaton B that accepts expD(L(RQ

g, Qg0
)), and checking

for the emptiness of L(Ad 5 B̄).
Observe that both the size of Qg0 and Qg and the time needed to construct them
from Q0 and Q are linearly related to the size of Q0 and Q. It follows that the same
upper bounds as established in Section 3.1 hold for the case of regular path
queries5.

5We remind the reader that the number of constants in D is assumed to be constant.
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In fact, the construction of Qg can be avoided in building RQ, Q0 , since we
can verify whether there exists a D-word w ¥ match(L(rpq(q))) such that sj ¥
rgd

g(si, w)(required in Step 2 of the algorithm above) as follows. We consider
directly the automaton Q=rpq(q) (which is over the alphabet F) and the automa-
ton A i, jd =(D, Sd, si, r

g
d, {sj}) obtained from Ad by suitably changing the initial and

final states. Then we construct from Q and A i, jd the product automaton K, with the
proviso that K has a transition from (s1, s2) to (s

−

1, s
−

2) (whose label is irrelevant) if
and only if (i) there is a transition from s1 to s

−

1 labeled a in Qi, j, (ii) there is a tran-
sition from s2 to s

−

2 labeled j in Q, and (iii) T/ j(a). Finally, we check whether K
accepts a non-empty language. This allows us to instantiate the formulae in Q only
to those constants that are actually necessary to generate the transition function of AŒ.
With regard to Q0, instead of constructing Q

g
0 , we can build an automaton based

on the idea of separating constants into suitable equivalence classes according to
the formulae in the query they satisfy. The resulting automaton still describes the
query Q0, and its alphabet is generally much smaller than that of Q

g
0 .

4.3. Properties of Rewritings

In the case where the rewriting RQ, Q0 is not exact, the only thing we know is that
such rewriting is the best one we can obtain by using only the views in Q. However,
one may want to know how to get an exact rewriting by adding to Q suitable views.

Example 4.1. Let Q0=a·(b+c), Q={a, b}, and SQ={q1, q2}, where rpq(q1)
=a, and rpq(q2)=b. Then RQ, Q0=q1 · q2, which is not exact. On the other hand, by
adding c to Q and q3 to SQ, with rpq(q3)=c, we obtain q1 · (q2+q3) as an exact
rewriting of Q0.

As an example, we consider the case where the views added to Q are atomic, i.e.,
have the form lz.P(z), where P is a predicate of T. Notice that atomic views
include views of the form lz.z=a, which we call elementary. The intuitive idea is to
choose a subset PŒ of the set P of predicates of T, and to construct an exact
rewriting of Q0 wrt Q+, where Q+ is obtained by adding to Q an atomic view for
each symbol in PŒ. An exact rewriting R of Q0 wrt Q+ is called a partial rewriting of
Q0 wrt Q, provided that Q+ ] Q.
The method we have presented can be easily adapted to compute partial rewrit-
ings. Indeed, if we compute RQ+, Q0 , we obtain a partial rewriting of Q0 wrt Q,
provided that RQ+, Q0 is an exact rewriting of Q0 wrt Q+. Observe that it is always
possible to choose a subset PŒ of P in such a way that RQ+, Q0 is exact (e.g., by
choosing the set of all elementary views).
Typically, one is interested in using as few symbols of P as possible to form Q+,
and this corresponds to choosing the minimal subsets PŒ such that RQ+, Q0 is exact.
More generally, one can establish various preference criteria for choosing rewrit-
ings. For instance, we may say that a (partial) rewriting R is preferable to a
(partial) rewriting RŒ if one of the following holds:

1. match(expF(L(RŒ))) … match(expF(L(R))),

2. match(L(R))=match(L(RŒ)) and R uses less additional atomic views
than RŒ,
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3. match(L(R))=match(L(RŒ)), R uses the same number of additional
atomic views as RŒ, and less additional atomic nonelementary views.

4. match(L(R))=match(L(RŒ)), R uses the same number of additional
atomic and of additional nonelementary views as RŒ, and less views than RŒ.

Under this definition an exact rewriting is preferable to a nonexact one. Moreover,
the definition reflects the fact that the cost of materializing additional atomic views
(in particular the nonelementary ones) is higher than the cost of using the available
ones. Finally, since a certain cost is associated with the use of each view, when
comparing two rewritings defining the same language and using (if any) the same
number of additional atomic and nonelementary views, then the one that uses less
views is preferable.
The rewriting algorithm presented above can be immediately exploited to
compute the most preferable rewritings according to the above criteria. It is easy to
see that the problem of computing the most preferable rewritings remains in the
same complexity class, since the complexity is dominated by the cost of computing
the rewriting.

5. CONCLUSIONS

In this paper we have studied the problem of view-based query rewriting in the
case where both the query and the views are expressed as regular path queries. We
have shown the decidability of the problem of computing the maximal rewriting
and checking whether it is exact. We have characterized the computational com-
plexity of the problem and have provided algorithms that are essentially optimal.
We envision several directions for extending the present work.
First, in this paper we focused on the problem of computing the maximal con-
tained rewriting, i.e., the best rewriting that is guaranteed to provide only answers
contained in those of the original query. Also of interest is the dual approach, i.e.,
computing the minimal containing rewritings (in general not unique), which
guarantee to provide all the answers of the original query, and possibly more.
Second, we are interested in studying rewritings for more general forms of
queries, such as the so-called generalized path queries, i.e., queries of the form
x1Q1x2 · · · xn−1Qn−1xn, where each Qi is a regular path query [FS98]. Such queries
ask for all n-tuples o1, ..., on of nodes such that, for each i, there is a path from oi to
oi+1 that satisfies Qi. Notice that, since such queries compute n-ary relations (not
necessarily binary ones), it is a priori not obvious in which language to express the
rewriting. If one wants to use the operators for regular expressions in the rewriting,
at least a projection operator that projects the n-ary relation on two of its compo-
nents is needed. A further generalization would be to consider conjunctions of
regular path queries, where the context in which a certain subpath appears is even
more complex [CDGLV00b].
Third, one can investigate possible interesting subcases where the rewriting of
regular (and generalized) path queries can be done more efficiently. Additionally,
cost models for path queries and preference criteria that take into account such cost
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models can be defined, leading to the development of techniques for choosing the
best rewriting with respect to the new criteria.
Finally, it is interesting to investigate the relationship between view-based query
rewriting and view-based query answering in semi-structured data. The problem of
view-based query answering is the one of computing the answer to a query having
only information about the extensions of a set of materialized views [AD98].
Query rewriting techniques can in principle be used for view-based query answer-
ing. However, the precise relationship between the two problems is rather involved,
as discussed in [CDGLV00a, CDGLV00c, CDGLV00d].
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